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Abstract

Audio deepfake detection (ADD) is essential001
for preventing the misuse of synthetic voices002
that may infringe on personal rights and privacy.003
Recent zero-shot text-to-speech (TTS) models004
pose higher risks as they can clone voices with005
a single utterance. However, the existing ADD006
datasets are outdated, leading to suboptimal007
generalization of detection models. In this pa-008
per, we construct a new cross-domain ADD009
dataset comprising over 300 hours of speech010
data that is generated by five advanced zero-011
shot TTS models. To simulate real-world sce-012
narios, we employ diverse attack methods and013
audio prompts from different datasets. Ex-014
periments show that, through novel attack-015
augmented training, the Wav2Vec2-large and016
Whisper-medium models achieve equal error017
rates of 4.1% and 6.5% respectively. Addition-018
ally, we demonstrate our models’ outstanding019
few-shot ADD ability by fine-tuning with just020
one minute of target-domain data. Nonetheless,021
neural codec compressors greatly affect the de-022
tection accuracy, necessitating further research.023

1 Introduction024

Audio deepfakes, created by text-to-speech (TTS)025

and voice conversion (VC) models, pose severe026

risks to social stability by spreading misinforma-027

tion, violating privacy, and undermining trust. For028

advanced TTS models, the subjective score of the029

synthetic speech can surpass that of the authen-030

tic speech (Ju et al., 2024) and humans are often031

unable to recognize deepfake audio (Müller et al.,032

2022; Cooke et al., 2024). Consequently, it is im-033

perative to develop robust audio deepfake detection034

(ADD) models capable of identifying impercepti-035

ble anomalies.036

Several datasets built upon various TTS and VC037

models have been released to benchmark the ADD038

task (Yi et al., 2022; Yamagishi et al., 2021; Frank039

and Schönherr, 2021; Wang et al., 2020; Yi et al.,040

2023). However, these datasets mainly include041

the traditional TTS models rather than the emerg- 042

ing zero-shot TTS models. Moreover, there is a 043

lack of transparency regarding the specific types of 044

models used within these datasets, hindering com- 045

prehensive analysis of cross-model performance. 046

Additionally, the range of attacks these datasets 047

consider is confined to conventional methods, ex- 048

cluding attacks associated with deep neural net- 049

works (DNNs), such as noise reduction and neu- 050

ral codec models. Based on the aforementioned 051

datasets, a multitude of detection models have been 052

proposed. These models incorporate diverse fea- 053

tures, such as the traditional linear frequency cep- 054

stral coefficient (Yan et al., 2022) and features de- 055

rived from self-supervised learning (Zeng et al., 056

2023; Martín-Doñas and Álvarez, 2022), emotion 057

recognition (Conti et al., 2022), and speaker iden- 058

tification models (Pan et al., 2022). These studies 059

mainly concentrate on a single benchmark dataset. 060

To demonstrate generalization capabilities, sev- 061

eral studies have implemented cross-dataset eval- 062

uation (Müller et al., 2022; Ba et al., 2023). Fur- 063

thermore, to enhance the models’ generalizability, 064

researchers have explored the combination of data 065

from various sources (Kawa et al., 2022) and the 066

integration of multiple features (Yang et al., 2024). 067

In this paper, we present a novel cross-domain 068

ADD (CD-ADD) dataset, which encompasses more 069

than 300 hours of speech data generated by five 070

cutting-edge, zero-shot TTS models. We test nine 071

different attacks, including those involving DNN- 072

based codecs and noise reduction models. For 073

cross-domain evaluation, rather than adopting the 074

naive cross-dataset scenario, we formulate a unique 075

task for zero-shot TTS models by analyzing pair- 076

wise cross-model performance and utilizing audio 077

prompts from different domains. Experiments re- 078

veal: 1) The cross-domain task is challenging. 2) 079

Training with attacks improves adaptability. 3) The 080

ADD model is superior in the few-shot scenario. 4) 081

The neural codec poses a major threat. 082
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Figure 1: Zero-shot TTS architectures. a) Decoder-only.
b) Encoder-decoder.

2 Methods083

2.1 Dataset Construction084

As shown in Figure 1, we can categorize the zero-085

shot TTS models into two types: 1) Decoder-only086

(VALL-E (Wang et al., 2023)): It accepts phoneme087

representations and the speech prompt’s discrete088

codes as input, and generates output speech codes089

autoregressively. These codes are transformed090

into personalized speech signals. 2) Encoder-091

decoder (YourTTS (Casanova et al., 2022), Whis-092

perSpeech (Kharitonov et al., 2023), Seamless093

Expressive (Barrault et al., 2023), and Open-094

Voice (Qin et al., 2023)): An encoder extracts se-095

mantic information, while a decoder incorporates096

speaker embeddings from the speech prompt. To-097

gether with the vocoder, the autoregressive (AR) or098

non-autoregressive (NAR) decoder generates per-099

sonalized speeches. When the encoder is trained100

to remove speaker-specific information from the101

input speech, it transforms into a VC model.102

For zero-shot TTS, AR decoding may introduce103

instability, leading to errors such as missing words.104

Poor-quality speech prompts, characterized by high105

noise levels, can result in unintelligible output. To106

address this, we enforce quality control during107

dataset construction (Algorithm 1). Specifically,108

we utilize an automatic speech recognition (ASR)109

model to predict the transcription of the generated110

speech. If the character error rate (CER) exceeds111

the threshold, we regenerate the speech using al-112

ternative prompts. Utterances are discarded if the113

CER remains above the threshold after a predefined114

number of retries. Prompts from different domains115

are used to evaluate the generalizability of ADD116

models. Our dataset introduces two tasks: 1) In-117

model ADD considers all models during both train-118

ing and testing. 2) Cross-model ADD excludes119

data from one TTS model during training and uses120

data from this TTS model only during testing.121

Algorithm 1 Dataset construction
Require: prompts, text, retry, threshold
1: i← 0
2: success← False
3: while i < retry do
4: p← random_select(prompts)
5: audio← TTS(text, p)
6: ˆtext← ASR(audio)
7: if CER(text, ˆtext) < threshold then
8: success← True
9: break

10: end if
11: i← i+ 1
12: end while
13: return audio, success

ADD models should generalize to in-the-wild 122

synthetic data, which requires a well-designed 123

cross-model evaluation that can represent the real- 124

world scenario. To select the appropriate TTS 125

model for testing, we conduct a pairwise cross- 126

model evaluation, where the Wav2Vec2-base model 127

is trained exclusively on the data produced by a sin- 128

gle TTS model and subsequently evaluated on the 129

datasets generated by alternative TTS models. We 130

identify the TTS model that poses the greatest chal- 131

lenge, as evidenced by the high equal error rate 132

(EER), and use it as the test set. 133

2.2 Attacks 134

Figure 2: Categories of tested attacks.

Figure 2 presents the nine attacks we test. For 135

traditional attacks, we add white Gaussian noise 136

(Noise-white) and environmental noise (Noise- 137

env) (Maciejewski et al., 2020) with a signal-to- 138

noise ratio ranging from 15dB to 20dB, use artifi- 139

cial reverberation (Reverb) with a duration of 0.2 140

to 0.4 seconds, and apply a low-pass filter (LPF) 141

within the 4kHz to 8kHz range. Furthermore, we 142

employ lossy compression methods such as MP3 143

and a DNN-based Encodec model (Défossez et al., 144

2022) operating at bit rates of 6kbps (Codec-6) and 145

12kbps (Codec-12). In terms of noise reduction, 146

we utilize the conventional noise gate approach 147

to eliminate stationary noise and the time-domain 148

SepFormer model (Subakan et al., 2021). 149
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2.3 ADD Methods150

We fine-tune pre-trained speech encoders for the151

ADD task, namely, Wav2Vec2 (Baevski et al.,152

2020) and the Whisper encoder (Radford et al.,153

2022). We merge multi-layer features by using154

learnable weights, and employ a classifier head155

with two projection layers and one global pool-156

ing layer to obtain the final logits. To adapt the157

model to attacks, we consider all attacks with the158

same probability on-the-fly during training. We159

also consider a few-shot scenario, where we ex-160

tend the cross-model evaluation by fine-tuning the161

ADD model with just one minute of target-domain162

speech data. This experiment simulates a situation163

where only the limited synthetic speech from a TTS164

model is available, such as the speech from a demo165

website or a single video.166

3 Experimental Setups167

The training set for the CD-ADD dataset was168

generated using the train-clean-100 subset of Lib-169

riTTS (Zen et al., 2019), and the dev-clean and test-170

clean subsets of LibriTTS, along with the test set171

of TEDLium3 (Hernandez et al., 2018), were uti-172

lized for the evaluation datasets. The transcriptions173

were used as the input text, and the real speech sig-174

nals were used as the real samples and the speech175

prompts. For dataset construction, we used the five176

zero-shot TTS models mentioned in Section 2.1, a177

CER threshold of 10%, and a maximum retry limit178

of five. For cross-model evaluation, the speech179

from Seamless Expressive served as the test set.180

Appendix A provides comprehensive details on the181

TTS model checkpoints and the models used for182

attacks, and Appendix B presents the specific statis-183

tics of the CD-ADD dataset that is comprised of184

over 300 hours of training data and 50 hours of test185

data.186

For the ADD task, we combined our CD-ADD187

dataset with the ASVSpoof2019 (Wang et al., 2020)188

training set and fine-tuned the base model, which189

includes Wav2Vec2 (Baevski et al., 2020) and the190

Whisper encoder (Radford et al., 2022), for four191

epochs with a learning rate of 3e− 5 and a batch192

size of 128. For attack-augmented training, we in-193

creased the number of epochs to eight, as the model194

converges more slowly due to attacks. The proba-195

bility of each attack was 10% and only one attack196

type was used for each utterance. For the evalua-197

tion metric, we adopted the widely used equal error198

rate (EER).199

Figure 3: Cross-model EER matrix, where the
Wav2Vec2-base model was trained using data generated
from a single TTS model and subsequently evaluated
on data originating from other TTS models.

Training data Libri TED

In-model CD-ADD 0.11 0.35
CD-ADD + ASVspoof 0.07 0.12

Cross-model CD-ADD 12.14 20.34
CD-ADD + ASVspoof 7.85 21.40

Table 1: Performance of Wav2Vec2-base measured by
EER (%).

4 Experimental Results 200

4.1 Pairwise Cross-Model Evaluation 201

As illustrated in Figure 3, the pairwise evaluation 202

indicates that the ADD system exhibits optimal per- 203

formance when both the training and testing sets 204

are derived from the same TTS model. This trend 205

holds true irrespective of the speech prompts’ do- 206

main (whether they originate from the in-domain 207

LibriTTS dataset or the cross-domain TEDLium 208

dataset), with the EERs consistently remaining be- 209

low 1%. However, in the cross-model evaluation, 210

the EERs vary significantly among different TTS 211

model combinations. For example, the Wav2Vec2- 212

base model fine-tuned with YourTTS-synthesized 213

data can generalize to VALL-E-synthesized data, 214

achieving EERs of 0.14% and 0.61% for the Libri 215

and TED subsets of the CD-ADD test sets, re- 216

spectively. However, it struggles to generalize to 217

the Seamless Expressive model, resulting in much 218

higher EERs of 29.71% and 44.00%. This indicates 219

that randomly choosing a test set whose speech 220

data is generated by a TTS model could result in 221

overestimated generalizability of the ADD model, 222

due to shared artifacts between TTS models and 223

potential overfitting. Therefore, we selected Seam- 224

less Expressive as the test set as it has notably high 225

EERs. It is worth noting that the model trained on 226

3



Attack
In-model Cross-model

+ Aug. + Aug.

Baseline 0.1 / 0.1 0.0 / 0.1 7.9 / 21.4 5.0 / 10.1
Noise-white 9.4 / 9.1 0.8 / 0.7 34.7 / 45.0 9.9 / 10.3
Noise-env 9.0 / 4.7 0.5 / 0.3 29.2 / 31.1 9.4 / 9.3

Reverb 13.0 / 17.1 1.1 / 1.2 29.6 / 33.1 18.1 / 23.7
LPF 1.3 / 1.2 0.1 / 0.3 14.3 / 23.4 6.6 / 8.9
MP3 0.3 / 0.2 0.0 / 0.1 13.2 / 22.1 5.4 / 8.3

Codec-12 2.9 / 1.4 0.3 / 0.3 21.4 / 31.0 11.4 / 18.3
Codec-6 7.4 / 5.2 0.9 / 1.2 30.5 / 35.2 18.5 / 28.9

Noise-gate 11.8 / 6.5 0.9 / 1.1 33.7 / 27.7 12.3 / 14.5
SepFormer 1.0 / 2.8 0.1 / 0.4 9.2 / 12.6 3.3 / 5.5

Table 2: Performance of Wav2Vec2-base under various
attacks measured by EER (%) on Libri and TED test sets
respectively. "+Aug." indicates all attacks are included
during training.

Figure 4: Few-shot performance of three base models
measured by EER (%).

the prevalent ASVSpoof dataset fails to generalize227

to the zero-shot TTS models. However, combining228

ASVspoof with the CD-ADD dataset can slightly229

improve the performance (Table 1), so these two230

datasets are combined by default in subsequent ex-231

periments.232

4.2 Comparisons Between Attacks233

As shown in Table 2, without augmentation, all234

attacks negatively impact the model, with more235

noticeable effects in cross-model configurations.236

With attack-augmented training, the Wav2Vec2-237

base model demonstrates resilience against most238

attacks. In the in-model setup, the EERs of the239

attacked models are only slightly higher than the240

baseline. In the cross-model setup, a significant 241

decrease in EERs is observed for the augmented 242

model compared to the non-augmented model. No- 243

tably, certain attacks improve the ADD model’s 244

generalizability, as indicated by the reduced EERs 245

in the TED subset. For example, compared with 246

the EER of 10.1% for the baseline, the LPF reduces 247

the EER to 8.9%, the MP3 compression reduces 248

the EER to 8.3%, and the SepFormer reduces the 249

EER to 5.5%. All these attacks remove spectral 250

information and force the ADD model to rely more 251

on features from the low-frequency band, thus mit- 252

igating overfitting. However, certain attacks, such 253

as reverberation and the Encodec, lead to relatively 254

high EERs. The encoder-decoder architecture and 255

the vector quantization of the Encodec, especially 256

at lower bit rates, have the potential to obliterate 257

essential features for detecting synthetic speeches. 258

4.3 Results of Few-Shot Fine-Tuning 259

Figure 4 compares the cross-model ADD perfor- 260

mance of three base models: Wav2Vec2-base, 261

Wav2Vec2-large, and Whisper-medium. The 262

Wav2Vec2-large and the Whisper-medium mod- 263

els have similar performance, notably superior to 264

the Wav2Vec2-base model (Figure 4 (a, b)). With 265

the most challenging Encodec attack, the Whis- 266

per model performs significantly better than the 267

Wav2Vec2 models (Figure 4 (c, d)). We can also ob- 268

serve that with only one minute of in-domain data 269

from Seamless Expressive, the EER can be reduced 270

significantly. This suggests that our models are ca- 271

pable of fast adaptation to in-the-wild TTS systems 272

with just a few samples from a demo website or a 273

video, which is crucial for real-world deployment. 274

However, we find that in-domain fine-tuning is less 275

effective when the audio is compressed with the 276

Encodec, as the reduction in EER is less significant. 277

5 Conclusion 278

In conclusion, our study presents a CD-ADD 279

dataset, addressing the urgent need for up-to-date 280

resources to combat the evolving risks of zero-shot 281

TTS technologies. Our dataset, comprising over 282

300 hours of data from advanced TTS models, 283

enhances model generalization and reflects real- 284

world conditions. This paper highlights the risks 285

of attacks and the potential of few-shot learning in 286

ADD, facilitating future research. 287
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6 Limitation288

The current CD-ADD dataset is limited to five zero-289

shot TTS models. Future expansions are planned290

to include a broader range of zero-shot TTS mod-291

els, as well as conventional TTS and VC models,292

to improve the dataset diversity. Additionally, the293

attack-augmented training is constrained to a sin-294

gle attack per sample, with separate analysis con-295

ducted for each attack. Subsequent research will296

focus on investigating the effects of combined at-297

tacks. Furthermore, the performance in ADD tasks298

with audio compressed by neural codecs is subop-299

timal, requiring the development of optimization300

strategies and the exploration of more neural codec301

models.302
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A Appendix: Open Source Tools438

Zero-shot TTS models:439

• VALL-E: https://github.com/Plachtaa/440

VALL-E-X441

• YourTTS: https://github.com/coqui-ai/442

TTS443

• Seamless Expressive: https://github. 444

com/facebookresearch/seamless_ 445

communication 446

• WhisperSpeech: https://github. 447

com/collabora/WhisperSpeech?tab= 448

readme-ov-file 449

• OpenVoice: https://github.com/ 450

myshell-ai/OpenVoice 451

Base models: 452

• Wav2Vec2-base: https://huggingface. 453

co/facebook/wav2vec2-base 454

• Wav2Vec2-large: https://huggingface. 455

co/facebook/wav2vec2-large 456

• Whisper-medium: https://huggingface. 457

co/openai/whisper-medium 458

ASR model: 459

• HuBERT-large-CTC: https: 460

//huggingface.co/facebook/ 461

hubert-large-ls960-ft 462

Attacks: 463

• Noise-gate: https://github.com/ 464

timsainb/noisereduce 465

• SepFormer: https://huggingface.co/ 466

speechbrain/sepformer-whamr 467

• Codec-6/12: https://github.com/ 468

facebookresearch/encodec 469

B Appendix: CD-ADD Dataset 470

Table 3 presents the statistics of the CD-ADD 471

dataset. The average utterance length exceeds 472

eight seconds, which is longer than that of tradi- 473

tional ASR datasets. The number of utterances for 474

TTS models is less than that of real utterances be- 475

cause some synthetic utterances fail to meet the 476

CER requirements. Among them, VALL-E has the 477

fewest utterances due to the decoder-only model’s 478

relative instability. Table 4 compares five zero- 479

shot TTS models in terms of the word-error-rate 480

(WER) and speaker similarity. Speaker similarity 481

is based on the LibriTTS test-clean subset, where 482

ECAPA-TDNN is used to extract speaker embed- 483

dings. VALL-E and WhisperSpeech have the high- 484

est speaker similarity scores, while OpenVoice 485

ranks lowest. Conversely, VALL-E achieves the 486

highest WER, and OpenVoice has the lowest. 487
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train-clean dev-clean test-clean test-TED
Num. Total Avg. Num. Total Avg. Num. Total Avg. Num. Total Avg.

Real 18339 49.6 9.7 3111 8.2 9.5 2762 8.0 10.5 899 2.62 10.49

VALL-E 15869 41.0 9.3 2770 7.1 9.2 2275 6.1 9.6 452 1.13 9.01
Seamless Expressive 17829 42.6 8.6 3042 7.7 9.1 2717 8.0 10.6 816 2.11 9.32

YourTTS 18202 49.3 9.8 3093 8.2 9.5 2739 7.9 10.4 868 2.14 8.86
WhisperSpeech 18300 54.8 10.8 3106 9.3 10.8 2760 8.9 11.6 862 2.71 11.33

OpenVoice 18024 40.9 8.2 3099 7.0 8.18 2753 6.7 8.8 883 1.99 8.13

Table 3: The numbers of utterances (Num.), the total duration (Total), and the average duration of each utterance
(Avg.) of the CD-ADD dataset.

WER ↓ Spk. ↑

Real 2.4 1.00

VALL-E 10.1 0.56
Seamless Expressive 5.3 0.52

YourTTS 5.4 0.53
WhisperSpeech 3.2 0.56

OpenVoice 2.6 0.36

Table 4: Zero-shot TTS performance measured by WER
(%) and speaker similarity (Spk.).
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