Under review as a conference paper at ICLR 2026

P-LORA: POSTERIOR KNOWLEDGE ENABLES
TRAINING-FREE FUSION OF SUBJECT AND STYLE
LORAS

Anonymous authors
Paper under double-blind review

ABSTRACT

Recent studies have explored the combination of multiple LoRAs to simultane-
ously generate learned subjects and styles. However, most existing approaches
fuse LoRA weights directly based on their statistical properties, which deviates
from the original intent of LoRA, namely learning additional features to adapt
to diverse functions. To address this limitation, we introduce P-LoRA, a new
training-free fusion paradigm that leverages posterior knowledge from fine-tuned
features, fundamentally shifting the fusion process from weight-level heuristics
to representation-conditional decisions. Specifically, at each LoRA-applied layer,
we compute the KL divergence between the original features and the features
generated by subject and style LoRAs, respectively, to adaptively select the most
appropriate weights for fusion. Furthermore, objective metrics such as CLIP and
DINO scores, which reflect alignment and semantic consistency, are employed
as posterior knowledge to dynamically adjust denoised embeddings during the
generation process. By incorporating posterior knowledge into the fusion pipeline,
P-LoRA effectively preserves the most representative subject and style characteris-
tics without requiring retraining. Extensive experiments across diverse subject-style
combinations demonstrate that P-LoRA consistently outperforms existing methods,
achieving superior results both qualitatively and quantitatively.

1 INTRODUCTION

Diffusion models have demonstrated remarkable performance across a wide range of generative
tasks|Chen et al.|(2024); Jiang et al.[(2024b); \Gupta et al.|(2024)); Xing et al.|(2024b); Zheng et al.
(2023); Ma et al.| (2023). Among these, personalized image generation |[Ruiz et al.| (2023); |Sohn
et al.| (2023)) has garnered increasing attention, as it requires the model to synthesize high-quality
images that reflect user-specified content or style. Here, content refers to the semantic structure and
subject identity, while style captures visual properties such as color, texture, and patterns. Although
substantial progress has been made in generating images conditioned on either content or style
alone, producing images that faithfully integrate both a specific subject and a specific style remains a
challenging and unsolved problem.

Recently, Low-Rank Adaptation (LoRA) Hu et al.| (2022) has emerged as a popular and versatile
technique for parameter-efficient fine-tuning, making it particularly appealing for personalized
generation tasks. Leveraging the modular nature of LoRA, recent studies have explored the fusion of
independently fine-tuned LoRAs to jointly generate specific subjects in specific styles. For example,
ZipLoRA Shah et al.| (2024) proposes leveraging coefficient vectors to merge content and style LoORAs
in each LoRA-applied layer. Differently, B-LoRA |[Frenkel et al.|(2024) investigates the impact of
diverse LoRA layers and finds that modifying two distinct LoRA layers can effectively control the
content and style of generated images. Furthermore, focusing on the intrinsic characteristics of LoORA
weights, K-LoRA [Ouyang et al.|(2025) selects LoRAs in each layer by comparing the Top-K elements
of the weights. While these methods have demonstrated promising performance in LoRA fusion, as
shown in Figure|l|(a), their core strategies remain grounded in statistical properties of LoORA weights,
which diverge from the original intent of LoORA—Ilearning additional features to adapt to diverse
functions. This divergence suggests that the fine-tuned features themselves, rather than the LoRA
weights alone, are the true key to effective fusion.
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Figure 1: (a) existing methods directly rely on properties of LoORA weights to achieve fusion. (b)
Our method leverages posterior knowledge from fine-tuned features and objective metrics to enable
training-free fusion of subject and style LoRAs.
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Inspired by this, as shown in Figure [T] (b), we introduce a novel training-free fusion paradigm
based on posterior knowledge from fine-tuned features and metrics, which fundamentally shifts
the fusion process from weight-level heuristics to representation-aware decisions. In particular, the
previous method [Ouyang et al | (2025)) argues that the absolute values of LoRA weights indicate their
importance in the diffusion process. By contrast, we propose that the feature changes induced by
LoRAs serve as a more direct and key indicator of their impact. In each LoRA-applied layer, we
compute the fine-tuned features from both the style LoRAs and the content LoRAs, respectively.
To better quantify the extent of feature change, we leverage the Kullback-Leibler (KL) divergence
between the fine-tuned features and the original features, determining which LoRA is more suitable
for each layer based on the magnitude of distributional change. In this way, we adaptively retain
the most significant features in each LoRA-applied layer, thereby preserving the most representative
content and style information.

Moreover, objective metrics such as CLIP [Radford et al.| (2021)) and DINO [Caron et al| (2021)) scores

can effectively assess the quality of LoRAs fusion. We therefore adopt these scores as posterior
knowledge to guide the generation process by dynamically adjusting the denoised embeddings.
Specifically, to obtain reference images for the metrics, the content and style LoRAs are used to
generate corresponding reference images for content and style, respectively. During the denoising
process, we evaluate the quality of intermediate generated images using these metrics and apply
gradient-based guidance to steer the denoised embeddings toward higher-quality results. In this
manner, objective metrics serve as posterior knowledge to provide beneficial guidance throughout the
denoising process, ultimately enabling the generation of high-quality images that effectively integrate
desired subject and style.

Through leveraging posterior knowledge from fine-tuned features and objective metrics in the training-
free manner, P-LoRA achieves effective integration of subject and style LoRAs, enabling high-quality
image generation that preserves both subject fidelity and stylistic accuracy in a training-free manner.
The main contributions of this work are summarized as follows:

* P-LoRA introduces a novel training-free LoORA fusion paradigm that fundamentally shifts
the fusion process from weight-level heuristics to representation-conditional decisions by
leveraging posterior knowledge from fine-tuned features and objective metrics.

» A KL divergence-based adaptive fusion strategy dynamically selects the most suitable LoRA
weights to preserve subject and style. Objective metrics such as CLIP and DINO scores
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are incorporated as posterior knowledge to provide gradient-based guidance during the
denoising process, further enhancing semantic alignment and visual quality.

* P-LoRA is training-free, user-friendly, and demonstrates promising generalization ability,
achieving superior performance across diverse subject-style combinations on multiple
benchmarks without requiring retraining or additional supervision.

2 RELATED WORK

Diffusion Models for Custom Generation. With the rapid development of diffusion models He et al.
(2024); |Cao et al.| (2024); He et al.|(2025)); |[Ho et al.| (2022); |Zhang et al.| (2023a), many researchers
have introduced diverse approaches to fine-tuning large-scale diffusion models for custom generation,
which aims to produce images of user-specified subjects or styles based on language descriptions. For
instance, Textual Inversion|Gal et al.|(2022) focuses on optimizing a single word embedding to capture
unique and varied concepts. DreamBooth |Ruiz et al.|(2023) designs text prompts containing a unique
identifier to more effectively generate images with the desired subjects. CustomDiffusion Kumari
et al.| (2023) fine-tunes the cross-attention layers within the diffusion model to learn multiple concepts
simultaneously. Additionally, some methods |Avrahami et al.| (2023); [Shi et al| (2024); Xie et al.
(2023); | X1ao et al.|(2024) achieve custom generation without additional training, yet these typically
target specific single tasks. Recently, parameter-efficient fine-tuning techniques such as LoRA |Hu
et al.| (2022) and StyleDrop Sohn et al.|(2023) have gained popularity due to their ability to fine-tune
models with low-rank adaptations, making them especially attractive for custom generation.

LoRAs combination for image generation. Since the rise in popularity of LoRA applications|Zhang
et al.|(2023b)); Zhou et al.| (2024)); Zi et al.|(2023)), many studies on LoRA combinations have been
proposed. Some methods Dong et al.|(2024)); |(Gu et al.[(2023); [Jiang et al.| (2024a)); Xing et al.| (2024a)
focus on fusing multiple object LoRAs, enabling diffusion models to generate various new concepts
and replace these objects through masking strategies. Meanwhile, several advanced methods address
content-style LoRA fusion. For instance, Mixture-of-Subspaces Wu et al.| (2024) designs learnable
mixer weights to fuse various LoRAs; ZipLoRA |Shah et al.|(2024) leverages merge vectors across
varying layers to linearly combine subject and style LoRAs; B-LoRA [Frenkel et al.|(2024) investigates
the impact of different LoRA layers and finds modifying two distinct layers can effectively control
the content and style of generated images; and K-LoRA |Ouyang et al.|(2025) selects the appropriate
LoRAs in each layer by comparing top-K elements of different LoORA weights. Although these
methods have shown promising performance, they directly rely on the properties of LoORA weights.
Unlike these approaches, we argue that since the original intent of LoRA is to learn additional features
to adapt to diverse tasks, fusion methods based on fine-tuned features could be more effective. To this
end, we introduce a novel training-free LoRA fusion paradigm that fundamentally shifts the fusion
process from weight-level heuristics to representation-conditional decisions.

3 PRELIMINARIES

Diffusion Models. Diffusion models [Saharia et al.| (2022); [Kazerouni et al.| (2022); |(Chen et al.
(2023); |Amit et al.| (2021) have demonstrated impressive performance across various generative
tasks. They mainly consist of a forward noise addition process and a reverse denoising process.
During the forward process, the original image is progressively transformed into Gaussian noise
through incremental noise addition. In the reverse process, conditioned on paired text prompts, the
diffusion network, typically a U-Net, gradually denoises the noisy input step-by-step, starting from
randomly sampled pure noise. At inference time, the trained diffusion network achieves text-to-image
generation based on the given textual input.

LoRA. Low-Rank Adaptation (LoRA [Hu et al.| (2022)) is a lightweight fine-tuning technique origi-
nally developed for large language and diffusion models. Rather than updating the full parameter
matrix Wy, LoRA exploits the observation that the update AW € R™*"™ often lies in a low-
dimensional subspace. Concretely, one factorizes AW = BA with B € R™*" and A € R"*" for
r < min(m,n), and only A, B are learned while W, remains fixed. The tuned model thus uses
weights Wy + BA. In our setting, let D be a diffusion model with base weights Wy. To capture a
new concept, we train a LoRA pair AW, so that the adapted model is D, = Wy + AW,.

Posterior Knowledge. The primary goal of LoRA is to learn fine-grained feature adjustments that
guide a diffusion model toward specific behaviors. To leverage this capability, we first generate the
modified features produced by both the content and style LoRAs. While prior work Ouyang et al.
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(2025)) uses the magnitudes of LoRA weight updates as a proxy for their influence, we argue that
the actual change in feature distributions provides a more direct and interpretable measure of impact.
Guided by this posterior knowledge, we compare the original features with those modified by each
LoRA, and use the resulting divergence to select the most informative contributions for fusion.

In addition, objective metrics such as CLIP and DINO scores offer an effective way to assess the
quality of LoRA fusion. Higher scores indicate better alignment with the intended semantics or style,
and thus can serve as posterior knowledge to guide the diffusion network. The guidance score R
based on the CLIP metric is computed as:

R(z9) = 1 — Scrip(ret, Z0), (1)

where Scr,1p computes the CLIP similarity score, x,.¢ is the reference image, and Z is the predicted
original image at step .

The guiding scores act as residuals that can be treated as virtually observed values Kaltenbach &
Koutsourelakis| (2020) with R = 0 and virtual likelihood:

p(R=0]|2) =N(0| R(xo),001), )

where z; is the intermediate result at timestep ¢, and o, is a predefined constant controlling the
enforcement strength of the virtual observation. Although residuals are minimized during the
generation process, they are not guaranteed to reach zero. To incorporate this guidance into the
diffusion process, we apply Bayesian rule:

A oy D) p(R=0]z)
plre | R=0) = (= 0) : (€)

Taking the gradient of the log-likelihood with respect to x;, we obtain:
Vo, logp(az | R =0) = Vg, logp(a:) + Vg, log p(R =0 | z¢), @

where the first term is the standard score function predicted by the diffusion model [Song et al.| (2020).
For the second term, substituting Eq. [2] yields:

. 1 1 .
Ve, logp(R =0 | 21) = =— Vo [|R(20) I3 ~ = —5 Ve, [| R(20)]I3, Q)

where we approximate xy with Z,. In practice, because guidance scores range between [0, 1], we
simplify as:

Vi, logp(R=0| ) x =V, R(Zo). (6)
Thus, to implement the guidance, the denoising step is modified as:
T =2y, —mVa, R(%0), 0

where 22", is the original output of the ¢-step denoising process, Zg is the predicted original image at
step ¢, and m is a predefined scaling factor.

4 METHOD

As illustrated in Figure 2] P-LoRA guides a base diffusion model D to generate a specified subject
in a specified style by leveraging both content and style LoRAs. Let the base model D consist of
pre-trained weights W¢ at layer i. Applying the LoRA L, with weight updates { AW} yields the
adapted model:

Dy, =D® L, = Wy + AW,. (8)

In the experimental setting, we are given the content LORA weights L.{AW/}, the style LoORA
weights L,{ AW}, and the base model D. By combining posterior feature knowledge through
comparisons of original and fine-tuned feature distributions along with posterior metric knowledge
guided by metrics scores during the denoising process, P-LoRA enables the diffusion model to
effectively render the target subject in the desired reference style without any additional training.

4
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Figure 2: Overview of our proposed method. By incorporating posterior feature knowledge through
distributions comparison and incorporating posterior metrics knowledge via score guidance, P-LoRA
enables effective generation of the given object in a desired reference style.

4.1 POSTERIOR FEATURE KNOWLEDGE

Prior work has used the absolute values of LoRA weight updates as a proxy for their importance in
diffusion models[Ouyang et al (2025)). However, the core function of LoRA is to induce feature-level
adjustments rather than merely altering weight magnitudes. Inspired by this notion of posterior
feature knowledge, we explicitly examine how content and style LoORA weight updates, AW/ and
AW/, affect the base network’s i-th layer. Specifically, we apply these updates to the base weights
W¢ and compute the corresponding fine-tuned feature maps:

EiFY = (We + AW)) F, )
FAY = (Wi + AW)) F, (10)
where F; represents the original features at layer .

To quantify the impact of these modifications, we compute the KL divergence between each fine-tuned
feature distribution and the original feature distribution Fj:

di, = KL(E/ || Fipa), an

dl = KL(EJ* || Eipa). (12)

We then compare d’, and d’, to determine which adjustment induces a more significant feature change:
: EiFLifdi > dl

Fz+1 _ K c = Ys 13

{F;“, otherwise. (13)

By performing this selection at each layer, we retain the most impactful content or style information,
enabling an effective, training-free fusion of subject and style LoRAs.

In contrast to weight-based fusion strategies, which are static and input-agnostic, our feature-based
approach dynamically adapts to the input: as the prompt changes, so do the feature distributions
and thus the fusion decisions. This input-conditional mechanism allows P-LoRA to flexibly handle
generation tasks with diverse and evolving requirements.

4.2 POSTERIOR METRICS KNOWLEDGE

As discussed in the preliminaries, objective metrics such as CLIP and DINO scores effectively assess
the quality of LoRA fusion, where higher scores indicate better alignment with the desired content
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or style. To obtain the guidance scores, we first leverage the content LoRAs AT, and style LoRAs
AW, with content descriptions /. and style descriptions [/, to generate the new reference content
image I, gef and reference style image [ ;ef:

I = (Wo + AW,) L] (14)

It = (Wo + AW,) (1) (15)

With the original output zy™; at the ¢-th denoising step and the predicted original image % at step ¢,
we compute the CLIP and DINO scores Shah et al.| (2024) to evaluate the prediction performance.
The scores are obtained by extracting embeddings from the generated and reference images and
computing cosine similarity:

SERE™ = Simeos (Ecvip (I17), EcLip (#0)) (16)
Ssctﬁ% = Simeos (EcrLip (15°), Ecvip (40)) (I7)
Slsgt‘ﬁiyeo = Simgos (EDINO(I;ef)7 Epmo(Zo)) (18)

where Ecrp and Epino denote the image encoders of CLIP Radford et al.| (2021) and DINO |Caron
et al.|(2021), respectively. To compute the final guidance score, we evenly weight the three metrics:

content style style
Sét™ + Sciap + Spino

R(ig) =1— . (19)
With guidance scores and empirically setting scaling factor m = 10, we guide the diffusion step as:
zi_1 =z — mV,, R(&0) (20)

By incorporating posterior metrics knowledge into the training-free denoising step, the generated
images are dynamically steered toward higher quality and exhibit the desired subject and style, thanks
to continuous supervision from the generated reference images.

In summary, P-LoRA leverages posterior feature knowledge to dynamically fuse content and style
LoRAs at the feature level and integrates posterior metrics knowledge to guide denoising process with
continuous objective feedback. This dual perspective ensures a training-free yet highly adaptive fusion
mechanism. In the following section, we present extensive experiments to validate the effectiveness
of P-LoRA across various generation tasks and compare it with existing advanced methods.

5 EXPERIMENTS

We evaluate the proposed P-LoRA approach under the experimental setup established by previous
methods including K-LoRA, ZipL.oRA, B-LoRA. Specifically, we apply P-LoRA to both the Stable
Diffusion XL v1.0 base model and the FLUX model.

Datasets. For training the local LoRAs, we follow the convention of previous works|Ouyang et al.
(2025));|Shah et al.|(2024). To train content LoRAs, we select diverse image sets from the DreamBooth
dataset|Ruiz et al.|(2023)), where each instance is represented by 4-5 images. For style LoRAs, we
adopt the dataset introduced by the StyleDrop authors [Sohn et al.| (2023)), which includes a wide
variety of stylistic exemplars spanning classical art to modern creative styles. Each style LoRA is
trained using a single reference image.

Implementation Details. To obtain local LoRAs, we adopt the K-LoRA |Ouyang et al.| (2025)
strategy to fine-tune the SDXL v1.0 base model using a low-rank adaptation with rank set to 64. The
LoRA weights—both style and content—are optimized using the Adam optimizer over 1000 steps
with a batch size of 1 and a learning rate of Se-5. For the FLUX model, we utilize publicly available,
well-trained community LoRA weights obtained from HuggingFace. Corresponding experimental
results on FLUX are provided in the following appendix [A]

5.1 RESULTS
5.1.1 QUANTITATIVE COMPARISONS

To objectively evaluate the performance of our training-free P-LoRA method, we adopt commonly
used metrics from prior works, including Style Similarity, CLIP Score, and DINO Score, to assess
the quality of the generated images. Following previous methods, we randomly selected 30 unique
content—style pairs, each of which consists of 10 images to perform quantitative comparisons.
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Method Style Sim T CLIP Score T DINO Score 1
Direct 48.9% 66.6% 43.0%
B-LoRA |Frenkel et al.|(2024) 58.0% 63.8% 30.6%
ZipLoRA |Shah et al.[(2024) 60.4% 64.4% 35.7%
K-LoRA |Ouyang et al.|(2025) 58.7% 69.4% 46.9%
P-LoRA (ours) 63.0% 78.5% 43.3%

Table 1: Comparison of alignment results. Direct denotes direct arithmetic merging.
Method User Preference GPT-40 Feedback Qwen2.5-VL Feedback
ZipLoRA |Shah et al.|(2024) 13.80% 20.13% 3.40%
B-LoRA [Frenkel et al.| (2024) 21.89% 11.67% 9.11%
K-LoRA |Ouyang et al.| (2025) 11.11% 12.56% 21.82%
P-LoRA(ours) 53.20% 55.64% 65.67%

Table 2: The Performance Comparison of user study results, GPT-40 and Qwen2.5-VL feedback.

Specifically, CLIP Radford et al.[(2021)) is employed to evaluate both the style alignment (Style Sim)
and content preservation (CLIP Score), while DINO |Zhang et al.[(2022) is used to measure content
consistency via DINO Score. Table|I|presents a detailed comparison between P-LoRA and existing
state-of-the-art methods. Our method achieves the best performance in both Style Sim (63.0%) and
CLIP Score (78.5%). Notably, P-LoRA provides a substantial improvement of 9.1% in CLIP Score
compared to the strongest baseline. Although P-LoRA does not achieve the top performance in DINO
Score, it still ranks second, demonstrating a strong overall balance between style and content fidelity.
These results validate the effectiveness of our posterior-guided fusion method. As a supplementary
verification, we report further evaluations with extra metrics in Appendix [B] which also demonstrate
the effectiveness of our proposed method.

5.1.2 USER STUDY AND MLLM-BASED EVALUATIONS

To further assess the perceptual quality of generated images beyond conventional metrics, we conduct
a comprehensive user study and multimodal large language model (MLLM)-based evaluations. As
shown in Table[2] we collect human preferences and automatic feedback from two strong MLLMs,
GPT-40(OpenAl & Microsoft](2024) and Qwen2.5-VL Bai et al.| (2025)). In the user study, participants
were asked to choose their preferred images from outputs of four competing methods. Our proposed
P-LoRA is overwhelmingly favored, receiving 53.20% of total votes, outperforming all baselines.
Similarly, in LLM-based evaluations, P-LoRA is consistently ranked highest, achieving 55.64%
preference by GPT-40 and an even more substantial 65.67% by Qwen2.5-VL. These results not
only confirm the good quality of generated images in terms of human preference but also highlight
P-LoRA’s effectiveness in producing stylistically and semantically coherent outputs that align well
with multi-modal models. Setup details are provided in the following appendix [C|

5.1.3 QUALITATIVE COMPARISONS

To visually assess the performance of different LoRA fusion methods, we present qualitative compar-
isons in Figure|3| Overall, our training-free P-LoRA demonstrates superior visual quality, effectively
preserving both content and style information. In contrast, most existing methods tend to retain
content reasonably well but struggle to capture the target style faithfully. For example, in the second
row and third column, B-LoRA correctly identifies the ’dog’ content but incorrectly applies a pink
color inconsistent with the reference style. A similar issue is observed with K-LoRA in the fourth
row and third column. Moreover, in the second-to-last row, K-LoRA produces a ’cat’ whose head and
body exhibit inconsistent styles, indicating a failure in achieving global style coherence. In the eighth
row, K-LoRA also fails to preserve the oil painting style entirely. Interestingly, Zip-LoRA, despite
being the only method with learnable parameters, performs relatively worse. It often fails to capture
the desired style (e.g., the ’dog’ in the fourth column) or generates semantically inaccurate content.
These qualitative results further support the effectiveness of our posterior-guided fusion strategy,
which consistently delivers visually coherent outputs without the need for additional training.

5.2 ABLATION STUDIES

To thoroughly analyze the contributions of each component in our proposed training-free P-LoRA
pipeline, we conduct extensive ablation studies across some aspects: (1) the effect of Posterior
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Figure 3: Qualitative comparisons. We present images generated by P-LoRA and the compared
advanced generation methods. Through incorporating posterior knowledge, our method effectively
enables training-free fusion of subject and style LoRAs.

Method Style Sim t CLIP Score t DINO Score 1
Baseline 60.3% 75.6% 40.1%
Only with PFK 59.5% 75.9% 43.7%
Only with PMK 66.1% 78.9% 40.7%
P-LoRA(PFK+PMK) 64.0% 79.1% 43.4%

Table 3: Ablation study of different components, including Posterior Feature Knowledge (PFK) and
Posterior Metrics Knowledge (PMK).

Divergence Style Sim T CLIP Score ¥ DINO Score 1
KL 59.5% 75.9% 43.7%
JS 59.3% 75.3% 43.1%
Cosine Similarity 58.9% 75.4% 43.3%
Dot Product 58.4% 74.9% 43.8%

Table 4: Ablation study of selection criteria in posterior guidance, including Kullback-Leibler (KL),
Jensen-Shannon (JS) divergence, cosine similarity, and dot product.

Scaling Factor m  Style Sim T CLIP Score T DINO Score 1

1 62.1% 72.8% 32.4%
5 64.8% 74.1% 32.3%
10 64.0% 79.1% 43.4%
20 66.8% 76.8% 35.1%

Table 5: Ablation study of scaling factor m for posterior metrics knowledge.

Feature Knowledge (PFK) and Posterior Metrics Knowledge (PMK), (2) the selection criteria in
posterior guidance., and (3) the impact of scaling the posterior-guided weighting. For each setting,
we randomly sample 25 object-style combinations to ensure robustness.

Effect of Posterior Feature and Metrics Knowledge. Table [3| presents the performance of varying
configurations. Incorporating PFK alone improves DINO Score by 3.6% over the baseline, while
PMK boosts Style Slim(66.1%) and CLIP Score(78.9%). When using both components, the P-LoRA
model achieves the best overall results, especially in CLIP Score (79.1%) and DINO Score (43.4%),
demonstrating the complementary nature of latent feature knowledge and metric-aware refinement.

Selection Criteria in Posterior Guidance. To investigate the role of the selection function in
posterior feature guidance, we compare Kullback-Leibler (KL), Jensen-Shannon (JS) divergence,
cosine similarity, and dot product in Table[d Clearly, KL and JS divergence brings more pleasant
performance. While they both achieve comparable style and CLIP scores, KL slightly outperforms
JS in DINO Score (43.7% vs. 43.1%), which aligns with the intuition that KL is more sensitive to
asymmetrical discrepancies in content distributions, making it more suitable for our setup.

Effect of Scaling Factor. We also explore the sensitivity of P-LoRA to the scaling factor that balances
the influence of posterior metric knowledge, as shown in Table[3] Setting this factor too low (e.g., 1)



Under review as a conference paper at ICLR 2026

K-LoRA

Ours
(P-LoRA)

Figure 4: Robustness Analysis. We present images generated by P-LoRA and K-LoRA with random
seeds to analyze the robustness.
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Figure 5: LoRA Selection During the Generation Process.The vertical axis represents 50 diffusion
steps, while the horizontal axis denotes varying LoRA layers. Dark green indicates the selection of
subject LoRA, and light blue indicates the selection of style LoRA.

leads to suboptimal CLIP and DINO Scores, while extremely high scaling (e.g., 20) causes instability
in DINO Score. A moderate value of 10 yields the best trade-off, with a strong boost in both CLIP
Score (79.1%) and DINO Score (43.4%), highlighting the importance of proper posterior calibration.

Robustness Analysis. To further evaluate the robustness of our proposed P-LoRA framework, we
visualize generated results under different random seeds and compare them with K-LoRA in Figure 4]
While K-LoRA exhibits significant variability in scene layouts and fails to consistently preserve the
target style, P-LoRA maintains both the semantic content and stylistic attributes across different
sampling conditions. This stability under stochastic perturbations highlights the effectiveness of
posterior-guided modulation in enforcing coherent and reliable image generation.

Visualization of Posterior Knowledge Selection. Figure[3]illustrates the dynamic posterior selection
mechanism employed by P-LoRA. Unlike K-LoRA, which relies solely on static weight elements for
selection, our method performs input-conditional selection, dynamically choosing the more relevant
LoRA weights based on input-dependent features. This adaptive strategy enables P-LoRA to better
align with the input semantics, thereby facilitating more effective and coherent style-content fusion.
The superior performance observed in previous quantitative and qualitative comparisons further
validates the advantages of this training-free, input-adaptive selection scheme.

6 CONCLUSION

In this paper, we propose P-LoRA, a novel training-free LoRA fusion paradigm that fundamentally
shifts the fusion process from weight-level heuristics to feature-conditional decisions by leveraging
posterior knowledge from fine-tuned features and objective metrics. Specifically, KL divergence
is employed to compare feature distributions, enabling dynamic selection of the most appropriate
LoRA adjustments. Moreover, objective metrics such as CLIP and DINO scores are incorporated
as posterior knowledge to provide gradient-based guidance during the denoising process, further
enhancing semantic alignment and visual fidelity. Extensive experiments across multiple benchmarks
demonstrate that P-LoRA consistently achieves better generation performance without the need
for retraining or additional supervision. While P-LoRA shows strong adaptability, its reliance on
pre-defined content and style LoRAs may limit flexibility. Future work may explore extending
P-LoRA to video or 3D generation tasks and developing generalization mechanisms.
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Appendix for P-LoRA: Posterior Knowledge Enables
Training-Free Fusion of Subject and Style LoRAs

L3 Cot rule the world. ',’

Figure 6: Additional results generated using FLUX. Each image corresponds to the object label
indicated above and the style reference on the left. The results demonstrate the effects of applying
different LORA modules through our proposed method.

A ADDITIONAL EXPERIMENTAL RESULTS BASED ON FLUX

As discussed in the main experiments section, to more comprehensively illustrate the superior per-
formance and generalization capability of our proposed method built upon the FLUX framework,
we further conduct extensive qualitative evaluations using publicly available, well-trained LoRA
(Low-Rank Adaptation) weights shared by the community on HuggingFace. Specifically, we se-
lected a diverse set of LORA weights corresponding to various object categories and artistic styles
to systematically evaluate our model’s ability to integrate and synthesize complex cross-domain
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Figure 7: Additional results generated using FLUX. Each image corresponds to the object label
indicated above and the style reference on the left. The results demonstrate the effects of applying
different LoRA modules through our proposed method.

representations. The resulting fused images, presented in Figure [| and Figure[7] showcase a wide
range of combinations where object semantics and stylistic attributes are jointly encoded and rendered
through our method.

Our approach incorporates these LoORA weights by disentangling and recombining object- and style-
specific latent representations in a manner that leverages posterior knowledge extracted from both
fine-tuned features and downstream objective metrics. This enables the model to align and synthesize
visual content in a controlled yet flexible fashion. The generated samples exhibit not only strong
fidelity to the semantic structure of the target object but also high consistency with the desired style,
demonstrating the model’s ability to preserve critical attributes from both input domains. Furthermore,
the seamless integration of appearance and content substantiates the robustness of our framework
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Method ViT Content T  ViT Style T BLIP-2 Content T BLIP-2 Style 1
ZipLoRA |Shah et al.[(2024) 23.2% 18.0% 48.2% 46.0%
B-LoRA |[Frenkel et al.| (2024) 29.6% 19.9% 42.0% 54.3%
K-LoRA |Ouyang et al.[(2025)) 32.8% 20.7% 49.4% 51.1%
P-LoRA (ours) 33.7% 21.8% 49.5% 51.4%

Table 6: Comparison of alignment results with additional evaluation metrics.

in handling varied and unseen combinations, emphasizing its potential applicability in real-world
generation tasks that demand stylistic generalization and compositional creativity. Overall, these
visual results provide compelling evidence of the effectiveness of our method in producing coherent,
high-quality outputs across a broad spectrum of challenging scenarios.

B EVALUATION WITH ADDITIONAL METRICS

In addition to conventional measures such as Style Similarity, CLIP Score, and DINO Score, we
further adopt ViT-based [Dosovitskiy et al.| (2021)) and BLIP-2-based |Li et al.| (2023)) content and
style scores to provide a more comprehensive evaluation of P-LoRA. As shown in Table[6] P-LoRA
achieves state-of-the-art results in three out of four metrics. A closer look reveals that different
baselines exhibit complementary strengths—ZipLLoRA favors BLIP-2 content alignment, while B-
LoRA excels in BLIP-2 style consistency. K-LoRA maintains relatively balanced performance
across metrics. In contrast, P-LoRA not only improves both ViT-based and BLIP-2-based scores,
but also demonstrates a better balance between content fidelity and style preservation. We attribute
this advantage to the proposed soft, inference-time metric guidance, which adaptively calibrates
the generation process to maintain semantic and stylistic coherence without overfitting to a single
representation space. These results suggest that P-LoRA is more robust across heterogeneous
evaluation perspectives, highlighting its potential for broader generalization to multimodal generation
scenarios.

C SETUP DETAILS FOR USER STUDY AND MLLM EVALUATIONS

Following the evaluation protocol of K-LoRA |Ouyang et al.| (2025), we conducted a user study
where participants were presented with a reference subject image, a reference style image, and
two anonymized outputs—one generated by P-LoRA and the other by a randomly selected baseline
(ZipLoRA |Shah et al.|(2024), B-LoRA [Frenkel et al.| (2024), or K-LoRA |Ouyang et al.| (2025)). To
mitigate presentation bias, the order of the two outputs was randomized across trials. Participants
were asked: “Which image better reflects the given artistic style while preserving the subject identity?”
We collected a total of 1,290 responses from 43 participants, with each participant evaluating a unique
set of 30 trials.

Beyond human evaluation, we further adopt GPT-40 and Qwen2.5-VL as multimodal large language
model (MLLM) judges to assess perceptual alignment. For each trial, the prompt included the content
image, the style reference, and four anonymized outputs from ZipLoRA, B-LoRA, K-LoRA, and
P-LoRA (randomized order). The LLMs were instructed to select the image that best balances style
fidelity with subject preservation. To ensure robustness, we randomly sampled 100 subject—style
pairs, and each pair was evaluated in three independent runs. The final score was determined via
majority voting across runs, following standard practice in recent MLLM-based evaluation studies.
Importantly, while the user study captures subjective human preference, the MLLM-based evaluation
provides scalable and reproducible judgments, making the two evaluations complementary and
mutually reinforcing.

LLM USAGE STATEMENT

Large language models (LLMs) were used solely as general-purpose assist tools for language editing,
grammar checking, and improving clarity of presentation. They were not involved in research ideation,
model design, experimental execution, or result analysis. All technical contributions, experimental
designs, and findings are original work by the authors.
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