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ABSTRACT

This study examines memory retrieval and syntactic composition using fMRI while participants
listen to a book, The Little Prince. These two processes are quantified drawing on methods from
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computational linguistics. Memory retrieval is quantified via multi-word expressions that are likely

to be stored as a unit, rather than built-up compositionally. Syntactic composition is quantified
via bottom-up parsing that tracks tree-building work needed in composed syntactic phrases.
Regression analyses localise these to spatially-distinct brain regions. Composition mainly
correlates with bilateral activity in anterior temporal lobe and inferior frontal gyrus. Retrieval of
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stored expressions drives right-lateralised activation in the precuneus. Less cohesive expressions
activate well-known nodes of the language network implicated in composition. These results
help to detail the neuroanatomical bases of two widely-assumed cognitive operations in

language processing.

1. Introduction

Our human ability to comprehend natural language
relies on two fundamental of cognitive operations. One
involves the retrieval of memorised elements, while the
other composes those elements together into novel
expressions. Despite a growing body of work on the
brain’s language network (see e.g. Dronkers, Wilkins,
Van Valin, Redfern, & Jaeger, 2004; Fedorenko et al,
2016; Friederici & Gierhan, 2013; Hagoort & Indefrey,
2014; Pallier, Devauchelle, & Dehaene, 2011) the neural
bases of these two operations within this network
remain imprecisely specified.

This study disentangles these two cognitive processes
with an analysis of fMRI time-courses observed during an
extended episode of naturalistic spoken story under-
standing. Like prior work, it suggests a localisation of
memory retrieval and composition to largely distinct
regions of the brain. But by linking these operations
with quantitatively precise computational models, this
study paves the way for more granular research into
the relationship between these operations. Further, this
localisation is based upon brain responses to a literary
narrative, one that attests a variety of different linguistic
phenomena in an ecologically valid setting rather than
one or two constructions repeated out of context.

The processing of retrieving memorised elements is
operationalised using a specific type of word sequence
called “multiword expressions.” This term (henceforth
abbreviated MWE) comes from computational linguistics.
Broadly, it refers to word sequences that are better-
treated as a single unit rather than as a structurally-com-
posed combination (Sag, Baldwin, Bond, Copestake, &
Flickinger, 2002). MWE themselves raise a general ques-
tion about the balance between productivity and reuse
in language processing (Goldberg, 2006; Jackendoff,
2002; O'Donnell, 2015). If they truly lack internal struc-
ture, then their processing might proceed via a single,
unitary retrieval operation rather than step-by-step com-
position. Even if they are amenable to some sort of
internal structure analysis, existing proposals hold that
the entire item is stored and retrieved as a unit.

Adopting this idea as a working hypothesis, we
assume that MWE comprehension involves an additional
memory retrieval, one that is not involved in non-MWE
expressions. No assumptions regarding the nature of
this retrieval are required, only that the stored element
should correspond to the expression as a whole.

This distinction between retrieval and composition
figures centrally in neurocognitive models of language
processing (Bornkessel-Schlesewsky & Schlesewsky,
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2009, 2013; Hagoort, 2005, 2016; Ullman, 2001, 2004,
2015). These models all suppose, to some degree or
another, that these two operations in language proces-
sing dissociate at the level of neurobiology. The neuro-
biological implications of this claim are discussed in
more detail below in Section 2.5. The present study
adds to prior work by instantiating these two operations
in quantitatively precise computational models, and by
probing their neural localisation during a naturalistic
task.'

2, Present study

We pursue our objective by investigating two specific
research questions. The first is to localise these processes
(cf. Yang, Marslen-Wilson, & Bozic, 2017): Which brain
structures support cognitive processes of structural com-
position and retrieval of stored linguistic elements, in
naturalistic language comprehension? The second
research question has to do with the retrieval operation
specifically: Are some MWEs better candidates for com-
prehension via direct retrieval than others?

We investigate these questions using naturalistic
spoken story-comprehension, with a view towards to
maximising ecological validity. The stimulus, introduced
below in Section 2.1, is a literary text annotated with

numbers that quantify processing effort associated
with each operation (Sections 2.2 and 2.4). This section
finishes by deriving from the existing literature a broad
hypothesis regarding the organisation of these two cog-
nitive processes in the brain (Section 2.5).

2.1. Naturalistic stimulus

Participants heard de Saint-Exupéry’s The Little Prince
(1943) as translated into English by David Wilkinson
and read out loud by Nadine Eckert-Boulet. The text con-
stitutes a fairly lengthy exposure to naturalistic language,
comprising 15,388 words and lasting over an hour and a
half. This follows Willems’ (2015) encouragement to
probe the neural bases of language comprehension
with greater ecological validity.

The MWE that are identified in this text reflect con-
temporary usage of these expressions, and they are lin-
guistically diverse (for details see Sections 2.2 and 3.2).
To get a sense of how these MWE attestation frequencies
relate to distributional patterns in English more gener-
ally, Figure 1 compares attestation counts in the stimulus
text to their corresponding frequencies in the 560-
million word Corpus of Contemporary American
English (COCA; Davies, 2008). Over half (56.54%) of the
attestations are headed by a verb, and only two items
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Figure 1. MWE frequency comparison. The vertical axis shows counts of multiword expression attestations within the natural spoken
story stimulus text, The Little Prince (LPP). The horizontal axis is organised by log-frequency in the Corpus of Contemporary English

(COCA; Davies, 2008).



are story-character names. These attestations are evenly
distributed throughout the text with about 100 examples
in each section.

2.2. MWEs as indicators of memory retrieval

2.2.1. What are MWEs?

The designation “MWE” is motivated in computational
linguistics whenever a sequence of words is better
treated as an indivisible whole, rather than a structure
that is composed out of sub-parts.

This pragmatic criterion (see e.g. Calzolari et al., 2002)
picks out a very wide class of linguistic phenomena. To
get a sense of this diversity, Table 1 (after Siyanova-Chan-
turia, 2013) cites some cases that might plausibly be ana-
lysed as MWEs. The specific MWE identification
procedure used in this study is presented further below
in Section 3.2.

2.2.2. MWE and compositionality

What unifies cases of MWE is the absence of a wholly
compositional linguistic analysis (Sag et al., 2002). The
naturalistic story used as a stimulus in this project
attests nearly all of the types cited in Table 1; a few are
shown below in Example (1).

(1) Solthought a lot about the adventures of the jungle
and in turn, | managed with a coloured pencil to
make my first drawing.

(2) My little fellow, | don’t know how to draw anything
except boa constrictors, closed and open.

(3) “What are you doing there?”, he said to the drinker
who he found sitting in silence in front of a
number of empty bottles and a number of full
bottles.

(4) You must see to it that you regularly pull out the
baobabs as soon as they can be told apart from
the rose bushes to which they look very similar to
when they are young.

The syntactic and semantic properties of the boldfaced
expressions in (1) indeed resist analysis by parts; they
could be considered in some way as lexicalised.

Table 1. A wide variety of linguistic phenomena are plausibly
treated as MWEs.
fixed phrases

noun compounds
verb compounds

per se, by and large
black coffee, cable car
give a presentation, come along

binomials heaven and hell, safe and sound
complex prepositions in spite of
idioms break the ice, spill the beans
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2.2.3. MWE processing

To the extent that MWEs are not compositional, their
processing may depend more on memory retrieval
than composition. This idea is most clear in the case of
idioms where it has been dubbed the Configuration
Hypothesis (CH) by Cacciari and Tabossi (1988).

For the CH, idioms are processed word-by-word, just like
any other piece of language, until enough information
has accumulated to render the sequence of words ident-
ifiable as - or highly expected to be - a memorised
chunk. Only at this point the idiomatic meaning is
retrieved. (Cacciari, 2014)

Here, the CH is generalised in supposing that all cat-
egories of MWE exhibit this greater dependence on
memory retrieval. Section 2.5.1, below, reviews exper-
imental evidence regarding the processing of MWEs. Of
course, whether or not retrieval is actually used on a par-
ticular occasion may reflect gradations in compositional-
ity. These gradations, as the next section details, can be
quantified precisely.

2.3. Lexical cohesion of MWEs

The crisp theoretical distinction of the CH between
compositional and non-compositional expressions
obscures the somewhat messier reality: expressions
fall along a graded spectrum of compositionality (see
Table 2). To quantify this gradient of MWE cohesion,
we use a measure called Pointwise Mutual Information
(PMI; Church & Hanks, 1990). PMI is commonly used in
corpus linguistics to identify collocations.” Intuitively,
PMI is high when the word sequence under consider-
ation occurs more often together than one would
have expected, based on the frequencies of the indi-
vidual words (Manning & Schiitze, 1999, §5.4). More
formally, PMI is a log-ratio of observed and expected

Table 2. Graded spectrum of compositionality revealed by
pointwise-mutual information.

PMI Multiword expression receiving this score
26.59 heart skipped a beat

23.80 have nothing to do with
21.26 forehead with a handkerchief
21.18 burst into tear

20.17 once upon a time

20.15 boa constrictor

18.85 peal of laughter

-234 be order

—2.49 do calculation

-272 be object

-2.98 be hundred

-3.15 a well

-3.50 drink anything

-3.63 have plan
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probabilities:
PMI = log, <g) (M
where
__count(whole expression)
corpus size
and

£ count(wy)xcount(wy)* - - - xcount(w,)
n corpus size”

In Definition 1 the numerator O is a probability for the n-
word collocation, wiw; - - - w,_1W,. The denominator E is
what one would expect if the occurrences of each word in
the collocation were probabilistically independent.

MWEs that receive a higher PMI score are lexically
more cohesive, suggesting less compositionality, at
least at the superficial level of word co-occurrence. To
the extent that their greater cohesion results in a kind
of word-sequence memorisation, these highly-cohesive
MWEs are excellent candidates for a processing account
based on memory retrieval. Conversely, low PMI scores
signal a kind of “incohesion.” These expressions might
be better accounted-for by a compositional analysis.

It is important to appreciate that PMI is different from
the raw attestation counts that go into it. This is because
PMI reflects the ratio of the attestations of the whole rela-
tive to the attestations of the parts. It was raw counts,
rather than the ratio PMI, that were used in a fMRI
study by Yang et al. (2017) that examined memory retrie-
val in comparison to syntactic complexity. This study
found no effects of frequency in the brain beyond the
single-word level. Yang et al. (2017) did observe,
however, an effect of syntactic complexity by parametri-
cally varying six types of nominal, verbal and preposi-
tional phrases. The next section presents an alternative
way to investigate this same factor using naturalistic text.

2.4. Bottom-up parsing as composition

To study composition itself, some independent charac-
terisation of compositional processes themselves is
needed. In this study, bottom-up parsing plays that
role. The intermediate states of this parsing strategy
quantify the amount of compositional work that an ideal-
ised system would do, in the course of processing the
naturalistic stimulus text introduced above in Section
2.1. While there exists a large literature on bottom-up
parsing within computational linguistics (see e.g. Hale,
2014) its essential character is easy to grasp.

Bottom-up parsing amounts to a repeated cycle of
choice: whether to shift to the next word or

reduce a sequence of transient elements held in
memory. As shown in Figure 2, reduce actions are indi-
viduated by particular grammar rules. The number of
parser actions required at each word defines an incre-
mental complexity metricc. We use this complexity
metric to quantify composition effort in the brain, follow-
ing prior work in neurolinguistics (Brennan & Pylkkédnen,
2017; Brennan, Stabler, Van Wagenen, Luh, & Hale, 2016;
Brennan et al,, 2012; Nelson et al., 2017) and psycholin-
guistics (Frazier, 1985).

2.5. Hypotheses regarding retrieval of MWEs and
composition

With operational definitions sketched-out for both
memory retrieval (Section 2.2) and composition (Section
2.4), this section turns to what is already known about
their processing in the brain. Synthesising several
different literatures, a general prediction emerges that
these two processes are subserved by different brain areas.

2.5.1. MWE processing is different: experimental
evidence

Prior work supports the claim that MWE comprehension
is distinct from other language processing such as struc-
tural composition and involves additional memory

(A) Hierarchical S
representation /\
NP VP
ProperN NP
| | ‘
John loves
ProperN

t |

shift John Mary

reduce by ProperN—John
reduce by NP—ProperN

shift loves
reduce by V—loves

shift Mary

reduce by ProperN—Mary
reduce by NP—ProperN
reduce by VP—V NP

(B) Parser actions reduce by S—NP VP

Figure 2. Panel (A) depicts hierarchical structure for John loves
Mary to be recognised via processes of syntactic composition
with the word-by-word parser action counts given in orange.
Panel (B) shows the sequences of parser actions (i.e. shift
and reduce) that would build the colour-coded tree nodes
during bottom-up parsing.



retrieval. For instance, it is well-established at the behav-
ioural level that MWEs are produced and understood
faster due to their frequency, familiarity, and predictabil-
ity (Siyanova-Chanturia & Martinez, 2014). This would
follow if MWEs were remembered as chunks, in the
sense of Miller (1956) that was later formalised by
Laird, Rosenbloom, and Newell (1986) and Rosenbloom
and Newell (1987).

Eye-tracking and EEG work further documents this
processing advantage across a wide range of MWE
sub-types, e.g. binomials (Siyanova-Chanturia, Conklin,
& Schmitt, 2011), phrasal verbs (Yaneva, Taslimipoor,
Rohanian, & Ha, 2017), complex prepositions (Molinaro,
Canal, Vespignani, Pesciarelli, & Cacciari, 2013; Molinaro,
Vespignani, Canal, Fonda, & Cacciari, 2008), nominal
compounds (Molinaro & Carreiras, 2010; Molinaro, Car-
reiras, & Dunabeitia, 2012), lexical bundles (Tremblay &
Baayen, 2010; Tremblay, Derwing, Libben, & Westbury,
2011), and idioms (Laurent, Denhiéres, Passerieux, laki-
mova, & Hardy-Baylé, 2006; Rommers, Dijkstra, & Bas-
tiaansen, 2013; Siyanova-Chanturia, Conklin, & Van
Heuven, 2011; Strandburg et al, 1993; Underwood,
Schmitt, & Galpin, 2004; Vespignani, Canal, Molinaro,
Fonda, & Cacciari, 2010).

2.5.2. Neural basis for retrieving MWEs and
composition

The hypothesis that MWEs involve additional memory
retrieval reflects trends in both Construction Grammar
and Connectionism (see e.g. Ellis, 2008). In these quar-
ters, however, the relevant “memory” does not receive
a precise psychological or neural characterisation. It
may be that memory for MWE falls into a distinct theor-
etical category “between” episodic memory and general
semantic memory (Renoult, Davidson, Palombo, Moscov-
itch, & Levine, 2012). Memories in this category are
encoded on the basis of repeated personal experience,
an idea that is certainly plausible for MWEs. Neuroanato-
mical sites for the category of memory that Renoult et al.
(2012) discuss include medial temporal regions and the
Precuneus. This last suggestion converges well with
PET results on single word retrieval (Halsband, Krause,
Sipila, Teras, & Laihinen, 2002).

Regarding composition operations, one prominent line
of work implicates frontal regions, such as the pars trian-
gularis and pars opercularis of the inferior frontal gyrus
(Hagoort, 2016; Friederici & Gierhan, 2013; Snijders et al.,
2009; Zaccarella & Friederici, 2017). Other lines of investi-
gation implicate anterior temporal regions, based on
deficit-lesion data (Dronkers et al., 2004) and text compre-
hension tasks (Ferstl, Neumann, Bogler, & Von Cramon,
2008). These anterior temporal areas are sensitive to para-
metric variation of phrase size, which would follow if they
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were somehow representing composed structures (Bemis
& Pylkkd@nen, 2011a; Brennan et al, 2012; Pallier et al.,
2011; Pylkkdnen, 2016). These latter findings, although,
conflict with patient studies showing that atrophy to
anterior temporal regions does not systematically impair
processing of syntactically complex sentences (Wilson
et al, 2014a). This tension between functional and
deficit/lesion results remains to be resolved.

This array of empirical work, in combination with the
neurocognitive models of language processing dis-
cussed below (Section 2.5.3) serves to motivate the
present investigation into the brain bases for MWE pro-
cessing and compositional processing.

2.5.3. Neurocognitive models of language and
localisation

Current neurobiological models for language suggest
that retrieval and composition should be sub-served by
different brain areas. These models do however differ
both in their conceptualisation of these operations, and
on their anatomical localisation.

The Declarative-Procedural model (Ullman, 2001) for
instance, is founded upon a distinction that contrasts
memory-related with non-memory-related processing.
Ullman (2015) links rule-based mechanisms to frontal
regions and sub-cortical structures, while memory for
words is supported by medial temporal regions.

In Hagoort’s Memory, Unification and Control frame-
work (2016), composition falls under the scope of the
Unification operation and is assigned to inferior frontal
areas. While operating under different assumptions, this
localisation is in general agreement with Zaccarella and
Friederici (2017) who propose that hierarchical proces-
sing is subserved by a sub-part of the left inferior frontal
gyrus. Regarding the Memory aspect of their model,
Hagoort and colleagues agree partly with Ullman, associ-
ating that function (among others) to posterior temporal
regions (Hagoort, 2009; Hagoort & Indefrey, 2014).

The Dual Streams Model (Hickok & Poeppel, 2007)
similarly locates the Lexical Interface, where individual
words would be processed, to posterior middle temporal
gyrus. Syntactic phrases would be composed, part-by-
part, by a combinatorial network within the anterior tem-
poral lobes.

Another perspective is offered by the Extended Argu-
ment Dependency Model (eADM; Bornkessel-Schle-
sewsky & Schlesewsky, 2009, 2013), that divides up
language processing in a different way. In this model
sequential information (for instance about word order)
is handled by a dorsal stream, while dependency infor-
mation (as expressed through case-marking) is handled
by a ventral stream. If MWE comprehension is sequential
processing in this sense, then structures along this dorsal
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stream, including the inferior parietal lobule, should be
involved. On the other hand, composition should acti-
vate temporal regions along the ventral stream.

These models’ localisation claims contrast in detail
with each other, and with an important body of evidence
from patient work (e.g. Dronkers et al., 2004; Wilson,
Galantucci, Tartaglia, & Gorno-Tempini, 2012; Wilson et
al,, 2014b, inter alia). Despite this tension, they agree
on the common proposal that retrieval and composition
should each be independently localisable. It is this point
of agreement that motivates the present study.

3. Methods

A spoken narrative serves as the stimulus. Participants
hear this narrative over headphones while they are in
the scanner (e.g. Brennan et al., 2012; Willems, Frank,
Nijhof, Hagoort, & van den Bosch, 2016). The sequence
of neuroimages collected during their session becomes
the dependent variable in a regression against word-
by-word predictors, derived from the text of the story.
The overall approach to deriving time series predictions
regarding the comprehension of this auditory stimulus is
shown in Figure 3.

3.1. Subjects and design

Participants were fifty-one volunteers (32 women and 19
men, 18-37 years old) with no history of psychiatric,
neurological, or other medical illness or history of drug
or alcohol abuse that might compromise cognitive func-
tions. All strictly qualified as right-handed on the Edin-
burgh handedness inventory (Oldfield, 1971). They self-
identified as native English speakers and gave their
written informed consent prior to participation, in
accordance with Cornell University IRB guidelines.

3.2. Stimulus and MWE identification

The audio stimulus was a literary text, Antoine de Saint-
Exupéry’'s The Little Prince. We applied two different
approaches to MWE identification, which together yield
669 distinct MWE types for a total of 1292 attestations
in the stimulus text. This section explains the two identifi-
cation approaches.

The first approach uses lgtagger (Constant &
Sigogne, 2011), a freely-available program that combines
two submethods:

1 string-based matching to look up MWE in external
dictionaries

2 atagging model, based on conditional random fields
and trained on hand-checked examples

5 (A)
<
c
3
<] !
w T - u
One | has to ”Iook afterl I lamps I
(B) MWE Processing (©)
after look =
has_to PN
to One has ve
lamps
one * <N,
“ has to i /./
look_after LOCKAE M of
after \s
v D
25 wo ¥ (D)
'.E B MWE
£e
24
3 ) 25
8o
One has to look after lamps
R
(E)
als
)
o 1
T
205
©
-% oo—o—o-o-o-o-o-o-o-o-o—ﬂﬂ
® 2 6 10 14 18 22 26 30
time (s)

Figure 3. Deriving an expected blood-oxygen level dependent
(BOLD) signal from a naturalistic text. (A) shows a segment of
the spoken stimulus, with word boundaries in light blue. (B)
highlights multiword expressions (MWEs), which may be
retrieved directly from memory during comprehension and (C)
depicts the phrase structure of the example sentence, which is
composed part-by-part during comprehension. In (D) the value
of these word-by-word predictors are shown together. The
orange values reflect steps taken between each word by a
bottom-up (BU) parser. The purple values reflect PMI scores,
which quantify the cohesion of MWEs like has to and look
after. Panel (E) shows the expected BOLD response, after these
predictors are convolved with a haemodynamic response func-
tion (HRF).

Regarding submethod 1, the external dictionaries are:
the Unitex lexicon (Paumier, Nakamura, & Voyatzi, 2009),
the SAID corpus (Kuiper, McCann, Quinn, Aitchison, & van
der Veer, 2003), the Cambridge International Dictionary
of Idioms (White, 1998), and the Dictionary of American
Idioms (Makkai, Boatner, & Gates, 1995).

Regarding submethod 2, conditional random fields
are used to guess MWE marks like those shown in the
final column of Table 3. Smith (2011, §3.5) offers a
general introduction to the technique. The key idea
here is to construe a word’s MWE status as a latent vari-
able that is related to the surface string via a collection of
weak clues, the “features.” Here the training examples
come from MWE annotations in the English Universal



Table 3. Training data for MWE identification systems. Each word
of the sentence is on a separate line with its lemma and its POS
tag. + and — indicate whether the word is part of a MWE or not.

ldx Word form Lemma POS MWE
1. | i PRP —
2. was be VBD -
3. thinking think VBG -
4, of of IN -
5. the the DT +
6. other other J) +
7. day day NN +
8.

Dependencies English Web Treebank (Silveira et al.,
2015). This annotated data comprises several web-
related genres including weblogs, newsgroups, emails,
reviews, and Yahoo! answers. The conditional random
field makes its marking decisions based on feature tem-
plates that specify, for example, particular lexical items,
capitalisation, or part of speech tags. A complete table
of these templates is presented in Constant and Tellier
(2012). The approach is limited to contiguous MWEs
and identifies mainly fixed expressions such as
complex function words and nominal MWEs. Crucially,
this way of identifying MWEs is blind to hierarchical syn-
tactic structure.

The second approach uses a transition based system
(Al Saied, Candito, & Constant, 2017). This system is a
variant of the well-known Nivre parser (Constant &
Nivre, 2016), in which abstract “actions” update an
abstract computational state that moves through the
text, emitting MWE marks as a side-effect. The choice of
which action to take is made by a classifier, here a
support vector machine (for textbook introductions see
e.g. Abney, 2007, §6.4 or Murphy, 2012, §14.5). There
are actions that Add or Remove words from the compu-
tational state, as well as actions which Mark candidates
as MWEs. This last type is actually divided into two
cases, one of which composes candidate MWEs in a
binary fashion, and another which marks these binary
elements in a way that produces output. Figure 4 shows
how this transition-based system would apply to the
example “see to it.”

The input to this classifier includes word form, lemma
and part-of-speech information as shown in Table 3, as
well as dictionary-based features and features that
relate to previous actions (“history-based”). The clas-
sifier's output is a selection of one particular action.
This second way of identifying MWEs is similarly denied
access to any hierarchical syntactic information.

The training data for this transition-based system
come from the Children’s Book Test (Hill, Bordes,
Chopra, & Weston, 2015), which is close to the genre of
the stimulus narrative. Training examples were gener-
ated by string-matching based on the external
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dictionaries cited above. Compared to the conditional
random field-based approach, this second approach
seems better-able to find verbal MWE.

The MWEs used in the fMRI study reported here were
identified by applying both of the approaches described
above to the stimulus text. The union of their outputs
yielded a time series of indicator variables as shown in
Panel C of Figure 5. This time series has the value 1 on
words that are final in a MWE, and 0 otherwise.

PMI scores for each MWE define a gradient metric as
specified in Definition 1. The probabilities used in this
calculation were estimated using the Corpus of Contem-
porary English (COCA; Davies, 2008). The observed prob-
ability O of entire MWEs was estimated by querying the
2018 version of COCA, which contains 560 million words.
The expected probabilities £ are based on an earlier
COCA release that comprises 450 million words. These
estimates are based on counts of lemmas, rather than
inflected words. This use of lemmas serves to focus the
analysis on the cohesion of the expression rather than
its morphology.

3.3. Annotating compositional structure

Compositional processing was modelled as bottom-up
parsing, as introduced above in Section 2.4. The tree
structures were obtained using Stanford parser (Klein &
Manning, 2003) and follow the conventions of the
Penn Treebank (Marcus, Marcinkiewicz, & Santorini,
1993). They capture constituency relationships, including
phrase type and embedding, but do not explicitly mark
long-distance dependencies. The complexity metric is
defined as the number of reduce actions that would
be taken during bottom-up parsing of these trees.
Since narrative stimulus does not readily lead to mis-
understandings or “garden-path” effects in the sense of
Bever (1970) we restrict ourselves to just the globally-
correct parser action sequence.

Figure 5 illustrates the two retrieval estimators and
the one compositional estimator for a single sentence
from The Little Prince. Correlation matrices for all estima-
tors are given in Appendix B.

3.4. Data presentation

After giving their informed consent, participants were
familiarised with the MRI facility and assumed a supine
position on the scanner gurney. The presentation script
was written in PsychoPy (Peirce, 2007). Auditory stimuli
were delivered through MRI-safe, high-fidelity head-
phones (Confon HP-VS01, MR Confon, Magdeburg,
Germany) inside the head coil. The headphones were
secured against the plastic frame of the coil using foam
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You

Add "to" to the state
must

see (B)

to

<—Mark "see to it" as expression —

it
that

you

(©)

Remove "that" from the state

® Linguistic features
@ Dictionary-based features

@® History-based features

@® Add

Next lemma is "to"

Next POS is "TO"

Next word is "to"
Preceding actions: add, remove add
POS after next is PRP

POS|is VB and next lemma is "to"

POS is VB and next POS is TO
Next POS is VB and its next is "it"
POS is VB and the POS after next is IN

Next word is dictionary word

Next POS is IN"

Preceding action: add

Previous word is dictionary word
Word after next is dictionary word
POS after next is PRP

Next word is dictionary word
Preceding three actions: add

Preceding two actions: add

Preceding action: add

Lemma is "that"

Next POS is PRP

Next POS is RB
Current POS is IN

Preceding action: mark, add

Word is dictionary word

@® Remove ® Mark

Figure 4. A transition-based approach to finding the multiword expression see to it from Example 1(d). Identification involves adding
see, to and it to consecutive computational states, creating a binary element and marking this element as a multiword expression. For
each state, the classifier must choose the appropriate action among the four available actions. Panel (A) shows the effect of some fea-
tures on choosing the action Add instead of the action Remove for the word “to.” Panel (B) shows the effect of choosing Mark instead
of Remove for the composed element “see to it.” Panel (C) show the effect of some other features on choosing the action Remove
instead of Add for the word “that.” These feature templates help the classifier choose the right action. For display purposes we show
feature weights as they would be used in a simpler Logistic Classifier, rather than the actual support vector-machine (SVM) that is used
in the model. In this simplified setup, decisions are made by passing the summed feature weights — the coloured bars - through a
logistic function. The SVM decision rule is more complicated. For details, see Al Saied et al. (2017).

blocks. Using a spoken recitation of the US Constitution,
an experimenter increased the volume until participants
reported that they could hear clearly. Participants then
listened passively to the audio storybook for 1 hour 38
minutes. The story was divided into nine sections and
at the end of each section the participants were pre-
sented with a multiple-choice questionnaire with four
questions (36 questions in total), concerning events
and situations described in the story. These questions
served to confirm participants’ comprehension. They

were viewed via a mirror attached to the head coil and
answered through a button box with their right hand.
The entire session lasted around 2.5 hours.

3.5. Data acquisition

Imaging was performed using a 3T MRI scanner (Discov-
ery MR750, GE Healthcare, Milwaukee, WI) with a 32-
channel head coil at the Cornell MRI Facility. Blood
Oxygen Level Dependent (BOLD) signals were collected
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Figure 5. Comparing the word-by-word predictors on a single sentence: (A) depicts the syntactic structure of a single sentence of the
naturalistic stimulus text, as recovered by the Stanford parser, (B) gives the bottom-up parser action count with respect to this tree,
represented in orange and annotated at the offset of each word in the story, (C) is the categorical multiword expression predictor,
represented in blue, where 0 or 1 is tagged at the offset of a word if it is the final word of a MWE, (D) is the gradient multiword
expression predictor, represented in dark blue, and similar to the previous predictor the offset of the final word in a MWE is
tagged with the corresponding PMI score, quantifying its lexical cohesion.

using a T2-weighted echo planar imaging (EPI)
sequence (repetition time: 2000 ms, echo time: 27 ms,
flip angle: 77°, image acceleration: 2X, field of view:
216 x 216 mm, matrix size 72 x 72, and 44 oblique
slices, yielding 3mm isotropic voxels). Anatomical
images were collected with a high resolution T1-
weighted (1 x 1 x 1 mm? voxel) with a Magnetisation-
Prepared RApid Gradient-Echo (MP-RAGE) pulse
sequence.

4, Data analyses
4.1. Preprocessing

FSL's Brain Extraction Tool (Jenkinson, Beckmann,
Behrens, Woolrich, & Smith, 2004) was used for skull-
stripping with a fractional intensity threshold setting
of 0.5. Subsequent preprocessing steps were carried
out using AFNI version 16 (Cox, 1996). Anatomical
and functional images were co-registered using the
in-built AFNI function 3dseg, images were normalised
to the MNI-152 template, and images were resampled
to 2mm isotropic voxels.

We used multi-echo independent components analy-
sis (ME-ICA) (Kundu, Inati, Evans, Luh, & Bandettini,
2012; Kundu et al, 2013) to improve the signal-to-
noise ratio in these data. ME-ICA splits the T2* signal
into BOLD-like and non BOLD-like components. Remov-
ing these non-BOLD components mitigates noise due to
participants’ head motion, physiology and scanner con-
ditions such as thermal changes (Kundu et al, 2017).
Indeed, there were no exclusions based on degree of
head movement. Nor was any high-pass filtering or
smoothing applied at this stage.

4.2. Statistical analysis

The research questions layed out above in Section 2
motivate two statistical analyses. The first analysis loca-
lises composition and memory-retrieval operations
during naturalistic listening. The second analysis investi-
gates multiword expressions along a quantitative gradi-
ent of cohesion. Both analyses employ the General
Linear Model, and were carried out using SPM12
(Friston, Ashburner, Kiebel, Nichols, & Penny, 2007). The
predictors were convolved using SPM'’s canonical HRF.
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Table 4. Predictors used in Analysis 1.

Bottom-up parser action

Number of REDUCE actions taken since the last

count word (§2.4)
Categorical MWE 1 at the last word of a MWE, 0 otherwise (§2.2)
predictor
Word rate Indicator for spoken word offset
Word frequency log-frequency in movie subtitles (Brysbaert &
New, 2009)
fo fundamental frequency of the narrator’s voice,

reflects pitch

RMS amplitude intensity, an acoustic correlate of volume

4.2.1. Analysis 1: with categorical predictors

We regressed the word-by-word predictors described
below against fMRI timecourses recorded during
passive story-listening in a whole-brain analysis. Along
with the parser action count and MWE indicators of
theoretical interest, four “nuisance” variables of non-
interest were entered into the GLM analysis, including
a unigram word frequency predictor based on attesta-
tions in movie subtitles (Brysbaert & New, 2009). This
enables the effects of MWE, Parser-action count, and
MWE cohesion to be assessed in way that is distinct
from single-word frequency effects. We also included
two variables that account for prosodic effects: the
RMS amplitude and the fundamental frequency of the
auditory stimulus. These control variables serve to
improve the sensitivity, specificity and validity of acti-
vation maps (Bullmore et al, 1999; Lund, Madsen,
Sidaros, Luo, & Nichols, 2006). The predictors entered

into Analysis 1 are summarised in Table 4. Figure 5
shows the theoretical predictors’ time series for a particu-
lar stimulus sentence.

4.2.2. Analysis 2: with gradient predictors

Analysis 2 uses the same predictors as in Analysis 1,
except that the categorical indicator of MWE presence
is replaced with a gradient predictor. As explained
above in Section 2.3, this predictor rates the propensity
of a MWE to be memorised or not using a standard
measure of collocation strength called pointwise
mutual information (PMI). The same MWEs that were
annotated with a value of “1” in Analysis 1 are in Analysis
2 marked with their PMI score. This is shown in the
bottom row of Figure 5.

Note that parser action count is not correlated with
the categorical or the gradient MWE predictor (r = 0.09
in both cases). Correlation matrices for all terms
entered into the regression analyses are given in Appen-
dix B.

4.2.3. Group-level analysis

In the second-level group analysis, each contrast was
analysed separately at the group-level. An 8 mm
FWHM Gaussian smoothing kernel was applied on the
contrast images from the first-level analysis to counteract
inter-subject anatomical variation. All the group-level
results reported in the next section underwent FWE

Table 5. Significant clusters of increasing activation for bottom-up parser action count after FWE voxel correction for multiple
comparisons with p < 0.05 and cluster-extent threshold (k > 50). Peak activation is given in MNI Coordinates, and brain region

labels come from the Harvard-Oxford Cortical Structure Atlas.

MNI coordinates

Regions for bottom-up parser action count Cluster size (in voxels) X y z p-value(corrected)  T-score(peak level)
R Anterior Temporal 4816 52 6 -20 0.000 13.20
R Middle Temporal Gyrus 50 -20 -10 0.000 11.31
R Supramarginal Gyrus/Superior Temporal Gyrus 60 —40 -10 0.000 10.11
L Inferior Frontal Gyrus Orbitalis/Triangularis & anterior Insula (BA47) 2461 —-36 18 -14 0.000 10.40
L Temporal Pole —50 6 —-26 0.000 8.30
L Putamen -30 8 -4 0.000 6.99
R Supplementary Motor Area/Superior Frontal Gyrus (BA9) 6495 10 18 62 0.000 9.35
R Medial Superior Frontal Gyrus (BA9) 12 58 32 0.000 8.62
L Superior Frontal Gyrus -8 18 66 0.000 8.24
L Cerebellum - Crus | 448 -24 -74 =30 0.000 8.96
R Cerebellum - Crus | 941 26 -74 -36 0.000 8.15
R Cerebellum 36 —-60 -—32 0.021 5.16
L Middle Occipital Gyrus/Fusiform Gyrus 1084 -34 -78 12 0.000 7.59
L Fusiform Gyrus/Temporal Occipital Cortex -30 -58 -10 0.000 7.19
L Occipital Fusiform Gyrus -28 -70 -14 0.010 5.85
R Precentral Gyrus 159 42 0 48 0.000 7.57
L Supramarginal Gyrus/Parietal Lobe (BA40) 665 -54 56 30 0.000 7.35
L Parietal Lobe —48 —66 50 0.032 5.45
L Supramarginal Gyrus -52 58 50 0.036 541
R Temporal Occipital Cortex/Fusiform Gyrus (BA19) 164 30 -50 -10 0.001 6.75
L Inferior Frontal Gyrus Orbitalis/Frontal Pole (BA11) 252 —44 46 12 0.001 6.61
L Frontal Pole -36 60 —6 0.013 5.75
L Middle Frontal Gyrus (BA9) 252 —42 24 44 0.001 6.49
L Precuneus 154 -10 =52 38 0.003 6.25
R Middle Occipital Gyrus 160 28 -72 22 0.003 6.19
L Caudate 54 -14 16 10 0.005 6.07




voxel correction for multiple comparisons which resulted
in T-scores > 5.3.

5. Results

Behavioural results of the comprehension task showed
attentive listening to the auditory story presentation.
Across 51 participants, average accuracy on the compre-
hension questions was 90% (SD = 3.7%). All whole-brain
effects reported survived a p < 0.05 Family-Wise-Error
threshold at the voxel level. Tables introduced below
use brain region labels from the Harvard-Oxford Cortical
Structure Atlas.

5.1. Analysis 1: results with categorical predictors

5.1.1. Results for composition

Bottom-up parser action count shows a broad activation
pattern both in right and left hemisphere. The peak acti-
vation is right lateralised in the anterior temporal lobe
within a main cluster of activation which extends
through the middle and superior temporal gyri. While
anterior temporal activation is bilateral, both middle
temporal gyrus and posterior superior temporal gyrus
are only right lateralised. The second strongest cluster
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of increased activation is observed in the left inferior
frontal gyrus stretching over pars orbitalis and triangu-
laris and extending to the anterior insula and the
putamen. A similar increased activation is observed in
the right inferior frontal gyrus.

Additional activation clusters were seen in areas
including the prefrontal cortex, supplementary motor
areas, the cerebellum, the left temporal-parietal junction,
as well as inferior temporal lobes. These are all detailed in
Table 5 and Figure 6.

5.1.2. Results for MWE presence

The categorical MWE predictor gives rise to two clusters
of activation both in the right precuneus cortex, as pre-
sented below in Figure 6 and Table 6.

5.2. Analysis 2: results with gradient predictors

Analysis 2 investigates memory retrieval further by rating
how cohesive each MWE is. This is done using pointwise
mutual information, introduced above in Section 2.3.
Increasing MWE cohesion, as seen through the positive
correlation with PMI, yields a single cluster in the right
precuneus.

MFG/SFG
+SMA

ATL T-value IFG Tri/Op Cerebellum
. 7/¥ - FWE p < 0.05 +Insula Crus|
R N +5.29 +13.2 L

Bottom-up parser action count

T-value
FWE p < 0.05
- +5.20 [N - 7.15
R - Presence of MWEs

Figure 6. Whole brain contrast images with significant clusters are projected onto a template brain (Holmes et al., 1998): Panel (A)
shows us the significant clusters Bottom-up parser action count in orange; Panel (B) shows the significant clusters for Multiword
expressions in blue. All images are underwent FWE voxel correction for multiple comparisons with p < 0.05. A cluster-extent threshold

k > 50 is applied for display purposes.
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Table 6. Significant clusters of increasing activation for multiword expressions after FWE voxel correction for multiple comparisons with
p < 0.05. Peak activation is given in MNI Coordinates.

MNI coordinates

Regions for multiword expression Clustersize (in voxels) X y z p-value (corrected) T-score (peak level)
R Precuneus 209 6 -70 56 0.000 7.15
R Precuneus 18 6 —48 50 0.019 5.63

Table 7. Significant clusters for the increasing and decreasing cohesion measure of MWEs after FWE voxel correction for multiple
comparisons with p<0.05. Peak activation is given in MNI Coordinates.
MNI coordinates

Regions for PMI Cluster size (in voxels) X y z p-value (corrected) T-score (peak level)
CORRELATED WITH INCREASING MWE COHESION
R Precuneus 244 6 —68 56 0.000 7.33
CORRELATED WITH DECREASING MWE COHESION
L Superior Frontal Gyrus 2039 —18 32 52 0.000 8.39
L Precentral Gyrus (BA9) —44 8 40 0.000 7.26
L Middle Frontal Gyrus -38 22 46 0.000 6.89
L Angular Gyrus 688 —42 —58 34 0.000 7.27
L Inferior Parietal Lobule —48 —46 50 0.000 5.76
L Inferior Temporal Gyrus 320 —60 —44 —4 0.000 7.25
L Inferior Frontal Gyrus Pars Triangularis 211 —46 30 18 0.000 6.41
L Middle Temporal Gyrus 152 —56 0 -32 0.000 6.49
L Frontal Pole (BA10) 50 —6 64 2 0.001 5.88
R Superior Frontal Gyrus 35 14 52 2 0.001 6.15
L Inferior Frontal Gyrus orbitalis 33 -38 48 18 0.001 5.55
R Inferior Temporal Gyrus 21 58 —10 -32 0.001 5.78
R Superior Frontal Gyrus/ SMA (BA6) 15 12 24 58 0.001 5.94
Precuneus
SFG/IMFG Angular

+ Precentral

IFG Tri
MTG
T-value
FWE p < 0.05
-5.29 N -8.4
+5.20 N B +84

Cohesion strength of MWEs (PMI)

Figure 7. Significant clusters for the increasing and decreasing cohesion measure of MWEs after FWE voxel correction for multiple
comparisons with p < 0.05. Increasing cohesion measures are represented in blue and decreasing cohesion measures are represented
in orange.

Left-lateralised activity in superior frontal gyrus,
angular gyrus, pars triangularis, posterior middle tem-
poral gyrus, and frontal pole was observed in proportion
to decreasing lexical cohesion, as seen through the nega-
tive correlation with PMI scores. These are detailed in
Table 7 and in Figure 7.

6. Discussion

This study investigated the neural substrates of two pro-
cesses in language comprehension: retrieval and com-
position of stored linguistic elements. Departing from

prior work, we distinguish these operations using com-
putational methods and a naturalistic stimulus. Multi-
word expressions identified in The Little Prince using
the methods of Al Saied et al. (2017) and Constant
and Sigogne (2011) serve as a hypothesis about points
in the narrative where extra memory retrievals would
occur.

6.1. Lexical retrieval and MWEs

Significant activation in the precuneus for MWEs in both
Analysis 1 and Analysis 2 offers initial support for the idea



that this region subserves memory retrieval of these
stored elements.

6.1.1. Precuneus and retrieval of MWEs

Both the categorical Analysis 1 and the gradient Analysis
2 indicate the centrality of the precuneus for MWE-
related memory processes. This area features a graded
effect such that it is more active for increasingly cohesive
MWEs, as estimated by the PMI metric. As discussed
above in Section 2.3, highly-cohesive MWEs are excellent
candidates for a processing account based on direct
retrieval from memory.

The involvement of the precuneus in the sort of
memory retrieval prompted by MWEs is consistent with
studies attesting its participation in larger memory net-
works, e.g. for verbal material (Halsband et al., 2002).
The functional characterisation of the precuneus as
part of a network sub-serving memory tasks has been
reported for different memory-based processes, such as
verbal memory (Halsband et al., 2002), spatial memory
(Wallentin, Weed, @stergaard, Mouridsen, & Roepstorff,
2008), episodic memory (Andreasen et al, 1995),
memory-related imagery (Fletcher et al., 1995; Mashal,
Vishne, & Laor, 2014). Notably, some studies found that
the Precuneus is active in non-imagery related episodic
memory for musical sequences or abstract words (e.g.
Platel et al., 1997).

The precuneus has also been identified as a part of the
Default Network, perhaps playing a role in a Dorsal-
Medial subsystem of that network (Andrews-Hanna,
Smallwood, & Spreng, 2014). This subsystem is said to
support story comprehension among other aspects of
self-generated thought. Although the precuneus has
been designated as part of the Protagonist’s Perspective
Interpreter Network (Mason & Just, 2006) and attested in
naturalistic reading by Wehbe et al. (2014), an interpret-
ation of the results of this particular study in terms of
reference to story characters is implausible. This is
because less than 2% of the MWEs in the stimulus narra-
tive are names of story characters.

More broadly, the postero-medial portion of the parie-
tal lobe has been widely linked to processing of complex
lexical information by previous studies. Its sensitivity to
the number of complements of a verb was reported by
Shetreet, Palti, Friedmann, and Hadar (2007) in the
medial precuneus and the anterior cingulate cortex
(see also den Ouden, Fix, Parrish, & Thompson, 2009; She-
treet, Friedmann, & Hadar, 2010). The precuneus has also
been linked to lexical processing of information of a rela-
tively high complexity (Shetreet, Friedmann, & Hadar,
2009). These results converge with a strand of the fMRI
literature over the past decade that has characterised
precuneus as a language-relevant region.
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6.1.2. Incohesive MWEs and Broca’s area

While highly cohesive expressions evoke a focal pattern
of activation that is distinct from classical left-hemi-
sphere language areas, the cortical sites that showed a
sensitivity to a decrease in MWEs' cohesion strength
include the left superior frontal gyrus and also encom-
pass several areas of the perisylvian language network.
Notably the left inferior frontal gyrus, or Broca's area
(pars triangularis and pars orbitalis), and also anterior
and posterior regions of the left temporal gyrus. These
perisylvian areas have been connected with compo-
sitional processes (e.g. Pallier et al., 2011), and this is con-
sistent with the leading idea that less-cohesive
expressions are more likely to require compositional pro-
cesses. Indeed a similar set of regions are activated in
response to the Bottom-up parsing predictor, as dis-
cussed further in the next sub-section.

6.2. Parser action count as composition

Word-by-word composition effort, quantified in terms of
bottom-up parser actions, correlates in Analysis 1 with a
highly bilateral pattern across several areas in the
language network. Notably, both anterior-frontal and
anterior-temporal regions are involved bilaterally.

6.2.1. Anterior frontal and anterior temporal

regions

Inferior frontal regions encompassing different sub-parts
of the inferior frontal gyrus and anterior insula are com-
monly attributed a role in compositional processes (Frie-
derici & Gierhan, 2013; Hagoort, 2016; Snijders et al.,
2009; Zaccarella & Friederici, 2015), and our findings
are consistent with that work. Interestingly, prior work
using methods most similar to ours (bottom-up
parsing, a naturalistic stimulus) have not highlighted
the inferior frontal gyrus (Brennan et al, 2012, 2016).
We hesitate to draw strong inferences from comparing
“significant” to “non-significant” results, but this discre-
pancy may reflect on the increase in statistical power
afforded by our current study, which uses a stimulus
that is over seven times longer that used by Brennan
and colleagues, and also reports data from almost
twice as many participants.

The balance of activation that we observe in response
to increasing parser action count is consistent with
Ullman’s Declarative-Procedural model. It shows a predo-
minately anterior distribution in left hemisphere, along-
side smaller activation clusters in the inferior parietal
lobe and temporo-occipital-parietal junction. Further,
the observed activation of putamen within the large
bilateral cluster in inferior frontal gyrus and anterior
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insula conforms to Ullman’s prediction that rule-gov-
erned language use is instantiated in a Fronto-basal
ganglia network (Ullman, 2004, 2015).

The composition effect observed bilaterally in anterior
temporal lobe is consistent with previous work on com-
positional in naturalistic narrative (Brennan et al., 2012). It
confirms and extends a broad range of prior findings,
including those from simple two-word phrases (Bemis
& Pylkké@nen, 2011b), from parametric variation of con-
stituent size (Pallier et al., 2011), and comparisons of
simple sentences to unstructured lists of words (Humph-
ries, Binder, Medler, & Liebenthal, 2006; Rogalsky &
Hickok, 2009; Stowe et al., 1998; Vandenberghe, Nobre,
& Price, 2002; Xu, Kemeny, Park, Frattali, & Braun, 2005).
Our result also conforms with evidence that anterior tem-
poral lesions impair “basic levels of constituent-structure
processing” (Dronkers et al., 2004, p. 161).

Recent neuroimaging work correlating brain activity
with processing-complexity metrics across grammar
types and parsing strategies has convergently pointed
to the anterior temporal complex (Brennan et al., 2016;
Li & Hale, 2018; for a review see Brennan, 2016). The pre-
cision of this localisation has also been supported by
results using intracranial recording (Nelson et al., 2017).

The results reported here, along with previous
findings, underline the involvement of anterior temporal
lobe in basic composition processes (Friederici &
Gierhan, 2013; Hickok & Poeppel, 2007). Yet, alongside
many of the findings just reviewed, our results stand in
contrast to the apparent stability of compositional pro-
cesses following anterior temporal atrophy (e.g. Wilson
et al, 2014a, 2016). The present study does not resolve
the tension between these two literatures. We speculate
that such a resolution might involve more detailed con-
sideration of the specific mechanisms that contribute to
observed neural activation patterns, and perhaps how
compensatory processes respond to neuronal atrophy.

The unexpected right lateralisation of posterior tem-
poral activation may suggest that the way the human
brain processes linguistic stimuli within a contextually
rich setting — one more similar to the everyday language
environment - shows a strongly bilateral involvement of
the language network. Future work that parametrically
varies contextual richness, from more isolated to more
naturalistic stimuli, may shed light on this speculation.

6.2.2. Left posterior temporal regions and parser
action count

The operationalisation of compositional processing in
terms of bottom-up parser actions highlights the
language network to a large extent. However, we did
not find a significant correlation between this metric
and activity in left posterior temporal areas. Our result

contrasts with posterior temporal effects of composition
that are reported in some prior imaging studies (e.g.
Brennan et al,, 2016; Pallier et al., 2011; Snijders et al.,
2009; Vandenberghe et al, 2002) and are also high-
lighted in studies of primary progressive aphasia
(Wilson et al., 2012). This absence of evidence should
be treated carefully; caution is especially warranted as
different studies take different perspectives on compo-
sition itself.

The phrase-structures used in our analysis only
capture some aspects of composition, and so a more
comprehensive view of this aspect of language proces-
sing may shed light on discrepancies between studies.
For example, the LPTL composition effect reported by
Brennan et al. (2016) did not appear when analyzing
the same types of tree structures used in the present
analysis, but only from tree structures that explicitly
encode long-distance dependencies and other more
abstract aspects of grammar. Furthermore, the bottom-
up parsing metric is unlexicalised. It counts distances,
for instance along the spine of a tree as in Figure 3(C),
but it treats all nodes as equal, ignoring lexical infor-
mation except at the preterminal level. Subjects and
direct objects receive the same score if they close off
the same number of constituents. This conception of
composition leaves out many classical distinctions that
are known to affect cerebral activity, such as semantic
selection, argument structure (Frankland & Greene,
2015; Thompson et al,, 2007), long-distance dependen-
cies (Ben-Shachar, Palti, & Grodzinsky, 2004; Santi &
Grodzinsky, 2010; Shetreet & Friedmann, 2014), and
case-checking (Nieuwland, Martin, & Carreiras, 2012).

Such a more comprehensive perspective may also
shed light on another aspect of the present results.
While parser action count does not correlate with left
posterior temporal activation, we do see such a corre-
lation for decreasing MWE cohesion (see Section 6.1.2).
Such a correlation is consistent with the hypothesis
that less coherent expressions load more heavily onto
certain compositional operations, and such compo-
sitional operations evoke, at least in some cases, pos-
terior temporal activity.

Overall the results support the idea that composition
and retrieval of stored linguistic elements like MWEs
involve different parts of the language network. They
also confirm that bilateral anterior frontal regions play
an important role in linguistic composition during natur-
alistic spoken story comprehension.

6.2.3. Composition and the cerebellum

An often reported but less-discussed area in language
processing is the Cerebellum. In this study its relationship
to parser action count in Crus | suggests its involvement



in compositional processes bilaterally. A growing
number of studies have provided evidence for cerebellar
involvement in non-motor language functions (see
Stoodley & Schmahmann, 2009 for a meta-analysis),
revealing interesting patterns of co-activation with classi-
cal left prefrontal language areas and right cerebellar
hemisphere during language tasks and comprehension
(Fedorenko, Duncan, & Kanwisher, 2012), or during the
processing of complex syntactic structures (Christensen,
2008; Fabre, 2017; Shetreet & Friedmann, 2014). Specifi-
cally, Crus | and Lobule VII are typically proposed as
members of Prefrontal-cerebellar connectivity loops
(Stoodley & Schmahmann, 2009).

Moreover, an emerging view of perceptual and cogni-
tive processing in the Cerebellum puts special emphasis
on sequencing and predictive processes (Leggio et al.,
2008; Molinari, Chiricozzi, et al., 2008), which are presum-
ably also required in syntactic sentence parsing oper-
ations. Although no special modelling of predictive
processing was undertaken in this study, bottom-up
approaches such as the LR parser do include predictive
information in their control state (see e.g. Shieber &
Johnson, 1993; Stabler, 1991).

6.2.4. Composition of form and of meaning

The foregoing discussion has remained neutral as to
whether activation within the anterior temporal lobe
and other brain areas that correlate with bottom-up
parsing reflects syntactic processing, or compositional
semantic processing. Syntactic structure-building is
transparently associated with bottom-up parser action
count (panel B of Figure 5) that is itself defined in
terms of syntactic phrases such as NP, VP and
S. However, our approach is not able to rule out a seman-
tic explanation. A semantic role would follow within
approaches to natural language grammar that adopt
the “rule-to-rule” assumption (Bach, 1976). Following
the seminal work of Montague (1974) these theories of
linguistic competence suppose that syntactic rules gen-
erally are paired with corresponding semantic rules.
This organisation of grammar, which is introduced
briefly in Barker AND Jacobson (2007), typifies Combina-
torial Category Grammar (Steedman, 2000), Generalized/
Head-driven Phrase-Structure Grammars (Klein & Sag,
1985) and certain forms of Minimalism (see e.g. Kobele,
2006, §2.2). A consensus from these conceptions of
grammar is that aspects of linguistic performance that
correlate with syntactic processing will necessarily also
correlate with semantic processing.

Of course, the particular rules being processed do
matter, and in this case the rules are plainly syntactic in
nature. To tease apart semantic from syntactic expla-
nations, future work could develop an alternative

LANGUAGE, COGNITION AND NEUROSCIENCE . 505

grammar, unlike the Penn Treebank phrase structures
used here, and evaluate whether this alternative seman-
tically-based theory offers a better explanation of the
observed fMRI timecourses. Such an approach may be
particularly fruitful in constructions where an additional
semantic rule of “coercion” applies, unaccompanied by
a corresponding syntactic rule (Pylkkdnen, 2008). These
considerations, regarding the kinds of rules that are
used during comprehension, are in any event quite
orthogonal to questions about their order of application
(Hale, 2014)

7. Conclusion

Analysis of MWEs and parser action counts in naturalistic
spoken story comprehension supports the localisation of
memory retrieval to the precuneus in a way that trades-
off with the other well-known language regions such as
inferior frontal gyrus and anterior temporal lobe. This
trade-off seems to reflect the degree to which particular
MWE form a cohesive unit. These findings are broadly con-
sistent with several contemporary neurocognitive models
of language processing, such as the proposals of Hagoort
(2016), Friederici and Gierhan (2013) and Ullman (2015).

Apart from the light that they shed on the neural
bases of these two language-related cognitive processes,
these results also demonstrate the benefits of compu-
tational methods for the automatic annotation of narra-
tive texts. Such methods can be leveraged to tease out
distinct sub-processes of complex cognitive processes,
like language understanding, using experimental
setups with greater ecological validity. As such they
pave the way for increasing synergy between compu-
tational linguistics and the cognitive neuroscience of
language.

Notes

1. While the experience of listening to an audiobook is
quite a natural one e.g. for daily commuters, it is not
quite conversational. We put aside the question of
which form of language is most basic, contenting our-
selves with a comparative sense of the term “naturalis-
tic.” The implicit comparison is between story-listening
and lists of unrelated sentence stimuli, devoid of literary
content.

2. PMI is one of several cohesion metrics that have been
advanced in both computational linguistics and corpus
linguistics; Evert (2008) offers a tutorial introduction.
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