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Abstract
Retrieval-augmented generation systems rely001
on effective document retrieval capabilities. By002
design, conventional sparse or dense retrievers003
face challenges in multi-hop retrieval scenar-004
ios. In this paper, we present GEAR, which005
advances RAG performance through two key006
innovations: (i) graph expansion, which en-007
hances any conventional base retriever, such008
as BM25, and (ii) an agent framework that in-009
corporates graph expansion. Our evaluation010
demonstrates GEAR’s superior retrieval per-011
formance on three multi-hop question answer-012
ing datasets. Additionally, our system achieves013
state-of-the-art results with improvements ex-014
ceeding 10% on the challenging MuSiQue015
dataset, while requiring fewer tokens and it-016
erations compared to other multi-step retrieval017
systems.018

1 Introduction019

Retrieval-augmented Generation (RAG) has further020

enhanced the remarkable success of Large Lan-021

guage Models (LLMs) (OpenAI, 2024) in Ques-022

tion Answering (QA) tasks (Lewis et al., 2020).023

Multi-hop QA usually requires reasoning capabili-024

ties across several passages or documents. A rele-025

vant example is displayed in Table 1 where reach-026

ing the appropriate answer requires building a 3-027

hop reasoning chain starting from the main entity028

in the question (i.e. “Stephen Curry”).029

What year did the father of Stephen Curry joined the
team from which he started his college basketball career?

Stephen Curry son of−−−→ Dell Curry
Dell Curry college team−−−−−−→ Virginia Tech

Dell Curry college start−−−−−−→ 1982 (answer)

Table 1: Multi-hop question (top) involving a reasoning
chain (bottom) extending across several entities.

More recently, existing methods sought to lever-030

age graph representations of the retrieved passages031

in order to bridge the semantic gap introduced by 032

multi-hop questions (Fang et al., 2024; Li et al., 033

2024; Edge et al., 2024; Gutierrez et al., 2024; 034

Liang et al., 2024). Most of these approaches em- 035

ploy an LLM to traverse a graph involving the en- 036

tities appearing in the corresponding textual pas- 037

sages. However, within the context of RAG, this 038

typically leads to long and interleaved prompts that 039

require multiple LLM iterations to arrive at answers 040

involving distant reasoning hops (Trivedi et al., 041

2023). Several recent approaches build graphs as- 042

sociating passages with each other by extracting 043

entities and atomic facts or semantic triples from 044

passages in a separate offline step (Li et al., 2024; 045

Fang et al., 2024; Gutierrez et al., 2024). Further- 046

more, GraphReader uses an LLM agent, with ac- 047

cess to graph-navigating operations for exploring 048

the resulting graph (Li et al., 2024). TRACE relies 049

on an LLM to iteratively select triples to construct 050

reasoning chains, which are then used for ground- 051

ing the answer generation directly, or for filtering 052

out irrelevant documents from an original set of 053

retrieved results (Fang et al., 2024). 054

In this paper, we present GEAR, a Graph- 055

enhanced Agent for Retrieval-augmented gener- 056

ation. During the offline stage, we align an index 057

of passages with an index of triples extracted from 058

these passages. With such alignment, passages are 059

intermediately connected through graphs of triples. 060

GEAR contains a graph-based passage retrieval 061

component referred to as SyncGE. Differentiating 062

from previous works that rely on expensive LLM 063

calls for graph exploration, we leverage an LLM 064

for locating initial nodes (triples) and employ a 065

generic semantic model to expand the sub-graph 066

of triples by exploring diverse beams of triples. 067

Furthermore, GEAR utilises multi-hop contexts re- 068

trieved by SyncGE and constructs a memory that 069

summarises information for multi-step retrieval. 070

Our work refines the neurobiology-inspired 071

paradigm proposed by Gutierrez et al., by mod- 072
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elling the communication between hippocampus073

and neocortex when forming an episodic mem-074

ory. An array of proximal triples, in our design,075

functions as a gist of memory learnt through hip-076

pocampus within one or a few shots (iterations),077

which is projected back to neocortex for the later078

recall stages (Hanslmayr et al., 2016; Griffiths et al.,079

2019). We highlight the complementary potential080

of our graph retrieval approach and an LLM, which,081

within our system, assimilates the synergy between082

the hippocampus and neocortex, offering insights083

from a biomimetic perspective.084

We evaluate the retrieval performance of GEAR085

on three multi-hop QA benchmarks: MuSiQue,086

HotpotQA, and 2WikiMultihopQA. GEAR pushes087

the state of the art, achieving significant improve-088

ments in both single- and multi-step retrieval set-089

tings, with gains exceeding 10% on the most chal-090

lenging MuSiQue dataset. Furthermore, we demon-091

strate that our framework can address multi-hop092

questions in fewer iterations with significantly093

fewer LLM tokens. Even in the case of a single094

iteration, GEAR offers a more efficient alterna-095

tive to other iterative retrieval methods, such as096

HippoRAG w/ IRCoT. Our contributions can be097

summarised as follows:098

• We introduce a novel graph-based retriever,099

SyncGE, which leverages an LLM for locat-100

ing initial nodes for graph exploration and101

subsequently expands them by diversifying102

beams of triples that link multi-hop passages.103

• We incorporate this graph retrieval method104

within an LLM-based agent framework, ma-105

terialising GEAR, achieving state-of-the-art106

retrieval performance across three datasets.107

• We conduct comprehensive experiments show-108

casing the synergetic effects between our pro-109

posed graph-based retriever and the LLM110

within the GEAR framework.111

2 Related Work112

Our work draws inspiration from two branches of113

research: (i) retrieval-augmented models for QA114

and (ii) multi-hop QA using combinations of LLMs115

with graphical structures.116

2.1 Retrieval-augmented Models for QA117

Since Lewis et al. showcased the benefits of aug-118

menting the input context of language models with119

relevant passages, several solutions have been pro- 120

posed for addressing different knowledge-intensive 121

scenarios (Pan et al., 2023). 122

Recent works by Wang et al.; Shen et al. explore 123

query expansion approaches, generating pseudo- 124

documents from the LLM to expand the content of 125

the original query. Subsequent frameworks, start- 126

ing with IRCoT, looked into interleaving retrieval 127

and prompting steps, allowing each step to guide 128

and refine the other iteratively (Trivedi et al., 2023; 129

Jiang et al., 2023; Su et al., 2024). 130

2.2 Multi-hop QA with LLMs and Graphs 131

In the recent years, several architectures introduce a 132

separate, offline indexing phase during which they 133

form a hierarchical summary of passages (Chen 134

et al., 2023; Sarthi et al., 2024; Edge et al., 2024). 135

However, the summarisation process must be re- 136

peated whenever new data is added. This can be 137

computationally expensive and inefficient for up- 138

dating the knowledge base. 139

More recently several approaches sought to lever- 140

age the benefits of incorporating structured knowl- 141

edge for addressing multi-hop QA challenges with 142

LLMs (Park et al., 2023; Fang et al., 2024; Li et al., 143

2024; Gutierrez et al., 2024; Liang et al., 2024; 144

Wang et al., 2024). GraphReader, TRACE and 145

HippoRAG propose offline methodologies for ex- 146

tracting entities and atomic facts or semantic triples 147

from passages (Li et al., 2024; Fang et al., 2024; 148

Gutierrez et al., 2024). TRACE relies on an LLM 149

to iteratively select triples to construct reasoning 150

chains, which are then used for grounding the an- 151

swer generation directly or for filtering retrieved 152

results. However, the search space is limited as an 153

already filtered candidate list is provided for each 154

query. Li et al. utilise an LLM agent capable of se- 155

lecting from a set of predefined actions to traverse 156

the nodes of a knowledge graph in real time given 157

an input question. More recently, Liang et al. intro- 158

duced further standardisation for the offline graph, 159

such as instance-to-concept linking and semantic 160

relation completion. Nonetheless, the approach re- 161

lies heavily on associating triples with pre-defined 162

concepts to facilitate logical form-based retrieval. 163

HippoRAG leverages an alignment of passages 164

and extracted triples in order to retrieve passages 165

based on the Personalised PageRank algorithm 166

(Gutierrez et al., 2024). While achieving consid- 167

erable improvements for single- and multi-step re- 168

trieval (i.e. when coupled with IRCoT (Trivedi 169

et al., 2023)), it remains agnostic to the semantic 170

2



relationships of the extracted triples. In this paper,171

we leverage a similar alignment of passages and172

extracted triples; but, instead of fully relying on173

expensive LLM calls, we introduce a new graph-174

based retrieval framework that uses a small seman-175

tic model for exploring multi-hop relationships.176

3 Preliminaries177

Let C = {c1, c2, . . . , cC} be an index of passages178

and T = {t1, t2, . . . , tT : tj = (sj , pj , oj)} be an-179

other index representing a set of triples associated180

with the passages in C s.t. ∀tj ∈ T∃! ci ∈ C,181

where sj , pj and oj the respective subject, predi-182

cate and object of the j-th triple.183

Given an input query q and an index of interest184

R = {r1, . . . , rR}, retrieving items from R rele-185

vant to q can be achieved by using a base retrieval186

function hkbase (q,R) ⊆ R that returns a ranked list187

of k items from R in descending order, according188

to a retrieval score. BM25 or a conventional dense189

retriever can serve as a base retrieval function, with-190

out requiring any multi-hop capabilities.191

Our goal is to retrieve relevant passages from C192

that enable a retrieval-augmented model to answer193

multi-hop queries (Lewis et al., 2020). To this end,194

we introduce GEAR, which is a graph-enhanced195

framework of retrieval agent (see Figure 1).196

4 Retrieval with Graph Expansion197
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Figure 1: System Architecture

Given an input query q, let C′
q = hkbase (q,C)198

be a list of passages returned by the base retriever.199

Given this initially retrieved list of passages, C′
q, 200

our goal is to derive relevant multi-hop contexts 201

(passages) by retrieving a sub-graph of triples that 202

interconnect their source passages. There are two 203

challenges for materialising such sub-graph re- 204

trieval: (i) how to locate initial triples (i.e. starting 205

nodes) Tq, and (ii) how to expand the graph based 206

on initial triples while reducing the search space. 207

The following sections address these challenges 208

respectively, within GEAR. 209

4.1 Knowledge Synchronisation 210

We describe a knowledge Synchronisation (Sync) 211

process for locating initial nodes for graph expan- 212

sion. We first employ an LLM to read C′
q (see 213

Appendix I.2) and summarise knowledge triples 214

that can support answering the current query q, as 215

defined: 216

T′
q = read

(
C′

q,q
)
. (1) 217

T′
q is a collection of triples to which we refer as 218

proximal triples. Initial nodes Tq for graph expan- 219

sion can then be identified by linking each triple in 220

T′
q to a triple in T, using the tripleLink function: 221

Tq =
{
ti|ti = tripleLink(t′i) ∀t′i ∈ T′

q

}
. (2) 222

The implementation of tripleLink can vary. How- 223

ever, in this paper we consider it to be simply re- 224

trieving the most similar triple from T. 225

4.2 Diverse Triple Beam Search 226

We borrow the idea of constructing reasoning triple 227

chains (Fang et al., 2024) for expanding the graph, 228

and present a retrieval algorithm: Diverse Triple 229

Beam Search (see Alg. 1). 230

We maintain top-b sequences (beams) of triples 231

and the scores at each step are determined by a 232

scoring function. In this paper, we focus on lever- 233

aging a dense embedding model to compute the 234

cosine similarity between embeddings of the query 235

and a candidate sequence of triples, leaving other 236

implementations of the scoring function for future 237

work (see Section 9). 238

Considering all possible triple extensions at each 239

step, in a Viterbi decoding fashion, would be in- 240

tractable due to the size of T. Consequently, we 241

define the neighbourhood of a triple as the set 242

of triples with shared head or tail entities (i.e. 243

get_neighbours in Alg. 1). During each expan- 244

sion step, we only consider neighbours of the last 245
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Algorithm 1 Diverse Triple Beam Search
Input: q: query

b: beam size
l: maximum length
score(·, ·): scoring function
{t1, t2, . . . , tn}: initial triples
γ: hyperparameter for diversity

1: B0 ← [ ]
2: for t ∈ {t1, t2, ..., tn} do
3: s← score(q, [t])
4: B0.add(⟨s, [t]⟩)
5: B0 ← top(B0, b)
6: for i ∈ {1, . . . , l − 1} do
7: B ← [ ]
8: for ⟨s, T ⟩ ∈ Bi−1 do
9: V ← [ ]

10: for t ∈ get_neighbours(T.last()) do
11: if exists(t, Bi−1) then
12: continue
13: s′ ← s+score(q, T ◦t) # concat
14: V.add(⟨s′, T ◦ t⟩)
15: sort(V,descending)
16: for n ∈ {0, . . . , V.length()− 1} do
17: ⟨s′, T ◦ t⟩ ← V [n]

18: s′ ← s′ × e
−min(n,γ)

γ

19: B.add(⟨s′, T ◦ t⟩)
20: Bi ← top(B, b)

21: return Bi

triple in the sequence, and avoid selecting previ-246

ously visited triples (i.e. exists in Alg. 1).247

While regular beam search can reduce the search248

space, it is prone to producing high-likelihood se-249

quences that differ only slightly from one another250

(Ippolito et al., 2019; Vijayakumar et al., 2018).251

Our algorithm increases the diversity across beams252

to improve the recall for retrieval. In detail, for253

each beam, we sort candidate sequences extended254

from that beam in descending order, and weight255

their scores based on their relative positions. Can-256

didate sequences that are ranked lower, within a257

beam, will receive smaller weights. Consequently,258

the resulting top-b beams at each step are less likely259

to share the same starting sequence.260

The top-b returned sequences are flattened in a261

breadth-first order. Each triple in the resulting list is262

then mapped to its source passage. This alignment263

between triples and passages is described in more264

detail in Section 3. Let C̃q be the list of unique265

passages after alignment. The output of our graph 266

expansion is then given by the Reciprocal Rank 267

Fusion (RRF) (Cormack et al., 2009) of C̃q and 268

the initial C′
q list of passages : 269

Cq = RRF
(
C̃q,C

′
q

)
. (3) 270

We refer to this graph-based method of retrieving 271

relevant passages as Syncronised Graph Expansion 272

(SyncGE). 273

5 Multi-step Extension 274

While SyncGE can enhance a base retriever with 275

multi-hop context, some queries inherently require 276

multiple steps to gather all necessary evidence. We 277

materialise GEAR by incorporating an agent with 278

multi-turn capabilities, capable of interacting with 279

the graph-retriever described above. We focus on: 280

• maintaining a gist memory of proximal knowl- 281

edge obtained throughout the different steps 282

• incorporating a similar synchronisation pro- 283

cess that summarises retrieved passages in 284

proximal triples to be stored in this multi-turn 285

gist memory 286

• determining if additional steps are needed for 287

answering the original input question 288

Within this multi-turn setting, the original input 289

question q is iteratively decomposed into simpler 290

queries: q(1), . . . ,q(n), where q(1) = q and n ∈ 291

N represents the number of the current step. For 292

each query q(n), we use the graph retrieval method 293

introduced in Section 4 in order to retrieve relevant 294

passages Cq(n) . 295

5.1 Gist Memory Constructor 296

To facilitate the multi-step capabilities of our agent, 297

we introduce a gist memory, G(n), which is used for 298

storing knowledge as an array of proximal triples. 299

At the beginning of the first iteration, the gist mem- 300

ory is empty. During the n-th iteration, similar to 301

the knowledge synchronisation module explained 302

in Section 4.1, we employ an LLM to read a collec- 303

tion of retrieved paragraphs Cq(n) and summarise 304

their content with proximal triples: 305

TG
q(n) =

read
(
Cq(n) ,q

)
, if n = 1

read
(
Cq(n) ,q,G(n−1)

)
, if n ≥ 2

(4)

306
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Apart from the first iteration where Eq. 1 and 4307

are identical, the inclusion of the memory in the308

read operation differentiates the construction of309

proximal triples produced at the subsequent steps310

compared to the ones from Eq. 1. G(n) maintains311

the aggregated content of proximal triples s.t.312

G(n) =
[
TG

q(1) ◦ · · · ◦TG
q(n)

]
, (5)313

where ◦ defines the concatenation operation. The314

triple memory serves as a concise representation of315

all the accumulated evidence, up to the n-th step.316

We believe the process introduced by the read317

step along with the information storage paradigm318

served by the gist memory, aligns well with the319

communication between the hippocampus and neo-320

cortex. The combination of the two establishes the321

synergetic behaviour between our graph retriever322

and the LLM that we seek to achieve within GEAR.323

5.2 Reasoning for Termination324

After G(n) is updated, we check the sufficiency of325

the accumulated evidence, within it, for answering326

the original question. This is achieved with the327

following LLM reasoning step:328

a(n), r(n) = reason(G(n),q), (6)329

where a(n) denotes the query’s answerability given330

the available evidence in G(n), and r(n) represents331

the reasoning behind this determination. When the332

query is deemed answerable, the system concludes333

its iterative process.334

5.3 Query Re-writing335

The query re-writing process leverages an LLM336

that incorporates three key inputs: the original337

query q, the accumulated memory, and crucially,338

the reasoning output r(n) from the previous step.339

This process can be formally expressed as:340

q(n+1) = rewrite
(
G(n),q, r(n)

)
, (7)341

where q(n+1) represents the updated query, which342

serves as input for the retriever in the next iteration.343

344

5.4 After Termination345

GEAR aims to return a single ranked list of pas-346

sages. Given the final gist memory G(n) upon ter-347

mination, we link each proximal triple in G(n) to a348

list of passages as follows:349

Ctj = passageLink (tj , k) , (8)350

where j ∈
{
1, . . . , |G(n)|

}
. Similar to 351

tripleLink, passageLink is implemented by re- 352

trieving passages with a triple as the query (see 353

Appendix C.2). The final list of passages returned 354

by GEAR is the RRF of the resulting linked pas- 355

sages and passages retrieved across iterations: 356

C
(n)
q = RRF

(
Ct1 , . . . ,Ct|G(n)|

, 357

Cq(1) , . . . ,Cq(n)

)
. (9) 358

All relevant prompts for the read, reason and 359

rewrite steps are provided in Appendix I.2. 360

6 Experimental Setup 361

We evaluate our proposed framework on three 362

multi-hop QA datasets in the open-domain set- 363

ting: MuSiQue (answerable subset) (Trivedi et al., 364

2022), HotpotQA (Yang et al., 2018), and 2Wiki- 365

MultiHopQA (2Wiki) (Ho et al., 2020). For 366

MuSiQue and 2Wiki, we use the data splits pro- 367

vided in IRCoT (Trivedi et al., 2023), while for Hot- 368

potQA we follow the same data setting as in Hip- 369

poRAG (Gutierrez et al., 2024). Dataset-specific 370

statistics can be found in Appendix B. 371

We measure both retrieval and QA performance, 372

with our primary contributions focused on the re- 373

trieval component. For retrieval evaluation, we 374

use Recall@k (R@k) metrics for k ∈ {5, 10, 15}, 375

showing the percentage of questions where the cor- 376

rect entries are found within the top-k retrieved pas- 377

sages. We include an analysis about the selected 378

recall ranks in Appendix B. Following standard 379

practices, QA performance is evaluated with Exact 380

Match (EM) and F1 scores (Trivedi et al., 2023). 381

6.1 Baselines 382

We evaluate GEAR against strong, multi-step base- 383

lines, including IRCoT (Trivedi et al., 2023) and 384

a combination of HippoRAG w/ IRCoT (Gutier- 385

rez et al., 2024) which, similar to our framework, 386

includes a graph-retrieval component and a multi- 387

step agent. To showcase the benefits of our graph 388

retriever (i.e. SyncGE), we evaluate it against sev- 389

eral stand-alone, single-step retrievers: (i) BM25, 390

(ii) Sentence-BERT (SBERT), (iii) a hybrid ap- 391

proach that combines BM25 and SBERT results 392

through RRF and (iv) HippoRAG. Throughout the 393

experiments, we refer to the single-step setup when 394

an approach does not support several iterations and 395

is not equipped with an LLM agent. 396
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Retriever
MuSiQue 2Wiki HotpotQA

R@5 R@10 R@15 R@5 R@10 R@15 R@5 R@10 R@15

Single-step
Retrieval

ColBERTv2 39.4 44.8 47.7 59.1 64.3 66.2 79.3 87.1 90.1
HippoRAG 41.0 47.0 51.4 75.1 83.2 86.4 79.8 89.0 92.4
BM25 33.8 38.5 41.3 59.5 62.7 64.1 74.2 83.6 86.3

+ NaiveGE 37.5 45.5 48.4 65.0 70.7 71.8 79.1 89.1 91.9
+ SyncGE 44.7 52.6 57.4 70.5 76.1 79.3 87.4 93.0 94.0

SBERT 31.1 37.9 41.6 41.2 48.1 51.5 72.1 79.3 84.0
+ NaiveGE 32.2 41.4 45.4 45.1 54.0 57.3 76.1 84.7 88.8
+ SyncGE 41.6 51.3 54.2 54.8 64.9 70.7 84.1 89.6 92.8

Hybrid 39.9 46.3 49.1 60.0 65.8 66.6 77.8 85.8 89.7
+ NaiveGE 41.8 49.4 53.0 63.0 70.8 72.6 80.6 89.4 92.7
+ SyncGE 48.7 57.7 61.2 72.6 80.9 82.4 87.4 93.3 95.2

Multi-step
Retrieval

IRCoT (BM25) 46.1 54.9 57.9 67.9 75.5 76.1 87.0 92.6 92.9
IRCoT (ColBERTv2) 47.9 54.3 56.4 60.3 86.6 69.7 86.9 92.5 92.8
HippoRAG w/ IRCoT 48.8 54.5 58.9 82.9 90.6 93.0 90.1 94.7 95.9
GEAR 58.4 67.6 71.5 89.1 95.3 95.9 93.4 96.8 97.3

Table 2: Retrieval performance for single- and multi-step retrievers on MuSiQue, 2Wiki, and HotpotQA. Results are
reported using Recall@k (R@k) metrics for k ∈ {5, 10, 15}, showing the percentage of questions where the correct
entries are found within the top-k retrieved passages.

6.2 Implementation Details397

To maintain consistency and validity in compar-398

isons with the baselines on the splits used in this399

study, we conducted all experiments locally using400

their corresponding codebases.401

In addition to our proposed single-step retriever,402

SyncGE, we evaluate a more naive implementation403

of GE (i.e. NaiveGE) in order to explore the gener-404

ality of the method when in resource-constrained405

setting, where no LLM is involved. In NaiveGE,406

we use all triples that are associated with C′
q (see407

Section 4) for diverse triple beam search.408

For all models using an LLM, we employ GPT-409

4o mini (gpt-4o-mini-2024-07-18) as the back-410

bone model with a temperature of 0, both for of-411

fline triple extraction (i.e. how the T index in Sec-412

tion 3 is formed) and online retrieval operations.413

Our triple extraction prompt (in Appendix I.1) is414

adapted1 from the ones used by Gutierrez et al.. To415

ensure a fair comparison against Gutierrez et al.,416

the closest work to ours, we run experiments with417

HippoRAG using our prompting setup2 for triple418

extraction. For evaluating QA performance, we use419

the prompts provided in Appendix I.3. Further im-420

plementation details are provided in Appendix C.421

1Our approach uses a modified version of HippoRAG’s
triple extraction prompt that combines entity and triple ex-
traction into a single step, while incorporating an additional
demonstration and updated in-context examples.

2For transparency, we also compare against HippoRAG’s
original triple extraction prompt in Appendix H, where we
observe only minor differences across the two configurations.

1 2 3 4
Number of Iterations (n)

40

45

50

55

60

65

70

R
@

15

69.5

51.7

61.2

GeAR
Hybrid + SyncGE
HippoRAG w/ IRCoT
IRCoT (BM25)
IRCoT (ColBERTv2)

Figure 2: R@15 evolution over 4 iterations on MuSiQue.
Recall is computed at each iteration using the cumula-
tive set of retrieved documents, with prior recall values
carried forward for questions that terminated in earlier
iterations. The horizontal line indicates the single-step
performance of Hybrid + SyncGE.

7 Results 422

GEAR achieves state-of-the-art performance 423

in multi-step retrieval The multi-step section 424

of Table 2 demonstrates that our agent setup for 425

enabling multi-step retrieval is highly effective, 426

achieving state-of-the-art performance across all 427

datasets. While we observe significant improve- 428

ments on saturated datasets like 2Wiki and Hot- 429

potQA, GEAR particularly excels on the MuSiQue 430

dataset, delivering performance gains exceeding 431

10% over the competition. 432

SyncGE contributes to state-of-the-art perfor- 433

mance in single-step retrieval As shown in the 434
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single-step section of Table 2, our proposed Hy-435

brid + SyncGE method achieves state-of-the-art436

single-step retrieval performance on both MuSiQue437

and HotpotQA datasets. We observe consistent438

improvements using NaiveGE and SyncGE, out-439

performing HippoRAG in many setups regardless440

of the base retriever (i.e. sparse, dense or hybrid).441

Most notably, Hybrid + SyncGE surpasses Hip-442

poRAG by up to 9.8% at R@15 on MuSiQue.443

Higher recall leads to higher QA performance444

Aligning with findings from prior works, our anal-445

ysis reveals a consistent correlation between re-446

call and QA performance (Gutierrez et al., 2024).447

As shown in Table 3, GEAR achieves the highest448

EM and F1 scores. A closer examination of rela-449

tive improvements yields interesting insights. Tak-450

ing MuSiQue as an example, GEAR shows a 21%451

relative improvement in R@15 compared to Hip-452

poRAG w/ IRCoT, while achieving a 37% relative453

improvement in both EM and F1 scores. Mirroring454

the pattern observed in Table 2, its graph-based455

retriever (i.e. SyncGE) outperforms HippoRAG on456

both MuSiQue and HotpotQA.457

Retriever
MuSiQue 2Wiki HotpotQA

EM F1 EM F1 EM F1

No Passages 2.6 12.5 17.2 27.9 19.5 34.3
Gold Passages 36.6 59.2 54.4 70.3 55.0 75.9

Hybrid + SyncGE 14.0 27.1 38.0 50.2 45.0 63.4
HippoRAG 8.2 18.2 39.8 51.8 40.1 57.6

IRCoT (BM25) 7.6 15.9 28.8 38.5 34.3 50.8
IRCoT
(ColBERTv2) 12.2 24.1 32.4 43.6 45.2 63.7

HippoRAG w/
IRCoT 14.2 25.9 45.6 59.0 49.2 67.9

GEAR 19.0 35.6 47.4 62.3 50.4 69.4

Table 3: End-to-end QA performance using the top-
5 retrieved passages. The best model is in bold and
second best is underlined. The top part shows the lower
and upper bounds of QA performance, while the middle
and bottom sections display scores for single-step and
multi-step retrievers, respectively.

8 Discussion458

8.1 What makes GEAR work?459

NaiveGE vs SyncGE As shown in Table 2, both460

variants of graph expansion enhance the perfor-461

mance of every base retriever across all datasets.462

The case of SyncGE is particularly interesting since463

without any LLM agent, it is able to surpass the464

retrieval performance that HippoRAG w/ IRCoT465

Metric Dataset w/ Diversity w/o Diversity

R@5
MuSiQue 48.7 47.0
2Wiki 72.6 68.2
HotpotQA 87.4 85.0

R@10
MuSiQue 57.7 53.9
2Wiki 80.9 76.0
HotpotQA 93.3 92.2

R@15
MuSiQue 61.2 58.4
2Wiki 82.4 77.4
HotpotQA 95.2 94.3

Table 4: Effects of beam search diversity on Hybrid +
SyncGE retrieval performances across MuSiQue, 2Wiki
and HotpotQA.

can achieve after several LLM iterations, on the 466

challenging MuSiQue dataset. 467

Diverse Triple Beam Search improves perfor- 468

mance As shown in Table 4, diverse beam search 469

consistently outperforms standard beam search 470

across all evaluated datasets and recall ranks. By 471

incorporating diversity weights into beam search, 472

we align a language modelling-oriented solution 473

with information retrieval objectives that involve 474

satisfying multiple information needs underlying 475

multi-hop queries (Drosou and Pitoura, 2010). 476

GEAR mostly nails it the first time While 477

GEAR supports multiple iterations, Figure 2 shows 478

that on MuSiQue, GEAR can achieve strong re- 479

trieval performance within a single iteration. This 480

differentiates it from the IRCoT-oriented setups 481

that require at least 2 iterations to reach their max- 482

imum performance. This can be attributed to the 483

fact that GEAR reads (Eq. 4) multi-hop contexts 484

and associates the summarised proximal triples in 485

the gist memory with passages, establishing a syn- 486

ergetic behaviour between our graph retriever and 487

the LLM. We believe this mirrors the hippocampal 488

process of forming and resolving sparse represen- 489

tations, where gist memories are learnt in a one 490

or few-shot manner (Hanslmayr et al., 2016). The 491

performance difference between Hybrid + SyncGE 492

and GEAR at n = 1, approximately 10%, indi- 493

cates that the involved LLM reading and linking 494

processes can effectively approximate the role of 495

hippocampus within our framework. 496

8.2 Where does GEAR demonstrate 497

performance gains? 498

GEAR excels at questions of low-to-moderate 499

complexity Figure 3 presents a detailed break- 500

down of retrieval performance across different hop 501
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Figure 3: Analysis of R@15 performance divided by hop types on MuSiQue. The hop categorisation follows the
MuSiQue documentation. Mean recall values are indicated by grey dots for each hop type.

types in MuSiQue. For 2-hop questions, while502

GEAR and HippoRAG w/ IRCoT achieve sim-503

ilar interquartile ranges, GEAR demonstrates a504

notably higher mean recall, indicating superior505

performance on low-complexity questions. This506

advantage becomes more pronounced with 3-hop507

questions, where GEAR’s entire interquartile range508

exceeds HippoRAG w/ IRCoT’s median perfor-509

mance across both types of hop subdivisions. This510

demonstrates GEAR’s enhanced capability in han-511

dling questions of moderate complexity.512

8.3 Is GEAR efficient?513

GEAR requires fewer iterations As we observe514

in Figure 2, GEAR requires fewer iterations than515

the competition to reach its maximum recall perfor-516

mance. We attribute this to the fact that SyncGE517

enables GEAR to bridge passages across distant518

reasoning hops, resulting in fewer iterations.519

GeAR requires fewer LLM tokens In Figure 4,520

we showcase that GEAR can act as a more efficient521

alternative with respect to LLM token utilisation3.522

We observe that even for a single iteration, GEAR523

uses fewer tokens than HippoRAG w/ IRCoT. In524

contrast to ours, this trend exacerbates for the com-525

petition as the number of iterations increases.526

The findings from this figure also reiterate the527

value of SyncGE (see Section 8.1), which is able528

to outperform a significantly more LLM-heavy so-529

lution in MuSiQue, using almost 2.9 million fewer530

tokens. Even in the case that HippoRAG w/ IRCoT531

runs for a single iteration it would require more532

than 0.7 million tokens that Hybrid + SyncGE, with533

a substantially lower R@15 of 51.7.534

3Tokenisation performed using OpenAI’s tiktoken tool.

1 2 3 4
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1M
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4M

To
ke
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Hybrid + SyncGE Input
Hybrid + SyncGE Output
GeAR Input
GeAR Output
HippoRAG w/ IRCoT Input
HippoRAG w/ IRCoT Output

Figure 4: Progressive accumulation of input and output
LLM tokens across agent iterations on MuSiQue.

9 Conclusion 535

We propose GEAR, a novel framework that incor- 536

porates a graph-based retriever within a multi-step 537

retrieval agent to model the information-seeking 538

process for multi-hop question answering. 539

We showcase the synergy between our proposed 540

graph retriever (i.e. SyncGE) and the LLM within 541

the GEAR framework. SyncGE leverages the LLM 542

to synchronise information from passages with 543

triples and expands the graph by exploring diverse 544

beams of triples that link multi-hop contexts. Our 545

experiments reveal that this strategy improves over 546

more naive implementations, demonstrating the 547

LLM’s capability to guide the exploration of initial 548

nodes for graph expansion. Furthermore, GEAR 549

utilises multi-hop contexts returned by SyncGE and 550

constructs a gist memory which is used for effec- 551

tively summarising information across iterations. 552

GEAR archives superior performance compared to 553

other multi-step retrieval methods while requiring 554

fewer iterations and LLM tokens. 555
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Limitations556

The scope of this paper is limited to retrieval with557

the aid of a graph of triples that bridge correspond-558

ing passages. While we demonstrated the efficacy559

of our graph expansion approach and GEAR, we560

acknowledge that the implementation of the un-561

derlying graph is rather simple. Better graph con-562

struction that addresses challenges such as entity563

disambiguation (Dredze et al., 2010) and knowl-564

edge graph completion (Lin et al., 2015) can lead565

to further improvements.566

We focused on employing a dense embedding567

model for our diverse triple beam search scoring568

function, though alternative functions could open569

up promising avenues for future research. For ex-570

ample, one can study the feasibility of formulating571

the scoring of neighbours as a natural language572

inference task (Wang et al., 2021), using a model573

that predicts how confidently a sequence of triples574

answers the given query.575

Additionally, our approach relies on LLMs that576

can be better prompted to achieve superior perfor-577

mance on the relevant GEAR tasks. Nonetheless,578

we provide more experiments in Appendix D show-579

casing that GEAR can achieve equivalent perfor-580

mance with open-weight LLMs.581
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B Dataset Choices and Statistics770

MuSiQue 2Wiki HotpotQA

Split Source IRCoT IRCoT HippoRAG

# Hops 2− 4 2 2
# Documents 139, 416 430, 225 9, 221
# Test Queries 500 500 1, 000

# Chunks (C) 148, 793 490, 454 10, 293
# Triples (T) 1, 521, 136 4, 993, 637 122, 492
Av. # T/C 10.2 10.2 11.9

Table 5: Dataset characteristics and preprocessing statis-
tics, where triples are extracted from chunks, and Av.
# T/C represents the average number of triples per
chunk.

Table 5 serves as a summary of various facts and771

statistics related to the employed datasets and the772

chunking and triple extraction process introduced773

in Section 3.774

Reasoning behind dataset split choices For775

MuSiQue and 2Wiki, we use the data provided776

by Trivedi et al., including the full corpus and sub-777

sampled test cases for each dataset. To limit the778

experimental cost for HotpotQA, we follow Gutier-779

rez et al. setting where both the corpus and test780

split are smaller than IRCoT’s counterpart.781

Reasoning behind retrieval metrics Our evalu-782

ation employs recall at ranks 5, 10, and 15 (R@5,783

R@10, R@15). While previous work like Hip-784

poRAG evaluate R@2, we choose higher rank785

thresholds since many questions in MuSiQue re-786

quire information from more than two documents.787

Additionally, given modern LLMs’ expanding con-788

text length capabilities (Ding et al., 2024), exam-789

ining recall beyond R@5 (HippoRAG’s highest790

evaluated rank) provides valuable insights. Follow-791

ing IRCoT’s approach, we measure up to R@15792

and include R@10 as an intermediate point, offer-793

ing a comprehensive view of model performance794

across retrieval depths.795

C More Implementation Details796

C.1 Baselines Details797

We implement all proposed approaches using798

Elasticsearch4. For SBERT, we employ the799

all-mpnet-base-v2 model with approximate k-800

nearest neighbours and cosine similarity for vector801

4https://www.elastic.co/

comparisons. In IRCoT experiments, we evalu- 802

ate both ColBERTv2 and BM25 retrievers — Col- 803

BERTv2 for alignment with HippoRAG’s base- 804

lines, and BM25 for consistency with the original 805

IRCoT implementation. 806

For all multi-step approaches, including ours, we 807

follow Gutierrez et al. with respect to the maximum 808

number of retrieval iterations, which vary based on 809

the hop requirements of each dataset. Thus, we 810

use a maximum of 4 iterations for MuSiQue and 2 811

iterations for HotpotQA and 2Wiki. 812

C.2 GEAR Details 813

GEAR involves several hyperparameters, such as 814

the beam size inside graph expansion. We ran- 815

domly sampled 500 questions from the MuSiQue 816

development set, which we ensure not to overlap 817

with the relevant test set. We select our hyperpa- 818

rameters based on this sample without perform- 819

ing a grid search across all possible configurations. 820

Our goal is to demonstrate our method is ability 821

to achieve state-of-the-art results without extensive 822

parameter tuning. We acknowledge that a more 823

thorough hyperparameter tuning may result in fur- 824

ther improvements. 825

The initial retrieval phase utilises the chunks 826

index C as the information source, while leaving 827

the triple index T unused. Our graph expansion 828

component implements beam search with length 829

2, width 10, and 100 neighbours per beam. The 830

hyperparameter γ employed in diverse triple beam 831

search is set to twice the beam search width. For 832

the scoring function, we use the cosine similarity 833

score and the SBERT embedding model. 834

For the single-step configurations (i.e. any base 835

retriever with NaiveGE or SyncGE), we set the base 836

retriever’s maximum number of returned chunks 837

to match our evaluation recall threshold. With the 838

multi-step setup, we maintain a consistent maxi- 839

mum of 10 retrieved chunks before knowledge syn- 840

chronisation for the purpose of matching IRCoT’s 841

implementation. While this 10-chunk limitation 842

applies to individual retrieval rounds, please note 843

that the total number of accessible chunks can ex- 844

ceed this threshold through graph expansion and 845

multiple GEAR iterations. 846

passageLink Details We use passageLink to 847

link each triple tj ∈ G(n) to its corresponding pas- 848

sages in C by running a retrieval step as follows: 849

Ctj = hkbase (tj ,C ∪T) (11) 850

11



where j ∈
{
1, . . . , |G(n)|

}
and hkbase (tj ,C ∪T)851

is the RRF of passages returned by both T and C852

when queried with tj (as defined in Eq. 10).853

D Compatibility with Open-weight854

Models855

GEAR Results As shown in Table 6, we evaluate856

GEAR using popular 7-8B parameter open-weight857

models, comparing them against a closed-source al-858

ternative. On HotpotQA, Llama-3.1-7B surpasses859

the closed-source alternative, achieving higher re-860

call rates at R@10 and R@15. For MuSiQue and861

2Wiki, while the closed-source model maintains a862

slight superior edge in performance, the margin is863

narrow. Importantly, all tested open-weight models864

consistently outperform the previous state-of-the-865

art, HippoRAG w/IRCoT. This decouples GEAR866

from the need to use closed-source models, sug-867

gesting that state-of-the-art multi-step retrieval can868

be achieved using more accessible models.869

Diverse Beam Search Results Expanding upon870

Table 4, Table 7 demonstrates that diverse beam871

search consistently improves retrieval performance872

across both closed-source and open-weight models873

when using our proposed Hybrid + SyncGE setup.874

This further confirms the broader applicability of875

this approach.876

E Correlation between Question Hops877

and Agent Iterations878

The left panel in Figure 5 demonstrates that the879

median stopping iteration remains consistently at880

1 across all hop counts. Additionally, the upper881

quartile shows a clear upward trend as the number882

of hops increases. This suggests greater variabil-883

ity in processing time for more complex questions.884

The right panel illustrates two concurrent trends:885

as the question hop count increases, the number of886

questions in the dataset decreases, and the mean887

number of iterations GEAR requires to determine888

question answerability increases. This pattern indi-889

cates that higher-hop questions not only appear less890

frequently but also typically demand more compu-891

tational effort to process.892

F Qualitative Analysis893

Table 8 showcases some query instances where894

GEAR achieves perfect recall in a single iteration,895

while HippoRAG w/ IRCoT achieves lower re-896

call and consumes all available iterations. The897

presented examples illustrate how GEAR’s Gist 898

Memory G(n) precisely captures the essential infor- 899

mation needed to answer MuSiQue’s queries, main- 900

taining the appropriate level of granularity with- 901

out including superfluous details. In contrast, Hip- 902

poRAG w/ IRCoT struggles to retrieve crucial in- 903

formation—whether due to limitations in its triple 904

extraction step or retriever functionality—such as 905

the exact population of Venice, which is necessary 906

for accurate responses. Furthermore, the verbose 907

nature of IRCoT’s thought process component con- 908

trasts with GEAR’s streamlined approach. The 909

lack of such verbose component in our approach 910

contributes to the fact that GEAR requires fewer 911

LLM tokens than the competition, as explained in 912

subsection 8.3. 913

G Increasing Number of Agent Iterations 914

Figure 6 expands upon the analysis shown in Figure 915

2 by evaluating retrieval performance over 20 itera- 916

tions, rather than the initial 4 iterations. The results 917

demonstrate a consistent pattern across all methods: 918

retrieval performance stabilises after approximately 919

4 iterations, with no substantial improvements or 920

degradation in subsequent iterations. While some 921

minor fluctuations occur beyond this point, they 922

are negligible. 923

This performance plateau can be attributed to 924

two key factors. First, the query re-writing mech- 925

anisms in all investigated approaches struggle to 926

generate effective subsequent queries. Second, our 927

analysis has identified several cases of unanswer- 928

able queries within MuSiQue’s answerable subset. 929

A representative example is provided in Table 9. 930

H Comparison of Triple Extraction 931

Prompting Strategies 932

HippoRAG employs a sequential approach to triple 933

extraction: it first identifies named entities from 934

a text chunk, and then uses these entities to guide 935

triple extraction in a second step. In contrast, our 936

method extracts both entities and triples simul- 937

taneously. Table 10 shows that both approaches 938

achieve comparable retrieval performance across 939

all datasets, with each method excelling in different 940

scenarios. These results validate that joint entity 941

and triple extraction can match the effectiveness of 942

sequential extraction while reducing the number of 943

required processing steps. 944

12



LLM
MuSiQue 2Wiki HotpotQA

R@5 R@10 R@15 R@5 R@10 R@15 R@5 R@10 R@15

Closed-source GPT-4o mini 58.4 67.6 71.5 89.1 95.3 95.9 93.4 96.8 97.3

Open-weight Llama-3.1-7B 52.4 62.3 66.7 81.6 91.0 93.7 92.2 97.4 98.1
Qwen-2.5-8B 53.7 63.7 66.7 85.9 91.6 93.0 91.7 96.2 96.9

Table 6: Retrieval performance of GEAR across different closed-source and open-weight models on MuSiQue,
2Wiki and HotpotQA. Results are reported using Recall@k (R@k) metrics for k ∈ {5, 10, 15}, showing the
percentage of questions for which the correct entries are found within the top-k retrieved passages. The included
open-weight models are Llama-3.1-8B-Instruct and Qwen-2.5-7B-Instruct, and the closed-source model is GPT-4o
mini.

MuSiQue 2Wiki HotpotQA

R@5 R@10 R@15 R@5 R@10 R@15 R@5 R@10 R@15

GPT-4o mini w/ diversity 48.7 57.7 61.2 72.6 80.9 82.4 87.4 93.3 95.2
w/o diversity 47.0 53.9 58.4 68.2 76.0 77.4 85.0 92.2 94.3

Llama-3.1-8B-Instruct w/ diversity 46.2 54.3 57.4 69.1 78.1 81.6 87.3 92.8 95.1
w/o diversity 44.9 52.7 55.0 66.9 75.9 78.2 85.0 91.7 94.4

Table 7: Retrieval performance of the Hybrid + SyncGE method with different LLMs for the read step (see Eq. 1) w/
and w/o diversity for triple beam search. Results are reported using Recall@k (R@k) metrics for k ∈ {5, 10, 15},
showing the percentage of questions for which the correct entries are found within the top-k retrieved passages.
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Figure 5: Analysis of the relationship between the number of hops in questions and the required number of agent
iterations on the MuSiQue dataset. For each hop count, we analyse the number of iterations required by GEAR
to determine question answerability. The maximum iteration limit was set to 4, with “4+” indicating cases where
the agent could not determine answerability within this limit. The visualization presents two complementary
perspectives on the same data: the left panel shows a box plot emphasizing the median and distribution of stopping
iterations, while the right panel focuses on the mean number of iterations across different hop counts.
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Query GEAR HippoRAG w/ IRCoT

What team is the player who
led the league in sacks in
2017 a member of?

("Chandler Jones", "team", "Arizona Cardinals")
("Chandler Jones", "led the league in sacks in", "2017")

To answer the question about
the player who led the league in
sacks in 2017, I need to identify
the player and their team from
external sources, as the
provided documents do not
contain that specific
information

Who is the CEO of
FleetBoston Financial’s
purchaser?

("FleetBoston Financial", "purchaser", "Bank of America")
("Bank of America", "CEO", "Brian Moynihan")

The purchaser of FleetBoston
Financial is Bank of America.
To find the CEO of Bank of
America, I need to look for
information about the current
leadership of the bank. Next, I
will check for the current CEO
of Bank of America to answer
the question accurately.

What UK label was purchased
by the company that, along
with the distributor of The
Cube, and ABC, is the other
major New York-based
broadcaster?

("CBS", "purchased", "Oriole Records")
("CBS", "is a major broadcaster based in", "New York")
("NBC", "is a major broadcaster based in", "New York")
("The Cube", "was distributed by", "NBC")

The original network of
Undercovers is NBC, which is
one of the major broadcasters
based in New York. Now, I
need to find out which UK label
was bought by NBC ...

What was the 2018
population of the Italian
city that’s underwater?

("Venice", "population in 2018", "260,897")

The Italian city that is
underwater is Krag, British
Columbia, which is a ghost
town...

Table 8: Comparison of MuSiQue queries where GEAR achieves 100% recall at R@15 in a single iteration, while
HippoRAG w/ IRCoT shows lower performance despite using all four available iterations. Cell colors indicate
recall performance: green for 100% recall, red for 0% recall, and yellow for any intermediate value. Cell values
in GEAR represent the proximal triples stored in the Gist Triple Memory. Cell values in HippoRAG w/ IRCoT
represent IRCoT’s thought process.
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Figure 6: Evolution of R@15 over 20 iterations on MuSiQue. Recall is computed at each iteration using the
cumulative set of retrieved documents, with prior recall values carried forward for questions that terminated in
earlier iterations. The horizontal line indicates the single-step performance of Hybrid + SyncGE.
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Question Who did the producer of Big Jim McLain play in True Grit?

Gold Passages

1. Big Jim McLain: Big Jim McLain is a 1952 political thriller film starring John Wayne and
James Arness as HUAC investigators.

2. True Grit is a 1969 American western film. It is the first film adaptation of Charles Portis’
1968 novel of the same name. The screenplay was written by Marguerite Roberts. The film was
directed by Henry Hathaway and starred Kim Darby as Mattie Ross and John Wayne as U.S.
Marshal Rooster Cogburn. Wayne won his only Academy Award for his performance in this film
and reprised his role for the 1975 sequel Rooster Cogburn.

Comment No information about who was the producer of Big Jim McLain is provided in the gold passages

Table 9: Example of a query from MuSiQue that in not answerable solely based on the provided gold passages.

MuSiQue 2Wiki HotpotQA

R@5 R@10 R@15 R@5 R@10 R@15 R@5 R@10 R@15

HippoRAG original prompt 41.9 46.9 51.1 75.4 83.5 86.9 79.7 88.4 91.4
our prompt 41.0 47.0 51.4 75.1 83.2 86.4 79.8 89.0 92.4

HippoRAG w/ IRCoT original prompt 49.9 56.4 59.3 81.5 90.2 92.3 90.2 94.7 95.8
our prompt 48.8 54.5 58.9 82.9 90.6 93.0 90.1 94.7 95.9

Table 10: Retrieval performance comparison between HippoRAG’s sequential triple extraction method and our joint
extraction approach across three datasets.
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I Prompts945

I.1 Offline Prompts946

Reader

# Instruction

Your task is to construct an RDF (Resource Description Framework) graph from the given passages and named
entity lists.
Respond with a JSON list of triples, with each triple representing a relationship in the RDF graph.
Pay attention to the following requirements:
- Each triple should contain at least one, but preferably two, of the named entities in the list for each passage.
- Clearly resolve pronouns to their specific names to maintain clarity.

Convert the paragraph into a JSON dict containing a named entity list and a triple list.

# Demonstration #1

Paragraph:
“‘
Magic Johnson

After winning a national championship with Michigan State in 1979, Johnson was selected first overall in the
1979 NBA draft by the Lakers, leading the team to five NBA championships during their "Showtime" era.
“‘
{{"named_entities": ["Michigan State", "national championship", "1979", "Magic Johnson",
"National Basketball Association", "Los Angeles Lakers", "NBA Championship"]}}
{{
"triples": [
("Magic Johnson", "member of sports team", "Michigan State"),
("Michigan State", "award", "national championship"),
("Michigan State", "award date", "1979"),
("Magic Johnson", "draft pick number", "1"),
("Magic Johnson", "drafted in", "1979"),
("Magic Johnson", "drafted by", "Los Angeles Lakers"),
("Magic Johnson", "member of sports team", "Los Angeles Lakers"),
("Magic Johnson", "league", "National Basketball Association"),
("Los Angeles Lakers", "league", "National Basketball Association"),
("Los Angeles Lakers", "award received", "NBA Championship"),
]
}}
“‘

# Demonstration #2

Paragraph:
“‘
Elden Ring

Elden Ring is a 2022 action role-playing game developed by FromSoftware. It was directed by Hidetaka Miyazaki with
worldbuilding provided by American fantasy writer George R. R. Martin.
“‘
{{"named_entities": ["Elden Ring", "2022", "Role-playing video game", "FromSoftware", "Hidetaka Miyazaki", "United
States of America", "fantasy", "George R. R. Martin"]}}
{{
"triples": [
("Elden Ring", "publication", "2022"),
("Elden Ring", "genre", "action role-playing game"),
("Elden Ring", "publisher", "FromSoftware"),
("Elden Ring", "director", "Hidetaka Miyazaki"),
("Elden Ring", "screenwriter", "George R. R. Martin"),
("George R. R. Martin", "country of citizenship", "United States of America"),
("George R. R. Martin", "genre", "fantasy"),
]
}}

# Input
947
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Convert the paragraph into a JSON dict, it has a named entity list and a triple list.

Paragraph:
“‘
{wiki_title}

{passage}

948

I.2 Online Retrieval Prompts 949

The blue-highlighted portions of the Reader prompt below indicate additional text that is only required 950

when the Gist Memory G(n) is active. When Gist Memory is inactive, these blue sections should be 951

omitted, and the {triples} parameter should be left empty. 952

Reader with and without Gist Memory

Your task is to find facts that help answer an input question.

You should present these facts as knowlege triples, which are structured as ("subject", "predicate", "object").
Example:
Question: When was Neville A. Stanton’s employer founded?
Facts: ("Neville A. Stanton", "employer", "University of Southampton"), ("University of Southampton", "founded in",
"1862")

Now you are given some documents:
{docs}

Based on these documents and some preliminary facts provided below,
find additional supporting fact(s) that may help answer the following question.

Note: if the information you are given is insufficient, output only the relevant facts you can find.

Question: {query}
Facts: {triples}

953

Reasoning for Termination

# Task Description:
You are given an input question and a set of known facts:
Question: {query}
Facts: {triples}

Your reply must follow the required format:
1. If the provided facts contain the answer to the question, your should reply as follows:
Answerable: Yes
Answer: ...

2. If not, you should explain why and reply as follows:
Answerable: No
Why: ...

# Your reply:

954

Query Re-writing

# Task Description:
You will be presented with an input question and a set of known facts.
These facts might be insufficient for answering the question for some reason.
Your task is to analyze the question given the provided facts and determine what else information is needed for the next step.

# Example:
955
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Question: What region of the state where Guy Shepherdson was born, contains SMA Negeri 68?
Facts: ("Guy Shepherdson", "born in", "Jakarta")
Reason: The provided facts only indicate that Guy Shepherdson was born in Jakarta, but they do not provide any information
about the region of the state that contains SMA Negeri 68.
Next Question: What region of Jakarta contains SMA Negeri 68?

# Your Task:
Question: {query}
Facts: {triples}
Reason: {reason}

Next Question:
956

I.3 Online Question Answering Prompts957

The following prompt with retrieved passages combines the QA generation prompts from Gutierrez et al.958

and Wang et al.. For the variation without retrieved passages, we omit the preamble and only include the959

instruction, highlighted in purple .960

Retrieved Passages with In-context Example

As an advanced reading comprehension assistant, your task is to analyze text passages and corresponding questions
meticulously, with the aim of providing the correct answer.
==================
For example:
==================
Wikipedia Title: Edward L. Cahn
Edward L. Cahn (February 12, 1899 – August 25, 1963) was an American film director.

Wikipedia Title: Laughter in Hell
Laughter in Hell is a 1933 American Pre-Code drama film directed by Edward L. Cahn and starring Pat O’Brien. The film’s
title was typical of the sensationalistic titles of many Pre-Code films. Adapted from the 1932 novel of the same name
buy Jim Tully, the film was inspired in part by "I Am a Fugitive from a Chain Gang" and was part of a series of films
depicting men in chain gangs following the success of that film. O’Brien plays a railroad engineer who kills his wife and
her lover in a jealous rage and is sent to prison. The movie received a mixed review in "The New York Times" upon its
release. Although long considered lost, the film was recently preserved and was screened at the American Cinematheque in
Hollywood, CA in October 2012. The dead man’s brother ends up being the warden of the prison and subjects O’Brien’s
character to significant abuse. O’Brien and several other characters revolt, killing the warden and escaping from the prison.
The film drew controversy for its lynching scene where several black men were hanged. Contrary to reports, only blacks were
hung in this scene, though the actual executions occurred off-camera (we see instead reaction shots of the guards and other
prisoners). The "New Age" (an African American weekly newspaper) film critic praised the scene for being courageous
enough to depict the atrocities that were occurring in some southern states.

Wikipedia Title: Theodred II (Bishop of Elmham)
Theodred II was a medieval Bishop of Elmham. The date of Theodred’s consecration unknown, but the date of his death was
sometime between 995 and 997.

Wikipedia Title: Etan Boritzer
Etan Boritzer( born 1950) is an American writer of children ’s literature who is best known for his book" What is God?"
first published in 1989. His best selling" What is?" illustrated children’s book series on character education and difficult
subjects for children is a popular teaching guide for parents, teachers and child- life professionals. Boritzer gained national
critical acclaim after" What is God?" was published in 1989 although the book has caused controversy from religious
fundamentalists for its universalist views. The other current books in the" What is?" series include What is Love?, What is
Death?, What is Beautiful?, What is Funny?, What is Right?, What is Peace?, What is Money?, What is Dreaming?, What
is a Friend?, What is True?, What is a Family?, What is a Feeling?" The series is now also translated into 15 languages.
Boritzer was first published in 1963 at the age of 13 when he wrote an essay in his English class at Wade Junior High School
in the Bronx, New York on the assassination of John F. Kennedy. His essay was included in a special anthology by New York
City public school children compiled and published by the New York City Department of Education.

Wikipedia Title: Peter Levin
Peter Levin is an American director of film, television and theatre.

Question: When did the director of film Laughter In Hell die?
Answer: August 25, 1963.
==================
Given the following text passages and questions, please present a concise, definitive answer, devoid of additional elaborations,
and of maximum length of 6 words.
==================

961
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Wikipedia Title : {title} {text} for each retrieved passage ...
Question: {question}

Answer:
962

No Retrieved Passages

Given the following question, please present a concise, definitive answer, devoid of additional elaborations, and of maximum
length of 6 words.

Question: {question}

Answer:
963
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