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Abstract
Data assimilation for nonlinear state space mod-
els (SSMs) is inherently challenging due to non-
Gaussian posteriors. We propose Deep Bayesian
Filtering (DBF), a novel approach to data assimi-
lation in nonlinear SSMs. DBF introduces latent
variables ht in addition to physical variables zt,
ensuring Gaussian posteriors by (i) constraining
state transitions in the latent space to be linear and
(ii) learning a Gaussian inverse observation oper-
ator r(ht|ot). This structured posterior design en-
ables analytical recursive computation, avoiding
the accumulation of Monte Carlo sampling errors
over time steps. DBF optimizes these operators
and other latent SSM parameters by maximizing
the evidence lower bound. Experiments demon-
strate that DBF outperforms existing methods in
scenarios with highly non-Gaussian posteriors.

1. Introduction
Data assimilation (DA) is a crucial technique across various
scientific domains. Its objective is to estimate the current
state and the trajectory of a system by combining partially
informative observations with a dynamics model. Specifi-
cally, given a series of observations T time steps o1:T , the
goal is to infer the posterior distribution of the system’s
physical variables zt: p(zt|o1:t). DA has been widely ap-
plied in fields such as weather forecasting (Hunt et al., 2007;
Lorenc, 2003; Andrychowicz et al., 2023), ocean research
analysis (Ohishi et al., 2024), sea surface temperature pre-
diction (Larsen et al., 2007), seismic wave analysis (Alfonzo
& Oliver, 2020), multi-sensor fusion localization (Bach &
Ghil, 2023), and visual object tracking (Awal et al., 2023).

A key challenge in DA arises from the non-Gaussian nature
of the posterior distributions p(zt|o1:t), which results from
the inherent nonlinearity in both the system dynamics and
observation models. Despite this, many operational DA
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systems, such as those used in weather forecasting, rely on
methods like the ensemble Kalman Filter (EnKF) (Evensen,
1994; Bishop et al., 2001) for sequential state filtering (i.e.,
p(zt|o1:t)) and the four-dimensional variational method (4D-
Var) for retrospective state analysis (i.e., p(zt|o1:T ), t < T ).
These approaches assume Gaussianity in their test distri-
butions q(zt|o1:t) or q(zt|o1:T ), a simplification driven by
computational constraints. While exact methods such as
bootstrap Particle Filters (PF) or sequential Monte Carlo
(SMC) (Chopin & Papaspiliopoulos, 2020; Daum & Huang,
2007; Hu & van Leeuwen, 2021) could compute the true
posterior, their performance degrades significantly when the
number of particles is insufficient (Beskos et al., 2014). This
issue is exacerbated in high-dimensional systems, making
SMC approaches impractical for many physical problems.

To address these limitations, we propose a novel variational
inference approach called Deep Bayesian Filtering (DBF)
for posterior estimation. Our strategy consists of two main
components: (i) constraining the test distribution to remain
Gaussian to ensure computational tractability, and, in cases
where the original dynamics are nonlinear, (ii) leveraging a
nonlinear mapping to enhance the expressive capability of
the test distribution.

Linear dynamics When the system’s dynamics operator
in p(zt+1|zt) is linear, DBF introduces the concept of the in-
verse observation operator (IOO; see also Frerix et al. 2021)
to construct Gaussian test distributions q(zt|o1:t). The IOO
and any unknown system parameters are trained to minimize
the Kullback-Leibler divergence between the test distribu-
tion q(zt|o1:t) and the true posterior p(zt|o1:t). The training
maximizes the likelihood of the observed time series and
therefore does not require teacher signals zt.

Nonlinear dynamics In the more common case of non-
linear dynamics, DBF operates in a latent space, assuming
Gaussianity in the latent variables ht. The original phys-
ical variables are recovered through a nonlinear mapping
function ϕ, implemented via neural networks (NNs). This
nonlinear mapping allows for a more flexible representation
of the test distribution q(zt|o1:t). The IOO and other pa-
rameters are trained in a supervised manner (i.e., zt is used
during training).

For state space models (SSMs) with nonlinear dynamics,
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DBF functions as a variational autoencoder (VAE) that ad-
heres to the Markov property, expressing the posterior distri-
butions of latent variables ht within a Bayesian framework.
As a subclass of dynamical VAEs (DVAEs, Girin et al. 2021
for a review), DBF leverages the VAE structure to model
time-series data while distinguishing itself through its pos-
terior design. Unlike other DVAEs, where Monte Carlo
sampling is required for inference (see Sec. 2.6.1), DBF
recursively computes posteriors via closed-form analytical
expressions, eliminating the need for sampling during the
inference. Additionally, DBF can be interpreted as learning
the Koopman operator (Koopman, 1931) using NNs. The
discovery of such latent spaces and operators through ma-
chine learning has been extensively studied (Takeishi et al.,
2017; Lusch et al., 2018; Azencot et al., 2020) and will be
experimentally validated through the handling of nonlinear
filtering tasks involving chaotic dynamics.

In summary, our key contributions are as follows:

• DBF offers a novel ‘Bayes-Faithful’ approximation
for the posterior within the dynamical VAE, following
the inference structure of an SSM with the Markov
property.

• For systems with linear dynamics, DBF extends the
Kalman Filter (KF) to handle nonlinear observations
through learnable NNs. The training process enables
the model to infer unknown system parameters directly
from data (see Sec. 3.1).

• For nonlinear dynamics, the posterior is maintained
as Gaussian to ensure computational tractability while
incorporating nonlinear transformations, allowing rep-
resentation of a wide class of posterior distributions
(see Sec. 3.2 and 3.3).

• As a generative model, DBF estimates the uncertainty
of the physical variables zt, in contrast to 3D- and 4D-
Var, which yield only point estimates (see Sec. 3.2 and
Fig. 3).

• The linear constraint on dynamics stabilizes the train-
ing process, which is known to be unstable in standard
recurrent NNs (see Sec. 3.3 and Fig. 6).

DBF has demonstrated superior performance over classical
DA algorithms and latent assimilation methods in scenarios
with highly non-Gaussian posteriors.

2. Method
2.1. Physical Variable Inference in a State-Space Model

A physical system is defined by variables zt, with its evo-
lution described by the dynamics model p(zt+1|zt) =

N (zt+1; f(zt), Q), where N (x|µ,Σ) denotes a Gaussian
whose mean and covariance are µ and Σ. The nonlinear
function f is the dynamics operator and Q is the system co-
variance. The Markov property holds, as zt+1 depends only
on zt. An observation model p(ot|zt) = N (ot;h(zt), R)
relates observations to physical variables via the observation
operator h and covariance R. The objective of sequential
DA is to compute the posterior of zt given o1:t.

2.2. KF for Linear Dynamics, Linear Observations

In the KF, the dynamics and observation models are both
linear Gaussian. Given that the dynamics and observation
operators f, h are linear, we can represent them using matri-
ces A and C, respectively. All matrices (A,C,Q, and R) are
constant. The filter distribution p(zt|o1:t) remains Gaussian,
provided that the initial distribution p(z1) is Gaussian. We
can recursively compute the posterior parameters (means µt

and covariance matrices Σt) using the following equations:

µt = Σt(AΣt−1A
T +Q)−1Aµt−1

+Kt(ot −HAµt−1), (1)
Σ−1

t = (AΣt−1A
T +Q)−1 +HR−1HT , (2)

where Kt = (AΣt−1A
T+Q)HT (H(AΣt−1A

T+Q)HT+
R−1)−1 is the Kalman Gain.

2.3. DBF for Linear Dynamics, Nonlinear Observations

In this scenario, Gaussianity of the test distribution is lost
during the KF update step. We introduce an inverse obser-
vation operator (IOO) r(zt|ot) (see also Frerix et al. 2021):

p(zt|o1:t) ∝
r(zt|ot)
ρ(zt)

p(zt|o1:t−1), (3)

where r(zt|ot) = p(ot|zt)ρ(zt)∫
p(ot|zt)ρ(zt)dzt and ρ(zt) is a prior

virtually introduced for the IOO. By approximating both
the IOO and the virtual prior as Gaussians, r(zt|ot) =
N (fθ(ot), Gθ(ot)) and ρ(zt) = N (m,V ), respectively, the
posterior q(zt|o1:t) can be analytically computed as a Gaus-
sian, where the mean µt and covariance Σt are given as:

µt = Σt(AΣt−1A
T +Q)−1Aµt−1

+Gθ(ot)
−1fθ(ot)− V −1m, (4)

Σ−1
t = (AΣt−1A

T +Q)−1 +Gθ(ot)
−1 − V −1,(5)

where fθ(ot) and Gθ(ot) are NNs with parameters θ, and
m and V are constants set to m = 0 and V = 108I . These
values bias the NNs’ outputs without affecting performance.
The initial distribution q(z1) is taken to be a Gaussian with
µ1 = 0 and Σ1 = 100I . With the Gaussian IOO r(zt|ot)
in place, the recursive update in Eqs. 4 and 5 remains fully
analytic.

The recursive formula for the exact posterior (Equation 3)
requires no approximation. Thus, DBF computes the exact
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Figure 1. Panel (a) shows the graphical model for the SSM as-
sumed for SSM with nonlinear dynamics. Panel (b) shows the
inference structure of our methodology for SSM with nonlinear
dynamics.

posterior when the true IOO rtrue(zt|ot) is Gaussian, i.e.,
the SSM is a Linear-Gaussian State Space model (LGSSM).
In that case, the posterior update formula agrees with the KF
(see Equations 1, 2 and 4, 5). The key difference is that non-
linear functions are applied to both the mean, fθ(ot), and the
covariance, Gθ(ot). In the KF, fθ(ot) is linear, and Gθ(ot)
is a constant matrix (see Equations 1 and 2). Gθ(ot)’s depen-
dence on observations allows flexible adjustment of the new
observation’s impact on state estimation. The importance of
adjusting the internal state updates based on observations
has also been discussed in recent SSM-based approaches
(Gu & Dao, 2023).

2.4. DBF for Nonlinear Dynamics, Linear/Nonlinear
Observations

In this scenario, the Gaussianity of the test distribution is lost
during the predict step, making it impossible to apply the
original dynamics over the physical variables zt. Therefore,
we introduce a new set of latent variables ht and assume a
dynamics model over ht: p(ht+1|ht) = N (ht+1|Aht, Q)
(see panel (b) in Fig. 1). The IOO maps observations into
the latent variables ht: r(ht|ot). The recursive formula
follows Equations 4 and 5. To retrieve the distribution of
the original physical variables zt, we introduce an emission
model p(zt|ht) = N (zt;ϕ(ht), R), where ϕ is represented
by a NN. By marginalizing over ht with this emission model,
a trained DBF can generate samples of zt that follow the
test distribution q(zt|o1:t) given observations o1:t.

Although the dynamics operator A for the latent variables ht

is linear, it can express any nonlinear dynamics if the latent
space is sufficiently high-dimensional. The Koopman opera-
tor (Koopman, 1931) provides a framework for representing
nonlinear systems by mapping observables—functions of
the system’s state—into a higher-dimensional space where
the dynamics are linear. For a system zt+1 = f(zt), the
Koopman operator K is a linear operator acting on a set

of observables g(z), such that Kg(zt) = g(f(zt)). This
reformulates the system as ht+1 = Aht in the latent space,
where A is the dynamics matrix learned by DBF. While the
physical dynamics f(z) are nonlinear, the Koopman oper-
ator ensures the existence of an embedding that linearizes
the dynamics, enabling recursive computation of test distri-
butions. Discovering such embeddings in finite dimensions
has been widely studied (Takeishi et al., 2017; Lusch et al.,
2018; Azencot et al., 2020). In high-dimensional simula-
tions, the true degrees of freedom are often far fewer than
the simulated variables, making surrogate modeling with
the Koopman operator a promising approach to reducing
computational costs.

2.5. Training

When assimilating in the physical space (i.e., when the
dynamics are linear), we train the IOO (i.e., fθ and Gθ) by
optimizing the evidence lower bound (ELBO) without using
the physical variables zt in data:

log p(o1:T ) =

T∑
t=1

log p(ot|o1:t−1) ≥ −LELBO,

LELBO = −
T∑

t=1

∫
q(zt|o1:t) log p(ot|zt)dzt

+KL[q(zt|o1:t)||q(zt|o1:t−1)], (6)

where KL[p||q] denotes the Kullback-Leibler divergence
between distributions p and q (see Sec. A.1 in the appendix
for the derivation). Here, q(z1|o1:0) = q(z1) is the initial
distribution. If the SSM contains any unknown parameters,
we can train these parameters as well.

For SSMs with nonlinear or unknown dynamics, we have
two approaches:

Strategy 1 Pretrain the Koopman operator, which consists
of the nonlinear mapping from zt to ht, the linear dynamics
between ht and ht+1 represented by matrix A, and the re-
verse nonlinear mapping from ht to zt denoted by ϕ. With
these components (A and ϕ) of the Koopman operator, the
method designed for linear dynamics can be applied. For
pretraining, we require samples of zt or the SSM for the
physical variables to generate these samples. Pairs of zt
and ot are not necessary, as the training for the linear dy-
namics (A and ϕ) and the IOO (r(ht|ot)) can be performed
separately.

Strategy 2 Train all components (the matrix A, the
stochastic mapping p(zt|ht) = N (zt;ϕ(ht),diag[σ

2]), and
the IOO) simultaneously. In this case, samples of (zt, ot)
pairs or the SSM for both physical and observation vari-
ables to generate these sample pairs are required during
training. Note that the physical variables zt are not required
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for inference, ensuring that real-time applications are not
hindered by the need for zt during training. The parameters
are optimized by maximizing a joint ELBO, LELBO,joint,
via supervised training:

log p(o1:T , z1:T ) =

T∑
t=1

log p(ot, zt|o1:t−1, z1:t−1)

≥ −LELBO,joint,

LELBO,joint = −
∑
t

∫
q(ht|o1:t) log p(zt|ht)dht

+KL[q(ht|o1:t)||q(ht|o1:t−1)]. (7)

(See Sec. A.2 in the appendix for the derivation). We have
replaced q(ht|o1:t, z1:t) with its special case q(ht|o1:t) as
our objective is to give the best estimate of zt given obser-
vations o1:t.

Computational scalability. For nonlinear dynamics we
parameterize the transition matrix A as a 2 × 2 block-
diagonal operator (Eq. 17, see Appendix C.1). This fac-
torization decomposes each Kalman-style update into in-
dependent blocks, so the arithmetic cost per time step is
O(dh) in the latent dimension dh and grows only linearly
with the sequence length T . Such linear-in-dh behavior is
a key advantage of DBF in the high-dimensional regimes
typical of large-scale physical models.

2.6. Related Works

2.6.1. DYNAMICAL VARIATIONAL AUTOENCODERS

DVAEs (see Girin et al. 2021 for a review) are a broad class
of models incorporating time-series architectures into VAEs,
with DBF as a specialized subcategory. Key differences in-
clude (i) the posterior design and realization of the dynamics
step, and (ii) the loss function.

posterior design Our strategy for the test distribution is
to incorporate an appropriate architecture that reflects the
Markov property in the time dimension of the test distri-
bution. The IOO, r(ht|ot), and the linear dynamics model
serve as key instruments in constructing the test posterior
distributions. A distinguishing feature of our methodology
is that each component’s role is defined with respect to the
Markov property of the state-space model (SSM) and is
clearly differentiated from other components involved in
posterior construction. For example, the IOO influences
only the update step and does not affect the prediction step.
We refer to this methodology as ”Bayes-Faithful” due to its
tailored design for SSMs that exhibit the Markov property.

In contrast, the test posterior distributions in DVAEs are
constructed using RNNs. The complexity of the transition
model prevents the analytical computation of latent vari-
ables across time steps. As a result, these values can only

be estimated via Monte Carlo sampling. Consequently, dur-
ing inference, successive Monte Carlo sampling (“cascade
trick”; Girin et al. 2021) becomes unavoidable.

loss function DBF takes the ELBO from factorized den-
sity log p(ot|o1:t−1) in log p(o1:T ) =

∑
t log p(ot|o1:t−1):

log p(o1:T ) ≥
T∑

t=1

(Eq(ht|o1:t)[log p(ot|ht)]

−KL[q(ht|o1:t)|q(ht|o1:t−1)]). (8)

On the other hand, DVAEs take the ELBO from probability
density with all the observations at once:

log p(o1:T ) ≥ Eq(h1:T |o1:T )[log p(h1:T , o1:T )

− log q(h1:T |o1:T )]. (9)

Therefore, DBF seeks for the filtered distributions
q(ht|o1:t) whereas DVAEs model the smoother distribu-
tions q(ht|o1:T ). Again, for DVAEs, to evaluate the ex-
pected values in Equation 9, we need to undergo successive
Monte-Carlo sampling over T variables (h1:T ) (see also
Sec. A.3).

Assuming linear Gaussian dynamics and a Gaussian IOO,
DBF allows for the analytical integration of q(ht|o1:t−1),
resulting in a structured encoder. This structured posterior
enables the recursive computation of the filtered distribution
q(ht|o1:t) without relying on Monte Carlo sampling, setting
it apart from other DVAEs. By constraining the dynam-
ics to be linear, DBF ensures exact integration without the
accumulation of Monte Carlo sampling errors across time
steps.

Moreover, the linear assumption helps DBF mitigate the
instability issues commonly faced when training standard
RNNs. The linearity of the latent dynamics is also assumed
in normalizing Kalman Filter (de Bézenac et al., 2020) and
Kalman variational auto-encoder (Fraccaro et al., 2017).

2.6.2. KF-BASED METHODS

Various approaches have been explored to address LGSSM
limitations, including linearizing the model via first-order
approximations like the extended Kalman Filter (EKF), ap-
proximating populations with a Gaussian distribution in the
ensemble Kalman Filter (EnKF; Evensen 1994), and us-
ing NNs to approximate the Kalman gain (Revach et al.,
2022). EKFNet (Xu & Niu, 2024) assumes EKF for the con-
struction of test distribution and train the SSM parameters.
Auto-EnKF (Chen et al., 2022; 2023) leverages EnKF and
train the model by maximizing the log model evidence. The
EnKF and its variants (e.g., ETKF; Bishop et al. 2001) are
commonly used in real-time data assimilation for weather
forecasting. However, these methods rely on the KF’s poste-
rior update equations, limiting the expressivity of the distri-
butions. Additionally, computations for covariance matrices
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become challenging in high-dimensional spaces, requiring
specialized techniques for computational efficiency.

2.6.3. SAMPLING-BASED METHODS

The Particle Filter is a popular method for assimilating any
posterior. However, achieving adequate particle density in
high-dimensional state spaces poses significant challenges.
Insufficient density of particles leads to particle degeneracy,
where few particles explain the observed data (Beskos et al.,
2014). In contrast, DBF directly learns to position density
through the IOO, offering advantages for high-dimensional
tasks. For the performance comparison of PF and DBF
in terms of accuracy-computation trade-off, see Sec. E in
the Appendix. The Particle Flow Filter (PFF; Daum &
Huang 2007; Hu & van Leeuwen 2021) addresses particle
degeneracy by moving particles according to gradient flow
and effectively scales to nonlinear SSMs with hidden state
dimensions up to 1000 (Hu & van Leeuwen, 2021).

2.6.4. APPROXIMATE MAP ESTIMATION METHOD

MAP estimation is used to identify the high-density
point of the posterior in high-dimensional space, such
as in weather forecasting (Lorenc, 2003; Frerix et al.,
2021). Even if the computation of the posterior
p(ht|o1:t) is intractable, we can optimize log p(ht|o1:t) =
log p(ot|ht) + log p(ht|o1:t−1) if we can describe p(ot|ht)
and p(ht|o1:t−1) =

∫
p(ht|ht−1)p(ht−1|o1:t−1)dht−1 ex-

plicitly. In practice, we cannot access p(ht−1|o1:t−1) and
therefore the integral

∫
p(ht|ht−1)p(ht−1|o1:t−1)dht−1, so

we only compute the mean. The downside is that sequen-
tial computation of the covariance matrix of p(ht|o1:t−1) is
impossible.

2.6.5. NN-BASED PDE SURROGATE

Recently, there have been attempts to approximate partial
differential equations (PDEs) using NNs. In this study, we
experimented with one of the latest methods, PDE-refiner
(Lippe et al., 2023), but its performance was poor and
was excluded from the experiments. We suspect this is
because PDE-refiner, designed for constructing PDE surro-
gates, does not handle noisy observations well, making it
sensitive to noise. However, we confirmed that it performs
well under noiseless conditions.

3. Experiments
We evaluate the performance of DBF on three tasks: a linear
dynamics problem (moving MNIST) and two nonlinear
dynamics problems (double pendulum and Lorenz96). An
additional experiment on linear dynamics (object tracking)
is presented in Sec. B of the appendix. The code is available

on Github1.

Linear Dynamics: Moving MNIST In the moving
MNIST task, the goal is to identify the images, positions,
and velocities of two handwritten digits as they move within
the observed frames. While the dynamics of these digit
images and their observation processes are provided, the
actual images, positions, and velocities are not available,
making supervised learning impossible.

Nonlinear Dynamics: Double Pendulum and Lorenz96
For nonlinear dynamics problems, such as the double pen-
dulum and Lorenz96, DBF constructs a new latent space
in addition to the original physical space. Here, we took
Strategy 2 in Sec.2.5 for the training: we simultaneously
train NNs for the IOO, nonlinear observation operator ϕ,
the dynamics matrix A, and the emission model’s standard
deviation. We compare the performance of DBF with the
classical DA algorithms (EnKF, ETKF, PF), state-of-the-art
assimilation methodologies (PFF Daum & Huang 2007; Hu
& van Leeuwen 2021, KalmanNet Revach et al. 2022), and
DVAE-based approaches (deep Kalman Filter; DKF, Krish-
nan et al. 2015; 2016, variational recurrent neural network;
VRNN, Chung et al. 2015, and stochastic recurrent neu-
ral network; SRNN, Fraccaro et al. 2016). DBF and other
DVAEs are trained by optimizing the evidence lower bound
(ELBO), as described in Sec. 2.5.

For all experiments, we generate random initial conditions
and evolve them using the dynamics. Synthetic observations
are produced by applying the observation operator with ad-
ditive noise. Noise levels, observation operators, and further
details are given in Sec. C.1, C.2, C.3, and C.4. Sec. C also
provides computationally efficient parametrization of the
latent dynamics matrix.

3.1. Linear dynamics: Two-body Moving MNIST

This experiment demonstrates DBF’s ability to handle linear
dynamics with unknown observation operator parameters.
The dataset consists of 2D figures containing two embed-
ded images moving at constant speeds and reflecting off
frame edges. The system state is defined by the positions
and velocities of the images: zt = (xt, yt, vx,t, vy,t), with
dynamics governed by a block-diagonal translation matrix
Atr. Reflection is modeled using a nonlinear observation
operator (Sec. C.5). Observations are corrupted by Gaussian
noise (σ = 50, where the original pixel values range from 0
to 255). See panel (a) of Fig. 2 for an example of the data.

The goal is to show that DBF tracks linear dynamics while
estimating unknown system parameters. DBF learns the
pixel values of the images from noisy observations while
maintaining consistency with physical motion. Classical

1https://github.com/pfnet-research/deep-bayesian-filter

5



DBF for Bayes-Faithful DA

Table 1. The success rates and RMSE of the four methodologies
for the two-body moving MNIST problem.

Method Success rate RMSE(pos) RMSE(vel)
DBF 100% (50/50) 0.39 ± 0.027 0.45 ± 0.042
EnKF 0% (0/50) 6.3 ± 1.1 4.4 ± 2.2
ETKF 0% (0/50) 5.7 ± 1.4 6.5 ± 8.4

PF 0% (0/50) 4.8 ± 0.7 1.4 ± 0.23

DA methods (EnKF, ETKF, PF) were adapted to infer these
parameters by treating them as physical dimensions, but
they fail due to high observation noise and non-Gaussianity.
KalmanNet could not train due to the high observation di-
mensions (x2

dim = (44 × 44)2): even with the batch size
of one, the training fails. While DVAE generates latent
variables, they are different from the state variables of the
original SSM: therefore, they cannot infer the position or
velocity from those images.

Fig. 2 summarizes the experiment. Panel (a) shows an ex-
ample from the test set, illustrating the challenges posed by
strong noise and overlapping images. Panel (b) presents the
DBF learning process. In Table 1, we compare the success
rates of DBF against model-based approaches (EnKF, ETKF,
PF). We define success as achieving a root-mean-square er-
ror (RMSE) of less than 1.0 for both position (x1, y1, x2, y2)
and velocity (vx1

, vy1
, vx2

, vy2
) of the two digits over the

final ten steps (sub-pixel accuracy—an error no larger than
1/44 ≈ 2.3% of the 44 × 44 frame). DBF successfully
performs assimilation without explicit knowledge of the im-
ages, while all the other model-based approaches fail. The
KF-inspired approaches (EnKF, ETKF) failed because of
very strong non-Gaussianity in the observation process and
the high system dimension. Similarly, PF underperformed
because the number of particles (10,000) was insufficient
for the problem dimension (zdim = 8 and two digits images
2× 28× 28 = 1,568). Figures for visualizing the assimila-
tion results for all the algorithms are given in the appendix
(Fig. 13).

Panel (b) also illustrates DBF’s parameter updates. Initially,
DBF assumes random shapes, identifying and refining the
images over iterations. By the end of the training, DBF ac-
curately estimates observation model parameters, including
positions, crucial for reflecting behavior.

3.2. Nonlinear Dynamics 1: Double Pendulum

This section presents our experiments with a double pendu-
lum system, selected for its nonlinear and chaotic behavior.
The pendulum consists of two 1 kg masses, P1 and P2, con-
nected by two 1 meter bars, B1 and B2. One end of the bar
B1 is fixed at the origin (“O”), with the other end attached
to P1. Mass P2 is connected to P1 via bar B2. A schematic

t=0 t=4 t=8

t=12 t=16 t=19

(a)
iter 0 iter 300 iter 1000 final

(b)

Figure 2. Figures from the two-body Moving MNIST experiments.
Panel (a) displays examples of the observation data. Panel (b)
illustrates the evolution of the observation model parameters (the
embedded images) during training.
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Figure 3. A schematic figure (panel a) and results for double pen-
dulum experiments. Panel (b) shows the RMSE of angle velocities
(averaged over ω1 and ω2) over time steps. Panels (c) and (d) show
example histograms for normalized errors in DBF and ETKF sam-
ples compared against the unit Gaussian N (x;µ = 0, σ2 = 1).

of the setup is shown in panel (a) of Fig. 3.

We use the angles θ1 and θ2, and the two angular velocities,
ω1 and ω2, as target physical variables. The latent dimension
for DBF, VRNN, SRNN, and DKF is set to 50 (for the choice
of the latent dimensions, refer to Sec. E.1). Observation data
consists of the two-dimensional spatial positions of masses
P1 and P2, corrupted by Gaussian noise. The observation
operator combines trigonometric functions for θ1 and θ2
which are highly nonlinear. Experiments are conducted
with noise levels of σ = 0.1, 0.3, and 0.5 [m], with a time
step of 0.03 [s] between observations. In the emission model
p(zt|ht), we assume von Mises distributions for θ1 and θ2,
while ω1 and ω2 follow Gaussians.

Table 2 presents the RMSE between the physical variables
and the mean of the filtered distribution. For both the angles
θ and angle velocities ω, we compute the averages of the two
variables across two pendulums. Training for KalmanNet
was unsuccessful under all conditions. For the DVAEs, we
exclude failed initial conditions (2/15 for VRNN and DKF,
and 3/15 for SRNN) when calculating the RMSE. DBF out-
performs both model-based and latent assimilation methods
across all settings, showing significant improvements in
estimating ω, which cannot be inferred from a single obser-
vation. Fig. 3 (b) illustrates an example of RMSE evolution
during assimilation, where DBF consistently outperforms
the other methods. The assimilation of ω occurs within
the first ∼ 20 steps, maintaining an excellent estimation
accuracy throughout the experiment.
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Table 2. RMSE at the final ten steps of assimilation in double pendulum experiments.

σ = 0.1 σ = 0.3 σ = 0.5
θ ω θ ω θ ω

DBF 0.03 ± 0.01 0.21 ± 0.04 0.05 ± 0.02 0.26 ± 0.05 0.06 ± 0.01 0.36 ± 0.04
EnKF 0.05± 0.00 0.33± 0.07 0.14± 0.01 0.71± 0.09 0.24± 0.01 1.17± 0.22
ETKF 0.05± 0.01 0.46± 0.08 0.22± 0.05 1.41± 0.41 0.36± 0.08 2.70± 1.25

PF 0.05± 0.00 0.63± 0.24 0.21± 0.14 1.41± 1.30 0.32± 0.08 2.36± 2.29
PFF 1.27± 0.29 1.04± 0.15 NA 5.99± 1.09 5.88± 0.67 NA
KNet NA NA NA NA NA NA

VRNN 0.04± 0.01 0.44± 0.19 0.06± 0.02 0.35± 0.14 0.08± 0.04 0.40± 0.16
SRNN 0.05± 0.02 0.52± 0.18 0.06± 0.02 0.44± 0.08 0.08± 0.03 0.52± 0.22
DKF 0.12± 0.02 2.70± 0.28 0.17± 0.03 2.61± 0.74 0.23± 0.04 2.61± 0.56

Table 3. The Jeffreys divergence of normalized errors and the unit
Gaussian between DBF, EnKF, and ETKF predictions for the
double pendulum experiment.

σ = 0.1 KLsym

DBF 0.02
EnKF 10.2
ETKF 0.12

A key feature of DBF is its ability to generate samples of zt
and assess the uncertainty in state estimates. To evaluate this
capability, we analyze the distributions of normalized errors
defined as ϵnorm,t,i = (zt,sample,i−zt,i)/δi, where zt,i rep-
resents the true value of dimension i at time t, and δi is the
standard deviation of zt,sample,i. We collect ϵnorm,t,i across
all time steps, focusing on i = ω1 and i = ω2, since θ1 and
θ2 follow von Mises distributions. If the uncertainty esti-
mates are accurate, ϵnorm,t,i should approximate a Gaussian
distribution with a standard deviation of one. To quantify the
accuracy, we compute the symmetric KL divergence (Jef-
freys divergence) KLsym[p, q] = (KL[p||q]+KL[q||p])/2
between the histogram of ϵnorm,t,i and a unit Gaussian.
DBF exhibits very low KLsym values, indicating accurate
error estimation. Panels (c) and (d) display example his-
tograms of ϵnorm,t,i for DBF and ETKF.

3.3. Nonlinear Dynamics 2: Lorenz96

In the final experiment, we focus on state estimation in
the Lorenz96 model (Lorenz, 1995), a benchmark for test-
ing data assimilation algorithms on noisy, nonlinear obser-
vations. The Lorenz96 model describes the evolution of
a one-dimensional array of variables, each representing a
physical quantity over a spatial domain, like an equilatitude
circle. The dynamics are governed by the following coupled
ordinary differential equations:

dzi
dt

= (zi+1 − zi−2)zi−1 − zi + F, i = 1, . . . , N, (10)

where zi is the value at grid i, N is the number of grid
points, and F is external forcing. For our experiments, we
take (F,N) = (8, 40).

observation dim.

tim
e

Figure 4. A Hovmöller diagram
for one initial condition in the
test set. The observation op-
erator is nonlinear, ot,j =
min(z4t,j , 10) + ϵ.

We consider two observa-
tion operators. The first
adds Gaussian noise to di-
rect observations: ot,j =
zt,j + ϵ, with noise levels
σ = 1, 3, 5. The second
uses a nonlinear operator:
ot,j = min(z4t,j , 10) + ϵ,
with the same noise lev-
els. The dynamic range
of zt,j is around ±10, and
observations are capped at
10 when zt,j exceeds 1.8.
This makes it highly chal-
lenging for classical DA
methods, as each observa-
tion offers limited infor-
mation. The filter must
integrate data over long
timesteps, where nonlinear dynamics distort the probability
distribution. Fig. 4 illustrates observations and target val-
ues. All models use 80 observation steps with a 0.03 time
interval. The latent dimension for DBF, VRNN, SRNN, and
DKF is set to 800 (for the choice of the latent dimension in
DBF, see Sec. E.2). For further details for the experiment,
see Sec. C.4.

Table 4 presents the assimilation performance across differ-
ent noise levels and observation settings. DBF outperforms
existing methods in direct observations with σ = 3, 5, and
across all noise levels for nonlinear observation cases. In the
σ = 1 setting with direct observation, traditional algorithms
like EnKF and ETKF outperform DBF.

The superior performance of EnKF and ETKF with direct
observations at the lowest noise level can be attributed to

7
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Table 4. RMSE at the final ten steps of assimilation in Lorenz96 experiments with (F, N)=(8, 40).

direct observation nonlinear observation
σ = 1 σ = 3 σ = 5 σ = 1 σ = 3 σ = 5

DBF 0.53± 0.04 0.82 ± 0.03 1.16 ± 0.07 1.08± 0.15 1.29 ± 0.18 1.65 ± 0.17
EnKF 0.31± 0.01 0.83± 0.10 1.73± 0.12 4.69± 0.14 3.93± 0.08 3.81± 0.07
ETKF 0.30 ± 0.01 1.06± 0.15 2.42± 0.11 4.57± 0.25 4.28± 0.04 4.23± 0.07

PF 2.80± 0.04 3.12± 0.06 3.62± 0.13 6.05± 0.16 4.95± 0.12 4.58± 0.14
PFF 0.60± 0.02 1.00± 0.05 2.20± 0.09 3.75± 0.09 3.85± 0.04 3.83± 0.11
KNet 0.60± 0.02 1.81± 0.05 3.02± 0.09 2.97± 0.21 3.47± 0.17 3.99± 0.25

VRNN 3.67± 0.06 3.67± 0.06 3.67± 0.06 3.69± 0.04 2.51± 0.79 3.67± 0.06
SRNN 3.08± 0.56 3.63± 0.05 3.40± 0.29 3.30± 0.81 3.62± 0.41 2.96± 0.32
DKF 3.70 NA NA NA NA NA

0 10 20 30 40 50 60 70
steps

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

RM
SE
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DBF
DKF
VRNN
SRNN
KNet
PF
EnKF
ETKF
PFF

0 10 20 30 40 50 60 70
steps

0
1
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4
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(b)
DBF
DKF
VRNN
SRNN
KNet
PF
EnKF
ETKF
PFF

Figure 5. RMSE results for Lorenz96 experiments. Panels (a)
shows results for direct observation with σ = 1. Panel (b) shows
results for nonlinear observation with σ = 1.

the minimal non-Gaussianity in the posteriors within phys-
ical space. Non-Gaussianity can originate from both the
dynamics model (predict step) and the observation model
(update step). In this setting, the linearity of the observation
operator prevents non-Gaussianity from being introduced
during the update step, provided that the prior q(zt|o1:t−1)
is Gaussian. Additionally, state estimation from each ob-
servation is highly accurate due to small noise. As a result,
the prior q(zt|o1:t−1) remains close to a Gaussian distribu-
tion, as the locally linear approximation of the dynamics
adequately captures the time evolution of probability dis-
tributions. The poorer performance of EnKF and ETKF in
the σ = 5 experiment is attributed to the increased non-
Gaussianity introduced during each predict step. Similarly,
when the observation operator is nonlinear, each update step
introduces substantial non-Gaussianity. This results in a sig-
nificant drop in performance for traditional filtering methods
across all noise levels. In these scenarios, DBF consistently
maintains an advantage over classical DA algorithms.

We observe that training DVAE-based methods is highly
unstable, while that for DBF exhibits stability. Dynamics
in DVAEs are modeled by RNNs, which often suffer from
unstable training due to exploding or vanishing gradients.
In contrast, DBF employs matrix multiplication for dynam-
ics. If the eigenvalues of the matrix exceed one by a large
margin, the model predictions, and consequently the loss
function, would explode irrespective of inputs. Fig. 6 shows

0.8 0.9 1.0 1.1
abs(eigenvalue)

setting max[abs(eig)]
D, σ = 1 1.016± 0.002
D, σ = 3 1.014± 0.002
D, σ = 5 1.011± 0.001
N, σ = 1 1.012± 0.003
N, σ = 3 1.008± 0.004
N, σ = 5 1.004± 0.001

Figure 6. Histogram of 800 eigenvalues of the dynamics matrix in
Lorenz96. D for direct and N for nonlinear observations.

the histogram of the absolute values of eigenvalues at the
end of training, which are distributed around or below one,
indicating stable training.

4. Limitation
DBF’s learning of IOO requires a training phase, unlike clas-
sical model-based data assimilation methods. Specifically,
when dealing with nonlinear dynamics, DBF requires either:
(i) a pair of (zt, ot) generated from the original SSM, (ii)
a pair of (zt, ot) obtained via, e.g., retrospective reanalysis
(ERA5; Hersbach et al. 2020 in weather forecasting), or (iii)
a pretrained Koopman operator and observed data ot.

In the Lorenz96 experiment, DBF’s performance with direct
observation with σ = 1 falls short compared to EnKF and
ETKF. In this setting, the non-Gaussianity of posteriors is
weak, resulting in minor approximation errors due to Gaus-
sian assumptions. Consequently, a model-based approach
may be more advantageous in such situations, as it lever-
ages complete SSM knowledge without introducing training
biases.

5. Conclusion
We propose DBF, a novel DA method. DBF is a NN-based
extension of the KF designed to handle nonlinear observa-
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tions. While constraining the test distributions to remain
Gaussian, DBF enhances their representational capacity by
leveraging nonlinear transform expressed by a NN. DBF is
the first “Bayes-Faithful” amortized variational inference
methodology, constructing test distributions that mirror the
inference structure of a SSM with the Markov property. This
structured inference enables analytical computation of test
distributions, preventing the accumulation of Monte Carlo
sampling errors over time steps. DBF exhibits superior per-
formance over existing methods in scenarios where posterior
distributions become highly non-Gaussian, such as in the
presence of nonlinear observation operators or significant
observation noise.

Reproducibility Statement We have provided the source
code to reproduce the experiments for double pendulum
(Sec. 3.2) and the Lorenz96 (Sec. 3.3) in the supplementary
material. The hyperparameters for the training are provided
in Table 5 in the appendix. Generation method of the train-
ing and test dataset, the dynamics model, the observation
model, and the architectures are detailed in the appendix:
Sec. C.2, C.3, and C.4.

Impact Statement
Our Deep Bayesian Filter could improve numerical weather
prediction by providing more accurate estimates of the at-
mospheric state, enabling earlier and more reliable fore-
casts of extreme events-scenarios that typically yield non-
Gaussian posterior distributions. The same framework trans-
fers cleanly to virtually any sequential nonlinear filtering
task, opening broad avenues for data assimilation across
disciplines.
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A. Derivation of the Evidence Lower-Bound and the Associated Monte-Carlo Sampling
A.1. Linear Dynamics Case

Following the definition of the probability density,

p(ot, ht|o1:t−1) = p(ot|o1:t−1)p(ht|o1:t) (11)

Using Eq. 11 at the third equality,

log p(o1:T ) =

T∑
t=1

log p(ot|o1:t−1)

=

T∑
t=1

∫
q(ht|o1:t) log p(ot|o1:t−1)dht

=

T∑
t=1

∫
q(ht|o1:t) log

p(ot, ht|o1:t−1)

p(ht|o1:t)
dht

=

T∑
t=1

∫
q(ht|o1:t) log

[
p(ot, ht|o1:t−1)

q(ht|o1:t)
q(ht|o1:t)
p(ht|o1:t)

]
dht

=

T∑
t=1

∫
q(ht|o1:t) log

[
p(ot, ht|o1:t−1)

q(ht|o1:t)

]
dht +KL[q(ht|o1:t)||p(ht|o1:t)]

=

T∑
t=1

LELBO,t +KL[q(ht|o1:t)||p(ht|o1:t)]

≥
T∑

t=1

LELBO,t (12)

LELBO,t =

∫
q(ht|o1:t) log

[
p(ot, ht|o1:t−1)

q(ht|o1:t)

]
dht

=

∫
q(ht|o1:t) log

[
p(ht|o1:t−1)p(ot|ht)

q(ht|o1:t)

]
dht

=

∫
q(ht|o1:t) log p(ot|ht)dht +

∫
q(ht|o1:t)

p(ht|o1:t−1)

q(ht|o1:t)
dht

=

∫
q(ht|o1:t) log p(ot|ht)dht −KL[q(ht|o1:t)|p(ht|o1:t−1)] (13)

The true prior at step t (p(ht|o1:t−1)) on the right hand side of Eq. 13 could be replaced with the prior computed from the
test distribution q(ht|o1:t−1) when training.

A.2. Nonlinear Dynamics Case

p(ot, zt, ht|o1:t−1, z1:t−1) = p(ot, zt|o1:t−1, z1:t−1)p(ht|o1:t, z1:t) (14)
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The derivation proceeds parallel to the linear case. Using Eq. 14 at the third equality,

log p(o1:T , z1:T ) =

T∑
t=1

log p(ot, zt|o1:t−1, z1:t−1)

=

T∑
t=1

∫
q(ht|o1:t) log p(ot, zt|o1:t−1, z1:t−1)dht

=

T∑
t=1

∫
q(ht|o1:t) log

p(ot, zt, ht|o1:t−1, z1:t−1)

p(ht|o1:t, z1:t)
dht

=

T∑
t=1

∫
q(ht|o1:t) log

[
p(ot, zt, ht|o1:t−1, z1:t−1)

q(ht|o1:t)
q(ht|o1:t)

p(ht|o1:t, z1:t)

]
dht

=

T∑
t=1

∫
q(ht|o1:t) log

[
p(ot, zt, ht|o1:t−1, z1:t−1)

q(ht|o1:t)

]
dht +KL[q(ht|o1:t)||p(ht|o1:t, z1:t)]

=

T∑
t=1

LELBO,joint,t +KL[q(ht|o1:t)||p(ht|o1:t, z1:t)]

≥
T∑

t=1

LELBO,joint,t (15)

LELBO,joint,t =

∫
q(ht|o1:t) log

[
p(ot, zt, ht|o1:t−1, z1:t−1)

q(ht|o1:t)

]
dht

=

∫
q(ht|o1:t) log

[
p(ht|o1:t−1, z1:t−1)p(ot, zt|ht)

q(ht|o1:t)

]
dht

=

∫
q(ht|o1:t)[log p(zt|ht) + log p(ot|zt)]dht +

∫
q(ht|o1:t)

p(ht|o1:t−1, z1:t−1)

q(ht|o1:t)
dht

=

∫
q(ht|o1:t) log p(zt|ht)dht −KL[q(ht|o1:t)|p(ht|o1:t−1, z1:t−1)] + log p(ot|zt) (16)

The true prior at step t (p(ht|o1:t−1, z1:t−1)) on the right hand side of Eq. 16 could be replaced with the prior computed
from the test distribution q(ht|o1:t−1) when training. The last term of the equation (log p(ot|zt)) can be neglected as it does
not affect the new latent variables ht.

A.3. Comparison to Other DVAEs in terms of Monte-Carlo Sampling

The crucial difference from other DVAEs is that the Monte-Carlo samplings in DBF are not nested with each other. In DVAE,
we need to evaluate an integral term

∫
q(h1:T |o1:T ) log p(o1:T , h1:T )dh1:T , where q(h1:T |o1:T ) =

∏
t q(ht|ht−1, ot).

Although the log-term could be factorized as
∑

t log p(ot|ht) + log p(ht|ht−1) thanks to the Markov property, we need
MC (nested) sequential sampling over h1:T if we want to evaluate the term at t = T . On the other hand, ELBO in DBF is∑

t

∫
q(ht|o1:t) log p(zt|ht)dht +KL[q(ht|o1:t)|q(ht|o1:t−1)] because DBF takes the lower limit of

∑
t log p(ot|o1:t−1).

Thanks to the analytic expressions of q(ht|o1:t) and q(ht|o1:t−1), the KL term can be computed analytically. A MC sampling
is needed to compute

∫
q(ht|o1:t) log p(zt|ht)dht but this is independent from other timesteps.

A.4. Comparison to a Linearized Observation Model

DBF seeks the optimal Gaussian posterior distribution for the hidden state zt (or ht) given an observation ot. One alternative
approach approximates the likelihood function by a Gaussian model: p(ot|zt) ≃ p′(ot|zt) = N [ot; fθ(zt), Gθ(zt)], where
fθ(zt) provides the mean and Gθ(zt) specifies the variance. Although this method preserves the Gaussian nature of
the posterior, it requires the computation of the Jacobian ∂f(zt)/∂zt to update the covariance matrix. In contrast, DBF
parameterizes the IOO instead of the observation model. This parameterization leads to a more general and straightforward
update equation, circumventing the need for calculating the Jacobian. The only downside is the introduction of a “virtual
prior”—a theoretical construct that ensures the IOO represents a valid probability distribution over zt. However, this virtual
prior only slightly biases the neural network’s output and does not impair overall performance.
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B. Additional Linear Dynamics Experiment: Object Tracking
In a single-object tracking problem, a detector identifies a bounding box for the object in each frame, and these boxes are
then connected across frames. When the object is not fully visible or is obscured, the detector often fails to accurately
determine its position. In such scenarios, the KF aids by predicting and assimilating the object’s true position. However, a
key limitation of the KF is its reliance on a fixed observation model throughout the tracking process. While low-confidence
observations can provide valuable approximate position information, they may also mislead the tracker with inaccurate data,
potentially degrading overall tracking performance.

We demonstrate that DBF can enhance tracking stability without requiring additional training. During the computation of
the posterior p(zt|o1:t) from p(zt|o1:t−1), the importance of the observation ot is regulated via Gθ(ot). This allows the
observational confidence to be effectively incorporated into the posterior estimation. We evaluate the tracking performance
using the “airplane” category from the LaSOT dataset (Fan et al., 2019; 2021).

We use the first 1,000 frames from 20 videos for evaluation. The first 10 videos serve as a validation set for determining
filter parameters (see Sec. C.2), while the performance is assessed using videos 11–20. Each set of 1,000 frames is divided
into 20 subsets of 50 frames. Filters are initialized at the ground truth coordinates of the bounding box in the first frame,
after which each filter is responsible for tracking the bounding box throughout the subset. We employ the YOLOv8n model
(Jocher et al., 2023) as the object detector. The detector outputs the bounding box position, X , along with a confidence
score, c. A detection threshold of 0.01 is applied. When multiple bounding boxes are detected, the one with the highest
posterior probability is selected.

The bounding box coordinates are used as fθ(ot) = X . We experiment with linear confidence Gθ(ot) ∝ c and squared
confidence Gθ(ot) ∝ c2 and find that the squared confidence Gθ(ot) ∝ c2 perform better. For further settings, see Sec. C.2.

Figure 7 presents the results. The left panel provides an illustrative example comparing the two tracking algorith ms. The
KF tracker is visibly influenced by false detections, being pulled toward a coordinate value of approximately 150 during
frames 15–17. In contrast, the DBF tracker maintains stable predictions under the same conditions. The middle and the right
panels offer a quantitative comparison of KF and DBF in terms of intersection over union (IoU). Both filters perform well in
estimating bounding box positions in frames without detections. However, DBF demonstrates a significant performance
advantage in frames with low-confidence (c < 0.1) detections. This improvement can be attributed to DBF’s flexibility,
allowing it to adaptively decide whether to trust low-confidence observations or disregard them.
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Figure 7. Left panel: x coordinate of bounding box center estimated with KF and DBF. Colored dots show the coordinates of the bounding
box reported by the YOLO model. The red band (frames 18 – 20) shows frames where the detection network reports no bounding boxes.
Middle panel: fraction of frames with IoU > 0.1 for each tracker. Detections with a confidence score greater than 0.1 are categorized as
“High”, those below 0.1 as “Low”, and those below 0.01 as “Missed”. Right panel: mean IoU for the three categories. The performance
gain of DBF from KF is considerable in frames with low-confidence detections.

C. Settings and Additional Results for Experiments
C.1. General setting

parametrization of the dynamics matrix We have parametrized the dynamics matrix A following Lusch et al. (2018):
we consider that hdim/2 complex eigenvalues λi(0 ≤ i < hdim/2) characterize A. Namely, A is a block-diagonal matrix
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of hdim/2 blocks. Each block consists of 2× 2 matrix, whose components are:

Ablock = exp(ρi)

(
cos(ωi) − sin(ωi)
sin(ωi) cos(ωi)

)
, (17)

where ρi = Re[λi] and ωi = Im[λi]. In contrast to Lusch et al. (2018), we apply the same dynamics matrix at any positions
on the latent space. We consider that this representation is sufficiently expressive, as it can express any matrix on a complex
number field that is diagonalizable.

One key advantage of DBF is that augmenting the latent dimension only results in a linear increase in computational demand.
This scaling is due to the efficient parametrization of the dynamics matrix, where the block-diagonal structure allows
operations to scale linearly with the latent dimension. In contrast, methods such as Sequential Monte Carlo (SMC) suffer
from exponential increases in computational demand as the latent space grows, assuming that the same density of particles
must be maintained to capture posterior distributions. This makes DBF particularly well-suited for high-dimensional systems
where traditional methods struggle with computational complexity.

Computational resources We conduct experiments on a cluster of V100 GPUs. Each GPU has memory of 32GB.

hyperparameters for training For all experiments, we have used Adam optimizer with default parameters. Table 5 shows
hyperparameters employed in our experiments. Trainings for moving MNIST and double pendulum are conducted with one
GPU, while that for Lorenz96 is with eight GPUs.

Table 5. Hyperparameters for training

lr batch size hdim Ndata,train Epochs train time per model
moving MNIST 10−3 64 8 480,000 2 3hr× 1GPU

double pendulum 10−3 256 50 1.0× 107 1 6hr× 1GPU
Lorenz96 3× 10−3 64 800 2.6× 107 1 15hr× 8GPUs

object tracking - - 8 - - -

C.2. Object Tracking

Dataset: “Airplane” movies in the LaSOT dataset (Fan et al., 2019; 2021). It contains 20 movies. Each movie has at least
1,000 frames. We chop the first 1,000 frames into 20 sets of 50 frames. Airplanes numbered one to ten are considered a
validation set used to determine the model hyperparameters. We use the remaining data (airplane-11 to airplane-20) as a test
set to evaluate the performance of the filters.

Dynamics model: Constant velocity model. The (x, y) coordinates and (vx, vy) velocities of the top left and bottom right
edges are the latent (physical) variables.

ht+1 = Fht (18)

F =



1 0 0 0 dt 0 0 0
0 1 0 0 0 dt 0 0
0 0 1 0 0 0 dt 0
0 0 0 1 0 0 0 dt
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1


, ht =



x1,t

y1,t
x2,t

y2,t
vx1,t

vy1,t

vx2,t

vy2,t


. (19)

Here, x1,t and y1,t stand for the coordinates of the left top edge of the bounding box, and x2,t and y2,t are the right bottom
edge of the box. vx1,t , vy1,t , vx2,t , vy2,t are velocities of box edges. dt is the time difference between frames, which we take
as 1 (arbitrary).
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Network architecture: We use a pre-trained detector YOLOv8n model (Jocher et al., 2023). The detector yields the
bounding box’s position, X , and the box’s confidence score, c. We set the detection threshold at 0.01. In cases where the
detector reports multiple bounding boxes, we choose the one with the highest posterior probability. We use the bounding
box coordinates as fθ(ot) = X . Several choices for the relation between confidence score and Gθ(ot) are possible.

We experiment with linear confidence Gθ(ot) ∝ c and squared confidence Gθ(ot) ∝ c2. We determine the system noise
factor for either dependence with the validation set. We use normalized precision as the evaluation metric (Müller et al.,
2018). Figure 8 shows the normalized precision score for the validation set for the system noise factor. The system noise
factor of 10−1 is chosen for KF. For DBF, squared confidence with the system noise factor of 10−2 is employed.
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Figure 8. Normalized precision scores for validation samples.

C.3. Double Pendulum

Dataset: The dataset consists of 2D coordinates representing the positions of two weights. The training set includes
10, 240, 000 initial conditions, while the test set contains 10 initial conditions. The number of training samples is sufficiently
large to ensure that the training converges. During DVAE training, we observed that some initial conditions resulted in
training failure due to instability; however, we maintained the total number of training samples since the training was
successful for at least one initial condition. Both datasets comprise 80 time steps. Numerical integration is performed using
the solve ivp function in SciPy, with relative tolerance (rtol) set to 10−2 and absolute tolerance (atol) set to 10−2.

A schematic figure explaining the problem setting is presented in panel (a) of Fig. 3 in the main text.

Dynamics model is described in https://matplotlib.org/stable/gallery/animation/double pendulum.html. The length of the
bars is 1 [m], and the positions of the two pendulum weights are observable with Gaussian noise of σ = 0.1, 0.3, or 0.5 [m].
The observation interval is 0.03 [s]. The task is to predict the positions of the two weights in the successive ten frames.

Network architecture: fθ: A sequence of ten “linear blocks” composed of fully connected layers, layer normalizations,
and skip connections. Namely, each linear block has three components:

• fc: (input dimension)× (output dimension) linear layer,

• norm: layer normalization,

• skip: skip connection.

Taking four observation variables as input, the first linear block expands the dimensionality to 100. The intermediate
linear blocks maintain these 100-dimensional variables. The final linear block reduces the 100-dimensional input to a
50-dimensional output, representing 50 latent space variables. The ReLU activation function is applied throughout the
network. The structure of Gθ mirrors that of fθ, while ϕθ serves as the inverse of fθ. The initial eigenvalues are randomly
sampled from the range between e0 and e0.01.
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Table 6. List of hyperparameters for double pendulum experiment.

parameter value
Rinit diag[1]
Q diag[e−6]

initial concentration parameter e5

Training: All training variables (network weights for the IOO (fθ, Gθ), the emission model operator ϕ, eigenvalues λ for
the dynamics matrix A, Gaussian noise parameter σ for angular velocity ω, and the concentration parameter for Von Mises
distribution used for angular coordinate θ) are trained together.

Examples: Here, we show examples for assimilated θ and ω in Fig. 10. Also, we give an additional figure for the RMSE
of θ for various methods.

C.4. Lorenz96

Dataset: The dataset consists of physical and observed variables sampled at 40 grid points. The training set includes
25,600,000 initial conditions, while the test set contains 10 initial conditions. The number of training samples is sufficiently
large to ensure that the training converges in most cases. The original datasets comprise 80 time steps. Numerical integration
is performed using the solve ivp function in SciPy, with a relative tolerance rtol = 10−2 and an absolute tolerance of
atol = 10−2. Gaussian noise with standard deviations of σ = 1, 3, or 5 is added to all measurements.

For KalmanNet, we attempted to train with 25,600,000 and 400,000 initial conditions; however, the process was terminated
due to memory limitations. Consequently, we report results using a dataset size of 120,000. For DKF, VRNN, and SRNN,
we also tried training with 25,600,000 conditions, but all models encountered a RuntimeError due to instability during the
backward computation. To obtain results, we reduced the number of training samples to 512,000. With this adjustment, both
SRNN and VRNN successfully completed the training procedure for some initial conditions.

A physical quantity zj is defined at each grid point j(1 ≤ j ≤ 40). The time evolution of this quantity is described by the
following set of differential equations:

dz(t)j
dt

= (zj+1 − zj−2)zj−1 − zj + F, (1 ≤ j ≤ 40) (20)

In this equation, the driving term F is set to 8. The first term models the advection of the physical quantity, while the second
term represents its diffusion along a fixed latitude. With these parameters, the evolution of the physical quantity exhibits
chaotic behavior.

Network architecture: The NN fθ consists of ten convolutional blocks followed by a fully connected layer. Each
convolutional block comprises a 1D convolution, layer normalization, and a skip connection:

• conv1d: nn.Conv1d( cin, cout, kernel size=5, padding=2, padding mode=“circular”, )

• norm: layer normalization,

• skip: skip connection.

The first convolutional block has cin = 1 and cout = 20, expanding the input by a factor of 20 in the channel dimension.
The subsequent eight layers maintain 20 channels. Finally, the 20 channels and 40 physical dimensions are flattened into
800-dimensional variables, which are then fed into a fully connected layer of size 800× 800. For all layers, the activation
function used is ReLU. The function Gθ is structured identically to fθ, while ϕθ represents the inverse of fθ.

Training: All training variables, including the network weights for the inverse observation operator fθ and Gθ, the
emission model operator ϕ, the eigenvalues λ for the dynamics matrix A, and the Gaussian noise parameter σ, are trained
concurrently.
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Figure 9. PF results with 100,000 paticles for five example data in test set. Two left columns show evolution of θ1 and θ2 (rad) (, therefore,
the values are cyclic with the period of 2π ≃ 6.3, and we corrected for those periodic shifts) and the two right columns show ω1 and ω2

(rad/s).
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Figure 10. Same as Fig. 9 but for DBF with the latent dimension of 20.
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Figure 11. Assimilation results for the angle variable θ. All models successfully determine the angle coordinate in spite of the strong
nonlinearity in the observation (trigonometric function). Among these, performance of DBF is the best.
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Table 7. List of hyperparameters for Lorenz96 experiment.

parameter value
Rinit diag[1]
Q diag[e−8]

Examples: We show an example figure for assimilation experiment with DBF in Fig. 12.

C.5. Moving MNIST

Dataset: The dataset consists of a series of 2D images, where each pixel has a dynamic range from 0 to 255. The training
set contains 480,000 initial conditions, while the test set consists of ten initial conditions, with both datasets comprising
20 time steps each. The number of training samples and epochs is sufficiently large to ensure that the training converges
effectively. A Gaussian noise with a standard deviation of σ = 50 is added to all pixels. The MNIST images of the digits “9”
(data point 5740) and “5” (data point 5742) move at constant speeds until they reach the edges, where reflection occurs.

Training: The network weights for Gθ are fixed during the first epoch to facilitate the learning of fθ and the image tensor
for the observation model. Subsequently, Gθ is trained during the second epoch. In total, DBF undergoes training for two
epochs.

Dynamics model: Constant velocity model. The exact dynamics matrix we have used is:

zt+1 = Fzt (21)

F =



1 0 0 0 dt 0 0 0
0 1 0 0 0 dt 0 0
0 0 1 0 0 0 dt 0
0 0 0 1 0 0 0 dt
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1


, zt =



x1,t

y1,t
x2,t

y2,t
vx1,t

vy1,t

vx2,t

vy2,t


, (22)

and true observation model:

x̃t =

{
(xt mod 16) if x//16 is even
9− (xt mod 16) if x//16 is odd

, same for y (23)

ot = h(zt),dim(ot) = 44× 44 , a 28× 28 image is embedded at(x̃t, ỹt). (24)

The formulation above addresses image reflection through the observation operator, resulting in linear dynamics while
permitting multiple solutions for each observed figure. This approach presents significant challenges for the EnKF, which
assumes a single-peak Gaussian distribution in the assimilating space. To ensure a fair comparison, we revise the dynamics
and observation models to allow for a single solution for each figure. This adjustment notably enhances the performance of
the EnKF if the image is provided. However, even with this modification, the EnKF fails to accurately estimate the position,
velocity, and the embedded image.

Network architecture: fθ: Two-dimension convolutional NNs. Below is the list of layers.

• conv1: nn.Conv2d(1, 2, kernel size=3, stride=2, padding=1)

20



DBF for Bayes-Faithful DA

observation dim.

tim
e

estimate

Figure 12. An example of assimilation output in the experiment with nonlinear observation operator. The observation is not very
informative due to low threshold for saturation in the observation operator (ot,j = min(z4t,j , 10) + ϵ,, all cells with zt,j > 1.8 are just
observed as 10 + ϵ). In the first 20 steps, the model output resembles little with the target. However, as the step proceeds, the estimated
state begins to capture features of the true state. Even with such a poor observation operator, DBF finds a latent space representation that
captures the evolution of the true state.
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Table 8. List of hyperparameters for moving MNIST experiment.

parameter value
R diag[e6]
Q diag[e−4]

• conv2: nn.Conv2d(2, 4, kernel size=3, stride=2, padding=1)

• conv3: nn.Conv2d(4, 4, kernel size=3, stride=1, padding=1)

• conv4: nn.Conv2d(4, 4, kernel size=3, stride=1, padding=1)

• fc: nn.Linear(11× 11× 4, 8)

The input image, sized 44× 44, is sequentially processed by convolutional layers (conv1, conv2, conv3, and conv4). The
output is then flattened to serve as the input for the fully connected layer (fc). Ultimately, this process yields eight variables
for fθ(ot). The network Gθ follows the same architecture as fθ, but it produces only the diagonal components of Gθ(ot)
through the NN.

Example figures: In Fig. 14, we show example images for observations and all the algorithms in image-informed setting.

Table 9. The success rates of different methodologies in the two-body moving MNIST problem. For the model-based approaches, we used
the same dynamics and observation models that generated the data. For DBF, the model was initialized with random image tensors and
trained solely on the data.

Method Success rate
DBF 100% (50/50)
EnKF 58% (29/50)
ETKF 0% (0/50)

PF 0% (0/50)

D. Training Stability
We observe that the training of our proposed method is stable compared to RNN-based models. Fig. 15 shows the evolution
of the real parts of eigenvalues. Although we do not impose constraints on the real parts of eigenvalues, the values only
marginally exceed one. Therefore, long-time dynamics is stable during training.

E. Hyperparameter Study on the Latent Dimensions
The dimension of the latent variables is a hyperparameter. We have tested the performance and computation (both training
and inference) time for nonlinear problems.

E.1. double pendulum

E.1.1. ACCURACY-COMPUTE TRADE-OFF IN DBF

For double pendulum problem, we test with the standard observation operator with the observation noise of σ = 0.1.
Figs. 16, 17 show the relation between the RMSE and the latent dimensions of the system. Here, we show results with
1.0× 107 training data. For the double pendulum problem, we have tested with 4, 20, 80, and 200 latent dimensions. All the
latent dimensions tested were too small to observe the impact of the compute-latent dimension relationship. To observe the
slowdown, we need to test with higher dimensions. Please also refer to the results for Lorenz96. The performance (RMSE at
the final 10 steps) for the angles θ and angle velocities ω are poor if the latent dimension is four. By leveraging 20 latent
dimensions, DBF achieves a very good assimilation performance. Further enhancing the latent dimensions to 80 and 200
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Figure 13. Example figures for two-body moving MNIST experiment. This is the setting explained in the main text. For all algorithms,
the two embedded images are not explicitly informed: algorithms need to deal with many unknown parameters in the observation model.
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Figure 14. Example figures for two-body moving MNIST experiment. For model-based approaches (EnKF, ETKF, PF), contrary to the
experiment reported in the main text, the true images are informed. In data 0, both DBF and EnKF successfully determine and follow the
position of the two images. On the other hand, in data 20 and 27, EnKF estimate becomes unstable soon after the two letters overlap.
Even in that situation, DBF stably follows the positions of the embedded images.
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Figure 15. Evolution of histograms for the real parts of 800 complex eigenvalues in Lorenz96 experiment. Initially, eigenvalues are taken
as one. As the model learns the dynamics, eigenvalues lower than 1.0 appear. However, the largest eigenvalue λmax mostly remains less
than 1.02.
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Figure 16. Left panel: RMSE as a function of the latent dimensionality of DBF. Right panel: the inference time as a function of the latent
dimensionality of DBF.

did not improve performance. The training gradually gets slower when we use latent dimensions higher than 80. As can be
seen from Fig. 16, The performance is rather insensitive to the latent dimensions in the range of [20, 200]: the RMSE for θ
is 0.036 at dim(ht) = 20, 0.053 at dim(ht) = 80, and 0.044 at dim(ht) = 200 and for ω is 0.265 at dim(ht) = 20, 0.375
at dim(ht) = 80, and 0.302 at dim(ht) = 200.

E.1.2. COMPARISON TO THE PF

The performance of PF depends on the number of particles used. We have tested with 20, 200, 2,000, 20,000, and 100,000
particles. The performance for θ improves significantly if we use more than 200 particles. The RMSE for the angle velocities
ω almost saturates at RMSE ≃ 0.31 when we use particles more than 20,000. To achieve that accuracy, the inference time
required for PF is more than 200 seconds per initial condition. On the other hand, DBF achieves slightly better performance
(RMSE ≃ 0.265) with the latent dimensions of 20. The inference time for DBF is 0.1 seconds per batch.

E.2. Lorenz96

E.2.1. ACCURACY-COMPUTE TRADE-OFF IN DBF

For Lorenz96 problem, we test with the nonlinear observation operator with the observation noise of σ = 1. Figs. 19,
20 show the relation between the RMSE and the latent dimensions of the system. Here, we show results with 1.0× 107

training data. The dimensionality of the latent variables can be either larger or smaller than that of the physical variables,
but there is a trade-off: up to a certain latent dimensionality, increasing the dimension improves performance at the cost of
longer computation time. Beyond that point, increasing the latent dimensionality no longer improves performance but only
increases training time (although inference time remains relatively short compared to model-based approaches). Therefore,
the optimal balance depends on the specific problem. For the Lorenz96 system, a dimensionality of 800 was a reasonable
trade-off among 20, 80, 200, 800, and 2,000 dimensions. As shown in the figure, the RMSE changes by only 7 percent (1.31
vs 1.23) in the range from 200 to 2,000 dimensions, indicating that the impact is not critical in this range.
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Figure 17. Left panel: the training time for 1.0× 107 initial conditions as a function of the latent dimension. Right panel: RMSE as a
function of the training time for five different numbers of latent dimensions.
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Figure 18. Left panel: the performance of PF as a function of the particles used. Right panel: RMSE as a function of the inference time
for the DBF and the PF. For the DBF, the latent dimensions are 20, 80, 200, 800, and 2,000. For the PF, the number of particles are 20,
200, 2,000, 20,000, 100,000.
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Figure 19. Left panel: RMSE as a function of the latent dimensionality of DBF. Right panel: the inference time as a function of the latent
dimensionality of DBF.
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Figure 20. Left panel: the training time for 1.0× 107 initial conditions as a function of the latent dimension. Right panel: RMSE as a
function of the training time for five different numbers of latent dimensions.

E.2.2. COMPARISON TO THE PF

The PF also has the trade-off. Although RMSE improves slowly as we increase the number of particles, the RMSE was poor
(2.27) compared to the DBF results (RMSE ≃ 1.3) even with massively large number of particles (100,000) with very long
inference time (2,000 seconds per initial condition)
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Figure 21. Left panel: the performance of PF as a function of the particles used. Right panel: RMSE as a function of the inference time
for the DBF and the PF. For the DBF, the latent dimensions are 20, 80, 200, 800, and 2,000. For the PF, the number of particles are 20,
200, 2,000, 20,000, 100,000.
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Figure 22. the performance of DBF for a low latent dimension case (dim(ht) = 20) and a high latent dimension case (dim(ht) = 800).
Even with the latent dimensions (20) smaller than that of the original state space (40), DBF shows the skillful assimilation. With higher
latent dimensions (800), the performance further improves.
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