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Abstract

Graph Neural Networks (GNNs) are pivotal in graph classification but often strug-
gle with generalization and overfitting. We introduce a unified and efficient Graph
Multi-View (GMV) learning framework that integrates multi-view learning into
GNNs to enhance robustness and efficiency. Leveraging the lottery ticket hy-
pothesis, GMV activates diverse sub-networks within a single GNN through a
novel training pipeline, which includes mixed-view generation, and multi-view
decomposition and learning. This approach simultaneously broadens “views” from
the data, model, and optimization perspectives during training to enhance the
generalization capabilities of GNNs. During inference, GMV only incorporates
additional prediction heads into standard GNNs, thereby achieving multi-view
learning at minimal cost. Our experiments demonstrate that GMV surpasses other
augmentation and ensemble techniques for GNNs and Graph Transformers across
various graph classification scenarios. The open source code can be found in

3Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University

[https://github.com/smurf-1119/GMV}

1 Introduction

Graph Neural Networks (GNNs) have emerged
as a powerful tool for graph classification tasks,
attracting considerable attention. Despite their
success, GNNs struggle with generalization and
overfitting due to the complex nature of graph
structures and the limited availability of labeled
graph data [I, 2. As shown in Fig|[l] simply
increasing the parameters of GNNs does not
consistently enhance their performance [3]]. A
promising solution lies in multi-view learning,
which enables models to extract diverse repre-
sentations by aggregating complementary per-
spectives of data [4} 5]. By forcing models to
reconcile differences across views, multi-view
learning offers a fundamental insight of diversity
for enhancing model generalization.

*Qipeng Zhu and Jie Chen are co-first authors.
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Existing graph learning strategies implicitly leverage multi-view principles but remain suboptimal.
Graph data augmentation (e.g., DropEdge [6], S-Mixup [7]]) diversifies input views via edge removal
or graph interpolation, acting as “data-view” expansions. However, these methods often degrade
structural integrity (e.g., random edge dropping disrupts critical topological hierarchies [8]]), limiting
their effectiveness on structured graphs. Ensemble learning [9, [10, [11] achieves “model-view”
diversity by training multiple GNNs, but at the cost of significant computational overhead as illustrated
in Fig[T] The need for separate forward passes across networks renders these methods infeasible for
large graphs. These strategies treat data and model views in isolation, failing to exploit the synergistic
power of multi-view learning.

In this paper, we introduce a unified and efficient Graph Multi-View (GMV) learning framework.
GMYV is model-agnostic and expands views from three complementary perspectives—data, model,
and optimization—to activate diverse sub-networks within a single GNN. Inspired by the lottery ticket
hypothesis [[12], where neural networks contain latent sub-networks with comparable performance to
the full model, we aim to overcome the challenge that standard supervised training fails to activate
such diversity [13} 4]]. Specifically, we design a novel training pipeline integrating mixed-view
generation and multi-view decomposition and learning.

During training, GMV employs a three-fold coherent strategy to unify multi-view learning. From a
data perspective, we propose structure enhanced subgraph mixing, which samples two subgraphs that
preserve both the topological structure and semantic nodes to generate mixed graph views. This mixed
view contains the multi-view knowledge and addresses the structural loss in prior augmentations.
From a model perspective, we introduce a lightweight dual-output prediction head to explicitly
activate two sub-networks within any single GNN and Graph Transformer (GT). This design enables
parallel encoding of mixed views and multi-view decomposition in one forward pass, eliminating
the multi-model overhead of ensemble methods while preserving representation diversity. From a
optimization perspective, we design multi-view and mixed-view loss functions. These two losses
collectively supervise view-specific predictions and activate sub-networks to learn diverse multi-view
representations. During inference, GMV processes standard graph input and simply averages dual-
head outputs with single-model efficiency. By unifying data, model, and optimization perspectives of
multi-view learning, GMV provides a generalizable solution for GNNs and GTs. As illustrated in
Fig[I GMV achieves the best trade-off between overhead and accuracy.

Our contribution can be summarized as follows: 1) We introduce GMV, a unified and efficient
multi-view learning framework that enhances the robustness and generalization of both GNNs and
GTs in graph classification tasks. 2) We propose new structure-enhanced subgraph mixing techniques,
accompanied by multi-view and mixed-view loss, to encourage models to learn from diverse graph
views. 3) Our comprehensive experiments evaluate the efficacy, robustness, and generalization of
GMYV. GMV significantly improves GNNs/GTs and achieves state-of-the-art results compared to
various graph augmentation and graph ensembling methods.

2 Related Work

Graph Neural Network. Graph Neural Networks (GNNs) leverage the message passing mecha-
nism [[14; [15]] to aggregate and update node representations for graph data processing [16} [17, [18]].
The Graph Convolutional Network (GCN) [19] uniformly aggregates neighbor messages to update
node embeddings. GraphSAGE [20] introduces subgraph sampling with diverse aggregation methods
for adaptive representations. The Graph Isomorphism Network (GIN) [21] further refines this by cap-
turing graph isomorphism, enhancing model sensitivity to graph topology. Moreover, combining the
GNN with transformer architecture, such as Graphomer [22]] and GraphGPS [23]], has also emerged
in graph learning fields.

Multi-view Learning. In computer vision, multi-view data, typically derived from various perspec-
tives with shared high-level semantics, has become a crucial data type [24]. Asif et al. [4] apply
multi-view learning theory to multi-class classification, suggesting that each image has an inherent
“multi-view” structure, where these “multi-view” structures correspond to multiple data features
that can help deep neural networks in accurate classification. They demonstrate how multi-view
learning can improve both the generalization and robustness of deep neural networks. While several
multi-view learning strategies [25} 26} [2'7, 28], [29] have been proposed for graph tasks, their appli-
cation to supervised graph classification remains challenging due to differences in task objectives



and data characteristics. For example, Yuan et al. [27] generate node feature views for both labeled
and unlabeled nodes in node classification, whereas Liu et al. [28] generate views based on pairs
of positive and unlabeled graphs in graph classification. Both focus on semi-supervised learning.
Compared to image classification, generating mixed-views that preserve both structural and semantic
information in graph classification is more difficult. In this paper, we propose generating mixed-views
to activate dual sub-networks within GNNs, enhancing multi-view learning capabilities from the data,
model, and optimization perspectives.

Graph Augmentation. We conceptualize graph augmentation as a specialized form of multi-view
learning, aimed at expanding graph datasets through modifications. One approach involves randomly
modifying the original graph while assuming the label remains unchanged, such as DropNode [30]],
DropEdge [6]], and Subgraph [31]. However, the simplicity of these operations often limits the
diversity of the resulting graph views and may introduce noise. Other approaches integrate mixup
techniques [32] into graph classification. For example, S-Mixup [[7] aligns pairs of graphs using a
soft alignment matrix derived from a trained Graph Matching Network (GMN), followed by linear
interpolation of the aligned graphs. Nevertheless, the complexity and resource demands of training
an effective GMN often lead to suboptimal performance due to inadequate mapping. Techniques
like SubMix [33] and GraphTransplant [34] connect subgraphs sampled from different graphs to
facilitate model-agnostic graph augmentation. However, these methods do not fully exploit the
sub-views of graphs and often neglect structural information. In contrast, GMV effectively integrates
structure-enhanced sub-views to generate mixed views, while utilizing a multi-view decomposition
and learning pipeline to extract diverse view representations.

Ensemble Learning. Ensemble learning [9| 14,[35] aims to improve the robustness and generalization
of a single model by combining the outputs of multiple models. This approach, however, comes with
high computational and memory demands. The Lottery Ticket Hypothesis [12[36] posits that dense
neural networks contain sparse subnetworks (“winning tickets”) capable of achieving comparable
performance when trained in isolation, which suggests the possibility of ensemble learning with
these subnetworks. In the realm of image classification, MIMO [13] introduces multi-input multi-
output techniques to ensemble sub-networks within a single convolutional neural network. Despite
these advancements, applying ensemble learning effectively to Graph Neural Networks (GNNs)
remains a challenge, primarily due to the arbitrary sizes of graphs. G-MIMO [37]] addresses this by
implementing graph multi-input and multi-output schemes, adding multiple parallel graph encoders
and decoders. However, this approach complicates the forward passing process in GNNs and struggles
with limited graph views. In contrast, our proposed method, GMV, minimizes transformations for
GNNs and achieves efficient ensembling through a single forward pass, efficiently enhancing the
multi-view learning capability.

3 Method

To enhance the robustness and generalization of GNNs through multi-view graph learning, we
simultaneously increase the diversity of input graph views and the multi-view learning capabilities
of GNNs. As illustrated in Figure[2] we first outline the process of mixed-view generation. Then,
we introduce details of mixed-view decomposition and multi-view learning, which activate dual
sub-networks within a single GNN for efficient ensemble.

3.1 Preliminaries

An undirected graph G =< V, &, A, X >, where V = {v;|1 < i < n} represents the set of
nodes, and £ = {e;j|v; € V Av; € V A v; is connected to v;} is the set of edges. The matrix
X € R™*4 contains the node features, while A € {0, 1}"*" is the adjacency matrix where A;; = 1
if nodes v; and v; are connected. The degree matrix D € R™*" has entries D;; = > y Ay
on the diagonal, with D;; = 0 for ¢ # j. Each node v; € V has a neighborhood set, denoted
N (v;) = {v;|v; is connected to v; A v; € V}. For graph classification, a collection of n undirected
graphs is represented as G = {(Gy, y¢) }7=q, where y; € {0,1,...,C — 1} denotes the label for each
graph G;, and C' is the number of classes.
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Figure 2: (a) For data perspective, GMV connects two structure enhanced subgraphs to generate
the mixed-view. (b) For model perspective, GMV employs dual sub-networks in GNN/GT to gain
diverse view representations, denoted as multi-view decomposition. For optimization perspective, we
design the multi-view learning process with multi-view ({yiey) and mixed-view loss (£1,x) to optimize
dual sub-networks. When testing, GMV simply averages two predictions of dual sub-networks in
GNN/GT as the final output.

3.2 Mixed-view Generation

From a data perspective, we explore how to integrate diverse views from different graphs into a
single graph, allowing the GNN to process them concurrently and activating sub-networks to learn
multi-view representations. Unlike previous graph augmentations [6, [7, 31], our method explicitly
considers the critical structural information [38]] to generate a mixed graph view. This is achieved
through a structure-enhanced subgraph sampling, followed by structure-enhanced subgraph mixing.

3.2.1 Structure Enhanced Subgraph Sampling

Unlike random corruption of graphs [6} 30]], sampling subgraphs preserves more semantic informa-
tion [39]. We employ subgraph sampling methods to construct richer views. A key challenge is
exploring various subgraphs that encapsulate the most crucial semantic and structural information.
Compared to randomly sampling [40]], subgraph sampling methods based on Personalized PageRank
(PPR) [41] and Determinantal Point Processes (DPP) [42,43]] can enhance the performance of GNNs
without altering their architectures. However, the PPR-based method does not explicitly preserve the
structure of the original graph, while the DPP-based method may overlook some key nodes due to its
limited search scope. Considering that topology information effectively preserves label information
during subgraph sampling [44]], we propose a novel STructure Enhanced PPR subgraph sampling
method (ST-PPR), which considers both key nodes and structural information.

The specific process is outlined in Algorithm [T} We first pick a random root node v from the graph
G. We consider both structural and semantic information of G by merging different node candidate
sets [44]. Depth-First-Search (DFS) algorithm and Breath-First-Search (BFS) algorithm [45] can
easily extract the original topology structure of G. And the PPR algorithm considers semantic
information by iteratively calculating the importance score of every node in G [33]]. Therefore, we
respectively use DFS, BFS and PPR methods to gain sampling node set {Vgrs, Vprs, Vepr } from G.
We set w as the maximum searching steps for DFS and BFS algorithms. To preserve those important
nodes, we calculate the affinity personalized pagerank score matrix Sppr [41] as follows:

Sppr = Zﬂ(l _ ﬂ)r (D—1/2(A + I):D—1/2)r7 "
r=0

where D and A respectively is the degree matrix and the adjancy matrix of G and I is the identity
matrix. We set teleport probability 3 as 0.15 and affinity scores of nodes with respect to node v



are contained in Sppg[:, v]. Then we sort nodes in V following the scores Sppr|[:, v] and select top
sppr nodes to get the node set Vipg. And Vjgg and V] both contain s, nodes respectively sampled
from Vpps and Vgps. We merge three node sets {Vppr, Vhrs: Vars } and reorder nodes by Sppr|:, v]
to obtain V'.

Algorithm 1 Structure Enhanced PPR Subgraph Sampling

Input: Graph G =< V, &, A, X >, augmentation ratio of p € (0, 1), structure augmentation ratio of
q, number of walks w
Output: Ordered node set V'

v < pick a random root node from G.

sppr < sample size is max{U(0,p) - |G| — ¢, 0}

So < sample size is | (p - |G| — sppr)/2]

Sppr + compute score by PPR(G, r)

Vppr SOI't(V7 SPPR[:7 ’U]), VIQPR — VPPR[: SPPR}

Vprs < DFS(G, v, w), Vs < Sample(Vpgs, 52)
VBEs BFS(Q, v, W), VJISFS — Sample(VBF& 82)
V'« merge {Vipr, Virs, Virs b and sort them by Sppr

AN AN A

Combining PPR, BFS, and DFS, the sampled subgraphs covers global hubs, local communities,
and long-range paths. This ensures comprehensive feature extraction including global topology ,
hierarchical transitions and local communities, which boosts the performance of GNNs. The proof is

stated in Appendix

3.2.2 Structure Enhanced Subgraph Mixing

To enable GNNss to effectively process diverse views simultaneously for multi-view learning, we
integrate these views of diverse sub-graphs into a single mixed-graph. Inspired by SubMix [33l],
we propose a STructure-enhanced Subgraph Mixing method (ST-SubMix), which connects two
subgraphs according to a node mapping algorithm based on Sppr. Compared to SubMix, ST-
SubMix connects two structure-enhanced subgraph views, thereby preserving more structure and
label information from original graphs. The specific process is detailed in Algorithm 2]

Given a source graph (a primary training sample within a given batch), G, we randomly sample
a target graph (another graph from the same training batch), Gy, from G/{Gs.}. We connect two
subgraphs sampled from them to generate Gnix. According to Algorithm , we gain V/ . and V/

src trg
respectively sampled from V. and Vy,. To ensure the equality of sizes between V. and V{rg, we let

s = min{ Ve, Vi }. To efficiently mapping two node sets, we make the one-to-one mapping from
Vite 10 Vi As shown in Fig we connect G/, and Gy /Gy, Which ensures the size distribution of
graphs keeping the same as the original distribution [33]. Specifically, we replace the subgraph G/
in the graph G, with the subgraph Q{rg. To represent the label of the mixed-view, we calculate the
confidence of labels of two graphs. As described in Equation (2), the confidence is measured by the

count of edge sets within it:

Were = 1 — |gt/rg|/|€mix|7wll’g = |gt/rg|/‘gmix|' 2

The procedure in Algorithm(T|outlines a subgraph interpolation method for graph augmentation. It first
establishes a canonical node correspondence between a source (Ggrc) and target (G, ) graph by ordering
their respective nodes via Personalized PageRank (PPR) scores, following the SubMix methodology.
This alignment guides the replacement of a target subgraph with its source counterpart to generate a
mixed-view graph. For downstream representation decomposition, two binary assignment matrices,
Esrc and Etrg, are constructed. Each row is a one-hot vector indicating if a node in the mixed graph
originates from the source or target. The property I = Eg.. + Ey, ensures a disjoint partition of the
node set, which is used to separate the view-specific representations from the mixed-view output.



Algorithm 2 Structure Enhanced Subgraph Mixing

Il’lplltl Graph gsrc =< Vsrm gsrCa AsrC7 Xsrc >, Graph gtrg =< Vlrga 5trga Atrg7 Xtrg >

Output: Mixed graph Gnix =< Viix, Emix, Amix; Xmix >, assignment matrices Eg., Ey,, confidence
of labels of two graphs w, Wirg

LV, Vt’rg < sample subgraphs respectively from G, Girg > ST-PPR based Subgraph Sampling
20 s < min{[Vi|, Vi |}
3t Vi ¢ Vel 8] Virg < Vi 8]
4: ¢ < Make the one-to-one mapping from Vg to Vi,
5 g — {(u,0)[(w,v) € Eug A =(u € Vig Av € Vi) }
60 Ege < {(0(w), 9(v)) (1, v) € Ege A (u € Vi Av € Vi) }
T Vmixa Smix; Xmix Vtrgv gslrc U gt/rga Xtrg
8: Xmix [¢(Vs/rc)] — X [Vs{rc]
9: Aix < densify the edge set Enix
10: Wsrey Wirg < 1- |gt/rg|/|gmix|7 |gl/rg|/|gmixl
11: Ege, By < use one hot vectors to record nodes in Vpix originated from V.. and Vt’rg

3.3 Multi-view Decomposition and Learning

From a model perspective, ensembles of diverse neural networks can be seen as learning varied
representations of views, thereby improving generalization [4]. However, combining several networks
with multiple forward passes leads to high computational costs.

We introduce an innovative pipeline for multi-view decomposition and learning, which activates two
sub-networks within a single GNN with minimal computational overhead. During training, we utilize
a dual-output predictor with mixed and multi-view loss functions to ensure the learning of multi-view
from an optimization perspective.

3.3.1 Mixed-view Encoding

We utilize standard GNNs to encode the mixed-view graph Gp,ix, which typically leverage repeated
message passing process. The process of the {-th message passing MPNN; (-) in GNNs is formulated
as follows:

0

o = MPNN; (HEY, A ) 3

where H(®) denotes the I-th layer output of our GMV. We consider the node features Xix of Gyix as
Hr(r?& during training. The output of the mixed-view encoder in GNN as H[(rf,z .
Moreover, we also consider GraphGPS [23]] as the shared graph transformer backbone. For each layer
of GraphGPS, it consists of three components, including MPNN; (), GlobalAttn;(-) and MLP, ().
Therefore, the process can be decribed as follows:

H) « MLP,(GlobalAttn;(HY)). )

mix

3.3.2 Multi-view Decomposition

Diverse views offer greater evidence for GNN to classify graphs. Given mixed-view representation
HI(nle, we introduce a Multi-View Decomposition (MVD) to obtain three view representations,

denoted as {View; | i € {src, trg, mix}}. The MVD can be formulated as follows:

View; = E;HY) ®)

mix ’

where {E; | i € {src, trg, mix}} are assignment matrices, which are calculated in Sec Then,
we utilize a common mean pooling layer [211 46, [47]], denoted as Pool(-), to respectively readout
graph representations of diverse views, i.e., {p; | i € {src, trg, mix}}:

pi; = Pool(View;). (6)



Method IMDBB PROTEINS NCI1 NCI109 REDDITB IMDBM REDDIT-M5  COLLAB

#graphs 1000 1113 4110 4127 2000 1500 4999 5000

#classes 2 2 2 2 2 2 3 5
#avg nodes 19.8 39.1 29.9 29.7 429.6 13.0 508.5 74.5
#avg edges 96.5 72.8 323 32.1 497.8 65.9 594.9 2457.2

Vanilla 72.304+4.34  72.15£3.75  72.38%+2.15  70.27£2.68 87.604+2.55 49.00£3.96  50.83+£3.92  81.16+1.72
DropEdge  72.104+4.21 73.41+4.25 73.9442.73 67.19+2.42 89.254+3.03 48.87+3.07 50.29+2.21  81.5610.88
DropNode  73.30£2.76  72.69+4.25 73.07£2.96 69.76+1.91 88.45+2.64 49.93+3.56 53.73+2.98  81.50+2.32
Subgraph ~ 72.70£5.16  73.05£3.70  72.604+2.37  69.13£2.72  89.30+2.61 49.27£3.83  50.09£3.45 81.42+1.21
M-Mixup  73.70+4.12  72.15+£4.26 65.16+2.48 62.92+2.15 87.60+£3.67 49.80+£3.90 4891+2.08 75.58+1.72

GCN  G-Mixup  73.20+5.60 71.18+3.32 72.75+1.72 72.23+£2.50 86.85+2.30 49.33+£3.67 51.77£1.42 81.17£1.70

Submix 73.804+3.57 73.50£5.38 75.404+2.18 72.91+£825 87.904+3.92 49.00+£3.75  53.11+£2.03  82.62+2.12
S-Mixup  72.50+2.20 72.42+4.19 67.27+£2.33 69.57£2.56 88.50+1.24 49.93+3.51 51.69+2.21 81.48+1.28
Ensemble  73.60+4.63 72.60+£3.45 73.584+2.25 70.29£2.26 90.45k1.75 49.60+£4.26  53.35£2.59  82.52+1.24
G-MIMO  72.704+2.53 73.41+4.37 76.16+2.47 72.16+3.16 90.15£1.73 50.93+3.45 54.05+4.05 82.36+1.53

GMV 75.50+3.67 74.67+5.84 76.96+2.33 76.86+2.15 91.40+2.26 51.53+2.58 54.15+3.15 83.92+1.73

Vanilla 71.70+3.10 64.70£6.42 78.47+2.41 78.97+1.72 90.10+1.77 48.67+3.75 53.89+2.15  80.48+1.37
DropEdge  71.70+£4.03 68.29+£4.01 76.45+£2.76 75.33+2.02 89.90+2.17 50.00+4.38  54.194+2.23  79.78+1.65
DropNode  74.00+£4.63 72.514+2.53 78.98+£1.86 78.77+1.92 90.55£1.92 51.00£3.00 55.23+2.34  80.16%1.71
Subgraph ~ 73.20+3.25 72.24+5.76  77.57+2.71 77.32£1.71 88.504+2.97 49.07+£3.84 53.37+2.61 80.66+1.75
M-Mixup  73.10+4.21 71.97+3.75 78.524+2.05 81.03+0.88 82.25+3.87 49.80+3.90 51.49+2.01  80.18+1.31

GIN  G-Mixup  72.40+5.64 64.69+3.60 78.20+1.58 79.75+£2.70 90.20+£2.84 49.93+£2.82 54.33£1.99  80.18%+1.62

Submix 72.50+4.94  69.81£4.57 82.90+2.45 81.04£1.57 90.20£1.95 49.80+£4.22 54.59+£3.29  82.60£1.73
S-Mixup ~ 72.80+3.82 67.57£3.50 69.03+1.61 69.57£2.56 87.00+4.25 48.53+£3.38  52.75£2.53  79.50+£1.25
Ensemble  74.00+3.10 73.50+3.04 80.34+2.56 80.15+£1.83 92.70+1.87 49.80+2.91  55.19+2.58  81.58+1.55
G-MIMO  73.40+£2.23  73.70£2.65 80.83£1.83 81.02+2.49 91.50+1.88 50.40+4.78 55.03+3.01  81.24+1.50

GMV 74.20+3.37 74.40+£3.95 82.38+2.15 82.53+1.95 92.50+1.30 52.27+3.67 55.35+2.41 83.02+1.47

Table 1: Comparison between GMV and other baselines are conducted on TUDataset benchmark.

3.3.3 Multi-view Learning

During training, we employ a three-layer multilayer perceptron (MLP) as a predictor to simultaneously
classify diverse views. Unlike traditional ensemble methods, we simply double the output dimension
of the predictor, transforming it into a dual-output predictor that generates two outputs. It can guide
the shared backbone to facilitate the cost-effective realization of two sub-networks:

¥}, ¥? = Predictor(p;), )
where i € {src, trg, mix}. Moreover, to optimize GNN with these diverse views, we propose the
mixed-view loss £« and the multi-view 10SS £yjew:

Zmix - wsrcCE(yrlnixv ysrc) + wtrgCE(y?nixa Ytrg)a (8)

lyiew = CE(F e Ysre) + CE(Yig, Yug): ©)
Wgre and wy, are considered as confidence of labels of two graphs, calculated in Equation @[) The
mixed-view loss {nix helps GNN inferring partial labels of Gy, and Gy, playing a role of regular-
ization, while the multi-view loss /i, directly boosts the capacity of diverse view representations
of GNN. These two losses collectively improve the diversity of sub-networks integrated into GNN,
enhancing the generalization and robustness:

£ = lmix + olyiew + R(@), (10)

where / is the final loss, « is the hyper parameter and R(6) denotes the regularization item, e.g., I
norm. The detail of multi-view learning process is in the Algorithm [3|of Appendix [6.2}

3.4 Inference

During inference, GMV processes unseen input G via a standard forward pass. The primary
distinction of GMV from standard GNNs lies in its dual prediction heads. Unlike the training phase,
subgraph processing and multi-view decomposition are not required during inference. The final
prediction is obtained by averaging the outputs of the dual prediction heads. This approach effectively
acts as an efficient ensemble within a single model, leveraging the benefits of multi-view learning:

2
f0 (ytest | glest) = % Z f@ (5’(7") ‘ gtest) . (11)
m=1



4 Experiments

Baselines.
GCN [19], GIN [21] are uti-
lized as GNN backbones, and Method v BEBP BACE PPA
GraphGPS [23] is selected as #oraphs 41127 2039 1513 158100
the GT backbone. We evaluate #classes 3 2 2 2
our effectiveness of GMV com- #avg nodes 25.5 24.1 34.1 2434
. . #avg edges 54.9 26.0 36.9 2266.1
pared with graph augmentation Vanilla ~ 75.38+£021 65.74+0.17 77.74£023 6833 £0.33
anilla . . . . . . . .
methods, such as DropEdge [0], GON Submix  75.63£0.17 65.90+0.54 78.00£0.32 68.97 £0.39
DropNode [30] Subgraph [31], G-MIMO  75.97+0.18 65.874+0.40 78.23+0.35 70.02 +0.32
M-Mixup [48] , G-Mixup [49] GMV  76.16+0.15 66.18+0.10 78.51+0.32 70.21 +0.21
b
and SubMix [33]. Vanilla ~ 76.01£0.11 66.34+0.32 78.42£042 69.00 +0.18
GIN Submix  77.00£0.46 67.67+0.29 78.93+0.43 70.43 £0.23
For ensemble learning [9], we G-MIMO  77.434£0.23 68.38+£043 78.89+0.13 70.08 +£0.18
= b

) . GMV  78.23+043 68.56+0.31 79.43+0.28 71.56 +0.17

consider an classic ensemble and Vanilla  77.53+0.80 67.84+1.65 80.54-:0.87 80.15+0.12
. anilla . . R B . . . .

G'MIMO [37]. FO.T fair compar- GraphGpg ~ Submix 78471094  6838+121 81.2140.25 80.60+033

ison, we only consider ensemble P G-MIMO  78.65+1.04 68.78+0.86 82.074+2.59 80.88+0.21

of two networks/sub-networks GMV  80.23+1.02 70.324+0.94 83.99+0.17 81.21+0.32

Experiment Details. For each Table 2: Comparison between GMV and other baselines are con-
method, we conduct 10-fold ducted on four OGB benchmark datasets.

cross-validation experiments on

each dataset from TUDataset

Benchmark, calculating the mean accuracy and standard deviation to derive results. Following
S-Mixup [7], the datasets are split into training, validation and test sets. Specifically, 80% for training,
10% for validation, and 10% for testing. For the datasets from OGB Graph Banchmark [50], we
adopt the public train/validation/test splits, and report the results of the test set. We conduct each
experiment three times and utilize area under curve (AUC) as measurement on these OGB graph
datasets. All experiments are conducted on NVIDIA 3090TI GPUs.

Datasets. We consider different sizes and numbers of graphs to evaluate the performance of our
proposed method. Table|l{and Table [2| outlines the specifics of eight real-world datasets from the
TUDatasets benchmark [51]] and three datasets from open graph benchmark (OGB) [52]].

4.1 Overall Comparison

Table[T]and Table 2] presents the results of GNNs with GMV alongside other baselines across eight
benchmark datasets from TUDataset and four benchmark datasets from OGB. By simultaneously
incorporating multi-view learning from the perspectives of model, data, and optimization, GMV
significantly improves the average accuracy of both GCN and GIN on the TUDataset benchmark
datasets. Unlike other graph augmentation and ensemble methods, which typically expand the “view”
from a single perspective, GMV offers a unified and efficient approach.

To evaluate the effectiveness of GMV on large-scale graph classification tasks, we use the widely
adopted GraphGPS [23]] as the backbone for experiments on OGB datasets and TUDataset. As
shown in Table [6a] and Table 2] GMV achieves the best performance across all tested datasets.
This approach has established state-of-the-art results, further highlighting GMV’s superiority over
traditional methods. In Appendix [6.3] Table[6] we also conduct experiments on state-of-arts GNNG.

4.2 Generalization and Robustness

Limited Labels for GMV. Following NoisyGL [53]], we conduct the comparison study on limited
and noisy labeled graph data to demonstrate robustness and generalization of GMV. We adopt 75%,
50%, 25% and 10% training label ratios to verify the generalization of GMV. As shown in Fig[3[a),
GMYV consistently outperforms other methods with different label ratios, thereby achieving great
generalization.

Noisy Labels for GMYV. To simulate label noise, we randomly corrupt 10%, 20% and 40% training
labels on IMDBB and PROTEINS datasets, while keeping validation and testing datasets unchanged.
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Figure 3: Comparison study between GMV and other methods for different ratio of label/varying
levels of label corruption on IMDBB and PROTEINS for GCN.

Vanilla Random PPR BFS DpP DPP w. BES ST-PPR

IMDBB 72.30+2.84 72.70+£5.16  72.604+2.37 73.00+4.36  72.60+3.69  73.20+4.26  74.10+3.01
PROTEINS = 72.154+3.75 72.60+2.37 73.05+3.70 7273190 72.84+1.77 72.63+£2.61 74.27+1.61

Table 3: Comparisons among different subgraph sampling methods for GCN.

As shown in Figure Ekb), GMYV achieves better results under different noisy condition, which evaluate
the robustness of it.

4.3 Ablation Study

Comparison of View Generation Methods. We first compare the effectiveness of our proposed
ST-PPR with other subgraph sampling methods. Vanilla indicates the GCN without graph augmenta-
tions. As shown in Table 3] our subgraph sampling method achieves the best performance among
them because it considers both structure and semantic information. Moreover, we investigate the
effectiveness of ST-PPR, SubMix and ST-SubMix. As depicted in Table Eka), ST-SubMix achieves
higher accuracy than SubMix by considering the property of the structure. In Appendix [6.4} Table [7b}
we also compare different graph augmentation methods for G-MIMO to generate richer training
samples. These methods yield lower accuracy than GMYV, thereby verifying the effectiveness of GMV.

Ablation of MVG and MVD. We examine the efficacy of mixed-view generation (MVG) and
multi-view decomposition (MVD) for GMV (GCN) on the IMDBB and PROTEINS datasets. The
results, reported in Table (b), show that both MVG and MVD play a crucial role in enhancing
performance. Combining these two achieves the best performance, which implies that expanding
views from both data and model perspectives simultaneously can help the model learn better multi-
view representations. More details can be found in the When only “MVG” is applied, GMV enhances
GNN performance from a data perspective, playing a same role of ST-SubMix. In contrast, with
only “MVD” GMYV boosts GNNs from a model perspective. With consistent graph pair inputs, GMV
modifies the GNN structure in a manner the same as G-MIMO [37]. Unlike simply increasing the size
of the prediction head [54], this approach leverages distinct graphs to activate different sub-networks
within the GNN, achieving a simple ensemble. These two methods respectively improve of GCN, as
shown in Table

Ablation of Mixed-view/Multi-view Loss. Additionally, we conduct an ablation study to verify the
impact of mixed-view loss and multi-view loss in the GMV framework on the IMDBB dataset. As
shown in Table []c), these two losses collectively enhance the accuracy of the GNN. When we only
adopt each of these losses, GMV achieves lower accuracy than when both are considered. Therefore,
both losses are necessary to encourage sub-networks to learn from mixed and multi-views, thereby
enhancing the multi-view learning ability from an optimization perspective.

4.4 Efficiency Study

During inference, GMV requires only a single forward pass of standard GNNs with an additional
prediction head. Consequently, GMV’s time complexity is nearly identical to that of standard
GNNg, as illustrated in Fig[T} where GMV demonstrates the optimal balance between accuracy and
computational overhead. As for training, the mixed-view generation process can be preprocessed
only once to obtain sampled nodes for each graph, therefore significantly accelerating the training



Methods IMDBB PROTEINS /w. MVG  /w. MVD IMDBB PROTEINS W iz W Lyiew IMDBB PROTEINS

Vanilla 72304434  72.15+3.75 72304434 72154375 72.30+4.34  72.15+3.75
SubMix  73.80+3.57 73.50+538 v 74.1043.66  74.40+5.98 v 74554232 74.6042.38
ST-PPR  74.10+3.01 72.87+4.09 v 72704253 73.4144.37 v 74.55+3.18  73.87+3.95

ST-SubMix ~ 74.10£3.66 74.40+5.98 v v 75.50+3.67 74.67+5.84 v v 75.504£3.67 74.67+5.84

(a) Comparison of VG (b) Ablation of Components (c) Ablation of Losses

Table 4: Results of ablation studies. (a) Comparison of different view generation methods (VG)
including our proposed ST-PPR and ST-SubMix. (b) Ablation of two components of our proposed
GMV. (c) Ablation of our proposed mixed-view loss (¢,,;,) and multi-view 10ss (£;¢)-
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Figure 4: Training Time v.s. Training/Validation/Testing Loss networks of GMV and baselines
on IMDBB. within GCN.

process. Specifically, given G, and Gy, the time complexity of mixed-view generation process
i8 O(|Vsre| + |Virg|). We monitor the evolution of training and validation loss over time in Fig
While the vanilla GCN converges fastest, it suffers from significant overfitting. In contrast, graph
augmentation techniques like M-Mixup and Submix, along with the ensemble method G-MIMO, help
mitigate overfitting to some extent. our GMV framework inherently functions as a more powerful
regularizer compared to these standard methods. This is evidenced by GMV achieving a lower
validation loss and, consequently, better generalization to the test set.

4.5 Quantitative Study of Diversity.

We evaluate the diversity of predictions made by GCN within GMV and other baseline methods

on the NCI109 dataset. We employ disagreement [11](Dpjsagree) and average Kullback-Leibler

divergence [13] (Dky) as diversity metrics. Suppose fi and f; are two (sub-)networks. Dpjsagree 18

computed as > 1(f1(G) # f2(G)), where 1(-) equals 1 only if f1(G) # f2(G). Dkv, is calculated
GeG

as 3(KL(§1]/92) + KL(§2]/91)) = 3(Eg, (log g2 — log 1) + By, log(§1 — log ). As shown in
Table E], GMV achieves higher Dpjggree, Dxr and accuracy, indicating an enhanced capacity to
represent diverse views for better generalization.

5 Conclusion

We have introduced GMYV, an unified and efficient framework that significantly enhances the robust-
ness and generalization capabilities of GNNs/GTs in graph classification. During training, GMV
encourages GNNs/GTs to explore diverse views by integrating data, model, and optimization perspec-
tives through a mixed view generation and multi-view decomposition and learning pipeline. During
inference, GMV appends an additional prediction head to standard GNNs/GTs, enabling superior
performance in a single forward pass with ensemble-like behavior. Our extensive experiments across
various datasets demonstrate that GMV consistently outperforms existing augmentation and ensemble
techniques, establishing it as a highly effective and promising method to improve the performance
and generalization of GNNs/GTs.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes] See limitations in Appendix [6.8]
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate “Limitations” section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes] See in Appendix [6.1}
Guidelines:

* The answer NA means that the paper does not include theoretical results.
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* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes] See in Sec[d]
Guidelines:

» The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes] We provide the pseudocode in Sec[3]and Appendix [6.2]
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

15



¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

 The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

¢ The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes] See in Sec[d]
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

16


https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

8.

10.

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes] See in Sec[d]

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Guidelines:

» The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer:
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

o If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).
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11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer:
Guidelines:

* The answer NA means that the paper poses no such risks.

» Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer:
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
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15.

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer:
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer:
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

19



6 Appendix

6.1 Proof of ST-PPR Algorithm

Theorem: Let a subgraph sampling strategy S generates a subgraph. Define structural preserva-
tion score p(Gs) as the graph kernel similarity between G, and the original graph G: p(Gs) =
(6(9),4(Fs))
le(DII-le(Gs)l?
€1, €2, €3 > 0 such that: p(Gineg) > max {p(Grpr ), P(GBFs), P(GDFs) } + Einteg, WhETe €ineey represents
the gain from integration. This ensures comprehensive feature extraction including global topology ,

hierarchical transitions and local communities, which boosts the performance of GNNss.

where ¢(+) is a graph kernel mapping function. For any graph G, there exist constants

Proof: PPR selects high-centrality nodes via its stationary distribution 7. For any node u, its PageRank
value satisfies: 7(u) = ) .y, w(v)% + (1 — a)q(u), where d(v) is the degree of v, and ¢(u)
is the initial distribution. High-7(u) nodes form the backbone of G, ensuring p(Gppr) > €. For
any node wu, its local clustering coefficient C(u) in BFS subgraph satisfies: Cpgs(u) > Cg(u) — 01,
where 0; bounds sampling error. Thus, p(Ggps) > €2. DFS retains long-range dependencies. Let
D be the diameter of G. The diameter of the DFS subgraph Dpgg satisfies: Dpgs > D — do,
where 65 bounds path truncation error. Hence, p(Gprs) > €3. The joint structural representation is:
(Gintee) = d(Gppr) © ¢(Frrs) ® ¢(Gors), where @ denotes node concatenation. By linearity of
kernel functions: p(Gineg) > max {p(Gppr), p(Tsrs), p(Gors) } - When structural information from
three strategies is non-overlapping, €ineg > 0.

6.2 Algorithm of Multi-view Decomposition and Learning

Algorithm 3 Multi-view Decomposition and Learning

Input: Graph dataset G = {(G;, y:) }1,, the graph model fomy, loss weight «
Output: Trained graph model fomv

1: while not convergence do
2 for src=1:ndo
3: Girg, Yug < randomly sample a graph from G/{G. }
4: Gmix> Egre, Eyrg, Wyre, Wy <— employ ST-SubMix between graph Gy and Gy,
> ST-SubMix [

5 @ng7 gtzrga y&ﬁx) ?)r%lix — fGMV(gmixa Esrca Etrg)
6: gmix — wsrcCE(grlnixa ysrc) + wlrgCE(:l]r%qixa ytrg)
T yiew < CE(Ygre, Ysre) + CE@thgv Yurg)
8: 0 < Lix + alyiew +R(0)
9: Update parameters of the model fomy

10: end for

11: end while

In Algorithm 3] we generate a mixed-view and feed it into the GNNs. We then perform multi-view
decomposition and predict the labels for each of the decomposed diverse views. To activate the
dual sub-networks in the GNNs, we minimize both the mixing loss and the multi-view loss, thereby
enhancing the multi-view representation of the GNNs.

6.3 Comparison Study

To validate the efficacy of our proposed GMV method, we conduct a series of comparison studies. As
shown in Table[6a] within the GraphGPS framework, GMV outperforms baseline methods, including
Vanilla and G-MIMO, on both the IMDBB and PROTEINS datasets. Furthermore, to examine
its generality, we apply GMV to several mainstream GNN backbones. The results in Table [6b]
indicate that GMV can serve as a plug-and-play module, consistently improving the performance of
GatedGCN, GINE, and NSA [55]] across multiple molecular graph datasets, thereby demonstrating
its broad applicability and effectiveness.
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| HIV. BBBP BACE

Method IMDBB PROTEINS GatedGCN | 76.39 67.05 78.75
Vanilla  74.50 £4.53 74.76 = 3.24 fw.GMV_ | 7704 6943 7986
Submix  75.34 £3.68 75.21 +1.42 GINE 7645 67.56 7791
G-MIMO 75.68 +£4.34 75.08 £3.32 /w. GMV 7776 7030 78.82
GMV 76.70 +3.22 75.78 +4.13 NSA [53] _ 84.0 720
(a) Comparison on the GraphGPS framework. Iw. GMV - 85.50 74.1

(b) Comparison on different backbones.

Table 6: Comparison studies evaluating the effectiveness and generality of our proposed GMV
method. (a) Performance comparison against other methods on the GraphGPS framework. (b)
Generality study by integrating GMV with different GNN backbones.

6.4 Ablation Study

Ablation of Mixup. From a data perspective, we compare various mixup strategies for mixed-view
generation. As shown in Table[7af GMV consistently achieves higher accuracy than other mixup
methods, demonstrating its effectiveness. The full GMV enhances the ability of multi-view represen-
tation from data, model and optimization perspectives, including mixed-view generation, multi-view
decomposition and multi-view learning. M-Mixup linearly interpolates graph representations to
create mixed-views, making it difficult to apply multi-view decomposition and learning. S-Mixup
uses a trained graph matching transformer to map the source graph to the target graph, which distorts
the information of the source graph and hinders multi-view decomposition and learning. “GMV
w. M-Mixup” and “GMV w. S-Mixup” only employ mixing loss to optimize dual sub-networks
within GNNSs. In contrast, SubMix and ST-SubMix generate mixed-views by connecting subgraphs,
preserving subgraph view information, and enabling them to consider three perspectives concurrently.
“GMV w. SubMix” and “GMYV w. ST-SubMix” simultaneously consider mixed-view generation,
multi-view decomposition and learning to enhance the performance of GNNs. Consequently, they
outperform GMV with other mixup methods. SubMix focuses on semantic information, while
ST-SubMix considers both structural and semantic information to create structure enhanced subgraph
views, thus achieving state-of-the-art performance and generalization for GNNs.

Further Comparation with MIMO. In this section, we perform additional experiments on G-
MIMO with various augmentations and observe that graph augmentations combined with ensemble
learning enhance GNN performance. As shown in Table[7b] integrating G-MIMO with drop-based
augmentations improves GCN accuracy on IMDBB. Different augmentations create diverse views

Method GCN GIN

Method Accuracy

Vanilla 72.30-+2.84 71.7043.10 Vamilla GON 23010 84
M-Mixup 73.704+4.12 73.104+4.21

: G-MIMO 72.70+2.53
S-Mixup 72.50-:2.20 72.80+3.82

: G-MIMO w. DropNode 73.50+4.30
SubMix 73.80-3.57 72.5044.94

ST-SubMix 74.0043.66 74.503.32 G-MIMO w. DropEdge 72.50+2.84

U200 TRV G-MIMO w. Subgraph (R) 73.40+4.15

GMYV /w. M-Mixup 72.40£2.33 74.10£3.96 G-MIMO w. Subgraph (PPR)  74.10£4.72
GMYV /w. S-Mixup  73.10£4.12 74.00£4.15 G-MIMO w. Subgraph (ST-PPR) 74.40+4.33

GMV /w. SubMix  75.00-44.28 74.104+3.32
GMV /w. ST-SubMix 75.50--3.67 74.20+3.37 GMV 75.5043.67

(a) Ablation on mixup methods. (b) Ablation on augmentation types.

Table 7: Ablation studies on the IMDB-BINARY dataset. All results are based on the GCN backbone.
(a) Comparison of different mixup strategies. Our full model, “GMV /w. ST-SubMix”, achieves
the best performance. (b) Comparison of GMV against various augmentation techniques used in
G-MIMO.
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that boost performance of G-MIMO. The utilization of mixed-view generation provides richer view
information, activating sub-networks in GNNs for enhanced representations. Additionally, GMV com-
bines mixed-view generation and multi-view decomposition, enabling effective multi-view learning.

Performance vs. number of sub-networks. To

assess framework scalability and efficiency, we com- Sub-nets G-MIMO GMV

pare GMV against G-MIMO by varying the num-

ber of sub-networks. The results in Table [§ are - 72.70 75.50

striking. GMV not only consistently outperforms 4 74.40 75.90

G-MIMO, but its efficiency is such that using only 6 74.52 76.10

two sub-networks (75.50%) already surpasses a 10- 8 74.73 76.12
10 75.30 76.43

sub-network G-MIMO (75.30%). This significant
performance gain stems from GMV’s integrated de-
sign, which fosters more diverse and complementary
predictions among the generated views, leading to
stronger generalization. All results are based on a

Table 8: Performance vs.

number of sub-

networks on IMDB-B. GMV shows superior
efficiency.

rigorous and fair comparison protocol.

6.5 Hyperparameter Analysis

We conducted a sensitivity analysis on key hyperparameters: the feature augmentation ratio (p), the
structure augmentation ratio (q), and the loss weight (o). As shown in Table E], the results on the
BACE dataset demonstrate the robustness of our model. Performance remains stable across a wide
range of values for each hyperparameter, obviating the need for exhaustive or fragile tuning to achieve
strong results. Notably, the optimal values fall within conventional ranges guided by prior work,
reinforcing the model’s stability and ease of adoption. To ensure full reproducibility, our complete
source code and detailed settings will be made publicly available.

Augmentation Ratio (p) Structure Ratio (¢) Loss Weight («)
Value Accuracy Value  Accuracy Value Accuracy
0.2 78.82 0.2 78.93 0.5 78.57
04 79.43 0.4 78.98 1.0 78.98
0.5 79.32 0.5 79.18 2.0 79.43
0.6 79.02 0.6 79.43
0.8 78.72 0.8 78.34

Table 9: Hyperparameter sensitivity analysis on the BACE dataset with a GIN backbone. The model
exhibits robustness, with stable performance across a wide range of values. The best-performing
setting for each hyperparameter is highlighted in bold.

6.6 Efficiency Study

We provide a transparent analysis of our method’s computational cost, examining both the one-time
preprocessing overhead and the online training efficiency.

One-Time Preprocessing Cost. Our method requires a one-time, offline preprocessing step to
generate and cache views. As shown in Table[I(] this cost is negligible. On the PROTEINS dataset,
it amounts to less than five minutes, which is merely 0.4% of the total training time. This efficiency
scales to the larger COLLAB dataset, where the 2-hour preprocessing cost is only 1.1% of the
180-hour training duration. This fixed cost is comparable to other advanced augmentation methods
and is incurred only once, making it a highly practical investment.

Dataset Graph Count Preprocessing (Hours) Total Training (Hours)
PROTEINS 1,113 ~0.08 20
COLLAB 5,000 ~2 180

Table 10: Offline preprocessing cost analysis. The one-time cost is minimal compared to the total
training time (10-fold CV) on an NVIDIA 3090Ti GPU.
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Online Training Overhead vs. Performance Gain. The online training phase is lightweight. Since
all views are pre-computed and cached, the only overhead stems from view lookups and the forward
passes for the sub-networks. Table [TT]quantifies the trade-off between this training overhead and the
resulting accuracy improvement over a GCN baseline. The results clearly show that for a manageable
training overhead of +110-125%, our method delivers a substantial and consistent accuracy gain of
approximately +9% across all datasets. This demonstrates a highly favorable and predictable return
on computational investment, confirming the practical value of our approach.

Dataset Num. Graphs Avg. Edges Training Overhead Accuracy Gain

NCI1 4,110 323 +113% +9.4%
PROTEINS 1,113 72.8 +120% +8.8%
COLLAB 5,000 2,457.2 +125% +9.0%

Table 11: Training time overhead vs. accuracy gain over a GCN baseline. A manageable increase in
training time yields a significant and consistent performance improvement.

6.7 Multi-view Study

(a) 176.83 (b) 200.28 (c) 180.41 (d) 208.05

Figure 5: T-SNE among prediction outputs of vanilla GIN and GMV. (a) vanilla GIN; (b) and (c) two
sub-networks within GMV; (d) GMV. The blue pentagrams denote three class center, and the digit is
the distance among three class centers.

Visualization of Multi-view Representation. We employ both qualitative and quantitative methods
to assess the diversity of predictions, thereby investigating the multi-view learning capacity of GMV.
In Fig[5| presents the t-SNE for the vanilla GIN, two sub-networks of GIN within GMV and GMV
itself, as applied to the COLLAB dataset. Different colored circles denote three classes in COLLAB,
while pentagrams mark the class centers of three classes. We observe a significant difference between
the two predictions, affirming the diversity of sub-networks. Moreover, the digit represents the sum
of normalized /5 distances among three centers. GMV achieves the largest distance among classes,
which also validates the benefits of multi-view learning.

Ist | \ K v = 1st
md | SRR | | B | | EEN e 2nd
3rd | ey N\F | | YLy 3rd
Source Granh Target Granh Mixed-View Source Graph Target Graph Mixed-View
(a) IMDBB. (b) IMDBM.

Figure 6: Visualization of mixed-views on IMDBB and IMDBM.
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Visualization of Mixed-view. We utilize networkx to visualize some mixed-views in Fig[6] Each row
denotes the source graph, target graph and generated mixed-view. ST-SubMix consider both structure
and semantic information, so it generates the subgraph views preserving the original topology
structure and semantic key nodes. ST-SubMix generates diverse mixed-views for GMV to enhance
multi-view representation of capacity of GNNss.

6.8 Discussion

The framework naturally extends to other crucial tasks, such as node classification and link prediction.
This is achieved by leveraging the powerful paradigm of task reformulation, where local tasks are
converted into graph-level problems, a strategy validated by recent work. This requires minimal
architectural changes: For Node Classification: The task can be reframed as classifying a node’s
contextual subgraph. GMV is then applied directly to this subgraph to predict the central node’s label,
thereby benefiting from a robust, multi-view representation of its neighborhood. For Link Prediction:
Similarly, this becomes a binary classification problem on the subgraph enclosing a pair of nodes.
GMV’s ability to capture diverse and subtle topological patterns makes it ideally suited for predicting
the existence of a link between them. Furthermore, the core principles of GMV are adaptable to more
complex domains, such as dynamic graphs (by applying the framework to temporal snapshots) and
heterogeneous graphs (by acting as a modular wrapper around specialized GNN backbones).
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