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Abstract

Motivated by the success of Transformers when
applied to sequences of discrete symbols, token-
based world models (TBWMs) were recently pro-
posed as sample-efficient methods. In TBWMs,
the world model consumes agent experience as
a language-like sequence of tokens, where each
observation constitutes a sub-sequence. However,
during imagination, the sequential token-by-token
generation of next observations results in a severe
bottleneck, leading to long training times, poor
GPU utilization, and limited representations. To
resolve this bottleneck, we devise a novel Par-
allel Observation Prediction (POP) mechanism.
POP augments a Retentive Network (RetNet) with
a novel forward mode tailored to our reinforce-
ment learning setting. We incorporate POP in
a novel TBWM agent named REM (Retentive
Environment Model), showcasing a 15.4x faster
imagination compared to prior TBWMs. REM
attains superhuman performance on 12 out of 26
games of the Atari 100K benchmark, while train-
ing in less than 12 hours. Our code is available at
https://github.com/leor-c/REM.

1. Introduction
Sample efficiency remains a central challenge in reinforce-
ment learning (RL) due to the substantial data demands of
successful RL algorithms (Berner et al., 2019; Mnih et al.,
2015; Schrittwieser et al., 2020; Silver et al., 2016; Vinyals
et al., 2019). One prominent model-based approach for ad-
dressing this challenge is known as world models. In world
models, the agent’s learning is solely based on simulated
interaction data produced by a learned model of the environ-
ment through a process called imagination. World models
are gaining increasing popularity due to their effectiveness,
particularly in visual environments (Hafner et al., 2023).
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Figure 1. Top: comparison between the run times of token-based
world model agents (IRIS and REM) during the world model train-
ing and imagination (actor-critic training). Bottom: interquantile
mean (IQM) human-normalized score comparison between REM
and state-of-the-art baselines on the Atari 100K benchmark with
95% stratified bootstrap confidence intervals (Agarwal et al., 2021).
A line separates token-based methods from other baselines.

In recent years, attention-based sequence models, most no-
tably the Transformer architecture (Vaswani et al., 2017),
demonstrated unmatched performance in language model-
ing tasks (Brown et al., 2020; Bubeck et al., 2023; Devlin
et al., 2019; Touvron et al., 2023). The notable success
of these models when applied to sequences of discrete to-
kens sparked motivation to employ these architectures to
other data modalities by learning appropriate token-based
representations. In computer vision, discrete representa-
tions are becoming a mainstream approach for various tasks
(Dosovitskiy et al., 2021; Esser et al., 2021; Li et al., 2023;
van den Oord et al., 2017). In RL, token-based world mod-
els were recently explored in visual environments (Micheli
et al., 2023). The visual perception module in these methods
is called a tokenizer, as it maps image observations to se-
quences of discrete symbols. This way, agent interaction is
translated into a language-like sequence of discrete tokens,
which are processed individually by the world model.
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Figure 2. An overview of REM’s training cycle. Each epoch has 4 steps: experience collection (1), tokenizer training (2), world model
training (3), and controller training in imagination (4). Orange color represents component(s) that undergo training. Blue squares denote
token inputs, where light blue is used for observation tokens and dark blue for actions. Replay buffer data at steps 3 and 4 contains
observations, actions, rewards, and termination signals.

During imagination, to generate the tokens of the next ob-
servation with the auto-regressive model, the prediction
is carried sequentially token-by-token. Effectively, this
highly-sequential computation results in a severe bottle-
neck that pronouncedly hinders token-based approaches.
Consequently, this bottleneck practically caps the length
of the observation token sequences which in turn degrades
performance. This limitation renders current token-based
methods impractical for complex problems.

In this paper, we present Parallel Observation Prediction
(POP), a novel mechanism that resolves the imagination
bottleneck of token based world models (TBWMs). With
POP, the enire next observation token sequence is generated
in parallel during world model imagination. At its core, POP
augments a Retentive Network (RetNet) sequence model
(Sun et al., 2023) with a novel forward mode devised for
retaining world model training efficiency. Additionally, we
present REM (Retentive Environment Model), a TBWM
agent driven by a POP-augmented RetNet architecture.

Our main contributions are summarized as follows:

• We propose Parallel Observation Prediction (POP), a
novel mechanism that resolves the inference bottleneck
of current token-based world models while retaining
performance.

• We introduce REM, the first world model approach that
incorporates the RetNet architecture. Our experiments
provide first evidence of RetNet’s performance in an
RL setting.

• We evaluate REM on the Atari 100K benchmark,
demonstrating the effectiveness of POP. POP leads
to a 15.4x speed-up at imagination and trains in under
12 hours, while outperforming prior TBWMs.

2. Method
Notations. We consider the Partially Observable Markov
Decision Process (POMDP) setting with image observations
ot ∈ Ω ⊆ Rh×w×3, discrete actions at ∈ A, scalar rewards
rt ∈ R, episode termination signals dt ∈ {0, 1}, dynamics
ot+1, rt, dt ∼ p(ot+1, rt, dt|o≤t, a≤t), and discount factor
γ. The objective is to learn a policy π such that for every
situation the output π(at|o≤t, a<t) is optimal w.r.t. the
expected discounted sum of rewards from that situation
E[
∑∞

τ=0 γ
τRt+τ ] under the policy π.

2.1. Overview

REM builds on IRIS (Micheli et al., 2023), and similar to
most prior works on world models for pixel input (Hafner
et al., 2021; 2023; Kaiser et al., 2020), REM follows a V-M-
C structure (Ha & Schmidhuber, 2018): a V isual perception
module that compresses observations into compact latent
representations, a predictiveModel that captures the envi-
ronment’s dynamics, and a Controller that learns to act to
maximize return. Additionally, a replay buffer is used to
store environment interaction data. An overview of REM’s
training cycle is presented in Figure 2. A pseudo-code algo-
rithm of REM is presented in Appendix A.2.

V - Tokenizer We instantiate the visual perception com-
ponent as a tokenizer, mapping input observations into
latent tokens. Following (Micheli et al., 2023), the tok-
enizer is a VQ-VAE discrete auto-encoder (Esser et al.,
2021; van den Oord et al., 2017) comprised of an encoder,
a decoder, and an embedding table. The embedding ta-
ble E = {ei}Ni=1 ∈ RN×d consists of N trainable vectors.
The encoder first maps an input image ot to a sequence
of d-dimensional latent vectors (h1

t ,h
2
t , · · · ,hK

t ). Then,
each latent vector hk

t ∈ Rd is mapped to the index of the
nearest embedding in E , , zkt = argmini ∥hk

t − ei∥. Such
indices are called tokens. For an input image ot, its latent
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token sequence is denoted as zt = (z1t , z
2
t , · · · , zKt ). To

map a token sequence back to the input space, we first re-
trieve the embedding for each token and obtain a sequence
(ĥ1

t , ĥ
2
t , · · · , ĥK

t ) where ĥk
t = ezk

t
. Then, inverse to the

encoding process, the decoder is responsible for mapping
this sequence to a reconstructed observation ôt.

The tokenizer is trained on frames sampled uniformly from
the replay buffer. Its optimization objective, architecture,
and other details are deferred to Appendix A.1.1.

M - World Model At the core of a world model is the
component that captures the dynamics of the environment
and makes predictions based on historical observations.
Here,M is learned entirely in the latent token space, mod-
eling the following distributions at each step t:

Transition: p(ẑt+1|z1, a1, . . . , zt, at), (1)
Reward: p(r̂t|z1, a1, . . . , zt, at), (2)

Termination: p(d̂t|z1, a1, . . . , zt, at). (3)

To map observation tokens to embedding vectors,M uses
the code vectors E learned by the tokenizer V . Note that E
is not updated byM. In addition,M maintains dedicated
embedding tables for mapping actions and special tokens
(detailed in Section 2.3) to continuous vectors.

C - Controller REM’s actor-critic controller C is trained
to maximize return entirely in imagination (Hafner et al.,
2021; Kaiser et al., 2020; Micheli et al., 2023). C com-
prises of a policy network π and a value function estimator
V π, and operates on latent tokens and their embeddings.
In each optimization step,M and C are initialized with a
short trajectory segment sampled from the replay buffer.
Subsequently, the agent interacts with the world model for
H steps. At each step t, the agent plays an action sampled
from its policy π(at|z1, a1, . . . , zt−1, at−1, zt). The world
model evolves accordingly, generating r̂t, d̂t, and ẑt+1 by
sampling from the appropriate distributions (Eqn. (1-3)).
The resulting trajectories are then used to train the agent.
Following (Micheli et al., 2023), we adopted the actor-critic
objectives of DreamerV2 (Hafner et al., 2021). We leave the
full details of its architecture and optimization to Appendix
A.1.3.

2.2. Retention Preliminaries

Similar to Transformers (Vaswani et al., 2017), a RetNet
model (Sun et al., 2023) consists of a stack of layers, where
each layer contains a multi-head Attention-like mechanism,
called Retention, followed by a fully-connected network.
A unique characteristic of the Retention mechanism is that
it has a dual form of recurrence and parallelism, called
“chunkwise”, for improved efficiency when handling long

S0
S[1] S[2]M M M

z1 a1 z2 a2 z3 a3 z4 a4 z5 a5 z6 a6

Y[1] Y[2,1] Y[2,2]

Figure 3. The “chunkwise” computation mode. Long sequences
can be split into smaller “chunks” for enhanced training efficiency.
Previous chunks are summarized by the recurrent state S. Blue
squares represents tokens, while circles denote output vectors.
Crucially, RetNet’s chunkwise mode does not natively support
both a batched generation of tokens at imagination and an efficient
world model training. These are achieved by our POP extension.

sequences. This form allows to split such sequences into
smaller “chunks”, where a parallel computation takes place
within chunks and a sequential recurrent form is used be-
tween chunks, as shown in Figure 3. The information
from previous chunks is summarized by a recurrent state
S ∈ Rd×d maintained by the Retention mechanism.

Formally, consider a sequence of tokens (x1, x2, · · · , xm).
In our RL context, this sequence is a token trajectory com-
posed of observation-action sub-sequences (z1t , · · · , zKt , at)
we call blocks. As such trajectories are typically long, we
split them into chunks of B tokens, where B = c(K+1) is a
multiple of K+1 so that each chunk only contains complete
blocks. Here, the hyperparameter c can be tuned according
to the size of the models, the hardware, and other factors to
maximize efficiency. Let X = (x1,x2, · · · ,xm) ∈ Rm×d

be the d-dimensional token embedding vectors. The Re-
tention output Y[i] = Retention(X[i],S[i−1], i) of the i-th
chunk is given by

Y[i] =
(
Q[i]K

⊤
[i] ⊙D

)
V[i] + (Q[i]S[i−1])⊙ ξ, (4)

where the bracketed subscript [i] is used to index the i-
th chunk, Q = (XWQ) ⊙ Θ, K = (XWK) ⊙ Θ̄,
V = XWV , and ξ ∈ RB×d is a matrix with ξij = ηi+1.
Here, WQ,WK ,WV ∈ Rd×d are learnable weights, η is
an exponential decay factor, the matrix D ∈ RB×B com-
bines an auto-regressive mask with the temporal decay factor
η, and the matrices Θ, Θ̄ ∈ Cm×d are for relative position
embedding (see Appendix A.3). Note the chunk index i ar-
gument of the Retention operator, which controls positional
embedding information through Θ. The chunkwise update
rule of the recurrent state is given by

S[i] = (K[i] ⊙ ζ)⊤V[i] + ηBS[i−1] (5)

where S[0] = S0 = 0, and ζ ∈ RB×d is a matrix with
ζij = ηB−i−1. On the right hand side of Equations 4 and
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Figure 4. A single imagination step. Starting from a recurrent state
St, initially obtained from real experience, M computes all next-
observation tokens ẑt+1 in parallel using the prediction tokens u
as inputs. Then, the agent observes ẑt+1 and picks an action at+1.
Finally, M takes St, ẑt+1, and at+1 and outputs St+1, r̂t+1, d̂t+1.
Dashed arrows emphasize sampling operations.

5, the first term corresponds to the computation within the
chunk while the second term incorporates the information
from previous chunks, encapsulated by the recurrent state.
Further details about the RetNet architecture are deferred to
Appendix A.3.

2.3. World Model Imagination

As the agent’s training relies entirely on world model imagi-
nation, the efficiency of the trajectory generation is critical.
During imagination, predicting ẑt+1 constitutes the primary
non-trivial component and consumes the majority of pro-
cessing time. In IRIS, the prediction of ẑt+1 unfolds sequen-
tially, as the model is limited to predicting only one token
ahead at each step. This limitation arises since the identity of
the next token, which remains unknown at the current step,
is necessary for the prediction of later tokens. Thus, generat-
ing H observations costs KH sequential world model calls.
This leads to poor GPU utilization and long computation
time.

To overcome this bottleneck, POP maintains a set of K ded-
icated prediction tokens u = (u1, . . . , uK) together with
their corresponding embeddings Eu ∈ RK×d. To generate
ẑt+1 in one pass, POP simply computes the RetNet outputs
starting from St using u as its input sequence, as illustrated
in Figure 4. Note that at imagination, the chunk size is
limited to a single block, i.e., to K + 1. Here, the notation
St refers to the state that summarizes the first t observation-
action blocks. To obtain St, we use RetNet’s chunkwise
forward to summarize an initial context segment of blocks
sampled from the replay buffer. Essentially, for every t,
POP models the following distribution for next observation

a1z1 a2z2

u

a3z3

u

Figure 5. When appending u after an observation-action block,
the sequence is no longer a prefix of the observation-action token
trajectory. Thus, the recurrent state only summarizes observation
and action tokens (top trajectory).

prediction:

p(ẑt+1|z1, a1, . . . , zt, at,u)

with

p(ẑkt+1|z1, a1, . . . , zt, at,u≤k).

It is worth noting that the tokens u are only intended for
observation token predictions and are never employed in the
update of the recurrent state.

This approach effectively reduces the total number of world
model calls during imagination from KH to 2H , eliminat-
ing the dependency on the number of observation tokens
K. In fact, POP provides an additional generation mode
that further reduces the number of sequential calls to H .
We defer the details on this mode to Appendix A.1.2. Also,
by using a recurrent state that summarizes long history se-
quences, POP improves efficiency further, as the per-token
prediction cost reduces. Effectively, POP offers improved
scalability at the expense of a higher overall computational
cost ((2K + 1)H compared to (K + 1)H). Our approach
add to existing evidence suggesting that enhanced scalability
is often favorable, even at the expense of additional com-
putational costs, with Transformers (Vaswani et al., 2017)
serving as a prominent example.

2.4. World Model Training

While applying POP during imagination is fairly straightfor-
ward, it requires modification of the training data. Consider
an input trajectory segment (z1, a1, . . . , zT , aT ) sampled
from the replay buffer. To make meaningful observation
predictions at imagination, the model should be trained to
predict zt given (z1, a1, . . . , zt−1, at−1,u), for each time
step t of every input segment. Hence, for every t, the input
sequence should contain u at block t. However, replacing zt
with u in the original sequence is inadequate, as the predic-
tion of future observations, rewards, and termination signals
depends on zt. Thus, the standard approach of computing all
outputs from the same input sequence is not viable, as in this
case these two requirements contradict each other (Figure 5).
The challenge then lies in devising an efficient method for
computing the outputs for all time steps in parallel.
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Figure 6. An illustration of the POP chunkwise forward algorithm
(Alg. 1 and 2) for a single-layer model. During training, M com-
putes the outputs of c observation-action blocks in parallel. Blue
squares represent token inputs, while the corresponding RetNet
outputs are denoted by circles. Each RetNet block represents a for-
ward call to the same RetNet model. The bottom RetNet call uses
our POP extension for computing the additional recurrent states at
the end of every observation-action block (Alg. 2, lines 2-7). The
top row of RetNet calls are batch-computed in parallel (Alg. 2,
line 8). Finally, the output combines the observation token outputs
produced by the top RetNet call with the rewards and termination
outputs computed by the bottom one (Alg. 1, lines 7-9).

To tackle this challenge, we first note that each trajec-
tory prefix can be summarized into a single recurrent state.
For example, for the first input chunk (z1, a1, . . . , zc, ac),
(z1, a1) can be summarized into S[1,1] and (z1, a1, z2, a2)
can be summarized into S[1,2]. Here, we use the subscript
[i, j] to conveniently refer to the j-th block within the i-
th chunk (this notation is demonstrated in Figure 3), with
S[i,0] = S[i−1] and S[i,c] = S[i]. Thus, our plan is to first
compute all states S[i,1], . . . ,S[i,c] in parallel, and then pre-
dict all next observations from all (S[i,j],u) tuples.

To compute all recurrent states S[i,j] in parallel, a two-step
computation is carried. First, intermediate states S̃[i,j] are
computed in parallel for all j with

S̃[i,j] =
(
K[i,j] ⊙ ζ

)⊤
V[i,j], (6)

where ζ ∈ R(K+1)×d is a matrix with ζij = ηK−i. Then,
each recurrent state is computed sequentially by

S[i,j] = S̃[i,j] + ηK+1S[i,j−1]. (7)

As the majority of the computational burden lies in the
first step, the sequential computation in the second step has
minimal impact on the overall speedup.

Once we have all states ready, the output of (S[i,j],u) for
all 1 ≤ j ≤ c is computed in parallel. Here, we stress
that the existing Retention mechanism can only perform
batched input computation with recurrent states St of the

Algorithm 1 RetNet POP Chunkwise Forward
1: Input: chunk size 1 ≤ c ≤ H , token embeddings X[i]

of chunk i, per-layer recurrent states {Sl
[i−1]}Ll=1.

2: Initialize A0
[i] ← X

3: Initialize B0
[i,1], . . . ,B

0
[i,c] ← Eu, . . . , Eu

4: for l = 1 to L do
5: Al

[i],B
l
[i],S

l
[i] ← POPLayer(Al−1

[i] ,Bl−1
[i] ,Sl

[i−1], i)

6: end for
7: for j = 1 to c do
8: Y[i,j] ← Concat(BL

[i,j],A
L
[i,j,K+1])

9: end for
10: Return Y, {Sl

[i]}Ll=1

Algorithm 2 POPLayer Chunkise Forward
1: Input: Chunk latents A[i], observation prediction la-

tents B[i], recurrent state S[i−1], chunk index i.
2: A[i] ← Retention(A[i],S[i−1], i) (Eqn. 4)
3: Compute S̃[i,1], . . . , S̃[i,c] in parallel (Eqn. 6)
4: for j = 1 to c do
5: S[i,j] ← S̃[i,j] + ηK+1S[i,j−1] (Eqn. 7)
6: end for
7: S[i] ← S[i,c]

8: B[i,j] ← Retention(B[i,j],S[i,j−1], [i, j]) in parallel
for j = 1, . . . , c (Eqn. 4)

9: Return A[i],B[i],S[i]

same time step t. This is due to the shared positional em-
bedding information applied to every input sequence in the
batch. To overcome this, we devise a mechanism which
extends RetNet to support the batched computation of the
(S[i,j],u) tuples, while applying the appropriate positional
encoding information. A pseudo code of our novel POP
extension of RetNet is given in Algorithms 1 and 2. The
latter presents the core of the mechanism (described above),
while the former describes the higher level layer-by-layer
computation with a final aggregation for combining the pro-
duced outputs. Figure 6 illustrates a simplified example
of the POP Forward mechanism (Algorithms 1 and 2) for
a single-layer model. For brevity, our pseudo code and il-
lustrations only considers Retention layers, omitting other
modules of RetNet (Appendix A.3).

To train the world model, trajectory segments of H steps
from past experience are uniformly sampled from the replay
buffer and translated into token sequences. These sequences
are processed in chunks of c observation-action blocks to
produce the modeled distributions, as depicted in Figure
6. Optimization is carried by minimizing the cross-entropy
loss of the transitions and termination outputs, and the ap-
propriate loss of the reward outputs, depending on the task.
For continuous rewards, the mean-squared error loss is used
while for discrete ones cross-entropy is used instead.
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Table 1. Mean agent returns on the 26 games of the Atari 100k benchmark followed by averaged human-normalized performance metrics.
Each game score is computed as the average of 5 runs with different seeds, where the score of each run is computed as the average over
100 episodes sampled at the end of training. Bold face and underscores mark the highest score among token-based methods and among all
baselines, respectively.

Non-Token-Based Token-Based

Game Random Human SimPLe DreamerV3 TWM STORM IRIS REM (ours)

Alien 227.8 7127.7 616.9 959.4 674.6 983.6 420.0 607.2
Amidar 5.8 1719.5 74.3 139.1 121.8 204.8 143.0 95.3
Assault 222.4 742.0 527.2 705.6 682.6 801.0 1524.4 1764.2
Asterix 210.0 8503.3 1128.3 932.5 1116.6 1028.0 853.6 1637.5
BankHeist 14.2 753.1 34.2 648.7 466.7 641.2 53.1 19.2
BattleZone 2360.0 37187.5 4031.2 12250.0 5068.0 13540.0 13074.0 11826.0
Boxing 0.1 12.1 7.8 78.0 77.5 79.7 70.1 87.5
Breakout 1.7 30.5 16.4 31.1 20.0 15.9 83.7 90.7
ChopperCommand 811.0 7387.8 979.4 410.0 1697.4 1888.0 1565.0 2561.2
CrazyClimber 10780.5 35829.4 62583.6 97190.0 71820.4 66776.0 59324.2 76547.6
DemonAttack 152.1 1971.0 208.1 303.3 350.2 164.6 2034.4 5738.6
Freeway 0.0 29.6 16.7 0.0 24.3 0.0 31.1 32.3
Frostbite 65.2 4334.7 236.9 909.4 1475.6 1316.0 259.1 240.5
Gopher 257.6 2412.5 596.8 3730.0 1674.8 8239.6 2236.1 5452.4
Hero 1027.0 30826.4 2656.6 11160.5 7254.0 11044.3 7037.4 6484.8
Jamesbond 29.0 302.8 100.5 444.6 362.4 509.0 462.7 391.2
Kangaroo 52.0 3035.0 51.2 4098.3 1240.0 4208.0 838.2 467.6
Krull 1598.0 2665.5 2204.8 7781.5 6349.2 8412.6 6616.4 4017.7
KungFuMaster 258.5 22736.3 14862.5 21420.0 24554.6 26182.0 21759.8 25172.2
MsPacman 307.3 6951.6 1480.0 1326.9 1588.4 2673.5 999.1 962.5
Pong -20.7 14.6 12.8 18.4 18.8 11.3 14.6 18.0
PrivateEye 24.9 69571.3 35.0 881.6 86.6 7781.0 100.0 99.6
Qbert 163.9 13455.0 1288.8 3405.1 3330.8 4522.5 745.7 743.0
RoadRunner 11.5 7845.0 5640.6 15565.0 9109.0 17564.0 9614.6 14060.2
Seaquest 68.4 42054.7 683.3 618.0 774.4 525.2 661.3 1036.7
UpNDown 533.4 11693.2 3350.3 7567.1 15981.7 7985.0 3546.2 3757.6

#Superhuman (↑) 0 N/A 1 9 8 9 10 12
Mean (↑) 0.000 1.000 0.332 1.124 0.956 1.222 1.046 1.222
Median (↑) 0.000 1.000 0.134 0.485 0.505 0.425 0.289 0.280
IQM (↑) 0.000 1.000 0.130 0.487 0.459 0.561 0.501 0.673
Optimality Gap (↓) 1.000 0.000 0.729 0.510 0.513 0.472 0.512 0.482

3. Experiments
We follow most prior works on world models and evalu-
ate REM on the widely-recognized Atari 100K benchmark
(Kaiser et al., 2020) for sample-efficient reinforcement learn-
ing. The Atari 100K benchmark considers a subset of 26
Atari games. For each game, the agent is limited to 100K
interaction steps, corresponding to 400K game frames due
to the standard frame-skip of 4. In total, this amounts to
roughly 2 hours of gameplay. To put in perspective, the orig-
inal Atari benchmark allows agent to collect 200M steps,
that is, 500 times more experience.

Experimental Setup The full details of the architectures
and hyper-parameters used in our experiments are presented
in Appendix A.1. Notably, our tokenizer uses K = 64
(i.e., a grid of 8× 8 latent tokens per observation), whereas
IRIS uses only K = 4 × 4 = 16. To ensure a meaningful

comparison of the run times of REM and IRIS, REM’s
configuration was chosen so that the amount of computation
carried by each component at each epoch remains (roughly)
equivalent to that of the corresponding component in IRIS.
For benchmarking agents run times, we used a workstation
with an Nvidia RTX 4090 GPU. The rest of our experiments
were conducted on Nvidia V100 GPUs.

Baselines Since the contributions of this paper relate to
token-based approaches, and to IRIS in particular, our evalu-
ation focuses on token-based methods. To enrich our results,
as well as to facilitate future research, we have included
the following additional baselines: SimPLe (Kaiser et al.,
2020), DreamerV3 (Hafner et al., 2023), TWM (Robine
et al., 2023), and STORM (Zhang et al., 2023). In these
approaches, observations are processed as a single sequence
element by the world model. Following prior works on
world models, lookahead search methods such as MuZero
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Figure 7. Atari 100K aggregated metrics with 95% stratified bootstrap confidence intervals of the mean, median, and inter-quantile mean
(IQM) human-normalized scores and optimality gap (Agarwal et al., 2021). A line separates token-based methods from other baselines.

(Schrittwieser et al., 2020) and EfficientZero (Ye et al., 2021)
are not included as lookahead search operates on top of a
world model. Here, our aim is to improve the world model
component itself.

3.1. Results

On Atari, it is standard to use human-normalized
scores (HNS) (Mnih et al., 2015), calculated as
agent score − random score

human score − random score , rather than raw game scores. Here,
the final score of each training run is computed as an aver-
age over 100 episodes collected at the end of training. In
the work of (Agarwal et al., 2021), the authors found dis-
crepancies between conclusions drawn from point estimate
statistics such as mean and median and a more thorough
statistical analysis that also considers the uncertainty in the
results. Adhering to their established protocol and utilizing
their toolkit, we report the mean, median, and interquantile
mean (IQM) human-normalized scores, and the optimality
gap, with 95% stratified bootstrap confidence intervals in
Figure 7. Performance profiles are presented in Figure 8.
Average scores of individual games are reported in Table 1.

REM attains an IQM human normalized score of 0.673,
outperforming all baselines. Additionally, REM improves
over IRIS on 3 out of the 4 metrics (i.e., mean, optimality
gap, and IQM), while being comparable in terms of its
median score. Remarkably, REM achieves superhuman
performance on 12 games, more than any other baseline
(Table 1). REM also exhibits state-of-the-art scores on
several games, including Assault, Boxing, and Chopper
Command. These findings support our empirical claim that
REM performs similarly or better than previous token-based
approaches while running significantly faster.

3.2. Ablation Studies

To analyze the impact of different components of our ap-
proach on REM’s performance, we conduct a series of ab-
lation studies. For each component, we compare the final
algorithm to a version where the component of interest is
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Figure 8. Performance profiles. For every human-normalized score
value (x axis), each algorithm’s curve shows the fraction of its runs
with score grater than the given score value. The shaded area
indicates pointwise 95% confidence bands based on percentile
bootstrap with stratified sampling (Agarwal et al., 2021).

disabled. Due to computational resource constraints, the
evaluation is performed on a subset of 8 games from the
Atari 100K benchmark using 5 random seeds for each game.
This subset includes games with large score differences
between IRIS and REM, as we are particularly interested
in studying the impact of each component in these games.
Concretely, this subset includes the games “Assult”, “As-
terix”, “Chopper Command”, “Crazy Climber”, “Demon
Attack”, “Gopher”, “Krull”, and “Road Runner”. We per-
formed ablation studies on the following aspects: the POP
mechanism, the latent space architecture of C and its action
inputs, the latent resolution of V , and the observation token
embeddings used byM.

The probability of improvement (Agarwal et al., 2021) and
IQM human-normalized scores are presented in Figure 9.
Figure 10 offers a comparison of the training times, juxta-
posing REM with its efficiency-related ablations.
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Figure 9. Left: The probability of improvement (Agarwal et al.,
2021) shows the probability of REM outperforming each ablation
on a randomly selected game from the subset of 8 games used
for the ablation studies. Right: interquantile mean (IQM) human
normalized score. Each band indicate a 95% stratified bootstrap
confidence interval.

Analyzing POP To study the impact of POP on REM’s
performance, we replaced the POP-augmented RetNet ofM
with a vanilla RetNet. In this version, denoted as ”No POP”,
the prediction of next observation tokens is performed se-
quentially token-by-token, as done in IRIS.

Our results suggest that POP retains the agent’s performance
(Figure 9) while significantly reducing the overall compu-
tation time (Figure 10). In Appendix A.4, we provide addi-
tional results indicating that the world model’s performance
are also retained. POP achieves lower total computation
time by expediting the actor-critic learning phase, despite
the increased computational cost implied by the observation
prediction tokens.

Actor-Critic Architecture and Action Inputs For C, we
considered an incremental ablation. First, we replaced the
architecture of REM’s controller C with that of IRIS (de-
noted “CIRIS”). In contrast to REM, this version processes
fully reconstructed pixel frames and does not incorporate
action inputs. Formally, CIRIS models π(at|ô≤t), V

π(ô≤t).
In the second ablation, REM was modified so that only the
action inputs of C were disabled. This ablation corresponds
to π(at|ẑ≤t), V

π(ẑ≤t).

Our findings indicate that both the latent codes based ar-
chitecture and the added action inputs contribute to the
final performance of REM (Figure 9). Additionally, the
latent codes based architecture of C leads to reduced com-
putational overhead and shorter actor-critic learning times
(Figure 10).

Tokenizer Resolution Here, we compare REM to a ver-
sion with a reduced latent resolution of 4× 4, similar to that
of IRIS. The results in Figure 9 provides clear evidence that
the latent resolution of the tokenizer has a significant impact
on the agent’s performance. Our results demonstrates that
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Figure 10. Epoch run time comparison between REM and two of
its ablations: “No POP”, and CIRIS.

POP enables REM to utilize higher latent resolutions while
incurring shorter computation times than prior token-based
approaches.

World Model Embeddings In REM,M translates obser-
vation tokens to embedding vectors using the embedding
table E learned by V . These embeddings encode the visual
information as learned by V . In contrast, IRIS maintains a
separate embedding table learned by the world model for
that purpose. Here, the results in Figure 9 provide empirical
evidence indicating that leveraging this encoded visual in-
formation leads to improved performance. In Appendix A.4,
we provide additional evidence suggesting that the world
model’s next-observation predictions are also improved.

4. Related Work
Model-based reinforcement learning (RL), with its roots
in the tabular setting (Sutton, 1991), has been a focus of
extensive research in recent decades. The deep RL agent of
(Ha & Schmidhuber, 2018) leveraged an LSTM (Hochre-
iter & Schmidhuber, 1997) sequence model with a VAE
(Kingma & Welling, 2014) to model the dynamics in visual
environments, demonstrating that successful policies can be
learned entirely from simulated data. This approach, com-
monly known as world models, was later applied to Atari
games (Kaiser et al., 2020) with the PPO (Schulman et al.,
2017) RL algorithm. Later, a series of works (Hafner et al.,
2020; 2021; 2023) proposed the Dreamer algorithms, which
are based on a recurrent state space model (RSSM) (Hafner
et al., 2019) to model dynamics. The latest DreamerV3 was
evaluated on a variety of challenging environments, pro-
viding further evidence of the promising potential of world
models. In contrast to token-based approaches, where each
token serves as a standalone sequence element, Dreamer en-
codes each frame as a vector of categorical variables, which
are processed at once by the RSSM.

Following the success of the Transformer architecture
(Vaswani et al., 2017) in language modeling (Brown et al.,
2020), and motivated by their favorable scaling properties
compared to RNNs, Transformer were recently explored in
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RL (Chen et al., 2021; Parisotto et al., 2020; Reed et al.,
2022; Shridhar et al., 2023). World model approaches also
adopted the Transformer architecture. (Micheli et al., 2023)
blazed the trail for token-based world models with IRIS,
representing agent trajectories as language-like sequences.
By treating each observation as a sequence, its Transformer-
based world model gains an explicit sub-observation at-
tention resolution. Despite IRIS’s high performance, its
imagination bottleneck results in a substantial disadvantage.

In addition to IRIS, non-token-based world models driven
by Transformers were proposed. TWM (Robine et al., 2023)
utilizes the Transformer-XL architecture (Dai et al., 2020)
and a non-uniform data sampling. STORM (Zhang et al.,
2023) proposes an efficient Transformer based world model
agent which sets state-of-the-art result for the Atari 100K
benchmark. STORM has a significantly smaller 2-layer
Transformer compared to the 10-layer models of TWM and
IRIS, demonstrating drastically reduced training times and
improved agent performance.

5. Conclusions
In this work, we presented a novel parallel observation pre-
diction (POP) mechanism augmenting Retention networks
with a dedicated forward mode to improve the efficiency
of token-based world models (TBWMs). POP effectively
solves the imagination bottleneck of TBWMs and enables
them to deal with longer observation sequences. Addition-
ally, we introduced REM, a TBWM agent equipped with
POP. REM is the first world model agent driven by the
RetNet architecture. Empirically, we demonstrated the su-
periority of REM over prior TBWMs on the Atari 100K
benchmark, rendering REM competitive with the state-of-
the-art, both in terms of agent performance and overall run
time.

Our work opens up many promising avenues for future re-
search by making TBWMs practical and cost-efficient. One
such direction could be to explore a modification of REM
where the recurrent state of the world model summarizes the
entire history of the agent. Similarly, a history-preserving
RetNet architecture should be considered for the controller
as well. Another promising avenue would be to leverage the
independent optimization of the tokenizer to enable REM
to use pretrained visual perception models in environments
where visual data is abundant, for example, the real world.
Such perceptual models could be trained at scale, and allow
REM to store only compressed observations in its replay
buffer, further improving its efficiency. Lastly, token-based
methods for video generation tasks can benefit from using
the POP mechanism for generating entire frames in parallel
conditioned on the past context. We believe that this is an
exciting avenue to explore with a potentially high impact.
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A. Appendix
A.1. Models and Hyperparameters

Tables 2 and 3 detail hyperparameters of the optimization and environment, as well as hyperparameters shared by multiple
components.

Table 2. Shared Hyperparameters

Description Symbol Value

Horizon H 10
Tokens per observation K 64
Tokenizer vocabulary size N 512

Epochs - 600
Experience collection epochs - 500
Environment steps per epoch - 200
Collection epsilon-greedy - 0.01
Eval sampling temperature - 0.5
Optimizer - AdamW
AdamW β1 - 0.9
AdamW β2 - 0.999

Frame resolution - 64× 64
Frame Skip - 4
Max no-ops (train, test) - (30, 1)
Max episode steps (train, test) - (20K, 108K)
Terminate on live loss (train, test) - (No, Yes)

Table 3. Per-Component Hyperparameters

Description Symbol Tokenizer World Model Actor-Critic

Learning rate - 0.0001 0.0002 0.0001
Batch size - 128 64 128
Gradient Clipping Threshold - 10 100 3
Start after epochs - 5 25 50
Training Steps per epoch - 200 200 100
AdamW Weight Decay - 0.01 0.05 0.01

A.1.1. TOKENIZER (V )

Tokenizer Architecture Our tokenizer is based on the implementation of VQ-GAN (Esser et al., 2021). However, we
simplified the architectures of the encoder and decoder networks. A description of the architectures of the encoder and
decoder networks can be found in table 4.

Tokenizer Learning Following IRIS (Micheli et al., 2023), our tokenizer is a VQ-VAE (van den Oord et al., 2017) based
on the implementation of (Esser et al., 2021) (without the discriminator). The training objective is given by

L(E,D, E) = ∥x−D(z)∥1 + ∥sg(E(x))− E(z)∥22 + ∥sg(E(z))− E(x)∥22 + Lperceptual(x,D(z)) (8)

where E and D are the encoder and decoder models, respectively, and sg(·) is the stop-gradient operator. The first term on
the right hand side of Equation 8 above is the reconstruction loss, the second and third terms correspond to the commitment
loss, and the last term is the perceptual loss.
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Table 4. The encoder and decoder architectures. “Conv(a,b,c)” represents a convolutional layer with kernel size a× a, stride of b and
padding c. A value of c = Asym. represents an asymmetric padding where a padding of 1 is added only to the right and bottom ends of
the image tensor. “GN” represents a GroupNorm operator with 8 groups, ϵ = 1e− 6 and learnable per-channel affine parameters. SiLU is
the Sigmoid Linear Unit activation (Hendrycks & Gimpel, 2017; Ramachandran et al., 2018). “Interpolate” uses PyTorch’s interpolate
method with scale factor of 2 and the “nearest-exact” mode.

Module Output Shape

Encoder

Input 3× 64× 64
Conv(3, 1, 1) 32× 64× 64
EncoderBlock1 64× 32× 32
EncoderBlock2 128× 16× 16
EncoderBlock3 256× 8× 8
GN 256× 8× 8
SiLU 256× 8× 8
Conv(3, 1, 1) 256× 8× 8

EncoderBlock

Input c× h× w
GN c× h× w
SiLU c× h× w
Conv(3, 2, Asym.) 2c× h

2
× w

2

Conv(3, 1, 1) 2c× h
2
× w

2

Decoder

Input 256× 8× 8
Conv(3, 1, 1) 256× 8× 8
DecoderBlock1 128× 16× 16
DecoderBlock2 64× 32× 32
DecoderBlock3 32× 64× 64
GN 32× 64× 64
SiLU 32× 64× 64
Conv(3, 1, 1) 3× 64× 64

DecoderBlock

Input c× h× w
GN c× h× w
SiLU c× h× w
Interpolate c× 2h× 2w
Conv(3, 1, 1) c

2
× 2h× 2w

Conv(3, 1, 1) c
2
× 2h× 2w

A.1.2. RETENTIVE WORLD MODEL (M)

The hyperparameters ofM are presented in Table 5.

Implementation Details We use the “Yet-Another-RetNet” RetNet implementation1, as its code is simple and convenient
while its performance remain competitive with the official implementation in terms of run time and efficiency.

Originally, the IRIS algorithm provides the world model with a single observation to make forward predictions. Our
implementation considers a context of two frames for making forward predictions.

POP Observation-Generation Modes The simpler observation generation mode presented in Section 2.3 requires two
sequential world model calls to generate the next observation. The first call consumes the previous observation-action block
to compute the recurrent state at the current time step, while the second call uses u to generate the next observation tokens.
Note that the next observation tokens sampled in the second call have not been processed by the world model at this point.
To incorporate these tokens into the recurrent state, an additional world model call is required. Here, the cost induced by the

1https://github.com/fkodom/yet-another-retnet
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Table 5. The world model hyper-parameters.

Description Symbol Value

Number of layers - 5
Number of Retention heads - 4
Embedding dimension d 256
Dropout - 0.1
RetNet feed-forward dimension - 1024
RetNet LayerNorm epsilon - 1e-6
Blocks per chunk c 3
World model context length - 2

first world model call is K + 1, while the second call costs K.

Alternatively, it is also possible to combine these two calls into one by concatenating the previous observation-action block
and u. However, to avoid having u incorporated in the recurrent state computed by this call, a modified forward call should
be used. Concretely, the resulting recurrent state should only summarize the previous observation-action block, neglecting
the suffix u. In practice, we use the backbone of the POP chunkwise forward mode (Alg. 1) for this computation. This
alternative mode induces only H sequential world model calls, while each call processes 2K + 1. Hence, this alternative
reduces the number of sequential calls while maintaining the same total cost.

In practice, the optimal mode to use depends on the configuration, model sizes, and hardware. In our configuration, we
opted for a larger batch size for the imagination phase. Hence, we found the first (simpler) mode to be slightly more efficient
in this case. However, the second mode could be more efficient in other settings.

Table 6. A comparison between POP and the “No POP” ablation in terms of their computational costs at training and their number of
sequential model forward calls at inference (imagination). For brevity, we only consider observation-prediction related costs, neglecting
costs related to the processing of action tokens. POP provides two modes of operation during imagination. Here, we consider the costs for
a single input sequence.

Algorithm Observation
Prediction Cost

World Model
Training Cost

Imagination
Sequential Calls

Imagination
Cost per Call

POP (default mode) 2K 2KH 2H K
POP (alternative mode) 2K 2KH H 2K
No POP K KH KH 1

A.1.3. CONTROLLER (C)

Actor-Critic Learning Our learning algorithm follows IRIS and Dreamer (Hafner et al., 2020; 2021; Micheli et al., 2023),
which uses λ-returns defined recursively as

Gt =

{
r̂t + γ(1− d̂t) ((1− λ)V π(ẑt+1) + λGt+1) t < H

V π(ẑH) t = H

where V π is the value network learned by the critic, and (ẑ0, a0, r̂0, d̂0, . . . , ẑH−1, aH−1, r̂H−1, d̂H−1, ẑH) is a trajectory
obtained through world model imagination.

To optimize V π , the following loss is minimized:

LV π = Eπ[

H−1∑
t=0

V π(ẑt)− sg(Gt)
2]

The policy optimization follows a simple REINFORCE (Sutton & Barto, 2018) objective, with V π used as a baseline for
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variance reduction. The objective is given by

Lπ = −Eπ[

H−1∑
t=0

log(π(at|ẑ1, a1, . . . , ẑt−1, at−1, ẑt))sg(Gt − V π(ẑt)) + αH(π(at|ẑ1, a1, . . . , ẑt−1, at−1, ẑt))]

where α The values of the hyperparameters used in our experiments are detailed in Table 7

Table 7. Actor-Critic Hyperparameters.

Description Symbol Value

Discount factor γ 0.995
λ-return λ 0.95
Entropy loss weight α 0.001

Table 8. The actor-critic observation representation architecture.

Module Output Shape

Input 256× 8× 8
Conv(3, 1, 1) 128× 8× 8
SiLU 128× 8× 8
Conv(3, 1, 1) 64× 8× 8
SiLU 64× 8× 8
Flatten 4096
Linear 512
SiLU 512

Agent Architecture The architecture of the agent module comprises of a shared backbone and two linear maps for the
actor and critic heads, respectively. The shared backbone first maps the input to a latent representation which takes the
form of a 512-dimensional vector. For action token inputs, a learned embedding table is used to map the token to its latent
representation. For observation inputs, the K tokens are first mapped to their corresponding code vectors learned by the
tokenizer and reshaped according to their original spatial order. Then, the resulting tensor is processed by a convolutional
neural network followed by a fully connected network. The architecture details of these networks are presented in Table
8. Lastly, a long-short term memory (LSTM) (Hochreiter & Schmidhuber, 1997) network of dimension 512 maps the
processed input vector to an history-dependant latent vector, which serves as the output of the shared backbone.

Action Dependant Actor Critic In the IRIS algorithm, the actor and critic networks share an LSTM (Hochreiter &
Schmidhuber, 1997) backbone and model π(at|o≤t), V

π(o≤t). Notice that the output of the policy models the distribution
of actions at step t. Importantly, the model has no information about the sampled actions. In REM, the input of C contains
the sampled actions, i.e., our algorithm models π(at|ẑ1, a1, . . . , ẑt−1, at−1, ẑt), V

π(ẑ1, a1, . . . , ẑt−1, at−1, ẑt).
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A.2. REM Algorithm

Here, we present a pseudo-code of REM. The high-level loop is presented in Algorithm 3, while the pseudo-codes of the
training of each component are presented in algorithms 4-7.

Algorithm 3 REM Training Overview
Input:
repeat
collect experience() (Alg. 4)
train V() (Alg. 5)
train M() (Alg. 6)
train C() (Alg. 7)

until stopping criterion is met

Algorithm 4 collect experience

Input:
o1 ← env.reset()
for t = 1 to T do
zt ← VEnc(ot)
at ∼ π(at|z1, a1, . . . , zt−1, at−1, zt)
ot+1, rt, dt ← env.step(at)
if dt = 1 then
ot+1 ← env.reset()

end if
end for
replay buffer.store({ot, at, rt, dt}Tt=1)

Algorithm 5 train V
o← replay buffer.sample obs()
z← VEnc(o)
ô← VDec(z)
Compute loss (Eqn. 8)
Update V
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Algorithm 6 train M

{ot, at, rt, dt}Ht=1 ← replay buffer.sample()
for t = 1 to H do
zt,ht ← VEnc(ot)
at ←M.embed action(at)

end for
X← (h1,a1, . . . ,hH ,aH)
S1
0, . . . ,S

L
0 ← 0, . . . , 0

for i = 1 to ⌈Hc ⌉ do
Y[i], {Sl

i}Ll=1 ← POP forward(X[i], {Sl
[i−1]}Ll=1) (Alg. 1)

end for
(ẑ1, . . . , ẑH)←M.obs pred head(Y[:, :-1])
(r̂1, d̂1, . . . , r̂H , d̂H)←M.reward done head(Y[:, -1])
Compute Losses and updateM

Algorithm 7 train C

{ot, at, rt, dt}Ht=1 ← replay buffer.sample()
for t = 1 to H do
zt,ht ← VEnc(ot)

end for
S← 0
c← 1
Initialize context τ ← (z1, a1, . . . , zH)
for t′ = H + 1 to 2H do
at′ ∼ π(at′ |z1, a1, . . . , zt′)
Vt′ ← V (z1, a1, . . . , zt′)
Y,S←M.retnet chunkwise forward((τ, at′),S, t′)
rt′ , dt′ ∼M.reward done head(Y[-1])
Y, ←M.retnet chunkwise forward(u,S, t′ + 1)
zt′+1 ∼M.obs pred head(Y[:-1])
τ ← zt′+1

end for
Update π, V (detailed in Section A.1.3)
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A.3. Retentive Networks

In this section, we give detailed information regarding the RetNet architecture for the completeness of this paper. For
convenience reasons, we defer to the notations of (Sun et al., 2023), rather than the notation presented in

(Sun et al., 2023) is a recent alternative to Transformers (Vaswani et al., 2017). It is highly parallelizable, has lower cost
inference than Transformers, and is empirically claimed to perform competitively on language modelling tasks. The RetNet
model is a stack of L identical layers. Here, we denote the output of the l-th layer by Yl. Given an embedded input sequence
X = Y0 ∈ Rm×d of m d-dimensional vectors, each RetNet layer can be described as

Xl = MSR(LN(Yl)) +Yl (9)

Yl+1 = FFN(LN(Xl)) +Xl (10)

where LN(·) is layer-norm (Ba et al., 2016), FFN(X) = gelu(XW1)W2 is a feed-forward network (FFN), and MSR(·)
is a multi-scale retention (MSR) module with multiple Retention heads. The output of the RetNet model is given by
RetNet(Y0) = YL.

As presented in the main text, the chunkwise equations are

S[i] = (K[i] ⊙ ζ)⊤V[i] + ηBS[i−1]

Y[i] =
(
Q[i]K

⊤
[i] ⊙D

)
V[i] + (Q[i]S[i−1])⊙ ξ

where Q = (XWQ)⊙Θ, K = (XWK)⊙ Θ̄, V = XWV , and ξ ∈ RB×d is a matrix with ξij = ηi+1. Here, Θn = einθ,

Dn,m =

{
ηn−m n ≥ m

0 n < m
, and θ, η ∈ Rd,

where η is an exponential decay factor, and the matrices Θ, Θ̄ ∈ Cm×d are for relative position encoding, and D ∈ RB×B

combines an auto-regressive mask with the temporal decay factor η.

In each RetNet layer, h = d
dhead

heads are used, where dhead is the dimension of each head. Head Retention head uses
different parameters WK ,WQ,WV . Additionally, Retention head uses a different value of η. Among different RetNet
layers, the values of η are fixed. Each layer is defined as follows:

η = 1− 2−5−arange(0,h) ∈ Rh

headi = Retention(X, ηi)

Y = GroupNormh(Concat(head1, . . . , headh))
MSR(X) = (swish(XWG)⊙ Y )WO

where WG,WO ∈ Rd×d are learnable parameters.
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A.4. Additional Results

In addition to comparing the run times of REM and IRIS, we also conducted a comparison to an improved version of IRIS
that uses REM’s configurations. These results are presented in Figure 11. These results clearly show the effectiveness of our
novel POP mechanism.
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Figure 11. A comparison between the run times of REM and an improved version of IRIS that uses REM’s configurations (detailed in
A.1) during the world model training and imagination phases (actor-critic training).

The probability of improvement results from our Atari 100K benchmark experiment are presented in Figure 12. Importantly,
REM outperforms previous token-based methods, namely, IRIS, while competitive with all baselines except STORM on this
metric. We highlight that our main contributions address the computational bottleneck of token-based methods, and thus we
focus on comparing REM to these approaches.
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Figure 12. The probability of improvement (Agarwal et al., 2021) shows the probability of REM outperforming each baseline on a
randomly selected game from the 26 games of Atari 100K with 95% stratified bootstrap confidence intervals.

The complete set of ablation results are presented in Figure 13 and Table 9. The performance profiles for the ablations are
presented in Figure 14.

Ablations World Model Observation Prediction Losses To investigate the contribution of each ablation to the quality of
world model observation predictions, we measured the corresponding loss values during training and during test episodes
with a frequency of 50 epochs. The results are presented in Figure 15, including results for each of the 8 games used in our
ablation studies.
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Figure 13. Aggregated metrics with 95% stratified bootstrap confidence intervals of the mean, median, and inter-quantile mean (IQM)
human-normalized scores and optimality gap (Agarwal et al., 2021) for each ablation on a subset of 8 games from the Atari 100K
benchmark. The results are based on 5 random seeds.
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Figure 14. The Performance profiles of the ablations. For every human-normalized score value (x axis), each algorithm’s curve shows the
fraction of its runs with score grater than the given score value. The shaded area indicates pointwise 95% confidence bands based on
percentile bootstrap with stratified sampling (Agarwal et al., 2021). The results of each algorithm and each game from the subset of 8
Atari games used in our ablations are based on 5 random seeds

Table 9. Mean agent returns on a subset of 8 games from the Atari 100k benchmark followed by averaged human-normalized performance
metrics. Each game score is computed as the average of 5 runs with different seeds, where the score of each run is computed as the
average over 100 episodes sampled at the end of training. The best score on each game is indicated with bold face.

Game Random Human REM IRIS No POP Separate
M emb.

4× 4
tokenizer CIRIS

C w/o
action inputs

Assault 222.4 742.0 1764.2 1524.4 1472.2 1269.2 1288.9 1221.5 1498.5
Asterix 210.0 8503.3 1637.5 853.6 1603.4 1185.9 909.6 1376.4 1656.3
ChopperCommand 811.0 7387.8 2561.2 1565.0 1848.0 1928.3 1958.9 2517.6 2302.7
CrazyClimber 10780.5 35829.4 76547.6 59324.2 62964.8 74791.3 57814.7 30952.7 42441.2
DemonAttack 152.1 1971.0 5738.6 2034.4 12316.0 4389.9 3863.3 5159.0 5827.0
Gopher 257.6 2412.5 5452.4 2236.1 5338.4 3764.2 2174.9 2891.2 4365.3
Krull 1598.0 2665.5 4017.7 6616.4 5138.6 5779.9 4612.8 3866.2 3659.6
RoadRunner 11.5 7845.0 14060.2 9614.6 13161.6 11723.5 6161.7 11692.9 11692.9

#Superhuman (↑) 0 N/A 6 5 6 6 4 5 6
Mean (↑) 0.000 1.000 1.947 1.564 2.357 1.778 1.341 1.340 1.571
Median (↑) 0.000 1.000 2.339 1.130 2.221 1.821 1.384 1.357 1.699
IQM (↑) 0.000 1.000 2.201 1.191 2.068 1.794 1.026 1.234 1.535
Optimality Gap (↓) 1.000 0.000 0.198 0.298 0.209 0.214 0.289 0.261 0.208
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Figure 15. Comparison between the world model observation prediction loss of REM and two of its ablations for each of the 8 games
considered in our ablations. For each algorithm, the mean and standard deviation of the training and evaluation losses are shown. The
observation prediction loss is computed as the average observation token cross-entropy loss. Note that the evaluation frequency is 50
epochs.

22



Improving Token-Based World Models with Parallel Observation Prediction

A.5. Setup in Freeway

For a fair comparison, we followed the actor-critic configurations of IRIS (Micheli et al., 2023) for Freeway. Specifically,
the sampling temperature of the agent is modified from 1 to 0.01, a heuristic that guides the agent towards non-zero reward
trajectories. We highlight that different methods use other mechanisms such as epsilon-greedy schedules and “argmax”
action selection policies to overcome this exploration challenge (Micheli et al., 2023).
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