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Abstract

We explore the generation of diverse environments using the Amorphous Fortress1

(AF) simulation framework. AF defines a set of Finite State Machine (FSM) nodes2

and edges that can be recombined to control the behavior of agents in the ‘fortress’3

grid-world. The behaviors and conditions of the agents within the framework4

are designed to capture the common building blocks of multi-agent artificial life5

and reinforcement learning environments. Using quality diversity evolutionary6

search, we generate diverse sets of environments that exhibit dynamics exhibiting7

certain types of complexity according to measures of agents’ FSM architectures and8

activations, and collective behaviors. QD-AF generates families of 0-player akin to9

simplistic ecological models, and we identify the emergence of both competitive10

and co-operative multi-agent and multi-species survival dynamics. We argue that11

these generated worlds can collectively serve as training and testing grounds for12

learning algorithms.13

1 Introduction14

Games with certain open-ended characteristics, such as sandbox simulation, management, or agentic15

multi-agent games, provide promising testbeds for learning agents Earle et al. [2021], Fan et al.16

[2022], Suarez et al. [2021]. The latter type, for example, allow for a range of potentially inter-17

esting interactions between artificial agents, often leading to emergent phenomena unforeseen by18

developers Guttenberg and Soros [2023].19

The Amorphous Fortress framework-[Charity et al., 2023] is a simulation framework that uses finite-20

state machines (FSMs) to produce emergent AI behaviors. Drawing inspiration from games such as21

Dwarf Fortress and Rogue, AF defines a base reality consisting of a fortress, where multiple instances22

of FSM agents interact with each other. Roughly speaking, the FSM agents might be interpreted as23

simple caricatures as magical animals, with the ability to hunt, transform and breed, which behaviors24

are triggered by temporally/spatially conditions dependent upon the agent’s state 1. Prior work25

shows that fortress environments can evolve the FSM entities towards “interesting” behaviors by26

maximizing (a proxy for) the complexity of graphs constituting FSMs. Given this objective, a hill-27

climber algorithm generates fortresses that exhibit symbiotic relationships between entities, where28

entity classes with both large and small FSM graphs are integral to the fitness in the fortress. From29

this, a variety of entity classes emerge, with diverse policies of agent behavior that depend on one30

another for deeper exploration of their own graphs.31

In this paper, we extend previous work by optimizing both quality and diversity using metrics32

reflecting agent behavior and interaction. We implement the quality diversity (QD) algorithm MAP-33

Elites to evolve a grid of Amorphous Fortress fortress environments. Diversity is maintained in these34

fortresses by their defined behavior characteristics (BCs). These BCs are measured based on the35

agent action space class definitions and the ending state of the fortress after simulation. Quality of36
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Figure 1: Left: example of a random fortress generated in the Amorphous Fortress framework. The
fortress environment contains many instances of different entity class types. Right: An example
entity class FSM definition. This FSM defines the action behavior an instance agent of this class can
take within the fortress under the right conditions. Here, the agent is capable of random movement as
well as ‘chasing’ (moving along a path toward) and ‘taking’ (removing from the fortress) an instance
of the $ entity class.

the fortresses is maintained by evaluating what proportion of each entity class’s finite-state machine37

definition was explored collectively during simulation. We use these metrics to generate a collection38

of fortresses that exhibit a range of specific behaviors during simulation39

We argue that the diversity and complexity of environments generated by QD-AF can act as a general40

testbed for evaluating RL agents. Like prior work in Unsupervised Environment Design in RL41

( [Parker-Holder et al., 2022, Jiang et al., 2021, Dennis et al., 2020, Wang et al., 2020]), QD-AF42

retains some of the generality feedback from agent behavior. But it uses fixed agents comprising43

modular FSMs, eliding the non-stationarity of learning agents. By relying solely on agent behavior,44

our method is independent of the semantics of the environments in which agents are trained or45

deployed, and can generate diverse environments with varying potential interpretations. At the same46

time, we select diversity metrics that will naturally affect the difficulty of tasks for a learning agent47

within the fortress. Feedback from a learning agent, embodied in varying fortresses, could then be48

used to select between subregions of the pre-generated archive, potentially serving as a more stable49

and/or nimble environment curator than processes that mutate low-level environment parameters at50

run-time, and perform search/learning concurrently with RL players.51

2 Background and related works52

This extension of the Amorphous Fortress system emphasizes the themes of multi-agent open-ended53

environments and QD algorithms. The following subsections describes each theme in more detail54

along with previous works related to this experiment.55

2.1 Open-ended systems56

Simulation environments allow researchers to emulate real world events and phenomena in a con-57

trolled test framework. Open-ended simulation environments and environments that promote artificial58

life offer a multitude of challenges and emergent scenarios for AI to solve [Bedau et al., 2000,59

Stanley et al., 2017]. Examples of simulation environments have previously been studied by game AI60

researchers for developing both the artificial agents and the environments themselves. Charity et al.61

[2020] and Green et al. [2021] introduce minimal simulations of The Sims and RollerCoaster Tycoon62

environments respectively to generate novel and diverse layouts based on the game environment.63

Similarly, Earle [2020] introduces a training environment in the game SimCity and examines popula-64

tion behaviors of cellular automata in Conway’s Game of Life. More recent works, such as Griddly,65

developed by Bamford [2021], and Maestro developed by Samvelyan et al. [2023], have developed66

custom open-ended environments to examine agent interactions—particularly for reinforcement67

learning (RL) tasks. Zhang et al. [2023] use human notions of interestingness in conjunction with68

Large Language Models to explore and facilitate open-ended learning. With Amorphous Fortress, we69

use an open-ended artificial simulation environment to investigate how agent learning models such as70

RL agents can interact with the generated agents in a specific environment setup.71
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2.2 Multi-agent interactions72

In some open-ended environments, multiple decision-making agents interact with each other co-73

operatively or competitively to achieve their common or opposing objectives. In the framework74

proposed by Grbic et al. [2021], multiple agents are interacting co-operatively to build complex block75

structures inspired by Minecraft. Deshpande and Magerko [2021] designed the application Drawcto,76

which uses multiple agents that are capable of co-creating interpretive open-ended artwork with77

human collaborators. Neural MMO [Suarez et al., 2021], is a platform for multi-agent RL over large78

agent populations in procedurally generated virtual maps. Lowe et al. [2017] introduce a method that79

successfully learns RL policies that require complex multiagent co-operation and coordination.80

Moreover, the diverse interactions among these multiple agents could give rise to interesting emergent81

behavior within the given context. The work by Bansal et al. [2017] and Baker et al. [2019] introduce82

the simulation of diverse environments, where multiple agents engage with each other competitively,83

leading to the rise of intricate and complex emergent behaviors. Such emergent behaviors include84

offensive and defensive game playing strategies like blocking and kicking [Bansal et al., 2017] or85

object manipulation within the environment such as “box-surfing” and building barricades [Baker86

et al., 2019]. We employ multi-agent interactions to enhance the diverse and interesting emergent87

behavior of different entity class types within the fortress environment.88

2.3 Quality diversity algorithms89

Evolutionary algorithms are gradient-free optimization methods that randomly mutates pools of90

individuals to maximize a computable objective function [Norvig and Intelligence, 2002]. Novelty91

search replaces the objective function with a measure of an individual sample’s phenotypic/behavioral92

distance from the existing archive of discovered individuals, in effect uniform randomly sampling93

the search space Doncieux et al. [2019], often achieving the (held-out) objective given a sufficiently94

informative behavior distance metric. It has been used to generate diverse game AI components such95

as video game levels Beukman et al. [2022] and dungeons Melotti and de Moraes [2018].96

Quality Diversity (QD) algorithms Multi-dimensional Archive of Phenotypic Elites (MAP-97

Elites) [Mouret and Clune, 2015] both optimize for a fixed objective while tessellating a behavioral98

search space and preventing competition between elites in different cells. MAP-Elites has been used99

to generate teams of agents for automated gameplaying [Guerrero-Romero and Perez-Liebana, 2021].100

MAP-Elites has also been used to create, replicate and explore real-world adaptability by simulated101

agents in virtual open-ended environment as studied by Norstein et al. [2022]. Pierrot and Flajolet102

[2023] evolve repertoires of full agents to combine any RL algorithm with MAP-Elites to dynamically103

learn the hyperparameters of the RL agent. This approach not only alleviates the user’s workload104

but also enhances performance in the evaluated environments. We use MAP-Elites to generate the105

multiple finite-state machine agents that would be ideal use case environments for training agent106

learning models.107

2.4 Amorphous Fortress 1.0 framework108

The Amorphous Fortress framework, developed by Charity et al. [2023], is an artificial life simulation109

system has a hierarchy of 3 components: entities (the agent class of the system) the fortress object110

(the environment class of the system) and the engine (the “manager” and main loop of the simulation).111

Each entity of the Amorphous Fortress is defined by a singular ASCII character, a unique 4-bit112

identification hex number and a finite-state machine (FSM) specifying its behavior during simulation.113

The finite-state machine entity class definition is made up of a list of nodes and a set of edges. Each114

node in the FSM graph represents a potential action state an entity instance can be in. These actions115

define how an instance interacts with the environment. The edges define when an instance of the116

entity class can change states to another node and is dependent and prioritized based on conditions117

found during simulation. Table 1 shows the possible action nodes and Table 2 shows the possible118

conditional edges that can define an entity class for the Amorphous Fortress 1.0 System. At any time119

during the simulation, the entity is always in a state at one of the set nodes. At each timestep—a single120

update within the fortress environment—each connection is evaluated to move to the connecting node121

state based on whether the conditions are met, in order of priority defined internally. The agent will122

perform the action at its new current node on the next timestep.123
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Figure 2: Diagram of the MAP-Elites algorithm applied to the Amorphous Fortress QD experiment

The fortress of the Amorphous Fortress contains the environment where the simulation takes place124

and stores general information accessible to all of the entities in the fortress. The borders and size125

of the fortress are defined initially with a set character width w and height h to enclose the entities.126

On initialization, the fortress generates each entity class FSM for each character defined at the start127

of the simulation. This global dictionary of entity classes allows any instance of an entity to add128

or transform different entity instances even if none exist on the map at initialization. The fortress129

maintains a list of currently active entity instances in the simulation and adds or removes them by130

their ID value. The fortress also maintains positional data about each entity to return for conditional131

checks (i.e. whether a particular position has an instance of an entity class located there.) The engine132

of the Amorphous Fortress system maintains the execution of the simulation and exports any log133

files or entity class data information such as the node and edges definitions. The fortress area itself134

where the entities interact is 15 spaces wide by 8 spaces tall—including the walls—allowing for a135

total traversable area of 78 tiles.136

As an update from this first Amorphous Fortress framework, the push action node was modified to137

include an entity character target. The move_wall action node is also an addition from the previous138

iteration of the Amorphous Fortress system.139

3 Methods140

3.1 MAP-Elites for Amorphous Fortress141

For this paper, we implement the MAP-Elites QD algorithm Mouret and Clune [2015] to evolve142

multiple entity classes towards a diversity of emergent behaviors. The emergent behaviors of the143

entities defined within this system are dependent on interactions with other instances within the same144

fortress. Therefore a single cell of the MAP-Elites grid contains a fortress with its own set of entity145

class definitions. Figure 2 illustrates a small example of the evolution and evaluation process as the146

fortresses are placed in the MAP-Elites grid for the experiment (described in more detail later in this147

section).148

Behavior Characteristics For a MAP-Elites implementation, the dimensions of the archived QD149

grid are known as the behavior characteristics (BCs). These BCs designate how the individuals from a150

population are separated and maintained for sample diversity and replaced within the cell to improve151

quality. For this paper, we define the following behavior characteristics that are used for experiment152

of this paper: a) the mean number of total instances in the fortress at the end of the simulation and b)153

the mean number of total nodes across all entity class definitions.154

For behavior characteristic (a) based on the number of entity instances, this dimension is intended to155

explore the population of a fortress, whether the entity class combinations result in an overpopulation156

of entity instances, an extinction of all instances, or a stability or “equilibrium” of instances within the157

fortress. The values of this dimension can range from 0 to 156—the maximum number of instances158

allowed to exist in the fortress before it terminates based on an “overpopulation” condition.159

Behavior characteristic (b), based on the collective class FSM size, looks to examine the “complexity”160

and “depth” of the entity classes; whether the combined set includes a majority of simple entity161
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class definitions with only 1 action node or conversely with extremely large entity class definitions.162

The values of this dimension can range from 15 nodes—where each of the entity classes has only 1163

node—to 1400 nodes—where each possible node is included every entity class FSM definition. The164

exploration of this dimension by the MAP-Elites algorithm will demonstrate the growth and utility of165

varying sized entity class FSMs.166

Population An evaluated population consists of a fortress with a set of agent entity class definitions.167

The population size for this paper was 10 individuals per generation—9 sampled from elites and 1168

randomly created similar to the initialization. The singular random fortress is injected into the set of169

mutant elites to encourage exploration within the MAP-Elites grid and to prevent the algorithm from170

reaching a local minimum during evolution. We parallelize the evaluation of these 10 individuals to171

speed up evolution. On initialization, all 15 of the entity class FSMs are defined for each fortress172

individual. In this step, the number of total nodes to be added over all FSMs in the fortress is sampled173

uniformly to encourage a larger spread of randomly initialized individuals over the MAP-Elites grid174

(along the n. nodes axis), thus allowing for more uniform exploration of cells as evolution progresses.175

We randomly initialize fortresses so as to sample uniformly along the axis measuring number of176

aggregate FSM nodes. We first uniformly sampling this aggregate number, then split it into as many177

summands as there are entity types using an evenly weighted multinomial distribution, where each178

summand corresponds to the number of nodes to be assigned a given entity. It is possible in this179

setting for an entity type to be assigned more nodes than there are distinct node types; in this case, we180

(greedily) re-assign the surplus nodes to one or more non-overfilled entity classes, until no surplus181

nodes remain.182

Mutation A fortress individual in the population is mutated by modifying its genotype: the class183

level definitions of the FSMs. Each fortress contains 15 entity classes, where each class can have184

a minimum of 1 action node and a maximum of 95 action nodes. This process is done similarly to185

the first Amorphous Fortress work by Charity et al. [2023], where separate coin-flip probabilities186

determine whether a node, edge, and/or entity instance in the fortress itself is added, removed, or187

altered. However, as a modification for the MAP-Elites experiment, the node mutation is adjusted188

to increase exploration within the grid. Unlike the previous experiment where a single node was189

modified per coin-flip chance, a range of nodes can be added, removed, or altered into another action190

node definition. For example, 10 nodes can be added to one entity class definition, while 4 are191

removed from another (or the same if randomly chosen again). Algorithm 1 shows a pseudocode192

algorithm for the mutation process of the evolution.193

Fitness The fortress sample individuals are evaluated based on the ending state of the fortress.194

The fortress is simulated for 100 steps, where each instance of an entity class present in the fortress195

enacts the current action node of its FSM graph once per step and then evaluates the next action196

node to move to based on the state conditions it ends in. The fitness function of the MAP-Elites197

implementation of the system is similar to the hill-climber experiment from the original Amorphous198

Fortress work, which is based on the average proportion of nodes and edges that have been explored,199

i.e., the percentage of nodes over the whole entity class activated during simulation by all instances200

of said class. This fitness definition encourages each class entity to have the full possibility of its201

emergent behaviors demonstrated within the simulation. The final exploration of a class definition’s202

nodes and edges are also aggregated over evaluation trials in case different behaviors occur due to203

different seed evaluations. The fitness function for a fortress is defined with the following equation:204

f = e/t where f is the fitness value from 0 to 1, e is the total number of explored nodes—nodes that205

were activated during simulation—for all entity class definitions in the fortress individual and t is the206

total number of nodes—activated or un-activated—for each entity class in the fortress individual.207

Entropy of the FSM definitions Entropy examines the distribution of the sizes across the entity208

class definitions. The values of this dimension ranges from 0 to 1, with 0 meaning all of the entity209

class FSMs have the same number of nodes and no variation, and 1 meaning the number of nodes210

are different for each entity class FSM definition. We use Shannon Entropy to calculate the entropic211

value of the FSM sizes with a b base N where N is the number of FSM size bins (which for this212

experiment is equal to the number of entity classes).213

Figure 3 shows how the BCs, fitness value, and entropy value are calculated for any given fortress.214
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Figure 3: Diagram of the calculations for MAP-Elites BCs, fitness values, and entropy value

3.2 Experiment setup215

Using the fitness function, AF mutation operators, and AF initialization schemes described above, we216

use standard MAP-Elites to iteration on a population of AF samples, evaluating them to determine217

fitness measures and characteristics, sorting them into their respective MAP-Elites grid cells, re-218

sampling from the grid to create the new population of samples and repeating for a set number219

of generations. In this experiment, we use a population sample size of 10 fortresses each with 15220

entity class definitions, evaluate these fortresses across 10 randomly chosen seeds, and evolve the221

populations for 10,000 generations. We use a small number of samples for the population with222

significantly longer generation time to encourage the algorithm to explore more of the cells of the223

MAP-Elites grid. The initial population of fortresses is made up of entity class definitions with only224

a single uniformly random action node. We use two combinations of behavior characteristics in this225

paper to explore the QD space of the evolved fortresses as well as the emergent behaviors from the226

elite fortresses saved.227

4 Results228

Figure 7a shows the heatmap for the MAP-Elites grid with the fitness for this experiment measuring229

the percentage of the entity class FSM visited. Nearly every possible MAP-Elites grid cell is filled230

for this experiment. Fortresses with fewer total nodes had the highest fitness values in the grid—231

most likely because it becomes increasingly challenging to explore different nodes in larger graphs.232

Predictably, many cells that contained fortresses with high instance numbers were terminated from233

overpopulation. The number of total entity instances does not seem to be limited by the total number234

of nodes, with fortress environments that lead to either extremes of near extinction (0-1 instances) or235

overpopulation (156 instances.)236

Measuring entropy Given this archive of individuals—optimized to maximize FSM exploration237

while diversifying along number of surviving entity instances and number of total FSM nodes—we238

investigate the distribution of total FSM nodes among entity classes. More specifically, we define a239

handful of FSM size buckets, and measure the entropy of the distribution of entity class FSMs among240

these buckets (Figure 7b). The entropy of the FSM size distribution is necessarily minimal at the241

extremes along the axis measuring number of nodes: only a set of minimum/maximum size FSMs242

can sum to a minimum/maximum number of total FSM nodes, where in either case, all FSMs must243

have the same size (falling into to the same FSM size bucket and minimizing distributional entropy).244

Higher entropy FSM size distributions appear in the subsection of the axis containing fortresses245

with medium-high numbers of nodes. It is possible that more variably-sized sets of FSMs could be246

beneficial to maximizing fitness (in terms of FSM exploration during simulation), which might explain247
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Figure 4: Results of the AF-QD experiment: exploring number of instances at the end of the
simulation vs. total number of nodes. The graph on the left shows the heatmap with respect to the
fitness measurement—the proportion of FSMs explored in the fortresses. Naturally, FSMs with fewer
nodes (left) are more easily explored. The graph on the right shows the same archive of fortresses
measured with the heatmap showing the measure of FSM entropy sizes.

their prominence in this section of the archive. This prominence is striking given the evenly-weighted248

multinomial distribution used to distribute FSM nodes among entity classes from a fixed number249

of aggregate number of FSM nodes, which normally lead to low-entropy FSM size distributions250

(because each FSM is likely to be assigned roughly equal numbers of nodes). On the other hand,251

fitness in this section of the archive is low, such that it may be unlikely very much such selection252

pressure has been applied, making further analysis necessary to come to firm conclusions along these253

lines.254

Because our domain is stochastic—in particular, re-simulating the same fortress (with the same255

entity class FSMs and initial entity instances and starting positions) will result in different random256

movement actions from any agent in a ‘move’, ‘push’, or ‘chase’ state—we re-evaluate the the257

fortresses in the archive using new random seeds and re-insert fortresses into a fresh archive. The258

results of these re-evaluations (for a single trial) are visualized against the archive resulting from QD259

search in Figure 5. In Table 3, we repeat the re-evaluation process for 10 archives, each generated by260

a separate QD search. We then consider the aggregate archive of overall best elites before and after261

re-evaluation.262

5 Discussion263

Our results show promise in generating a diverse set of environments for learning agents. Our fitness264

function emphasizes environments in which entities exhibit a diversity of behaviors (i.e. explore265

as many nodes in their constituent FSMs as possible). By combining this objective with behavior266

characteristics measuring the overall size of FSMs (via number of nodes), we seek to generate a set267

of environments that may act as a curriculum for a future embodied learning agent, which would have268

to navigate and perhaps (indirectly) model the varyingly complex behavioral policies governing the269

activity of NPCs in the fortress.270

After the QD search process, we additionally evaluate the diversity of the entity classes within271

each fortress, measured as the entropy over the distribution of entity class FSM sizes. We note that272

high entropy—exhibited in a large swatch of the network with a medium-high number of nodes—273

corresponds to sets of entities with variably sizes FSMs. When such individuals are fit (and FSMs274
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(a) Original archive after QD
search.

(b) Archive after re-evaluation with
new random seeds.

(c) Archive after re-evaluation with
new random seeds and longer
episodes.

Figure 5: Using the archive from a single trial of QD search (left) (with n. entities and n. nodes as
BCs), we observe that re-evaluating on new seeds (middle) and with longer episodes (right) leads
to increasingly “holey” archives, due to random variation in the number of surviving entities after
each episode.

have few ineffective nodes/edges), we can guarantee that different types of entities will exhibit diverse275

behavior. In this case, a hypothetical learning agent will be forced to adapt to a diversity of behavior276

profiles, increasing the richness of its task.277

Figure 6: Intra-fortress population. For select fortresses in the archive, we measure the number
of instances over time, across entity types. The vertical dashed blue line is the number of iterations
the fortress was simulated for during evolution. The cell with the highest entropy of entity class
definitions achieves an ecological equilibrium. This behavior is distinct from the extremes of the
archive, which either overpopulate or rarely add any additional entities.

We observed an interesting phenomena within the MAP-Elites cells concerning the population278

numbers of each of the entities. Ideally, we were aiming to find fortresses with balanced interactions279

between entities. The cells found at the extreme points of the archive (i.e. cells with lowest and highest280

possible behavior characteristics) exhibited uncooperative behavior between the instances. Fortresses281

with lower instance numbers refused to populate and caused a stagnation in the fortress. Conversely,282

fortresses with higher instance numbers quickly overpopulated. However, fortress individuals found283

in the middle of the archive had more “equilibrium” and cooperation. The fortress in the exact middle284

of the archive achieved much more diversity in terms of the entity class population; some entity285

classes having a sudden growth in instance number before dying off, while others slowly expanded286

their presence over time. This “equilibrium” was most noticeable in the fortress individual that287

demonstrated the highest entropy between entity class FSM sizes. This fortress showed a near perfect288

balance between all entity classes; neither dominating nor diminishing in numbers. The entities found289

in this fortress find a “harmony” of co-existence where the ecosystem does not find itself in danger of290

overpopulation nor extinction. From this, we can conclude that having a diversity of entity class sizes291

leads to better balance of entity populations and allows for more exploration of co-operative class292

behaviors.293
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The main weakness of our results is the generally low fitness, which indicates that much of the larger294

FSMs generated by our system could be pruned to drastically smaller size without having any effect295

on environment dynamics. We hypothesize that this lack of FSM exploration is the result of limited296

compute resources. In particular, 100 steps of simulation is not likely enough to explore FSMs with297

up to 94 nodes. Or, the small map size of generated environments may make prohibit more interesting298

large-scale dynamics. We observe the QD score to still be rising steadily after 10k iterations, such299

that further evolution would be beneficial. Qualitatively, we see that certain fortresses in the archive300

maintain varying equilibria between entity types over long time horizons, potentially showing how to301

optimize for environments facilitating novel dynamics for lifelong learning agents.302

6 Future work303

From the engineering side, the fortress engine could likely be drastically accelerated if it was304

implemented in a batched, GPU-compatible manner, similar to the recent trend in RL environments305

which has allowed for orders of magnitude increases in simulation speed [Lange, 2023, Freeman306

et al., 2021].307

For example, one archive dimension could measure how many times the “take” node is enacted by308

entities could encourage the evolution of fortresses with more or less aggressive entities. We would309

also like to examine the compressibility (e.g. via a simple gzip algorithm) or predictability (e.g. by310

a a neural network trained with supervised learning) of environment rollouts generated by a given311

fortress definition. We expect that such measures will provide a reasonable estimate of a hypothetical312

learning agent’s ability to model and/or adapt its behavior to a given fortress [Gomez et al., 2009], and313

could thus be used to validate the effectiveness of our FSM-based complexity metrics (themselves314

being cheaper to compute) and/or supplant them (if necessary).315

A different line of future work—emphasizing the QD-AF paradigm as a design tool in its own316

right—will involve developing a mixed-initiative online system in which users are free to design their317

own fortresses and entity class definitions. The MAP-Elites fortress illumination process could create318

“casts” of generated characters for the user to include, acting as a recommendation engine. These319

generated entity classes would be selected to highlight and enhance the potential behaviors singular320

“main character” entity within the fortress (e.g. by leading to particular activity in the main character’s321

FSM). Future systems could then augment QD-AF with learned models of human preference and322

style gathered consensually via such an interface. Users could even be invited to narrativize the323

emergent dynamics of fortresses in natural language, opening the door for training models converting324

human narrative and first-hand experience into environments—with real stakes and incentives beyond325

next-token prediction—for learning agents.326

7 Conclusions327

We utilize QD methods to create an archive of diverse grid-world environments using the mechanics328

of Amorphous Fortress, with an eye toward generating diverse training sets for learning agents. By329

searching for diverse fortresses in terms of number of surviving entities at the end of a simulation, we330

guarantee that a hypothetical learning agent will be exposed to a variety of environment states. In the331

archives generated by QD search, we find a large swath of environments which avoid extinction or332

population explosion to maintain equilibria that appear robust to stochasticity and longer episode333

lengths. We select for fortresses with well-explored FSMs to prohibit the growth of ineffective FSM334

components. By diversifying the aggregate size of entity FSMs within an individual fortress, we seek335

to provide a set of environments containing a smooth increase in the complexity of agent behavior336

profiles. Since the complexity of activity within agent FSMs in this work is limited (we suspect) by337

scale and compute budget, future versions will seek to batch simulation, allowing for faster evolution338

on equal hardware. The proxies for complexity proposed here can be compared against predictability339

of rollouts by supervised models, or learnability for embodied deep RL agents, embodying species’340

with pre-defined predator/prey dynamics between FSM-based agents to provide reward.341
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Table 1: Entity FSM action node definitions
Action Node Definition

idle the entity remains stationary atfferently-sizedsame position
move the item moves in a random direction (north, south, east, or west)
die the entity is deleted from the fortress
clone the entity creates another instance of its own class
push (c) the entity will attempt to move in a random direction and will push an entity of

the specified target character into the next space over (if possible)
take (c) the entity removes the nearest entity of the specified target character
chase (c) the entity will move towards the position of the nearest entity of the specified

target character
add (c) the entity creates another instance from the class of the specified target character
transform (c) the entity will change classes altogether to an entirely different entity class - thus

changing its FSM definition entirely
move_wall (c) the entity will attempt to move in a random direction unless there is an entity of

the specified class at that position - otherwise it will remain idle

Table 2: Entity FSM conditional edge definitions (ordered by least to greatest priority)
Action Node Definition

none no condition is required to transition states
step (int) every x number of simulation ticks the edge is activated and the node

transitions
within (char) (int) checks whether the entity is within a number of spaces from an instance of

another entity with the target character
nextTo (char) checks whether the entity is within one space (north, south, east, or west) of

another entity of the target character
touch (char) checks whether the entity is in the same space as another entity of the target

character
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(a) Proportion of FSMs explored in fortresses. Naturally, FSMs with fewer nodes (left) are more easily explored.

(b) Entropy of distribution of FSM sizes across entity types. Fortresses with very few/many nodes (left/right)
across all FSMs must have low entry because all entity FSMs are necessarily small/large. Fortresses with a
medium-high number of nodes—allowing for diverse FSM sizes between entities—exhibit high entropy. This
suggests that sets of differently-sized FSMs are more likely to result in thorough FSM exploration.

Figure 7: Archive of fortresses resulting from maximizing proportion of FSMs explored while
maintaining diversity in terms total size of FSMs and number of entity instances present in the fortress
at the end of simulation.
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(a) Proportion of FSMs explored in fortresses. Low entropy fortresses (left)—in which all entities have similar
FSM size—allow for the most thorough exploration.

(b) Number of nodes over all entity types. Naturally, minimal FSMs lead to the fittest low-entropy fortresses
(left), while higher entropy FSM size distributions require more nodes overall (right).

Figure 8: Archive of fortresses resulting from maximizing proportion of FSMs explored while
maintaining diversity in terms of number of entity instances present in the fortress at the end of
simulation, and entropy of the distribution of FSM sizes across entity types.
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Algorithm 1: Mutation function for the Fortress
Input: node_prob, edge_prob, instance_prob

1 node_r = random();
2 edge_r = random();
3 instance_r = random();
/* Mutate random entity class nodes */

4 while node_r < node_prob do
5 i = random(0,2);
6 e = random(fortress.ent_def );
7 n = random(logf ()) if i == 0 then
8 fortress._delete_nodes(e, n);
9 else if i == 1 then

10 fortress._add_nodes(e, n);
11 else if i == 2 then
12 fortress._alter_nodes(e, n);
13 node_r = random();

/* Mutate random entity class edges */
14 while edge_r < edge_prob do
15 i = random(0,2);
16 e = random(fortress.ent_def );
17 if i == 0 then
18 fortress._delete_edge(e);
19 else if i == 1 then
20 fortress._add_edge(e);
21 else if i == 2 then
22 fortress._alter_edge(e);
23 edge_r = random();

/* Mutate random entity instances in the fortress */
24 while instance_r < instance_prob do
25 i = random(0,1);
26 e = random(fortress.entities);
27 if i == 0 then
28 fortress._remove_entity(e);
29 else if i == 1 then
30 x, y = random(fortress.pos);
31 fortress._add_entity(e, x, y);
32 instance_r = random();

behavior characteristics new seeds n. episode steps best score QD score archive size

n. entities,
n. nodes

no 100 0.941 2,235 9,986

yes 100 0.941 2,197 9,975
500 0.941 2,086 9,962

n. entities,
FSM size entropy

no 100 0.958 2,156 6,974

yes 100 0.958 2,005 6,951
500 0.958 2,011 6,950

Table 3: Re-evaluation of elites with new random seeds and longer episodes. After aggregating
(re-evaluated) elites from 10 trials, we see that the stochastic nature of our environment leads to some
variance, with some shrinking of the archive and decrease in QD score.
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