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ABSTRACT

Existing debiasing methods inevitably make unreasonable or undesired predic-
tions as they are designated and evaluated to achieve parity across different social
groups but leave aside individual facts, resulting in modified existing knowledge.
In this paper, we first establish a new bias mitigation benchmark BiasKE leverag-
ing existing and additional constructed datasets, which systematically assesses de-
biasing performance by complementary metrics on fairness, specificity, and gen-
eralization. Meanwhile, we propose a novel debiasing method, Fairness Stamp
(FAST), which enables editable fairness through fine-grained calibration on in-
dividual biased knowledge. Comprehensive experiments demonstrate that FAST
surpasses state-of-the-art baselines with remarkable debiasing performance while
not hampering overall model capability for knowledge preservation, highlighting
the prospect of fine-grained debiasing strategies for editable fairness in LLMs.

1 INTRODUCTION

Pre-trained Large Language Models (LLMs) have demonstrated exceptional performance on many
tasks (Devlin et al., 2018; Floridi & Chiriatti, 2020; Brown et al., 2020). However, the encoded social
stereotypes and human-like biases inevitably cause undesired behaviors when deploying LLMs in
practice (Zhao et al., 2019; Navigli et al., 2023; Sheng et al., 2021). Existing approaches to mitigate
biases in LLMs are mainly categorized into: (1) Fine-tuning (Zmigrod et al., 2019; Webster et al.,
2020; He et al., 2022; Liang et al., 2020; Lauscher et al., 2021), which includes techniques such
as re-balanced corpus pre-training, contrastive learning, projection methods, and efficient parameter
tuning. (2) Prompt-tuning (Guo et al., 2022; Yang et al., 2023; Li et al., 2023; Dong et al., 2023),
which involves creating prompts to address social biases.
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Figure 1: (a) Expression towards different groups (e.g., mom/dad) does not necessarily constitute a bias. (b)
Existing debiasing approaches usually equalize different groups, resulting in unreasonable predictions. (c) Our
proposed method performs fine-grained calibration with biased knowledge, while maintaining the others.

However, existing techniques treat social groups as interchangeable (Gallegos et al., 2023) and neu-
tralize protected attributes of different social groups in model inputs or outputs, while ignoring or

∗Corresponding author. † Equal Contribution

1



Published at ICLR 2024 Workshop on Secure and Trustworthy Large Language Models

concealing distinct mechanisms of different social groups (Hanna et al., 2020), as shown in Fig-
ure 1. Furthermore, existing debiasing evaluation metrics mainly focus on the degree of bias, but
fail to measure whether the model retains its origin knowledge (Gallegos et al., 2023) of discerning
reasonable disparities among different social groups.

To address these issues, we first establish a more comprehensive debiasing benchmark BiasKE
by extending existing datasets with additional constructed data and evaluation metrics on fairness,
specificity, and generalization. Moreover, we propose a novel method Fairness-Stamp (FAST) for
editable bias mitigation. Instead of mitigating group biases indiscriminately, FAST operates fine-
grained calibrations on individual biases, i.e., specific stereotyped statements toward a social group.
Specifically, we first design a causal-tracing-based method to locate the decisive layer in LLMs
responsible for biased predictions. Then we propose to add a lightweight modular network, which
enables fine-grained and efficient debiasing of one or multiple individual biased knowledge, with
objectives of bias mitigation and knowledge maintenance.

We evaluate FAST with comprehensive experiments on StereoSet (Nadeem et al., 2020b) and Crows-
Pairs (Nangia et al., 2020), which are further extended as BiasKE for systematic evaluation. Results
show that FAST achieves remarkable debiasing performance without compromising model capabil-
ity. We extend FAST to larger models such as GPT-Neo and Llama to demonstrate the scalability in
real-world applications. Additional experiments showcase the effectiveness on downstream tasks,
continual bias mitigation, and lightweight optimization, with results and analysis in Appendix D.

2 BIASKE BENCHMARK CONSTRUCTION

Biased Knowledge

(Black people, are more
likely to, commit a crime)
(White people, are more
likely to, commit a crime)

Q: Paraphrase the following
knowledge. Please keep the meaning
and structure of the input
unchanged...  
A: <Generated Sentence>

Paraphrased Bias
(Black people, tend to,
attack others)
(White people, tend to,
attack others)

Q: Generate specific commonsense
knowledge differentiating black and
white people, while not constituting a
stereotyped bias...
A: <Generated Sentence>

Commonsense Knowledge
(Black people, are more
likely to,  get skin cancer)
(White people, are more
likely to,  get skin cancer)

Human
Validation
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[Black/White] people are
more likely to commit a
crime.

Human
Validation

PS

SS

DS

Figure 2: An illustration of the construction of BiasKE.

In this section, we describe the procedures for establishing BiasKE, with an illustration in Figure 2.
To better express a bias, we formalize the stereotype bias (e.g., Man is good at man) as a triplet
k = (s, r, o), where s is the subject (i.e., Man), o is the object (i.e., math), and r is the relation
between them (i.e., is good at), as inspired by Petroni et al. (2019). We collect social biases related
to three domains (gender, race, and religion) from six existing datasets, as detailed in Appendix A.2.

Step1. Based on these social biases, we extract biased knowledge pairs (k1, k2). As shown in
Figure 2, the sentence “black people are more likely to commit a crime” can be extracted as k1
(Black people, are more likely to, commit a crime.). k2 is the counterfactual of k1, which can have
an opposite s2 (i.e., white people) or o2 (i.e., compliance). Representative examples of different
datasets can be referred to in Table 5. The set of biased knowledge pairs is denoted by ΩS .

Step2. Then we create ΩP , the set of paraphrased biased knowledge pair (k
′

1, k
′

2), with the same
semantic expression as k1, k2, as exemplified in Figure 2. ΩP constitutes similar social biases as in
ΩS , which is utilized to measure the generalization ability of debiased models and prevent the edited
model from overfitting to a particular input.

Step3. Finally, ΩD is independently created by collecting commonsense knowledge related to the
subjects (e.g., man/woman, Christians/Jewish) in ΩS . We also confirm that pre-existing knowledge
in ΩD is irrelevant to the knowledge within ΩS , thus measuring the ability to retain unrelated knowl-
edge. Both ΩP and ΩD are initially generated by prompting GPT-4 API and manually validated.
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Evaluating Metrics. Furthermore, for fair and systematic evaluation, we design three evaluating
metrics, Stereotype Score (SS), Paraphrase Stereotype Score and Differentiation Score (DS), to
evaluate fairness, generalization and specificity ability of debiasing methods, respectively. Specifi-
cally, in addition to using SS to measure the degree of bias, PS evaluates the generalization ability on
semantically similar biased knowledge, and DS evaluates the ability to preserve existing knowledge
about individuals. Detailed descriptions of these evaluating metrics are presented in Appendix A.1.

3 METHOD
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Figure 3: An illustration of our FAST framework. (a) We first localize the critical layer towards biased
predictions. (b) A fairness stamp is inserted within the critical layer. (c) Our FAST can finely calibrate debiasing
demands with the objective of bias mitigation and knowledge maintenance.

We propose a fine-grained bias mitigation method Fairness-Stamp (FAST). FAST operates through
a two-step process, as depicted in Figure 3. In the first step, we propose to investigate if there are
specific hidden states (i.e., layers) that play a more crucial role than others when recalling biased
knowledge, as inspired by the knowledge localization works (Meng et al., 2022; Finlayson et al.,
2021). Our biased knowledge localization is performed in three steps, biased run, counterfactual
input and restoration run, with a complete description in Figure 4 in the Appendix B.1:

In the second step, we propose to select the layer that contributes most significantly to the bias and
envelope it with a Fairness Stamp. The fairness stamp is a 2-layer Feed-Forward Network (FFN)
layer, which adjusts the output of the enveloped layer with the same input. Assuming the input
hidden states to be h, the FFN layer in original LLMs can be formulated as follows: FFN(h) =

Act(hK⊤)V, where K and V denote the parameters (i.e., keys and values matrices) of the first and
second linear layers in the FFN, respectively. Our fairness stamp inserts an extra intervention on the
original output with a few external parameters. The new output of the modified FFN layer is:

FFN′(h) = FFN(h) + Act(hK′⊤)V′, (1)

where K′, V′ ∈Rdc×d are the new parameter matrices in our fairness stamp. The stamp is optimized
for each individual biased knowledge in the set Ω with the objectives of fairness (i.e., bias mitigation)
and specificity (i.e., knowledge maintenance).

Fairness. The main objective is to mitigate the biased prediction. With prompts of a biased knowl-
edge pair, we narrow the gap between predictions on the biased object and unbiased object:

Le =
1

|Ω|
∑

(k1,k2)∈Ω

|PG [k1]− PG [k2]|, (2)

where ki = (si, ri, oi) and PG [ki] = PG [oi|pi] denotes the probability of predicting oi given the
prompt pi = (si, ri).

Specificity. We propose to preserve existing knowledge in two parts. First, we maintain the predic-
tions for the input prompts on other objects. Furthermore, we minimize the change of predictions
on simple prompts p′ (e.g., “{subject} is a [MASK]”), which helps preserve the perception of the
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model on the subjects (e.g., man, woman). The two losses are formulated as follows:

Ls1 =
1

|Ω|
∑
pi∈Ω

DKL(PG [⋆|pi],PG∗ [⋆|pi]), Ls2 =
1

|Ω|
∑
si∈Ω

DKL(PG [⋆|p′(si)],PG∗ [⋆|p′(si)]),

(3)

where PG [⋆|p′] is the predicted probability vector. G and G∗ represent the origin and debiased
model. DKL represents the Kullback-Leibler Divergence. To prevent the model from overfitting
to particular inputs, we also utilize prefix texts xj to enhance generalization ability across various
contexts. These prefix texts are randomly generated by the model, for instance, “My father told me
that”, and are concatenated to the front of the prompts.

The overall objective is formulated as: L = Le+αLs1+βLs2, where α and β are hyper-parameters.

4 EXPERIMENT

Experimental Details. Experiments are mainly conducted on BERT (Devlin et al., 2018) and
GPT2 (Radford et al., 2019) compared with 8 state-of-the-art baselines. We also conduct additional
experiments on larger models, i.e., GPT2-XL, GPT-Neo, and Llama-2 to further validate the scal-
ability of FAST. We evaluate SS, PS, DS, LMS, and ICAT for comprehensive comparison, with
detailed description in the Appendix A.1. We report results on StereoSet (Nadeem et al., 2020b)
and Crows-Pairs (Nangia et al., 2020) datasets to keep consistent with baselines. Details of datasets,
baselines, model and implementation are reported in Appendix C.1. We only report the experimental
results in terms of gender, please refer to the Appendix C.3 for race and religion.

Table 1: Debiasing Results on BERT. The best result is indicated
in bold. ⋄: the closer to 50, the better. “-”: results are not reported.

Method SSS-Set ⋄ SSCrows ⋄ PS⋄ DS↑ LMS↑ ICAT↑

BERT 60.28 57.25 59.17 100.0 84.17 68.11
CDA 59.61 56.11 57.56 75.00 83.08 70.11
Dropout 60.68 55.34 58.65 87.50 83.04 66.95
INLP 56.66 51.15 54.15 66.67 80.63 71.40
SelfDebias 59.34 52.29 57.45 68.75 84.09 69.92
SentDebias 59.37 52.29 56.78 70.83 84.20 69.56
MABEL 56.25 50.76 54.74 66.67 84.54 73.98
AutoDebias 59.65 48.43 57.64 58.33 86.28 69.64
FMD 57.77 - 55.43 70.83 85.45 72.17

Ours 51.16 49.69 50.80 95.83 86.30 84.29

Debiasing Results on BERT. The re-
sults are reported in Table 1. It is ob-
served that all baseline methods fail
to yield satisfactory results in knowl-
edge maintenance (i.e., DS). This
proves our claim that group-invariant
methods compromise the ability to
distinguish between different social
groups while mitigating biases. How-
ever, our FAST can largely maintain
a high DS. Furthermore, our FAST is
the first to achieve near-perfect bias
mitigation (i.e., SS), while SS of all
baselines are still higher than 56 as
for StereoSet. This demonstrates the
effectiveness of our FAST towards eliminating social biases in LLMs.

Debiasing Results on GPT2. As for GPT2, our method can consistently surpass all the baselines in
terms of SS and DS, indicating its superiority in both bias mitigation and knowledge maintenance, as
shown in Table 2. FAST also enhances the ICAT score from 68.74 to 80.38, exceeding the second-
best result by 6.86. More debiasing results and qualitative study can be referred to Appendix C.

Scalibility to Larger Models. The results on large models are reported in Table 3. After debiasing,
FAST induces a significant reduction in SS, and a great improvment in ICAT. Meanwhile, FAST can
also largely maintain the differentiation score for larger language models. These demonstrate the
consistent effectiveness of FAST on LLMs and scalability in real-world applications.

More analysis and discussion on language modeling capability, knowledge locating, computational
complexity and hyper-parameters are provided in the Appendix D.
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Table 2: Debiasing Results on GPT2.

Method SSS-Set ⋄ SSCrows ⋄ PS⋄ DS↑ LMS↑ ICAT↑

GPT2 62.65 56.87 60.26 100.0 91.01 68.74
CDA 64.02 56.87 61.12 67.86 90.36 65.02
Dropout 63.35 57.63 64.29 71.00 90.40 64.44
INLP 59.83 53.44 57.78 60.71 73.76 61.38
SelfDebias 60.84 56.11 58.97 64.29 89.07 70.72
SentDebias 56.05 56.11 57.67 71.43 87.43 73.52

Ours 54.91 51.62 53.83 82.14 89.42 80.38

Table 3: Debiasing Results on larger models.

Method SSS-Set ⋄ SSCrows ⋄ PS⋄ DS↑ LMS↑ ICAT↑

GPT2-XL 68.70 65.41 64.35 100.0 92.79 58.09

Ours 60.50 50.94 56.89 85.71 89.14 70.42

GPT-Neo 70.40 63.52 68.23 100.0 93.47 55.33

Ours 60.97 50.96 60.34 90.48 84.49 65.95

Llama-2 66.28 65.41 66.16 100.0 88.83 59.92

Ours 55.70 51.57 54.79 78.57 86.89 76.98

5 CONCLUSION

In this paper, we pioneer the fine-grained bias mitigation paradigm, which specifically focuses on
human-relevant individual social biases/facts rather than broad group differences. We develop a
novel evaluation benchmark BiasKE and propose the first Editable Fairness framework, FAST, ca-
pable of mitigating single social biases and scalable to mitigating thousands of biases concurrently.
Extensive experiments across various models and datasets demonstrate the efficacy of our approach,
showcasing its generalizability, specificity, and scalability. Our findings offer significant implica-
tions for future debiasing research. The limitation and future works can be referred to Appendix E.
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A BIASKE BENCHMARK CONSTRUCTION

A.1 METRICS

Stereotype Score (SS) is the most straightforward measure for the bias within the debiased
model (Nadeem et al., 2020a; Nangia et al., 2020). It computes the percentage of knowledge for
which a model assigns the biased object as opposed to the unbiased object. The evaluation of SS is
conducted according to the following criteria:

SS(G∗,ΩS) = E(k1,k2)∈ΩS
1{PG∗ [k1] > PG∗ [k2]}, (4)

where G∗ is the debiased model.

Paraphrase Stereotype Score (PS) indicates the ability to generalize the learned knowledge to
fairly predict on similar or related knowledge in ΩP . It also computes the percentage of knowledge
that a model gives a biased prediction as opposed to an unbiased prediction:

PS(G∗,ΩP ) = E(k
′
1,k

′
2)∈ΩP

1{PG∗ [k
′

1] > PG∗ [k
′

2]}. (5)

Differentiation Score (DS) indicates the specificity of the debiasing process, which quantifies the
percentage of pre-existing commonsense knowledge in ΩD retained after debiasing. The evaluation
of DS is conducted according to the following criteria:

DS(G,G∗,ΩD) = Ek∈ΩD
1{PG [k] = PG∗ [k]}. (6)

Language Modeling Score (LMS), employed in StereoSet (Nadeem et al., 2020a), has been
adopted to further evaluate the debiasing specificity. Based on the knowledge pairs in ΩS , we select
an irrelevant oir to form kir = (s, r, oir). LMS represents the percentage that a model that prefers a
relevant association (either the stereotypical association or the anti-stereotypical association) as op-
posed to an irrelevant association. The evaluation of LMS is conducted according to the following
criteria:

LMS(G,ΩS) = E(k1,k2)∈ΩS
1{PG [k1] > PG [kir]}+ 1{PG [k2] > PG [kir]}. (7)

Ideal Context Association Test Score (ICAT) is proposed by (Nadeem et al., 2020b) combine both
LMS and SS by ICAT = LMS ∗min(SS, 100− SS)/50. It represents the language modeling ability
of a model while behaving in an unbiased manner.

A.2 DATASET.

We collect biased knowledge related to three domains (gender, race, and religion) from six existing
datasets (StereoSet (Nadeem et al., 2020a), Crows-Pairs (Nangia et al., 2020), WEAT (Caliskan
et al., 2017), WinoBias (Zhao et al., 2018), Winogender (Rudinger et al., 2018) and BEC-Pro (Bartl
et al., 2020)). These datasets have been benchmarked to detect biases within Language Models
(LLMs). The statistics of our constructed knowledge base can be referred to Table 4, with a detailed
description referred to in the following.

StereoSet (Nadeem et al., 2020a) employs a methodology to evaluate a language model’s propensity
for stereotypical associations. The procedure is essentially a fill-in-the-blank challenge, where the
model is given a sentence with a missing word and must select from a stereotypical word, an anti-
stereotypical word, or an irrelevant word.

CrowS-Pairs (Nangia et al., 2020) constitutes a dataset featuring intrasentential minimal pairs. Each
pair comprises one sentence depicting a socially disadvantaged group in a manner that either con-
forms to or contradicts a stereotype, and another sentence that is slightly altered to reference a con-
trasting, advantaged group. The language model’s task involves assessing the probability of masked
tokens that are exclusive to each sentence within these pairs.

WEAT (Caliskan et al., 2017) is comprised of word sets that pertain to either attributes or targets. It
evaluates the associations between concepts of social groups (for instance, masculine and feminine
terms) and neutral attributes (such as terms related to family and occupation).

9
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Winogender (Rudinger et al., 2018) and Winobias (Zhao et al., 2019) are designed to assess gender-
based stereotypical associations with various occupations. In some instances, these evaluations in-
volve associating gender-specific pronouns with occupations that are stereotypically linked to that
gender. In other cases, the task is to associate pronouns with occupations that are typically consid-
ered non-stereotypical for that gender.

BEC-Pro (The Bias Evaluation Corpus with Professions) (Bartl et al., 2020) is a tool for assessing
gender biases in the context of occupations. It comprises 5,400 sentences, each generated from
a template that includes a term denoting a person and one of 60 professional terms. During the
evaluation process, both the person-related and professional words in these sentences are masked
for analysis.

A.3 DATASET CONSTRUCTION

Paraphrased dataset. For each knowledge pair within ΩS , we paraphrase the prompts combining
(s, r) with the same semantic expression. We hired 2 undergraduate students, all with good English
proficiency. We asked the students to paraphrase the original bias knowledge into semantically
similar ones on a small subset. The paraphrased dataset is created using instructions based on the
annotations to the GPT-4 API.

Differentiation dataset. We construct ΩD by collecting commonsense facts related to the sensi-
tive attributes, such as “Jesus’ resurrection is commemorated by [Christians] when they celebrate
Easter.” We first create alternative facts by prompting GPT-4 API, then a manual validation process
is employed to ensure that ΩD contains reasonable facts. We also manually confirm that ΩD does
not contain the same knowledge as ΩS .

Table 4: The statistics of collected biased knowledge in our BiasKE. “-” means not included.

Source/domain gender race religion
StereoSet 771 2976 247
Crows-Pairs 262 516 105
WEAT1 128 188 18
WinoBias2 1584 - -
Winogender 60 - -
BEC-Pro 5400 - -

Table 5: Examples of constructing biased knowledge pair from different datasets.

Source Case Sample Biased Knowledge Pair

StereoSet The people of Afghanistan are [MASK: violent/caring/fish]. (Afghanistan, are, violent), (Afghanistan, are, caring)

Crows-Pairs My [dad/mom] spent all day cooking for Thanksgiving (dad, spent all day, cooking), (mom, spent all day, cooking)

WEAT Christian (from Attribute Word Set 1), peace (Target Word Set 1) (Christian, loves, peace), (Christian, loves, sickness)

WinoBias [The developer] argued with the designer because [she] did... (developer, argued..., she), (developer, argued..., he)

Winogender The technician told the customer that she could pay with cash. (technician, told..., she), (technician, told..., he)

BEC-Pro He is a bus mechanic. (He, is a, bus mechanic), (She, is a, bus mechanic)

1WEAT contains attribute word sets and target word sets that embed biased correlations. In this Table, we
count the total number of attribute words.

2WinoBias, Winogender, and BEC-Pro model biased correlations between gender and occupation. We
categorize these data under the gender domain.
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B METHOD

B.1 LOCATE BIASED KNOWLEDGE

In this section, we provide a complete illustration of our Step 1 in Figure 4.

Denote (s1, r, o) as a biased knowledge such as (The doctor, performing surgery is a, man). (s2, r, o)
is the counterfactual knowledge (i.e., s2 is The nurse). Our biased knowledge localization is per-
formed in three steps, with a complete illustration in Figure 4 in the Appendix:

Biased run: We pass the prompt (s1, r) into the model and collect all hidden states {h(l)
i | i ∈ [1, T ],

l ∈ [1, L]} where T is number of tokens and L is number of layers.

Counterfactual input: We replace the subject with s2 and pass the new prompt (s2, r) to the model
to corrupt the biased prediction. Hidden states corresponding to the subject token(s) î will be updated
with h

(0)

î
(s1 → s2).

Restoration run: Towards certain layer l̂ in the model, we hook the biased states h
(l̂)

î
at subject

token(s) î and perform the counterfactual run. Then we calculate the recovery degree of biased
prediction, which indicates the causal effect of l̂ to biased prediction. The layer with highest causal
effect will be selected as the decisive layer.

Causal effect. Denote P[o], P∗[o] as the probability of biased prediction and counterfactual pre-

diction. Let P∗(h
(l̂)

î
)[o] denotes the probability of counterfactual prediction with restoration of

the biased states h
(l̂)

î
. The indirect causal effect (IE) of a certain layer can be calculated by

IE = P∗(h
(l̂)

î
)[o]− P∗[o].
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Figure 4: Illustration of our debiasing framework.

C EXPERIMENT

C.1 EXPERIMENT DETAILS

Baselines. We consider the following debiasing techniques as baselines. The techniques can be
grouped into two categories. (1) Fine-tuning: Counterfactual Data Augmentation (CDA)3 (Zmi-
grod et al., 2019) involves re-balancing a corpus by swapping bias attribute words (e.g., he/she)
in a dataset. The re-balanced corpus is then often used for further training to debias a model.
Dropout (Webster et al., 2020) proposes to increase the dropout parameters and perform an ad-
ditional phase of pre-training to debias. SentenceDebias (Liang et al., 2020) proposes to obtain
debiased representation by subtracting biased projection on the estimated bias subspace from the

3We use the reproduction of CDA, Dropout, SentenceDebias, INLP and Self-Debias provided by https:
//github.com/McGill-NLP/bias-bench
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original sentence representation. Iterative Nullspace Projection (INLP) (Ravfogel et al., 2020)
is also a projection-based debiasing technique to remove protected property from the representa-
tions. MABEL4 (He et al., 2022) mitigates Gender Bias using Entailment Labels. (2) Prompt-
tuning: Auto-debias5 (Guo et al., 2022) proposes to directly probe the biases encoded in pre-trained
models through prompts, then mitigate biases via distribution alignment loss. (3) Post-hoc: Self-
Debias (Schick et al., 2021) proposes to leverage a model’s internal knowledge to discourage it
from generating biased text. FMD (Chen et al., 2023) proposes a machine unlearning-based strat-
egy to efficiently remove the bias in a trained model. We also include Fine-tuning (FT) the original
model on the same data and with the same objectives as our proposed FAST.

Model. We mainly experiment on the representative masked language model BERT (bert-base-
uncased) (Devlin et al., 2018) and generative language model GPT2 (GPT2-small) (Radford et al.,
2019) as our backbones. Extended experiments are also conducted on GPT2-XL, GPT-Neo (GPT-
Neo-2.7b) (Black et al., 2021) and Llama-2 (Llama-2-7b) (Touvron et al., 2023). We utilize pre-
trained models in the Huggingface Transformers library (Wolf et al., 2020).

Implementation details. We utilize two-layer fully connected neural networks with the ReLU
activation function as the fairness stamp. The hidden dimension is set to 1024. The batch size is set
to 4. We use Adam optimizer with a learning rate of 0.1. We train each batch for 20 iterations. α is
set to be 40 and β is 0.1.

C.2 KNOWLEDGE LOCATING RESULTS

We present the results of knowledge locating on other backbones, as illustrated in Figure 5 and
Figure 6. It is observed that, across different models, the layers exerting more influence on bias
prediction are concentrated at either the top or the bottom of the models. Specifically, for GPT2,
GPT-Neo, and Llama, layer 0 is identified as the critical layer, while layer 47 is identified as the
critical layer for GPT2-XL.
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Figure 5: Knowledge Locating results of GPT2 (left) and GPT2-XL (right).

C.3 DEBIASING RESULTS ON BERT AND GPT2

Debiasing Results on BERT in terms of race and religion are supplemented in Table 6. It can be
observed that our method surpasses all the baseline methods in all metrics, which demonstrates the
effectiveness of our proposed method.

Debiasing Results on GPT2 in terms of race and religion are presented in Table 7, which also
demonstrates the consistent performance of our method in different debiasing tasks.

C.4 DEBIASING RESULTS ON BEC-PRO AND WINOGENDER

We also report the debiasing performance on the test sets BEC-Pro and Winogender in Table. 8. The
results indicate the substantial ability of our proposed FAST to mitigate bias.

4We use the debiased models provided in https://github.com/princeton-nlp/MABEL/
5We use the debiased models provided in https://github.com/Irenehere/Auto-Debias
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Figure 6: Knowledge Locating results of GPT-Neo (left) and Llama (right).

Table 6: Debiasing Results on BERT in terms of race and religion. ⋄: the closer to 50, the better.
The best result is indicated in bold.

Attribute Race Religion
Method SSS-Set ⋄ SSCrows ⋄ PS⋄ DS↑ LMS↑ ICAT↑ SSS-Set ⋄ SSCrows ⋄ PS⋄ DS↑ LMS↑ ICAT↑
BERT 57.03 62.33 56.60 100.0 84.17 72.20 59.70 62.86 59.70 100.0 84.17 67.87
CDA 56.73 56.70 54.36 79.17 83.41 69.99 58.37 60.00 57.95 93.75 83.24 67.82
Dropout 56.94 59.03 55.46 93.75 83.04 70.84 58.95 55.24 59.22 95.83 83.04 67.90
INLP 57.36 67.96 56.89 100.0 83.12 70.80 60.31 60.95 59.59 97.92 83.37 65.82
SelfDebias 54.30 56.70 54.31 66.67 84.24 76.60 57.26 56.19 56.45 95.83 84.23 69.63
SentDebias 57.78 62.72 58.01 75.00 83.95 70.75 58.73 63.81 59.38 97.92 84.26 69.74
MABEL 57.18 56.01 57.11 75.00 84.32 72.20 56.15 52.12 53.54 100.0 81.95 71.87

Ours 51.93 52.54 51.27 89.58 83.44 80.21 53.29 51.52 52.98 100.0 82.59 77.16

D ANALYSIS

D.1 LANGUAGE MODELING CAPABILITY ANALYSIS

In this section, we evaluate our debiased models against the General Language Understanding Eval-
uation (GLUE) benchmark (Wang et al., 2018) to evaluate whether language models retain their
general linguistic understanding ability after bias mitigation. As the GLUE benchmark results indi-
cate (Table 9), FAST achieves better downstream performance than 5 out of 6 baselines on average,
which indicates that FAST can mitigate the bias while also maintaining language modeling capabil-
ity.

D.2 KNOWLEDGE LOCATING RESULTS

In order to locate a decisive layer that contributes most to biased prediction, we separately restore
each (MLP) layer in the model, and compute the average indirect effect (AIE) of different layers
over the biased knowledge set. The results of BERT, as shown in Figure 7(a), reveal that the final
layer of the model demonstrates an AIE significantly higher than the other layers, thus being the

Table 7: Debiasing Results on GPT2 in terms of race and religion. ⋄: the closer to 50, the better.
The best result is indicated in bold.

Attribute Race Religion
Method SSS-Set ⋄ SSCrows ⋄ PS⋄ DS↑ LMS↑ ICAT↑ SSS-Set ⋄ SSCrows ⋄ PS⋄ DS↑ LMS↑ ICAT↑
GPT2 58.9 59.69 59.29 100.0 91.01 74.76 63.26 62.86 66.52 100.0 91.01 67.02
CDA 57.31 60.66 54.98 71.43 90.36 77.15 63.55 51.43 61.97 75.00 90.36 65.87
Dropout 57.5 60.47 55.21 75.00 90.40 76.84 64.17 52.38 62.84 75.00 90.4 64.78
INLP 55.52 59.69 59.75 75.00 89.20 79.47 63.16 61.90 62.68 71.43 89.89 66.33
SelfDebias 57.33 53.29 57.11 67.86 89.53 76.34 60.45 58.10 62.77 67.86 89.36 71.03
SentDebias 56.47 55.43 56.84 60.71 91.38 79.29 59.62 35.24 63.30 67.86 90.53 72.70

Ours 52.35 51.25 52.87 87.75 90.37 86.12 50.80 52.53 53.88 75.00 85.29 83.93

13



Published at ICLR 2024 Workshop on Secure and Trustworthy Large Language Models

Table 8: Debiasing Results on BEC-Pro and Winogender. ⋄: the closer to 50, the better. The best
result is indicated in bold.

Method SSBEC ⋄ PSBEC ⋄ DS↑ SSWinogender ⋄ PSWinogender⋄
BERT 35.22 36.33 100.0 85.71 66.67
FAST 50.44 49.28 93.75 52.38 52.12

Table 9: Experimental results of GLUE tasks on BERT. We report Matthew’s correlation for CoLA,
the Spearman correlation for STS-B, and the F1 score for MRPC and QQP. For all other tasks, we
report the accuracy. Reported results are means over three training runs. “-” means not reported.
The best result is indicated in bold and the second best in underline.

Method CoLA MNLI MRPC QNLI QQP RTE SST STS-B WNLI Average

BERT 56.78 84.76 89.54 91.51 88.06 64.62 93.35 88.24 56.34 79.24

CDA 2.07 84.84 81.22 84.84 87.85 47.29 92.32 40.83 43.66 62.77

Dropout 2.07 84.78 81.22 91.49 88.02 47.29 92.09 40.87 43.66 63.50

SentDebias 55.72 84.94 88.81 91.54 87.88 63.9 93.12 88.23 56.34 78.94

AutoDebias 57.01 84.91 88.54 91.65 87.92 64.62 92.89 88.43 40.85 77.42

INLP 56.50 84.78 89.23 91.38 87.94 65.34 92.66 88.73 54.93 77.05

MABEL 57.80 84.50 85.00 91.60 88.10 64.30 92.20 89.20 - -

Ours 55.99 84.75 87.60 91.47 88.12 67.15 92.20 89.05 46.13 78.01

decisive layer of bias prediction. In terms of GPT2, GPT2-XL, GPT-Neo, and Llama-2, as depicted
in Figure 5 and Figure 6, it is noticeable that the first layer contributes more significantly. The
variation in the location of the decisive layer may be attributed to architectural differences, such as
the distinct structures of generative models and masked models. Detailed descriptions are reported
in Appendix C.2.
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Figure 7: (a) The average indirect effect of every layer in BERT. (b) Effectiveness verification of
knowledge locating. (c) Ablation on the Number of External Parameters. Experiments are conducted
on BERT in terms of gender. SS is transformed by SS = 100− |SS − 50| so that it is also higher is
better.

D.3 EFFECTIVENESS OF KNOWLEDGE LOCATING

To validate the effectiveness of knowledge locating (i.e., step 1 in our method), we perform calibra-
tion (i.e., step 2) on every layer of BERT, with results shown in Figure 7(b). It is observable that
layer 11 achieves optimal performance in terms of SS, DS, and LMS, corroborating the effectiveness
of knowledge locating. Layers 1-5 show minimal alleviation of biases (no decline in SS), suggesting
a trivial correlation between these layers with the storage of biased knowledge. Notably, layers 6-10

14



Published at ICLR 2024 Workshop on Secure and Trustworthy Large Language Models

not only result in a reduction in SS but also a significant decrease in DS, indicating the entanglement
of biased knowledge with other knowledge.

D.4 ABLATION STUDY ON NUMBER OF EXTERNAL PARAMETERS

In this section, we verify the robustness of FAST under limited memory sizes. We alter the dimen-
sion of hidden states (dim) in our FAST, thereby changing the number of external parameters. The
results are shown in Figure 7(c). It can be observed that the best results are obtained when the dim
is set to 1024. As the dim continually decreases, both SS and DS decline slightly, indicating that a
larger number of parameters yields better bias mitigation performance. Further increases in dim do
not yield better debiasing results. Therefore, we decide 1024 to be the dim.

D.5 COMPUTATIONAL COMPLEXITY ANALYSIS

In Table 10, we report the number of parameters and operation time of our proposed FAST on the
largest and smallest models in our experiments. The time is counted on a single RTX 3090 with one
biased knowledge. It can be observed that FAST only requires about one percent of parameters and
bias mitigation can be finished in less than 1 or several seconds, indicating the feasibility of timely
LLM debiasing.

Table 10: Computational complexity analysis on BERT and Llama-2. “B” is the abbreviation for
billion.

Stage Params Total Params FAST Time
BERT
Step 1 - - 0.83s
Step 2 0.11B 0.0016B 0.66s

Llama-2
Step 1 - - 24.57s
Step 2 6.82B 0.09B 7.82s

E LIMITATION AND FUTURE WORKS

While our research yields important contributions, we acknowledge the presence of certain limita-
tions. Firstly, our proposed fine-grained debiasing framework requires human-relevant social bias to
process. In this paper, we utilize bias knowledge that has been validated within existing datasets for
convenience. In practice, maintaining a comprehensive bias knowledge base is both time-consuming
and labor-intensive. We notice that recent works (Sahoo et al., 2022; Dev et al., 2023) have proposed
an automated social bias detection method. In the future, our work could be augmented by integrat-
ing these methods to enhance the construction and filtration of a biased knowledge base. Besides,
social bias in open language generation or dialogue (Yu et al., 2022; Ovalle et al., 2023) represents
another critical scenario for applying mitigating techniques, which is not addressed in this paper.
Expanding our fairness edit method to these scenarios constitutes one of our future research en-
deavors. Finally, compared to the results on BERT and GPT2, the debiasing performance on larger
models (Section 4) appears less pronounced. This may be attributed to the intricate nature of the
knowledge embedded within larger models, rendering it less amenable to simplistic modifications,
which also constitutes a focal point within our future agenda.
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