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ABSTRACT

Human-object interaction (HOI) synthesis is crucial for applications in animation,
simulation, and robotics. However, existing approaches either rely on expensive
motion capture data or require manual reward engineering, limiting their scalabil-
ity and generalizability. In this work, we introduce the first unified physics-based
HOI framework that leverages Vision-Language Models (VLMs) to enable long-
horizon interactions with diverse object types — including static, dynamic, and
articulated objects. We introduce VLM-Guided Relative Movement Dynamics
(RMD), a fine-grained spatio-temporal bipartite representation that automatically
constructs goal states and reward functions for reinforcement learning. By encod-
ing structured relationships between human and object parts, RMD enables VLMs
to generate semantically grounded, interaction-aware motion guidance without
manual reward tuning. To support our methodology, we present Interplay, a novel
dataset with thousands of long-horizon static and dynamic interaction plans. Ex-
tensive experiments demonstrate that our framework outperforms existing meth-
ods in synthesizing natural, human-like motions across both simple single-task
and complex multi-task scenarios. For more details, please refer to our project
webpage: https://vim-rmd.github.io/|

1 INTRODUCTION

Human-Object Interaction (HOI) understanding is fundamental to advancing embodied Al systems
in simulation, animation, and robotics. Existing approaches to HOI learning generally fall into
two categories. The first paradigm employs motion tracking policies to imitate reference demon-
strations (Wang et al., 2023} 2024a; |Xu et al., [2025). While these methods can reproduce specific
interaction patterns, they face critical limitations: Their heavy reliance on high-quality motion cap-
ture data creates scalability bottlenecks, and their strict adherence to reference trajectories inherently
restricts their ability to generate novel interactions beyond the training distribution.

The second paradigm adopts a task-centric perspective, developing specialized policies for individ-
ual interactions like sitting (Chao et al) 2021} |[Zhang et al.| |2022) or carrying (Xu et al., [2024b;
Szot et al., 2021} Deitke et al., [2022; |Gao et al., 2024). However, these methods encounter two
fundamental challenges. First, they require labor-intensive reward engineering by domain experts
— a particularly demanding requirement given the complex dynamics and contact-rich nature of re-
alistic HOI scenarios (Sutton & Bartol 2018). This manual reward design process inherently limits
generalizability across interaction types, creating a need for automated objective formulation. Sec-
ond, constrained by artificially designed, single-objective reward mechanisms, trained policies often
overfit to specific behavioral patterns. Producing task-compliant but biomechanically unrealistic
motions that violate natural human kinematics.

Recent efforts such as Eureka (Ma et al.,|2023) and Grove (Cui et al., 2025)) leverage large language
models (LLMs) to automatically generate reward function code. However, they rely on iterative
search paradigms that are often sample-inefficient and computationally costly. | Xiao et al.|(2024])) ad-
vances this line of work by unifying reward design through a “chain-of-contacts” abstraction, which
models an interaction as a discrete sequence of contact events. While conceptually elegant, this
formulation overlooks the motion dynamics of interactions and lacks the capacity to model whole-
body coordination or accommodate dynamic objects. Consequently, it struggles to handle dynamic
interactions and often produces jittery, suboptimal behaviors even in static interaction scenarios.
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Figure 1: Our framework automatically constructs both goal states and reward functions for diverse
interaction tasks in reinforcement learning. By leveraging VLM guidance, the learned motion pol-
icy drives physics-based characters to perform coherent, long-horizon interactions with static and
dynamic objects, producing natural and task-consistent behaviors.

To address these limitations, we propose a physics-based HOI framework that leverages VLMs to
automatically construct goal states and reward functions, guiding the motion policy to perform long-
term interactions with diverse objects. Specifically, we aim to empower VLM to provide motion-
level, interaction-aware guidance by leveraging its abilities in motion imagination and semantic
reasoning. Drawing inspiration from the classical notion of relative motion [1924), we
introduce Relative Movement Dynamics (RMD), a structured representation that encodes the fine-
grained spatio-temporal relationships between human parts and object parts across an interaction
sub-sequence. For example, in the task of lifting a box, the relative spatial configuration between
the hands and the box remains stable, providing a natural constraint that captures both discrete
interaction goals (e.g., contact) and continuous dynamics (e.g., coordinated movement). RMD is
designed to prompt VLMs to imagine interaction dynamics while effectively grounding their high-
level reasoning in motion-level patterns. This formulation enables VLMs to move beyond symbolic
planning and participate in dynamic skill composition, thereby supporting more expressive and gen-
eralizable HOI motion policy learning. Building on RMD, our framework automatically constructs
unified goal states that support both static and dynamic interactions, along with automatically de-
signed reward functions that guide motion patterns consistent with the plan.

Our framework supports long-horizon interactions with diverse object types. However, existing
datasets typically focus either on static interactions (Xiao et all, [2024) or on object rearrange-
ment 2024b), and thus fail to cover this setting. To address this gap, we construct a
new dataset, Interplay, which includes long-horizon static and dynamic interaction tasks across var-
ied scene contexts. This dataset enables systematic evaluation of our framework in a long-horizon,
multi-task scenario. Experimental results demonstrate that our method achieves promising quantita-
tive performance and generates natural, human-like motions across a diverse range of HOI tasks.

In summary, our contributions include:

We propose the first unified physics-based HOI synthesis framework for long-horizon human-object
interactions leveraging the powerful world knowledge of VLMs, supporting a diverse range of ob-
jects, including static, dynamic, and articulated ones.

We introduce VLM-Guided Relative Movement Dynamics (RMD), a fine-grained spatial-temporal
bipartite diagram to automatically construct goal states and reward functions for reinforcement learn-
ing. This approach bypasses manual reward engineering while supporting diverse HOI, including
both static and dynamic interactions.

We introduce Interplay, a novel dataset comprising thousands of interaction plans that cover long-
horizon static and dynamic interaction tasks. Extensive simulation results demonstrate the effective-
ness of our approach on both single-task and long-horizon multi-task scenarios.
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Table 1: Comparative analysis of key features between ours and other methods.

Methods Articulated Object  Automated Reward Design  Dynamic Object  Long-horizon Transition HOI Guidance Granularity Multitask  High-level Planning  Unified Policy

InterPhys Hassan et al. ¥2023] v Coarse
InterScene|Pan et al. {2024 Rule-based FSM Coarse
TokenHSI|Pan et al. 12025 v Rule-based FSM Coarse v
UniHSI|X1ao et al.|{ 2024 v Coarse v
Ours v v v Fine

LN
<<
<

2 RELATED WORK

Human Motion Synthesis with Static Scenes. In the field of character animation and motion
synthesis, most research has focused on human motion interacting with static 3D scenes (Li et al.,
2019; Zhang et al. |2020; Xuan et al., 2023; Zhao et al., [2022; [Lee & Joo, [2023; Wang et al.,
2022b; 2024b; Starke et al., 20195 |Zhao et al.l 2023a)). Typically, researchers break down complex
instructions into several key static poses within the scene (Hassan et al.,[2021; Wang et al.| 2022a),
and then use motion inpainting and optimization techniques to generate transitions between these
key poses (Wang et al.| 2020). However, this approach often leads to mediocre and inconsistent
motions due to the limited expressiveness of the intermediate sequences. Recently, diffusion-based
methods like (Ho et al., 2020;|Huang et al., 2023 |Tang et al., 2024;|Y1 et al., 2025; |Zhao et al.,2024;
Tevet et al.l |2024) have achieved better results in human-scene synthesis. However, these data-
driven approaches are limited to generating short-term motions due to constraints in the dataset,
and the physical plausibility of the generated motions is not guaranteed. Apart from data-driven
kinematic approaches, some studies have explored the problem within a reinforcement learning
framework. For instance, (Zhao et al. 2023b; Zhang & Tang, 2022)) achieved long-term goal-
oriented behaviors by leveraging motion primitives with specific reward designs. Xiao et al.| (2024
decomposes instructions into a sequence of point-reaching control tasks under a unified formulation.
However, it addresses only the spatial constraints of static scenes while overlooking the temporal
dynamics of objects, rendering it inadequate for managing complex dynamic interactions.

Kinematic-based Human Motion Synthesis with Dynamic Objects. Research in human mo-
tion synthesis has increasingly focused on modeling interactions with dynamic objects (Starke et al.,
2020; Jiang et al., [2022}; [Zhang et al.| 2022;2024). Diffusion-based frameworks (Li et al.,|[2023bza}
P1 et al.| 2023} |Peng et al.| [2023), guide motion generation with object trajectories but often lack
realism due to predefined object paths that fail to account for physical plausibility. In contrast,
InterDreamer (Xu et al., [2024a) first generates human motion and subsequently uses a pre-trained
world model to produce object trajectories, though this approach is limited by the simplicity of
the world model, leading to inaccuracies in trajectory prediction. Some studies attempt to address
these limitations by jointly modeling human-object interactions with supplementary guidance tech-
niques, including relation intervention (Wu et al., |2024a)), contact prediction (Diller & Dai} [2024),
and affordance estimation (Peng et al.| 2023). Truman (Jiang et al.| 2024b) and Lingo (Jiang et al.,
2024a)) trained on a high-quality human-scene interaction (HSI) dataset, achieves dynamic stability
through an auto-regressive diffusion model guided by action labels or text. Nevertheless, kinematic
models continue to face challenges such as penetration, sliding issues, and difficulties in generating
long-term motion, requiring extensive annotations.

Physics-based Human Motion Synthesis with Dynamic Objects. To generate physically plau-
sible motions, reinforcement learning methods have been shown to effectively train HOI skills using
motion capture data (Chao et al.| 2021; Merel et al., 2020; Peng et all [2018; [Xie et al., 2023
Xu et al.l 2025 Wu et al., 2024b). AMP (Peng et al.| [2021)) introduced an adversarial motion
prior framework for realistic motion synthesis. InterPhys (Hassan et al.| 2023) further extended this
framework by incorporating an HOI motion prior, achieving success in tasks such as sitting, lying,
and carrying. Further advancements have led to successful applications in sports activities, including
basketball (Wang et al.| [2023; [20244)), tennis (Zhang et al.l [2023)), skating (Liu & Hodgins| 2017)),
and soccer (Luo et al.}[2024; Liu et al., 2022} Xie et al., [2022). TokenHSI (Pan et al.,[2025)) integrates
multiple skills into a single policy via a task tokenizer. These approaches often depend on heuristic
designs and struggle to generalize to longer, multi-round scenarios. Our method seeks to address
these limitations by introducing a Relative Movement Dynamics representation, enabling the model
to capture both spatial and temporal dynamics effectively. This results in physically plausible and
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Figure 2: An overview of our architecture. Receiving instruction and environment context as
input, the VLM-Guided RMD Planner generates a multi-step interaction plan in the form of RMD.
Based on this plan, our framework automatically designs both goal states and reward functions,
enabling the VLM-Guided Motion Policy to execute the interaction step by step.

temporally coherent interactions, eliminating the need for manual annotations and enhancing realism
in dynamic, long-term HOI tasks. The detailed comparisons of key features are listed in Tab. [T}

3 METHOD

Our method comprises two tightly coupled components. First, we describe how a VLM is leveraged
to translate high-level instruction and environment context into a sequence of structured interaction
plans. This process is grounded in our proposed concept of RMD, which models fine-grained spatio-
temporal relationships between human and object parts and serves as the foundation for interaction
planning (Sec. [3.I). Then, we present a VLM-guided motion policy learning framework, where
each RMD plan is automatically transformed into goal state and a corresponding reward function,
enabling the agent to learn executable motion policies without manual specification (Sec. [3.2).

3.1 VLM-GUIDED RMD PLANNER

We employ GPT-4V (Achiam et al.,|2023) as our VLM planner to bridge high-level task instructions
and low-level interaction execution. As illustrated in Fig. 2] the planner takes three inputs: a high-
level textual instruction I, a top-view contextual image of the environment C, and a set of modular
prompts designed to guide the decomposition of the task into detailed interaction plans.

Effectively leveraging the motion imagination capabilities of VLMs for HOI planning necessitates
a principled formulation of the interaction process. Simplistic abstractions, such as the chain-of-
contacts (CoC) proposed by UniHSI (Xiao et al., 2024), is inadequate: by imposing only transient
point-contact constraints that are discarded immediately upon satisfaction, CoC fails to capture the
evolving spatio-temporal relationships critical for modeling dynamic and coordinated interactions.
In contrast, we propose a novel concept, Relative Movement Dynamics (RMD), which encodes
fine-grained spatial and temporal relationships between human body parts and object components
throughout the course of an interaction. This structured formulation enables the VLM to reason more
effectively about the physical organization of human—object interactions and to produce structured,
executable plans aligned with underlying motion dynamics. Our key insight is that human-object
interactions can be abstracted as the relative motion between two sets of rigid bodies: human body
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parts and object parts, evolving over time. We formalize this abstraction as a bipartite graph B that
encodes part-level motion dynamics. Let

PH:{phuphzv""phm}’ PO:{p017p027"'7p0n} (D
denote the sets of human and object parts, respectively. Then the graph B is defined as,
B=(V,E,w), V=PyUPy, ECPygxPo, w:FE—{01,23} 2)

Each edge e;; = (px, ,poj) € E connects a human part pp, € Py to an object part p,; € Po, with
an associated weight w;; € {0,1,2,3} that characterizes their relative-motion pattern: w;; = 0
indicates stationary contact, w;; = 1 denotes approaching motion, w;; = 2 represents separating
motion, and w;; = 3 implies no consistent relative trend.

To facilitate the planner’s ability to infer such dynamics, we adopt a modular prompt design strategy.
Each prompt segment is crafted to trigger a specific reasoning ability, such as environmental parsing,
part-level object understanding, motion dynamic inference, or symbolic representation generation.
Through this mechanism, the VLM is guided to produce both the RMD graph B and two spatial
anchors: the target location for the human root 7z and the target location for the object root 7o,
which together define the global interaction objective.

Finally, the planner outputs an interaction plan D as a sequence of IV structured steps,

D ={G:1,G2,...,9n}, (3)
where each step G; is a triplet that specifies the spatial goals and dynamic pattern,
gi:{THaTO7B}' (4)

3.2 AUTOMATIC POLICY LEARNING VIA VLM-GUIDED RMD

Upon receiving the plan generated by the VLM-guided RMD Planner, the policy produces joint-
level torques to actuate the agent and execute the plan. Our physics-based HOI policy learning is
formulated within the framework of goal-conditioned reinforcement learning. At each timestep ¢,
the agent samples an action from its policy 7(a; | s, g:), conditioned on the current state s; and the
goal state g;. After executing the action, the environment transitions to the next state s, 1, and the
agent receives two types of rewards: a task reward r(s;, g;,s:41), which incentivizes behaviors
aligned with achieving the specified goal g;, and a style reward r~(s;, s;, 1 ), which encourages the
agent to produce natural behaviors as proposed in [Peng et al.| (2021). Unlike AMP and most prior
methods that rely on manually specifying task-specific goal states and handcrafted reward terms, our
framework supports the automatic construction of goal states and reward functions. In the following,
we detail how our framework automatically generates both goal states and reward functions from
VLM output, enabling the agent to learn behaviors aligned with the intended objectives.

Automatic Goal State Construction via VLM-Guided RMD. To provide the policy with fine-
grained spatio-temporal guidance during the interaction, we encode the i-th planned interaction step
G; = {Tu,B,To}, generated by the VLM, with both kinematic and dynamic information.

For each edge e¢;; € E, we extract from the simulator the absolute position—velocity pair of the
human joint, denoted by p’;qu ; P> and that of the nearest surface point on the object part, p5 , py .
We then compute their relative quantities in the agent-centric coordinate frame,

Pij =P, —Ph,» Vij =P, —Pp,- 4)
The edge weight w;; € {0,1,2,3} is encoded as a one-hot vector wj; € {0,1}*, and concatenated
with the relative position and Velpcity to form the feature tuple (p;;, Vi;, W, j) at timestep ¢. Stacking
these features across all edges yields the RMD state,

RMD __ - ~ / E|x
Sy = concat(; j)er [pij, Vij, Wij] € RIEIX(

3+3+4) (6)
Both Ty and 7o generated by VLM are in the form object (spatial-relationship),e.g.,
armchair (front). For every referenced object we approximate its geometry by an axis-aligned
bounding box with edge lengths I, 1, [, and center c,},;. We map each spatial-relationship token ¢
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to a displacement vector Aq(d) in the object’s local frame. For instance, front — (0.71;,0,0).
The absolute targets for the human root and the object root are defined as,

p‘?ar = Cobj + Aq(éh)a p‘?ar = Cobj + Aq(éo) (7)

The destinations proposed by the VLM, originally in the global coordinate system, are transformed
into the agent-centric frame to produce the final destination state,

d, = {d},dy}. (8)

To improve local perception and obstacle avoidance, we attach a fixed-resolution heightmap h; €
R9%9 that records the elevation of nearby geometry in the root frame (Tessler et al., 2024; Xiao
et al., 2024). In parallel, we describe object dynamics by the axis-aligned bounding box vertices
VP cR8X3, the rotation 0; € R?, the linear velocity v; € R?, and the angular velocity w; € R®,

Oy = {VEOX7 0t7 Vi, wt}' (9)

By concatenating the RMD state sfMP, the destination d;, the heightmap h;, and the object state oy,

we construct the complete goal representation,
RMD
gt = {St adtvhtaot}' (10)

Automatic Reward Design via VLM-Guided RMD. To guide human-object interaction in align-
ment with the é-th planned interaction step G; = {7Tx, B, To} produced by the VLM, we design a
composite reward function that promotes three key objectives: (i) guiding the human root trajectory
towards the spatial target 7z, (ii) guiding the object root trajectory towards 7o, and (iii) enforcing
the relative motion patterns prescribed by the RMD graph 5.

To realize these objectives, we define three corresponding reward terms. The term 1"2 encourages

the human root position z!' to approach the designated target d?, and r encourages the object root
position z? to move toward its designated target df,

i = exp <—Hx?—d?”2) , Ty = exp (— ||x‘t’—d§||2) . (11)

The term 7rvmp encourages each edge e;; € B, representing a (human-part, object-part) pair, to
follow the relative motion dynamics specified by its associated edge weight w;;, as planned by the

VLM. Specifically, rrymp is computed by summing the individual alignment reward rfrid(o), each of
which measures how well the pair (py,, , po, ) follows the motion pattern defined by w;;, weighted by

a coefficient \;;,
TRMD = Z Aij - Trmd(Pij, Vij, Wij) - (12)
(i,j)EE
Further implementation details of rfgld() are provided in the appendix. Combining these terms, the
overall task reward at time ¢ is given by,

7% (St,81,St4+1) = ARMD * TRMD + Ap - Tl 4+ Ao - 75 (13)

Once the task reward ¢, which is bounded within the range [0, 1], exceeds 0.9, the policy transitions
to the next planned interaction step G; 1 at the following timestep. To balance the contributions of
different reward terms, we adopt adaptive weighting strategies as proposed by Xiao et al.|(2024),
which dynamically adjust the value of A in Eq. and Eq. This design enables the current
reward to be evaluated in a balanced manner and facilitates accurate assessment of progress within
the current stage, thereby ensuring the appropriate timing for transitioning to the next goal.

The style reward ° (s;, s;;1) is computed by a discriminator D(s;_10.¢) based on a window of
10 consecutive states. Combining the task reward ¢ and the style reward 7, the total reward at
timestep ¢ is defined as,

G S
Tt = Qask ' (St, 8¢, St41) + Qseyle 7 (St, Se41) - (14)

4 EXPERIMENT

We structure our experiments into two main parts: evaluating HOI skill learning in a complex long-
horizon multi-task scenario (Sec. and in a simple single-task scenario (Sec.4.2).
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Table 2: Comparison with baselines in a long-horizon multi-task scenario.

Sub-step Completion Ratio (%)
Static Interaction ~ Dynamic Interaction ~ Hybrid

Sub-step Precision (cm) |

Completion Rate (%) T
Methods ‘ Static Interaction ~ Dynamic Interaction ~ Hybrid

Static Interaction  Dynamic Interaction ~ Hybrid

InterPhys ™ |Hassan et al. {2023
TokenHSI"[Pan et al. {2025) 252 52.5 36.0 48.1 65.7 60.1 13.1 16.6 14.4
UniHSI Xiao et al. §2024) 372 - - 61.3 - 10.2 - -

Ours ‘ 75.1 71.2 538 ‘ 86.2 84.3 71.8 ‘ 17 13.0 11.2

21.3 478 275 ‘ 37.3 61.9 54.1 ‘ 13.8 18.7 16.9

Ours w/ LLM 62.8 53.1 39.9 81.7 783 67.2 89 152 13.8

InterPlay Dataset. To evaluate our framework in a long-horizon multi-task scenario, we construct
a novel dataset that includes both static and dynamic interaction tasks under diverse scene contexts.
We incorporate high-quality 3D object assets from existing datasets, including PartNet (Mo et al.|
2019), 3D-FRONT (Fu et al.l [2021), SAMP (Hassan et al., 2021), CIRCLE (Araujo et al., |2023),
and PartNet-Mobility (Xiang et al., 2020). Each scene contains at least two interactive objects and
a minimum of two furniture assets, providing richer contextual complexity for HOI. Further details
on dataset construction are provided in the appendix.

Implementation Details. To ensure our agent interacts with objects in a natural way, we collect
motion clips from SAMP (Hassan et al.,2023), OMOMO (Li et al.,|2023a)), CIRCLE (Araujo et al.,
2023). We conduct experiments in parallel simulated environments within Isaac Gym (Makoviychuk
et al.| 2021)), using PyTorch for neural network implementation. In line with previous studies (Has-
san et al., 2023} |Xiao et al.,[2024), our physical humanoid model consists of 15 rigid body parts and
28 joints, all controlled by a PD controller. We utilize Proximal Policy Optimization (PPO) (Schul-
man et al.,2017) to train the policy network on an NVIDIA RTX 3090 GPU.

4.1 EVALUATION IN A LONG-HORIZON MULTI-TASK SCENARIO

Real-world applications require agents to perform multiple tasks concurrently or sequentially, re-
quiring advanced coordination and planning. In this context, the agent must interact with multiple
objects in sequence according to the plan, which poses significant challenges for ensuring the ro-
bustness of VLM-guided motion policy learning and for managing long-horizon transitions.

Settings. We split our dataset into three categories: static-interaction, dynamic-interaction, and
hybrid setups. In the static-only setup, we sequentially interact with at least two static objects as
planned in the dataset. In the dynamic-only setup, we interact with at least two dynamic objects or
articulated objects. In the hybrid setup, we select at least three objects, ensuring that at least one
dynamic human-object interaction task is included in the overall plan. UniHSI (Xiao et al.| [2024)
supports only sequential interactions with static objects. We adapt its released prompt to generate
plans based on scenarios from our static-only dataset. Both InterPhys (Hassan et al., 2023) and
TokenHSI (Pan et al.| [2025)) support interactions with both static and dynamic objects, but they only
cover a subset of HOI tasks. To enable multi-task evaluation, we re-implement their methods by
training individual skills in parallel across different environments, manually designing goal states
and corresponding reward functions for each. A rule-based finite-state machine is employed to
switch between tasks during execution. This adaptation requires substantial manual effort.

Metrics. We report the Completion Rate, which measures the percentage of trials in which the
character sequentially completes all sub-step tasks and returns to a natural standing pose, with the
character’s root within 20 cm of the target position. We introduce the Sub-step Completion Ratio,
which measures the ratio of completed sub-steps to the total number of planned sub-steps. This
metric provides a more granular view of the agent’s ability to handle complex tasks with multiple
sub-goals. Additionally, we use Sub-step Precision to measure the average distance between a
specific human part and its target, or between the object root and its target.

Result Analysis. As shown in Tab. |2| our approach achieves state-of-the-art performance in both
individual sub-step execution and long-horizon transitions, reflecting its robustness in handling in-
tricate sequences of actions. Our method benefits from a unified formulation of interaction and
fine-grained spatio-temporal guidance for all human body parts, enabling seamless transitions to a
multi-task setup. This design not only streamlines the training process by maintaining consistent
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Table 3: Comparison with baselines in a single-task scenario.

Methods | Completion Rate (%) 1 | Success Rate (%) 1 | Precision (cm) J.
|Carry Push Open Sit Lie Reach|Carry Push Open Sit Lie Reach|Carry Push Open Sit Lie Reach

AMP* [Peng et al.|(2021) 532 404 632 74 09 932|749 710 703 774 519 922 | 173 31.7 181 132 19.1 55
InterPhys™[Hassan et al.|(2023) | 67.8 47.1 832 232 27 953 | 82 781 90.1 881 764 959 | 123 247 10.1 103 148 34
TokenHSI" |Pan et al.[(2025] 712 493 81.1 278 89 957 | 922 795 90.8 928 782 959 | 112 225 87 98 132 35
UniHSI|Xiao et al.|[(2024) - - - 589 232 971 - - - 943 815 975 - - - 56 128 2.1
Ours 88.3 84.1 912 92,6 62.0 97.5 | 93.3 90.1 951 956 87.0 978 | 101 182 52 49 91 19
multi-one 75.1 713 779 81.0 49.2 962 | 90.5 86.4 92.1 942 83.1 972 | 13.6 210 73 55 143 20
one-one 11.7 592 687 658 28.1 972 | 143 812 90.8 923 816 974 | 213 322 72 91 172 20
W.0. Pij 71.7 738 770 729 368 96.8 | 889 87.8 903 91.8 798 96.8 | 109 19.7 101 5.6 128 29
W.0. Vij 782 76.7 752 76.1 42.1 969 | 90.1 842 878 92.1 792 969 | 113 200 99 6.1 142 25
w.0. w; 69.1 684 62.1 670 303 951 | 823 823 862 903 789 952 | 141 239 92 76 186 22

representations across various tasks but also significantly improves the model’s ability to general-
ize across different interaction scenarios. In the absence of a unified formulation, approaches that
naively combine multiple tasks, such as InterPhys and TokenHSI, often encounter difficulties in
smoothly switching between tasks. In contrast, our integrated method preserves critical spatial and
temporal information throughout the pipeline. While UniHSI excels at approaching and interacting
with static objects, it struggles with actions such as getting up after interaction, which notably limits
its performance in long-horizon scenarios.

Ablation. While both VLMs and LLMs possess extensive world knowledge, VLMs exhibit supe-
rior spatial awareness and motion imagination thanks to their integration of visual and textual inputs.
To evaluate this, we replaced top-view images with textual descriptions and assessed an LLM-based
planner under purely textual conditions. The resulting performance drop highlights the essential role
of VLMs in our framework. Pretrained on diverse vision-language data, the VLM excels at gener-
ating semantically meaningful and spatially grounded plans — capabilities critical for skill learning
in complex, multi-object environments. Without VLM guidance, the system struggles to produce
coherent long-horizon behaviors, leading to lower task success and degraded motion quality.

4.2 EVALUATION IN A SINGLE-TASK SCENARIO

Settings. We select a set of interaction tasks from our InterPlay dataset, including both tasks com-
monly used in prior work and several novel tasks not previously explored. These include three static
HOI tasks: reaching, sitting, and lying down, and three dynamic HOI tasks: carrying, pushing, and
opening. While previous works (Hassan et al.| 2023} [X1ao et al., 2024)) primarily focus on approach-
ing and interacting with objects, they often overlook a critical aspect: after interacting, the agent
must return to a neutral state to facilitate subsequent interactions. For instance, in the sitting task,
previous methods consider the task complete once the agent is seated. However, this disregards the
need for the agent to return to standing in order to transition smoothly to the next task. Therefore, we
redefine the task completion criteria by introducing a “leaving” step: after interacting with an object,
the agent must stand up and walk to a designated position. This step ensures that the agent returns to
a neutral pose, which is essential for smooth transitions between tasks. For each episode, objects are
initialized with a random orientation (ranging from 0O to 27), a random distance (from 4 to 10 me-
ters), and a random scale (from 0.8 to 1.2). The finish position is then randomly sampled at a point
3 meters away from the object. To ensure a fair comparison with previous state-of-the-art methods,
we rigorously followed their established implementation protocols and re-implemented AMP (Peng
et al.}2021), InterPhys (Hassan et al.,|2023)), and TokenHSI (Pan et al.,|2025), modifying goal states
and reward functions only as necessary to adapt them to our experimental setup.

Metrics. We first introduce a new metric, Completion Rate, to evaluate the percentage of tri-
als in which the character not only completes the interaction with the object but also returns to a
neutral standing pose, with the root located within 20 cm of the designated finish position. This
metric is designed to reflect the agent’s ability to recover from interaction and complete the full
motion sequence, offering a more comprehensive evaluation of control quality. In line with prior
works (Hassan et al., 2023} [Xiao et al.| [2024), we also report the Success Rate, which measures the
percentage of trials in which the character successfully interacts with the object. A trial is consid-
ered successful if the distance between the object’s root and a specific humanoid part is less than 20
cm (for tasks like reaching, sitting, or lying down), or if the distance between the object’s root and
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Lie(ors)

Push(InterPhys Lie(UniHSI)

Figure 3: Visualization for qualitative comparison. Other methods exhibit unnatural motion (In-
terPhys) or incomplete interactions (UniHSI), whereas our method demonstrates human-like motion
quality in qualitative assessments. More qualitative visualization videos can be found in the supple-
mentary materials.

the target location is less than 20 cm (for tasks like carrying, pushing, or opening). Furthermore, we
report Precision to quantify the average distance between a specific human body part and its cor-
responding target position over the course of the entire interaction in successfully completed trials.
All metrics are evaluated over 4096 trials.

Result Analysis. As shown in Tab. 3] our method achieves higher or comparable performance
across all these metrics compared to the baselines. Our method outperforms tasks involving the
recovery process of static human-object interactions, such as getting up after sitting or lying down, as
the Relative Movement Dynamics guides each body part to move away from the object. In contrast,
as shown in Fig. 3] UniHSI 2024) struggles to get up because it treats the human-object
interaction as a sequence of independent spatial reaching tasks, neglecting the temporal dynamics
that coordinate the movements of different body parts. Similarly, InterPhys (Hassan et al., [2023)
produces unnatural and unstable motions to complete tasks, such as abrupt kicking or thrusting
forward, due to its lack of fine-grained spatio-temporal guidance for coordinating the movements of
different body parts. Instead, our design ensures that the agent keeps both hands and arms relatively
stationary against the back of the sofa.

Ablation. We conduct an ablation study on key components to evaluate the contribution of the pro-
posed VLM-guided RMD. In the multi-one setup, we simplify object representation by removing the
division into distinct parts and treating the object as a single entity. Representing the object only by
its root pose and kinematic data leads to a slight performance drop, as the model loses fine-grained
geometric information necessary for accurate interaction modeling. In the one-one setup, we restrict
the VLM-guided RMD Planner to model only the dynamics of a single human part interacting with
one object part per sub-step. This disrupts whole-body coordination and often traps optimization in
local optima, resulting in a noticeable decline in performance. These results highlight the effective-
ness of the multi-multi formulation in handling complex interactions. Moreover, removing either
kinematic relation encoding (5}, ¥;’) or dynamic encoding (w}) further degrades performance, as
both are crucial for capturing the spatio-temporal relationships between human and object. Overall,
the ablation results confirm the central role of VLM-guided RMD in our framework.

5 CONCLUSION

In this paper, we present a physics-based framework for synthesizing diverse Human-Object Inter-
actions, guided by VLMs, through our proposed Relative Movement Dynamics — a spatio-temporal
representation that structures part-level relationships between human and object. RMD automates
the generation of goal states and reward functions for reinforcement learning, eliminating man-
ual engineering while supporting static, dynamic, and articulated interactions. Our method bridges
high-level semantic reasoning with low-level physics-based control, producing natural motions that
outperform task-specific and LLM-based baselines in realism and adaptability. To facilitate evalua-
tion, we introduce the Interplay dataset for long-horizon HOI tasks. Extensive results demonstrate
the effectiveness of our approach on both single-task and long-horizon multi-task scenarios.
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Figure 4: An overview of VLM-guided RMD Planner pipeline.

A DETAILS OF VLM PLANNER

As shown in Fig.[4] given a top-view image of the surrounding scene and a textual instruction, the
VLM-guided RMD Planner generates a sequence of sub-step plans in the form of structured JSON.
This output format facilitates direct downstream processing via Python scripts.

To ensure that the planner performs as intended, we design prompts that explicitly guide it to un-
derstand the concept of Relative Movement Dynamics (RMD), perceive the contextual scene infor-
mation, decompose high-level instructions, and produce outputs in a structured format consistent
with our framework. For clarity and modularity, we organize the prompt into distinct sections, each
fulfilling a specific functional role as illustrated in Fig.[5|and Fig.[6] The content of each section is
detailed below.

Scene-context Understanding. This section of the prompt helps the planner interpret the scene
context and determine the target destination using a simplified relative spatial relationship. Specifi-
cally, we reduce spatial relations to seven canonical types: center, forward, back, left, right, up, and
down.
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Prompt sectionl: scene-context understanding
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Prompt section2: RM-D-C(?nEe;)t-deﬁrﬁt-ioﬁ- TS

To effectively plan sequential interactions between
humanoid and objects within a scene, it is essential to
recognize the type of each object, understand the
spatial relationships among them, and identify the most
suitable object for interaction at each sub-step, based
on the scene's top-down view. We simplify the spatial
relationships between objects into seven types: center,
forward, back, left, right, up, and down. For example,
you can use the term "box (front)" to describe the
position that lies in front of the box.

= o

Prompt section3: specific plan instance

——————

1
/

{
human_root_target: box(front),
object_root_target: box(center),
reletive_movement_dynamics:
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¥
This instance describes the relative movement dynamics
during a scenario where a humanoid bends down to grab a
box with both hands and picks it up.

"1,
"),
)

- The "pelvis", "torso", and "head" have an edge weight
of 1 with "root" because the distance between the pelvis,
torso, head and the box center decreases as the box is
gradually lifted.

- The "left_upper_arm", "left_lower_arm", and "left_hand"
have an edge weight of @ with "box_left_side", indicating
that these body parts remain relatively stationary with
respect to the box side during this time.

- The "left_shin", "left_foot" and "box_left_side" have
an edge weight of 3 as the box is leaving with lower part
of body.

- The rest of the weight can be obtained in the same way.

- The humanoid does not need to move during interaction,
therefore the human_root_target correspond to the
position in the front of the box.

- The object does not need to be moved in xy plane during
the interaction, therefore the object_root_target
corresponds to the position at the center of the box.

™ e B B B B o

-~

Prompt section4: idea outline

i

T ——————— S
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Complex human-object interaction (HOI) tasks can be
decomposed into several sub-sequences, where each human
part maintains a consistent relative movement trend
with its corresponding object part until the transition
to the next sub-sequence. Therefore, we universally
define the objective of the interaction plan as D, with
the formulation,

D ={Gy, Gy, ...,Gy}
where G; denotes the i-th plan interaction step.
I will provide you with an instruction and a top-view
image depicting the surrounding scene context. Your
task is to break down the instruction into sub-
sequences represented as relative movement dynamics,
based on the top-view image. Please note that for
different HOI tasks, the granularity of an object's
part decomposition may vary. This granularity is
determined by the scene context and the instruction
itself.

= T B T

o o o o

The Relative Movement Dynamics represents the relative
movement trend between each human body part and the
corresponding object part over a period of time. This
trend is modeled as a bipartite graph, where one
subset of nodes represents human body parts, and the
other subset represents parts of an object.

The subset representing human body parts consists of
fifteen nodes corresponding to specific regions of the
body:

- pelvis - torso - head

- right_upper_arm - right_lower_arm - right_hand
- left_upper_arm - left_lower_arm - left_hand
- right_thigh - right_shin - right foot
- left_thigh - left_shin - left_foot

The subset representing the object parts contains x
nodes, where x depends on the specific object and
instruction. You are expected to infer a reasonable
partitioning of the object into parts. Note that
your partition should reflect common divisions of
objects as they are understood in everyday life.

i.e. (human_body_part, object_body_part, edge_weight)

Each edge in this graph can take on a weight of o, 1,
2, or 3, where:

- @ indicates that the body part and object part
connected by this edge remain relatively stationary
with respect to each other over time.

- 1 indicates that the distance between the body
part and the object part connected by this edge is
steadily decreasing over time.

- 2 indicates that the distance between the body
part and the object part connected by this edge is
steadily increasing over time.

- 3 indicates that the relative movement trend
between the human part and the object part is
unstable or unclear over time.

o,
N e o o

o

Prompt section5: plan rules

1. All instructions pertain to the interaction task
between a humanoid robot, modeled with relative
simplicity and equipped with a ball rather than a
finger on its hand, and an object. This interaction
may be dynamic or static.

2. Each plan may involve sequential interactions
with multiple objects. For each object, you should
design a plan comprising at least five steps,
including approaching and departing from the object.

3. Your return about relative_movement_dynamics
should be formatted into sequence of

[ (human_body_part, object_body_part, edge_weight),
(human_body_part, object_body_part,

edge_weight), ...], 15 edges for one sequence.

4. If you are confused about which part of the
object you should select, you can select the root to
represent the whole.

5. Be relatively sensitive to the judgment of
relative movement dynamics, if it is not stable(e.g.
when holding a box and walking towards destination,
the feet and the box will alternately approach and
move away from each other for a period of time),
just set the weight to 3.

6. Your thought process may unfold as follows:
perceive the surrounding scene context and identify
the relevant object, decompose the instruction into
a sequence of human-object interactions, imagine the
corresponding motions, and represent each sub-
sequence in the form of RMD.

o )
- "

B 7

Figure 5: Details of prompt section.
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Prompt section6: reference example

stepl: get close to the laundry basket.

Instruction: Take away clothes and
have a rest.

human_root_target: laundry basket(back),
object_root_target: laundry basket(center),
reletive_movement_dynamics:

("pelvis”, "root", "1"),

("torso", "root", )

("head", "root", ")s

("left_upper_arm", "basket_left_side", "1"),
("left_lower_arm", "basket_left_side", "1"),
("left_hand", "basket_left_side", "1"),
("right_upper_arm", "basket_right_side", "1"),
("right_lower_arm", "basket_right_side", "1"),
("right_hand", "basket_right_side", "1"),
("left_thigh", "root", "3"),

("left_shin", "root", "
("left_foot",
("right_thigh" , "3"),
("right_shin", "root", "3"),
("right_foot", "root", "3")

Top-view image:

AN ————————————————

: step2: bends down to grab the box with both hands and
[}

step3: walking to the washing machine while holding the

picks it up. laundry basket.
{

human_root_target: laundry basket(back),
object_root_target: laundry basket(center),
reletive_movement_dynamics:

("pelvis”, "root",
("torso", "root", >
("head", "root", "1"),

("left_upper_arm", "basket_left_side", "0"),
("left_lower_arm", "basket_left_side", "o"),
("left_hand", "basket_left_side", " B
ight_upper_arm”, "basket_right_side", "@"),
("right_lower_arm", "basket_right_side", "@"),
("right_hand", "basket_right_side", "0"),
("left_thigh", "root", "3"),

("left_shin", "basket_left_side", "2"),
("left_foot", "basket_left_side", "2"),
("right_thigh", "root", "3"),

("right_shin", "basket_right_side", "2"),
("right_foot", "basket_right_side", "2")

human_root_target: washing machine(front),
object_root_target: washing machine(front),
reletive_movement_dynamics:

[
("pelvis", "root",
("torso", "root",
("head", "root", >
("left_upper_arm", "basket_left_side", "0"),
("left_lower_arm", "basket_left_side", "0"),
("left_hand", "basket_left_side", “@"),
("right_upper_arm", "basket_right_side", "@"),
("right_lower_arm", "basket_right_side", "@"),
("right_hand", "basket_right_side", "@"),
("left_thigh", "root", "3"),
("left_shin", "root",
("left_foot", "root", >
("right_thigh", “root®, "3"),
("right_shin", "root", "3"),
("right_foot", "root", "3")

0"),
)

B

1
1
1
\

’

step4: put down the laundry basket.

human_root_target: washing machine(front),
object_root_target: washing machine(front),
reletive_movement_dynamics:

[
("pelvis”, "root", "2"),
("torso", "root", "2"),
("head", "root", "2"),
("left_upper_arm", "basket_left_side", "0"),
("left_lower_arm", "basket_left_side", "0"),
("left_hand", "basket_left_side", "@"),
("right_upper_arm", “"basket_right_side", "@"),
("right_lower_arm", "basket_right_side", "@"),
("right_hand", "basket_right_side", "@"),
("left_thigh", "root", "3"),
("left_shin", "basket_left_side", "1"),
("left_foot", "basket_left_side", "1"),
("right_thigh", "root", "3"),
("right_shin", "basket_right_side", "1"),
("right_foot", "basket_right_side", "1")

step5: get close to the chair.

human_root_target: chair(front),
object_root_target: chair(center),
reletive_movement_dynamics:

("pelvis", "root", "1"),
("torso", "root", "1"),

("head", "root”, "1"),
("left_upper_arm", “root", "1"),
("left_lower_arm", “root", "1"),
("left_hand", "root", )
("right_upper_arm", “"root", "1"),
("right_lower_arm", "root", "1"),
("right_hand", "root",
("left_thigh", "root",
("left_shin", "root",
("left_foot", "root",
("right_thigh", “root",
("right_shin", "root",
("right_foot", "root",

"3"y,
)

| T ———

Prompt section6: reference example

step6: sit down.

t
{

step7: have a rest.

human_root_target: chair(center),
object_root_target: chair(center),
reletive_movement_dynamics:

("pelvis", "seat_support”, "1"),
("torso", "root", "3"),

("head", "root", "3"),
("left_upper_arm", “"root", "3"),
("left_lower_arm", “"root", "3"),
("left_hand", "root", "3"),
("right_upper_arm", "root", "3"),
("right_lower_arm", "root", "3"),
("right_hand", "root", "3"),
("left_thigh", “chair_foot", “@"),
("left_shin", "chair_foot",
("left_foot", "chair_foot",
("right_thigh", "chair_foot"
("right_shin", “chair_foot",
("right_foot", "chair_foot",

]

)s
o)

human_root_target: chair(center),
object_root_target: chair(center),
reletive_movement_dynamics:
[
("pelvis”, "seat_support”, "0"),
("torso", "back_soft_support”, "1"),
("head", "head_pillow", "1"),
("left_upper_arm", "root", "3"),
("left_lower_arm", "left_arm_sofa", "1"),
("left_hand", "root”, "3"),
("right_upper_arm", "root", "3"),
("right_lower_arm", "right_arm_sofa", "1"),
("right_hand", "root", "3"
("left_thigh", "chair_foot", "@"),
("left_shin", "chair_foot", "@"),
("left_foot", "chair_foot", "@"),
("right_thigh", "chair_foot",
("right_shin", "chair_foot",
("right_foot", "chair_foot",

1

||a||),

Figure 6: Details of prompt section.
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These relative positions are defined with respect to a local coordinate system centered on the refer-
ence object.

RMD Concept Defination. This section of the prompt helps the planner understand the concept of
RMD, clarifies its intended semantics, introduces a method for instantiating it, and provides a formal
definition of its instantiated form.

Specific Plan Instance. This section presents a templated instance of an RMD-based plan, illus-
trating the correspondence between the template elements and RMD components, as well as how
such an instance aligns with a real-world interaction scenario. This helps the planner internalize the
concept and encourages outputs that conform to the desired format.

Idea Outline. This section offers a high-level overview of our approach, specifying the expected
input and output of the interaction planner. Human—object interaction tasks are decomposed into a
sequence of sub-steps, each characterized by consistent movement dynamics.

Plan Rules. This section enumerates the rules that the planner must follow, emphasizing their signif-
icance in prompt engineering. These rules define task interaction boundaries, output formatting, and
criteria for determining movement dynamics. By adhering to these rules, the planner can effectively
decompose complex interactions into manageable and coherent sub-sequences.

Reference Example. Empirical findings from the NLP community indicate that one-shot prompt-
ing often yields significantly better results than zero-shot prompting. Guided by this insight, we
include a complete input—output example in the prompt to help the planner better understand the
task expectations and output format.

B INTERPLAY DATASET

To evaluate our framework in long-horizon, multi-task scenarios, we construct a novel dataset, In-
terPlay, which encompasses both static and dynamic interaction tasks under diverse indoor scene
contexts. Each data sample includes: (i) a list of processed 3D assets ready for direct use in sim-
ulation, (ii) the corresponding 3D scene layout, (iii) a top-view rendered image, and (iv) a natural
language instruction describing the intended task.

In building the InterPlay dataset, we incorporate high-quality 3D object assets from several exist-
ing datasets, including PartNet (Mo et al., 2019), 3D-FRONT (Fu et al.l |2021), SAMP (Hassan
et al., 2021), CIRCLE (Araujo et al., 2023), and PartNet-Mobility (Xiang et al., 2020). From these
sources, we carefully select 117 assets spanning categories such as bed, chair, sofa, washing ma-
chine, box, door, window, and wardrobe. Each asset is normalized, segmented into functional parts,
and associated with part-level point clouds, based either on existing annotations or manual labeling.

To generate scene layouts, we apply a set of heuristic rules that ensure: (i) a well-distributed ar-
rangement without object collisions, (ii) semantically meaningful placements aligned with typical
household settings, and (iii) a minimum of two interactive objects and at least two furniture items per
scene, thereby enriching the contextual complexity of human—object interaction. We then populate
these layout templates by randomly sampling from the processed asset pool.

For each completed layout, we render a top-view image and employ GPT-4V |Achiam et al.| (2023)
to generate a corresponding task instruction grounded in the scene context. Finally, we apply our
VLM-guided RMD Planner to produce interaction plans, which are manually reviewed and refined
before inclusion in the dataset.

In total, InterPlay contains 1,210 interaction plans, covering a wide range of HOI behaviors involv-
ing static, dynamic, and articulated objects with varying temporal lengths, all situated in realistic,
household-inspired environments.

C ADDITIONAL DETAILS OF REINFORCEMENT LEARNING

Our physics-based animation framework is built upon goal-conditioned reinforcement learning. At
each time step ¢, the agent samples an action from its policy m(a; | s¢, g¢) based on the current state
s; and the goal state g;. After executing the action, the environment transitions to the next state
s¢+1, and the agent receives a task reward r¢ (St, 8¢, St+1). Further details are provided below.
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Instruction: You are so tired, please
take a deep rest.

Top-view image:

Instruction: You are so tired, please
take a deep rest.

Top-view image:

Instruction: You are so tired, please
take a deep rest.

Top-view image:

Figure 7: Visualization of long-term interaction with objects in an indoor home setting (part 1).
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Instruction: The clothes are being
washed, you can sit and relax for a
while.

Top-view image:

Instruction: The clothes are being
washed, you can sit and relax for a
while.

Top-view image:

Instruction: The clothes are being
washed, you can sit and relax for a
while.

Top-view image:

Figure 9: Visualization of long-term interaction with objects in an indoor home setting (part 3).
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Instruction: The clothes are ready,
please collect them in the basket and
hang them to dry.

Top-view image:

Instruction: The clothes are ready,
please collect them in the basket and
hang them to dry.

Top-view image:

Instruction: The clothes are ready,
please collect them in the basket
and hang them to dry.

Top-view image:

Figure 10: Visualization of long-term interaction with objects in an indoor home setting (part 4).
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Instruction: The clothes are ready,
please collect them in the basket and
hang them to dry.

Top-view image:

Instruction: The clothes are ready,
please collect them in the basket and
hang them to dry.

Top-view image:

Instruction: The clothes are ready,
please collect them in the basket and
hang them to dry.

Top-view image:

Figure 11: Visualization of long-term interaction with objects in an indoor home setting (part 5).
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Action. We use a simulated humanoid character with 28 degrees of freedom (DoF), represented as
a kinematic structure composed of 15 rigid bodies. The action space is defined as the target joint
positions for 28 proportional-derivative (PD) controllers. At each timestep, the predicted actions
specify these targets, which are then translated by the PD controllers into joint torques to drive the
character’s motion.

Proprioception. The proprioceptive state s; is a 223-dimensional feature vector that encodes the
character’s physical state. It includes the positions, rotations, linear velocities, and angular velocities
of all rigid bodies, expressed in the character’s local coordinate frame. The only exception is the root
height, which is represented in the world coordinate frame to preserve global elevation information.

Task Reward. Recall that the term rrvp encourages each edge e;; € B, representing a (human-
part, object-part) pair, to follow the relative motion dynamics specified by its associated edge weight
wj;, as planned by the VLM. Specifically, rrmp is computed by summing the individual alignment
reward 77 (-), each of which measures how well the pair (pp,,po,) follows the motion pattern

defined by w;;, weighted by a coefficient A;;,

TRMD = Z /\ij 'Trmd(f)ij79ij7wij)~ (15)
(i,5)€E

Specifically, we formally define rimq(Pij, Vij, wi;) as,

exp <— (Pij '{’ij)Q) ; w;; =0,
~ 2
1 ~ 1 ~ Pis
5 €Xp (* szjH;) +5exp| — (Vij e U*> ) wi; =1,
- 2 2 sl
7‘rmd(Pij7Vz‘j7wi]‘) = (16)

. (1 — exp (* Hﬁnl@)) e |- (%‘ P U*>2 » wij =2,

2 2 sl

1, Wi5 = 3.

The behavior of each reward term varies depending on the value of w;;:

- When w;; = 0, the reward promotes either a vanishing relative velocity or an orthogonal orienta-
tion between the relative position and velocity, thereby minimizing directional alignment.

- For w;; = 1, the goal is to maintain spatial proximity while aligning the relative velocity with the
direction of the relative position. In particular, the velocity projection is encouraged to approach a
predefined target v* = 1 m/s.

- When w;; = 2, the reward favors increasing separation between parts, while ensuring that the
leaving speed along the direction of displacement remains close to v*.

- Finally, w;; = 3 denotes an unstable or unpredictable relative motion trend. Here, the reward is
set to a neutral constant value of 1 to avoid imposing misleading gradients.

Training details in a single-task scenario. Our policy network is divided into a critic network and
an actor network, each starting with three multilayer perceptron (MLP) layers configured with [1024,
1024, 512] units. The discriminator network follows a similar architecture, also consisting of three
MLP layers with [1024, 1024, 512] units. The hyperparameters used during the training process
are detailed Tab. E} Some baseline methods either did not implement certain HOI tasks (e.g., open,
push) or failed to account for post-interaction transitions with static objects (e.g., sit, lie). To enable
a fair and thorough comparison, we re-implemented these baselines with carefully hand-crafted goal
states and reward functions for each task. This ensures that we can comprehensively evaluate the
full interaction cycle: approaching the object, interacting with it, and departing afterward, across a
range of individual HOI tasks. All methods were trained using a shared set of hyperparameters to
maintain consistency.

Training details in a long-horizon multi-task scenario. Our policy consists of separate actor
and critic networks, each implemented as a three-layer multilayer perceptron (MLP) with hidden
dimensions of [1024, 1024, 512]. The discriminator network adopts the same architecture. Both our
method and the baselines are trained using a two-stage procedure:
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Table 4: Hyperparameters for RMD.

Hyperparameter Value Hyperparameter Value Hyperparameter Value
Num. envs 4096 Max episode length 450 Num. epochs 25,000
Discount factor «y 0.99 GAE parameter A 0.95 Minibatch size 16384
Optimizer Adam Learning rate 2e-5 Gradient clip norm 1.0
PPO horizon length 32 PPO clip € 0.2 PPO miniepochs 6
Actor loss weight 1 Critic loss weight 5 Discriminator loss weight 5
AMP batch size 512 AMP sequence length ¢* 10 AMP grad. penalty w9 5
Task reward weight gk 0.5 Style reward weight oyl 0.5 Bounds loss coefficient 10

(1) Single-task pre-training. We divide the parallel simulation environments into distinct subsets
according to task type and difficulty, allowing the agent to learn basic interaction skills in a focused
manner.

(ii) Long-horizon multi-task post-training. For each environment instance, tasks are randomly sam-
pled from our InterPlay dataset, promoting the agent’s ability to handle long-horizon human—object
interaction tasks in complex and diverse scenes.

To extend InterPhys to a multi-task setup, we concatenate all possible goal states and use a one-hot
encoding to indicate the task identity. Additionally, we implement a script to translate the sequential
plans in our dataset into the format required by other baselines (i.e., sequential goal states), thereby
unifying the training pipeline. During execution, a rule-based finite-state machine is used to manage
task transitions in both InterPhys and TokenHSI.

D VISUALIZATIONS IN SUPPLEMENTARY MATERIAL

To complement the qualitative results presented in the main paper, we provide a demonstration
video that combines the key aspects of our method. This video offers detailed visualizations show-
casing the effectiveness of our framework in various real-world scenarios and compares it with
competing approaches. It includes an overview of the motivation, challenges, main pipeline, and
both quantitative and qualitative results. Additionally, the video highlights long-horizon interac-
tions in both single-task and multi-task scenarios, involving static, dynamic, and articulated objects
within a realistic indoor setting. In the single-task scenario, we present a comparison of our method
with UniHSI (Xiao et al., 2024) for the sitting task and InterPhys (Hassan et al.| [2023) for the
door-opening task. While UniHSI struggles with high-frequency jitter and unrealistic motion, our
method ensures smooth, human-like transitions. Similarly, in the door-opening task, our approach
uses coordinated hand movements for a more lifelike interaction, in contrast to InterPhys, which
relies solely on body movement and produces unnatural results. The multi-task scenario illustrates
how our method excels by leveraging human-like motion, a unified objective design across different
tasks, and the capabilities of Vision-Language Models to generate contextually relevant action plans.
Additionally, we provide detailed visualizations alongside the Planner’s output, as shown in Fig.

Fig.[8] Fig.[9} Fig.[10]and Fig.

E ABLATION STUDY ON THE VLM PLANNER

Model and prompt variants. To assess the robustness of our approach, we performed ablation
experiments by (i) replacing GPT-4V with other models such as LLaVA-1.6 and Qwen-VL-Max, and
(ii) simplifying the prompt. As shown in Tab.[5] our framework remains effective across different
VLMs and prompt designs, with only moderate performance differences. This is possible because
our framework is modular, and the VLM planner functions as a plug-in component that can be
replaced by any vision-language model with basic visual understanding and reasoning capabilities.

Planner label accuracy on InterPlay. To further quantify planner reliability, we manually anno-
tated ideal RMD labels for key human-object pairs across all tasks in each subset (static, dynamic,
and hybrid) and compared them with the planner’s outputs. The empirical rate of contradictory la-
bels is 8.9%, 11.2%, and 14.7% for static, dynamic, and hybrid tasks, respectively, with higher error
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Table 5: Comparison of VLM choice and prompt designs.

VLM Completion Rate (%) 1 Sub-step Completion Ratio (%) 1  Sub-step Precision (cm) |
LLaVA-1.6 43.3 67.8 13.1
Qwen-VL-Max 47.7 68.3 12.7
GPT-4V (Simplified Prompt) 45.3 66.1 12.9
GPT-4V 53.8 71.8 11.2

on hybrid tasks due to their complex multi-stage nature. Together with the ablations in Tab. [3] this
analysis indicates that our framework is robust to moderate planner imperfections.

Part decomposition on novel objects. To further evaluate the planner’s behavior on unseen assets,
we additionally construct 100 new HOI tasks involving 50 objects that do not appear in the InterPlay
dataset and manually inspect the VLM planner’s part decompositions. Only 7 out of 100 cases
exhibit clearly unreasonable part splits, suggesting that the planner generalizes reasonably well to
unfamiliar but semantically common objects, likely due to its web-scale pretraining.

Stage-transition threshold. To evaluate the sensitivity of our method to the stage-transition
threshold, we perform an ablation study on the InterPlay-Hybrid subset by sweeping the thresh-
old from 0.80 to 0.95. As shown in Tab. [6] performance varies smoothly between 0.80 and 0.90
and peaks at 0.90, while only the extreme setting 0.95 leads to a clear drop in completion and preci-
sion. Based on these results, we keep 0.90 as the default threshold, since it offers the best trade-off
between completion, sub-step ratio, and precision while the range [0.80, 0.90] is generally stable.

Table 6: Comparison of threshold choice.
Threshold Completion Rate (%) T Sub-step Completion Ratio (%) 1 Sub-step Precision (cm) |

0.80 47.9 65.6 13.5
0.85 51.0 67.2 12.9
0.90 53.8 71.8 11.2
0.95 32.8 47.2 16.7

F USER STUDY

To evaluate the visual quality and goal alignment of the generated motions from a human-centric
perspective, we conducted a user study with 20 participants. Each participant watched 20 motion se-
quences, each paired with its corresponding task description, and rated them on two criteria: Motion
Realism (assessing whether the interaction appears natural and physically plausible) and Task Con-
sistency (measuring how well the motion aligns with the task objective). Each criterion was rated
on a scale from 0 to 5, where higher scores indicate better performance. The results, summarized in
Tab.[7} show that our method achieves superior performance in both realism and task alignment.

Table 7: Comparison of motion realism and task consistency.
Method Motion Realism T  Task Consistency 1

InterPhys 32+0.7 35+05
TokenHSI 34+£04 3.7+0.6
UniHSI 31+£05 37+ 04
Ours 4.0+ 04 41+03

G LIMITATIONS AND FUTURE WORK

Limitations. While our framework advances dynamic human-object interaction modeling, it cur-
rently focuses on single-agent scenarios and does not address multi-agent interactions (e.g. col-
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laborative tasks involving multiple humans or agents) or social dynamics (e.g. social impact con-
siderations in shared environments). This restricts its applicability to real-world settings requiring
coordination among multiple agents, such as collaborative kitchens or assistive care scenarios. Ad-
ditionally, the current VLM-based planner may struggle with long-horizon tasks that demand ex-
tended temporal reasoning and hierarchical planning. For instance, tasks like cooking multi-step
meals or tidying interconnected household spaces remain challenging due to the lack of explicit task
decomposition mechanisms.

Future Work. To address these gaps, future research directions include extending the framework to
multi-agent reinforcement learning, where agents could learn adaptive communication protocols and
dynamic role allocation in socially rich environments. Simultaneously, integrating chain-of-thought
prompting into the VLM-based planner could enhance its capacity for stepwise task decomposition
(e.g., sequencing ingredient preparation, cooking, and serving), improving robustness in household
robotics scenarios. Combining multi-agent social coordination and hierarchical reasoning would
bridge the gap between atomic interactions and goal-oriented task execution, enabling scalable de-
ployment in collaborative human environments.
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