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Abstract

We study a class of optimization problems motivated by automating the design and1

update of AI systems like coding assistants, robots, and copilots. We propose an2

end-to-end optimization framework, Trace, which treats the computational work-3

flow of an AI system as a graph akin to neural networks, based on a generalization4

of back-propagation. Optimization of computational workflows often involves rich5

feedback (e.g. console output or user’s responses), heterogeneous parameters (e.g.6

prompts, hyper-parameters, codes), and intricate objectives (beyond maximizing a7

score). Moreover, its computation graph can change dynamically with the inputs8

and parameters. We frame a new mathematical setup of iterative optimization,9

Optimization with Trace Oracle (OPTO), to capture and abstract these properties10

so as to design optimizers that work across many domains. In OPTO, an opti-11

mizer receives an execution trace along with feedback on the computed output.12

Trace is the tool to implement OPTO in practice: Trace has a Python interface13

that efficiently converts a computational workflow into an OPTO instance using14

a PyTorch-like interface. Using Trace, we develop a general-purpose optimizer15

called OptoPrime that can effectively solve OPTO problems. In empirical studies,16

we find that OptoPrime is capable of first-order numerical optimization, prompt17

optimization, hyper-parameter tuning, robot controller design, code debugging, etc.,18

and is often competitive with specialized optimizers for each domain. We believe19

that Trace, OptoPrime and the OPTO framework will enable the next generation of20

interactive agents that automatically adapt using various kinds of feedback.21

1 Introduction22

Computational workflows that integrate large language models (LLMs), machine learning (ML)23

models, orchestration, retrievers, tools, etc., power many state-of-the-art AI applications [1]: from24

chatbots [2], coding assistants [3], robots [4], to multi-agent systems [5]. However designing a25

computational workflow requires laborious engineering because many heterogeneous parameters (e.g.26

prompts, orchestration code, and ML hyper-parameters) are involved. Moreover, after deployment27

any erroneous behaviors of the workflow persist unless a developer manually updates it.28

We study a class of optimization problems motivated by automating the design and update of compu-29

tational workflows. Computational workflows produce optimization problems with heterogeneous30

parameters, rich feedback (e.g. console output and user’s verbal responses), and intricate objectives31

(beyond maximizing a score). Moreover, a workflow can have interdependent steps (e.g. adaptive or-32

chestration, feedback control loops) and/or involve semi-black-box operations whose behavior cannot33

be succinctly captured(e.g. ML models, simulations). As a result, the structure of the computation34

may change as the parameters and the inputs of the workflow vary.35
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Due to its complexity, computational workflow optimization is usually framed as a black-box [6]36

or algorithm configuration [7] problem, and is tackled by general techniques like Bayesian Opti-37

mization [8], Evolutionary Algorithms [9], Reinforcement Learning (RL) [10] using scalar scores38

as feedback. Recently LLM-based optimizers [11–16] have been proposed to improve efficiency,39

leveraging the prior of LLMs learned from large pre-training corpora to optimize complex prompts40

and codes. But one observation of scalar feedback alone does not provide an improvement signal, so41

these algorithms are very inefficient when the parameter space is large (e.g. codes or natural language42

prompts). Most of them still use scalar feedback and the workflows contains only a single component43

(e.g. one LLM call). See Appendix A for discussion on related work).44

1.1 Toward Efficient End-to-End Optimization of Computational Workflows45

We take an end-to-end approach to computational workflow optimization, inspired by back-46

propagation [17]. AutoDiff frameworks [18, 19] have scaled back-propagation to optimize dif-47

ferentiable workflows (i.e. neural networks) with billions of parameters. We extend the idea of48

AutoDiff and design Trace for jointly optimizing all parameters in general computational workflows.49

Trace treats a general computational workflow as a computational graph like a neural network, where50

nodes are either inputs or parameters (prompts, codes, etc.) or the results of computation steps,51

and directional edges denote how nodes are created from others. However, instead of gradients,52

Trace propagates the execution trace of a workflow (recording the intermediate computed results53

and how they are used to create the output). We show that propagating the execution trace subsumes54

back-propagation for differentiable workflows, and remains applicable even for non-differentiable55

workflows. Viewing a workflow as a computational graph and then using its execution trace is56

standard practice for software engineering; for instance, human developers use such traces to debug57

distributed systems [20]. Our novel insight is that traces also unlock efficient self-adapting workflows,58

because they can provide information to automatically correct heterogenous parameters end-to-end.59

1.2 Example of Trace in Action60

Trace uses an API inspired by PyTorch [19]. To use it, a user declares the parameters needed to be61

optimized using a trainable flag, decorates the workflow with node and bundle wrappers, and runs62

a Trace optimizer; just like how they would declare and train neural networks.63

Consider building an AI agent for the Battleship game (Fig. 1). The agent’s policy (Fig. 2a) has two64

components (reason and act) which are chained together to react to different board configurations.65

The Battleship environment provides feedback (binary reward) if the agent’s action hit the hidden66

ships, and the goal is to hit all hidden ships as fast as possible. Consider how a human programmer67

might approach the problem. They may run the policy and change the code based on the observed68

feedbacks. They may rewrite the code a few times to try different heuristics to solve this problem.69

They will fix any execution errors (e.g. out-of-bounds exceptions) by using stacktraces.70

Balance unexplored squares vs 
adjacent to previous hitsOnly guess [0, 0]

Learn to
enumerate all squares

Figure 1: Learning Example in Battleship: An agent playing Battleship must intelligently place a shot on the
board. Trace automatically optimizes heterogeneous parameters (e.g. multiple codes) to implement the agent’s
policy. The reason() parameter contains an enumeration heuristic after 2 optimization iterations, and later
updates to a balanced explore-exploit strategy. Means and standard errors are computed over 10 random seeds.
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class Policy(trace.Module):

def forward(self , map):
plan = self.reason(map)
output = self.act(map , plan)
return output

@trace.bundle(trainable=True)
def reason(self , map) -> str:

"""
Initial code
"""
return [0, 0]

@trace.bundle(trainable=True)
def act(self , map , plan):

"""
Given a map and a plan , select a

target coordinate in a game.
"""
return [0, 0]

(a) We write a trainable policy in
Python using Trace operators.

policy = Policy ()
params = policy.parameters ()
optimizer = trace.Optimizer(params)

env = gym.make(’Battleship -v0’)
board = env.reset()
done , feedback = False , None
while not done:

# Forward pass
try:

target = policy(board)
board , feedback, done =
env.step(target.data)

except TraceExecutionError as e:
feedback = str(e)
target = e.exception_node

# Backward pass and update
optimizer.zero_feedback ()
optimizer.backward(target , feedback)
optimizer.step()

(b) We then use PyTorch-like optimiza-
tion syntax to train the policy.

Act

[ParameterNode]

def act():

Reason

[ParameterNode]

def reason():

Board

[Node]

[..., ..., ...]

Action

[Node]

[0, 1]

Env Feedback

Execution

Feedback

(c) Trace automatically
records execution DAG.

Figure 2: “Complete” Python Code of the Battleship Example. To build a self-adapting agent with Trace, we
only need to annotate some empty functions (reason, act) and set up an optimizer following PyTorch semantics.
Trace then builds a DAG as the workflow executes and updates the parameters (see Fig. 1 for the result).

Our Trace framework accomplishes the programmer’s goal automatically without adding complexity71

to the Python code. The user declares reason and act as trainable (Fig. 2a) and then runs the agent72

in a PyTorch-like training loop (Fig. 2b). During the execution, Trace records a directed acyclic graph73

(DAG) (Fig. 2c) and uses it to compute the execution trace for optimization. Trace also automatically74

catches errors (e.g., syntax/semantic errors) and can use them as feedback. In Fig. 1, we show what75

the agent learns as Trace optimizes1 its policy, where the learned policy is evaluated on new randomly76

generated games. With binary feedback and less than 7 tries, the agent can quickly improve its77

performance and learn strategies that are increasingly complex. We highlight that Fig. 2a and Fig. 2b78

are the full Python code used to program this efficiently self-adapting agent. Remarkably, there is79

no mention of Battleship nor details on how the functions reason and act should behave or adapt80

in Fig. 2a. The Trace optimizer figures out all the details dynamically as the computational graph81

unfolds and the feedback on the output is observed. Beyond code as parameters in this example, we82

also have experiments in Section 5 where prompts and other heterogenous parameters are optimized.83

1.3 A New World of Mathematical Optimization84

The design of Trace is based on a new mathematical setup of iterative optimization, which we call85

Optimization with Trace Oracle (OPTO). In OPTO, an optimizer selects parameters and receives a86

computational graph as well as feedback on the computed output. Trace is a tool to efficiently convert87

the optimization of computational workflows into OPTO problems in practice.88

We argue that framing computational workflow optimization as OPTO can lead to faster convergence89

than a black-box approach. We present a constructive proof: We design a general-purpose efficient90

OPTO optimizer called OptoPrime. OptoPrime turns OPTO to a sequence of pseudo-algorithm91

problems. In each iteration of OPTO, we format the execution trace and output feedback as a pseudo-92

algorithm question and present it to an LLM for solution (GPT-4 using a ReAct-CoT prompt listed93

in Appendix G). In experiments, we apply OptoPrime to many disparate applications like prompt94

optimization, first-order numerical optimization, hyper-parameter tuning, and robot controller design.95

We find that the general purpose OptoPrime is competitive with specialized optimizers for each96

domain, e.g. achieving 10% higher accuracy on BigBenchHard [21] when optimizing a DSPy [22]97

program compared to their hand-designed optimizer.98

Working together, Trace, OPTO and OptoPrime provide the first tractable algorithm for optimizing99

general computational workflows. The Trace framework a) leverages the graph structure of a100

workflow and b) can incorporate rich output feedback beyond scores (such as natural language or101

error messages), extending the concept of AutoDiff to complicated, non-differentiable computational102

workflows. With Trace, we conjecture that “training deep agent networks” (which fluidly mix103

computation of tensors, LLMs, and other programmable tools) will soon be possible.104

1We use a new general-purpose LLM-based optimizer OptoPrime that we detail in Section 4.
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2 Optimization with Trace Oracle105

OPTO is the foundation of Trace. In this section, we define this graph-based abstraction of iterative106

optimization and discuss how OPTO covers various computational workflow optimization problems.107

Preliminary We review the definition of a computational graph (see Fig. 2c). A computational108

graph g is a DAG, where a node represents an object (such as tensors, strings, etc.) and an edge109

denotes an input-output relationship. We call a node without parents a root and a node without110

children a leaf, which are the inputs and outputs of the computational graph. In the context of111

optimization, some inputs are marked as trainable parameters, which are denoted as {Xθ}. For a112

node X , its parents are the inputs to an operator that creates X . The descendents of node X are113

those that can be reached from X following the directed edges; the ancestors are defined conversely.114

Without loss of generality, we suppose that all computational operators have a unitary output2. In115

this way, we can associate the operator that creates the child node with the child node, and the full116

computation can be represented compactly as a DAG without explicitly representing the operators.117

2.1 Problem Definition of OPTO118

Output
Feedback

Figure 3: Iterations of OPTO. When θ ∈ Θ
is selected, the Trace Oracle T returns trace
feedback τ = (f, g), where g is a computa-
tional graph using θ as an input and f is the
feedback given to the output of g.

OPTO is an abstract setup of iterative computational work-119

flow optimization. An OPTO problem instance is defined120

by a tuple (Θ, ω, T ), where Θ is the parameter space, ω121

is the context of the problem, and T is a Trace Oracle. In122

each iteration, the optimizer selects a parameter θ ∈ Θ,123

which can be heterogeneous. Then the Trace Oracle T124

returns a trace feedback, denoted as τ = (f, g), where g is125

the execution trace represented as a DAG (where Xθ are126

contained in the root nodes of g), and f is the feedback127

provided to exactly one of the output nodes of g. Finally, the optimizer uses the trace feedback τ to128

update the parameter according to the context ω and proceeds to the next iteration, as shown in Fig. 3.129

In OPTO, the output feedback f is generic, e.g. can be scores, gradients, hints/explanation expressed130

in natural language, and console messages. The context ω provides invariant information to interpret131

the output feedback f as well as any known side-information, e.g. desired properties of the parameters.132

The context ω is fixed for an OPTO problem instance (similar to an instruction, or a problem133

definition), whereas the output feedback f can change with the parameter θ ∈ Θ and the resulting134

computation g. For example, ω may be “Minimize a loss function” and f is a loss. Alternatively, ω135

can be open-ended, like “Follow the feedback” and f describes how an output should be changed.136

In Section 3.1, we discuss how to define the context and output feedback when constructing OPTO137

problems in practice. In this paper, we focus on OPTO problems where f and ω can be expressed138

compactly in text. This covers a wide range of problems [23], including those with scalar feedback.139

OPTO differs from a black-box setup in that the execution trace g shows the computational path140

toward the output, which provides information to construct a parameter update direction from f141

and ω. In the minimization example above, when the execution trace g is missing, it is unclear how142

the parameter can be improved given only a point evaluation of f . On the other hand, with g, an143

update direction (e.g., a gradient) can be efficiently derived. We highlight that the structure of the144

computational graph g returned by the Trace Oracle T can be different each iteration (as in Fig. 3)145

because the workflow can change with different inputs and parameters.146

To ground the OPTO setup, we show how OPTO is related to some existing problems with examples.147

We discuss other examples like hyperparameter tuning and multi-agent systems in Appendix C.148

Example 1 (Neural network with back-propagation). The parameters are the weights. g is the149

neural computational graph and f is the loss. An example context ω can be “Minimize loss”. The150

back-propagation algorithm is embedded in the OPTO optimizer. For example, an OPTO optimizer151

can use τ to compute the propagated gradient at each parameter, and apply a gradient descent update.152

Example 2 (RL). The parameters are the policy. g is the trajectory (of states, actions, rewards)153

resulting from running the policy in a Markov decision process; that is, g documents the graphical154

model of how an action generated by the policy, applied to the transition dynamics which then returns155

the observation and reward, etc. f can be the termination signal or a success flag. ω can be “Maximize156

return” or “Maximize success”.157

2A multi-output operator can always be modeled by a single-output operator and single-output indexers.
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Example 3 (Prompt Optimization of an LLM Agent). The parameters are the prompt of an LLM158

workflow. g is the computational graph of the agent and f is the feedback about the agent’s behavior159

(which can be scores or natural language). ω can be “Maximize score” or “Follow the feedback”.160

3 Trace: The New AutoDiff161

We design a framework, Trace, to bring OPTO from an abstract concept to practical reality. Trace162

provides a light-weight Python tool to implement the Trace Oracle of OPTO when optimizing163

computational workflows. This is done using a set of wrappers (node and bundle). Through the164

OPTO framing, Trace separates the design of optimizers and domain-specific components so that165

optimizers can be built to simultaneously work across multiple workflows and domains.166

Design of Trace Trace is based on two primitives:167

• node is the wrapper of Python objects. When wrapped, a Python object is registered as a unique168

node in the global graph of Trace. A node can be set trainable, which would make the node a169

parameter in OPTO. In addition, when using node to declare a parameter, one can also describe170

constraints (in natural language) that the parameter should obey.171

• bundle is the decorator to turn Python methods into operators. When a function is decorated,172

its docstring and source code are recorded as the definition of the operator; this information is173

akin to Jacobians and Adjoints in AutoDiff. Moreover, functions decorated by bundle can be set174

trainable as well, which means that the code of the decorated method becomes a parameter.175

For any workflow, using Trace involves the following steps (see Fig. 2). First, the user declares the176

workflow’s parameters using node and bundle, and also defines the workflow’s conceptual blocks as177

operators in the computational graph using bundle. Then the user creates an OPTO optimizer (such178

as OptoPrime as detailed in Section 4), and optionally provides the context ω for the problem. (A179

default context ω of OptoPrime is “Follow the feedback”). In addition, the user defines a mechanism180

to provide feedback to the computed result (e.g. scores, natural language suggestions, etc.), in analogy181

to defining a loss function in neural network training.182

Then Trace repeats the following automatically: 1) Execute the decorated workflow. As it runs, a DAG183

is built in the backend, logging the computed results and their connections. 2) Initiate the propagation184

of the output feedback to the parameters by calling backward. (Any execution error is also treated185

as feedback; see Appendix D.) Internally, Trace extracts the minimal subgraph g connecting the186

parameters and the output and sends the OPTO optimizer the trace feedback τ = (f, g). 3) Call the187

OPTO optimizer’s step method to update the parameters.188

Trace overloads common Python methods. Therefore, for simpler problems, once the parameters are189

declared, a workflow code can be optimized directly. For complicated ones, users need to decorate190

their workflow blocks with bundle. The design of bundle allows tracing most Python codes, except191

for those modifying the content of an object reference in place or involve a function recursively192

calling itself. Such a case can be avoided by duplicating the object first and applying the modification193

to the copied object, similar to how a recurrent neural network is implemented.194

3.1 Guidelines for Constructing OPTO Problems with Trace195

There are many ways to represent a computational workflow as a computational graph. In one196

extreme, the entire computation process is abstracted into one big operator. At the another extreme,197

every low-level computation is also an operator in the graph. In Trace, the level of abstraction is198

decided by how bundle is applied, as all operations underneath bundle are abstracted as one operator199

summarized by the docstring of that decorated codeblock. Different choices trade-off the complexity200

of the overall graph and the description needed for each operator. Abstracting everything into a single201

operator makes the graph simple but requires more descriptions to faithfully capture the workflow.202

On the other hand, not all details matter in optimization, so exposing every low-level operator in203

the graph can make it unnecessarily cluttered. Ultimately, the best representation is subjective and204

depends on the application and OPTO optimizer at hand. This problem we believe is similar to the205

design of neural network architectures. In this paper, we suggest defining the operators by roughly206

mimicking the white-board system diagram of the computational workflow. We find that this level of207

abstraction in our experiments strikes a good balance between the ease of documenting the behavior208

of each operator and the complexity of the resulting graph.209
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Apart from architecture design, another under-specified question is what information goes into the210

context ω versus the description of each operator? For a single problem, there is no difference in211

principle; one can choose to provide details of all operators in g through the context ω. However,212

this will require manually crafting a context for every workflow. We suggest instead providing a213

description of the operators when they are defined using bundle. Then Trace will automatically214

generate the workflow-specific information while the same context ω is shared across many workflows.215

3.2 Backward Step: Implementing the Trace Oracle216

Algorithm 1 Backward Message Passing
Input: Node output, feedback f , propagator P
1: τ ← P.init(f)
2: output.add_feedback(“User”, τ)
3: queue← MinHeap([output])
4: while queue is not empty do
5: node← queue.pop()
6: feedback ← P.propagate(node)
7: for parent in node.parents do
8: τ ← feedback[parent]
9: parent.add_feedback(node, τ)

10: if parent /∈ queue then
11: queue.push(parent)

Algorithm 2 Minimal Subgraph Propagator
Input: A child node node

// The pseudo code implements propagate.
// init(f) returns (f, {}).

1: g ← {node}
⋃
{parent in node.parents}

2: for (fi, gi) in node.feedback do
3: g ← g

⋃
gi

4: f ← fi // all fi are the same.
5: return {p : (f, g) for p in node.parents}

Trace uses a recursive graph traversal algorithm (Al-217

gorithm 1) to propagate feedback in the reversed topo-218

logical ordering. By using different propagators, Al-219

gorithm 1 can implement various forward-backward220

schemes including back-propagation.3 We propose221

a general propagator, Minimal Subgraph Propagator222

(MSP), in Algorithm 2. MSP propagates the trace223

feedback τ = (f, g), where the computational graph224

g is implemented as a priority queue. Running Algo-225

rithm 1 with MSP (Algorithm 2) together implements226

the Trace Oracle of OPTO, which extracts the min-227

imal subgraph4 connecting the parameters and an228

output. Appendix E proves the following theorems:229

Theorem 1. For a graph with N nodes and maximum230

degree W , Algorithms 1 and 2 have time complexity231

O(WN2 logN) and space complexity O(WN).232

By contrast, back-propagation has a time and a space233

complexities of O(Nd2) and O(d), where d is the234

maximal dimension of tensors. The difference is235

because in the most general setting of computational236

graphs and feedback, the propagated feedback (no237

matter how it is represented) does not have a constant238

size and needs full information of the subgraph.239

Theorem 2. For generic computational graphs of N nodes, in the worst case, the propagated240

feedback needs a description length Ω(N) to construct an improvement direction.241

Despite the worst case complexity of MSP, in practice the difference is negligible. Since MSP only242

involves merging priority queues of references, most actual computation happens in the forward pass243

(and also the optimizer’s step method). For very large problems with thousands of nodes in the244

minimal subgraph, we anticipate that computational issues of MSP could arise.245

4 Design of the First OPTO Optimizer246

We introduce an LLM-based optimization algorithm OptoPrime for OPTO problem. Its name247

indicates that we believe this is one of many possible optimization algorithms for this problem and248

there is still a large space for identifying efficient optimization methods for OPTO.249

Subgraph Representation One core challenge of designing an LLM-based OPTO optimizer is250

how to represent the execution trace subgraph g (which can involve various graph structures and251

heterogenous data) to LLMs, in a way that LLMs can understand and reason about the downstream252

effects of parameter update. We leverage the LLMs’ remarkable coding and debugging ability [3].253

We present the trace feedback computed by Trace as a pseudo-algorithm problem: we represent the254

subgraph g as a report of codes with info about the computed values and descriptions of functions255

involved in g. Based on this report, we ask the LLM to update the parameters in g. Fig. 4 shows an256

3In back-propagation, the message is the gradient∇i and the propagate function returns J⊤
i

∑
j ∇j to its

ith parent, where Ji is the Jacobian to the ith parent and and the∇j gradient received from the jth child.
4The minimal subgraph gX→Y connecting nodesX and a node Y is defined as gX ,Y := X

⋃
{Y }

⋃
{Z|Z ∈

ancestors(Y ), Z ∈ descendants(X), X ∈ X}.
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example of such a report, which is generated by merging the minimal subgraphs from child nodes of257

the parameter nodes. It is crucial to note that even though the lines look like an actual program, it is258

not the real program itself but the computational graph defined by bundle of Trace (see Section 3.1).259

#Code:
a = bar(x)
y = add(b, a)
z = mul(a, y)
#Definitions:
[mul] This is a multiply operator.
[add] This is an add operator.
[bar] This is a method that does

negative scaling.
#Inputs:
b=1.0
#Others:
a=2.0
y=3.0
#Output
z=6.0
#Variable
x=-1.0
#Feedback:
Output should be larger.

Figure 4: An example pseudo-code report
generated by Trace for a program of x =
Node(-1.0); z = bar(x) * (bar(x)+1)
and the objective of maxx z.

Parameter Update We prompt the LLM with a ReAct-260

CoT style prompt (listed in Appendix G.2) in one query,261

asking it to generate reasoning of the graph, an answer,262

and finally a suggestion on the parameter changes. If the263

suggestion can be extracted from the LLM’s response, we264

update in-place the parameters.265

Optimization Memory OptoPrime optimizes most266

workflows reasonably well using just instantaneous trace267

feedback, but it can run into issues when single output268

feedback is not informative enough (e.g., the output feed-269

back is rewards but the workflow’s description doesn’t tell270

how the rewards are generated). For robustness, we have271

a basic memory module in OptoPrime which tracks the272

past parameter-feedback pairs and use them as in-context273

examples. See Appendix G for prompt details.274

5 Experiments275

We evaluate the Trace framework with OptoPrime. We276

implement the state-of-the-art LLM optimizer OPRO [13]277

as a baseline, which does not use the execution trace but relies on the memory of parameter and278

feedback pairs. For all experiments, we use GPT-4-0125-Preview. We run the experiments on a279

standard PC with 16 GB RAM, and Trace introduced no measurable overhead on executing the280

workflow. In the rest of this section, we will simply denote as Trace+OptoPrime as Trace.281

5.1 Validating with Numerical Optimization282

First, we want to validate if OptoPrime can solve classical differentiable optimization problems, since283

they are a special case of OPTO. Consider the problem of minx |h(x) − y∗| for a target y∗. We284

construct a synthetic task environment that randomly creates y∗ and the computational graph of h285

with arbitrarily complex connections between numerical variables (see Appendix B.2 for details).286

We evaluate OPTO (denoted as Trace) and a variant where the optimizer does not see the graph287

(Trace Masked); the output feedback is“The output should be <larger/smaller>”. We compare their288

performance with PyTorch’s implementation of the Adam optimizer [24]. We run 30 trials over289

different randomly generated problems. All methods see the same randomness. On average, Trace is290

able to match the best-in-class first-order gradient optimizer; on the other hand, without access to the291

full computational graph, the optimizer alone struggles to find y∗ (Figure 5a).292

5.2 Tuning Hyperparameters to Orchestrate Complex Systems293

We tested Trace in a traffic control problem which is an instance of hyper-parameter tuning. We294

used UXSim [25] to simulate traffic at a four-way intersection, where the trainable parameters are295

2 integers in [15, 90], which are the green light duration for each direction of traffic flow. The296

feedback is the estimated delay experienced by all vehicles due to intersections, and the goal of an297

optimizer is to minimize the delay using the fewest number of traffic simulations. To this end, this298

optimizer must find the right trade-off for temporally distributed and variable demands. In Fig. 5299

we report the performance of a SOTA heuristic from the traffic control literature, SCATS [26] as300

well as two black-box optimization techniques: Gaussian Process Minimization (GP) [8] and Particle301

Swarm Optimization (PSO) [27]. All methods use the same starting parameters. We report further302

details in Appendix B.3. GP and PSO appear bad because 50 iterations are insufficient for their303

convergence; given enough iterations, both will eventually perform well. Trace is quickly competitive304

with the SCATS heuristic, whereas OPRO is not. Moreover, we find that memory is crucial for305

Trace to perform well for this task. But we note that Trace consumes extra overhead compared to306

other methods, since Trace has to materialize the resulting computation graph and query an LLM307

effectively with a longer prompt than that of OPRO.308
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Figure 5: Numerical Optimization and Traffic Optimization

5.3 Unifying Prompts and Functions Optimization309

Many LLM agents today, e.g., specified by LangChain [28] and DSPy [22], have many components.310

These libraries provide optimization tools to optimize a small portion of their workflows, predom-311

inantly the prompt that goes into an LLM call. However, for building self-adapting agents that312

can modify their own behavior, only allowing the change to one part of a workflow but not others313

seems limiting. In this experiment, we test Trace’s ability in joint prompt optimization and code314

generation. Specifically, we optimize a given DSPy-based LLM agent and tunes its three components:315

the meta-prompt prompt_template, a function create_prompt that modifies the prompt with the316

current question, and a function extract_answer that post-processes the output of an LLM call.317

We set up an end-to-end optimization pipeline. Unlike a typical LLM benchmark evaluation, we use318

an automatic evaluation function to compare the LLM’s output with the ground truth, which requires319

the LLM agent to generate outputs not only with the correct answer but also in the correct format. We320

use Big-Bench Hard [21] as the problem source (15 examples for training, 5 for validation, and the321

rest for testing). We compare Trace with DSPy’s COPRO module (which optimizes the meta-prompt).322

In Table 1, we show that Trace is able to optimize a DSPy program beyond what DSPy’s COPRO323

optimizer can offer, especially on algorithmic tasks. This result shows how Trace can concretely324

improve existing LLM prompting libraries. We show learned codes in Appendix H.325

BBH all NLP Algorithmic BBH all NLP Algorithmic
(23 tasks) (12 tasks) (11 tasks) (23 tasks) (12 tasks) (11 tasks)

DSPy 41.6 53.8 32.6 DSPy + CoT 70.4 73.7 68.0
DSPy-PO 55.3 69.0 45.2 DSPy-PO + COT 71.6 73.9 70.0

Trace 59.5 70.9 51.1 Trace + CoT 78.6 75.8 80.6

Table 1: End-to-end workflow optimization for an LLM benchmark Big-Bench Hard. CoT refers to Chain-of-
Thought prompting and PO refers to DSPy’s own prompt optimizer (COPRO). We use Trace to optimize a DSPy
program, starting from the same program and prompt template specified by DSPy.

5.4 Long-Horizon Robot Manipulator Control326

We test the ability of Trace to optimize long-horizon workflows with complex dependencies and to327

“back-propagate through time”. We experiment with using Trace to train a controller code (in Python)328

for a simulated Sawyer robot manipulator. We use the Meta-World environment from LLF-Bench [23]329

as the simulator and consider three tasks: Reach, Pick-place, and Push. For each task, LLF-Bench330

provides a task instruction and meaning of the action space, which we use as the context ω of the331

OPTO problem. The observation is a dict of vectors, indicating the end-effector position, the goal332

position, the gripper status, etc. The action space is a 4-dimensional vector to control the relative333

position of the end-effector and the gripper state. In each time step, the LLF-Bench Meta-World334

simulator returns the observation and natural language feedback to guide the robot. An episode ends335

if the robot successfully solves the problem or because of time-out. We consider an episodic training336

setting. The initial condition for all iterations in training is the same. We evaluate the learned policy337

in terms of success, starting from 10 held-out initial conditions. The task horizon is 10 steps, which338

is sufficient for task completion, and each training iteration has one rollout. The output feedback in339

OPTO is success and return. In addition controller code, we also decorate the reset and step functions340

of the gym environment so that the entire rollout can be traced end-to-end. We compare Trace with341
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(a) Reach (Test) (b) Pick-place (Test) (c) Push (Test)

Figure 6: Learning the feedback control policy (code) for a simulated Sawyer manipulator in LLF-Bench
Metawrold. In each iteration (x-axis), one episode of rollout is performed and then the policy is updated. Mean
and standard error of success rate over 10 seeds are shown.

OPRO; to run ORPO in the streaming OPTO setting, our OPRO implementation only proposes one342

candidate in each iteration, which is then evaluated and provided with the output feedback.343

The experimental results are summarized in Fig. 6. We show learned code in Appendix H. OptoPrime344

is clearly the top-performing optimizer, especially the version with memory. OPRO is able to solve345

Reach at the start but its performance degraded over iterations (this instability was mentioned in346

[13]) and gets similar performance as OptoPrime (without memory) in Push. To validate that the347

performance of OptoPrime is indeed due to using the execution trace, we include an ablation where348

we mask out the execution trace, which lead to significant decline in performance and stability. This349

experiment features the most complex graph structures. The experimental results here are quite350

impressive, showing that Trace is able to learn a sophisticated control logic in a dozens of interactions,351

not only working on the training initial conditions but also on the held-out testing ones too. We352

discuss some limitations in Appendix B.5.353

6 Limitations354

We highlight that Trace, OPTO and OptoPrime are a first step towards self-adapting workflows355

and have limitations in their current form. OPTO captures rich feedback, but it is important to356

specify a solution concept as well the feedback source. We provide guidance for feedback design357

in Section 3.1 and discuss notions of optimality in Appendix F. Also, Trace cannot convert all358

computational workflows into OPTO problems; for instance, recursively defined bundle operators359

and distributed/parallel computing workflows are incompatible with the current implementation.360

Finally, although we demonstrated that OptoPrime can work well with moderate-size graphs, it is361

not a provably optimal algorithm. The debugging ability and context limits of the LLM used in362

OptoPrime crucially determines the scale of problems that we can practically address today.363

7 Conclusion and Future Work364

We created Trace that can convert a computational workflow optimization problem into an OPTO365

problem, and we demonstrated an efficient OPTO optimizer, OptoPrime. This is just a first step366

towards a new paradigm of optimization, with exciting avenues for future work.367

We connected optimization to an LLM’s reasoning capability. Techniques that have been proposed to368

improve LLM reasoning, e.g. Chain-of-Thought [29], Few-Shot Prompting [30], Tool Use [31], and369

Multi-Agent Workflows [5] could also help improve OptoPrime or suggest new OPTO optimizers.370

We conjecture that a hybrid workflow of LLM and search algorithms, with specialized optimization371

tools can enable a truly general-purpose optimizer. Along the way, we must settle how to delineate372

the agent vs. the optimizer. How to trade off generality of optimizer vs. crafting side-information in373

the context ω to achieve task-specific performance is an open question.374

In Trace, we chose a specific propagator (MSP), which maximally preserves information for a general375

computation graph. We can instead specialize it for specific computations, e.g. to accommodate376

very large graphs. Going a step beyond the memory module we studied in OptoPrime, we anticipate377

that an optimizer that can reason about how a workflow will behave under counterfactual parameter378

settings (and not only remember previously tried parameters) can be more efficient than OptoPrime379

and can enable a divide-and-conquer approach to OPTO.380

Finally, in this paper we focused on output feedback and context that can be compactly textualized.381

We anticipate that computational workflows with rich non-textual contexts and output feedback will382

also benefit from automatic optimization through appropriate applications of Trace.383
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A Related Work503

Framework for Computational Workflows Frameworks such as LangChain [28], AutoGen [5],504

DSPy [22] allow composing computational workflows and provide hand-engineered optimizers to505

tune an LLM’s context (i.e. prompt templates, few shot examples, or tool libraries) using scalar506

feedback with black-box search techniques. They support tracing of the workflow to aid in profiling,507

debugging and visualization. In contrast, Trace uses tracing for automatic optimization, and constructs508

a different representation of the computational graph which is suited for that purpose. Moreover,509

Trace is designed to be general-purpose and agnostic to the underlying frameworks of computational510

workflows users choose. In principle, one can apply Trace to decorate and tune a workflow based on511

a mix of Autogen, LangChain, DSPy codes. In fact, our experiments in Appendix B use workflows512

declared using both AutoGen and DSPy.513

Optimization of Graphs of LLM Workflows There are multiple efforts to optimize the computa-514

tional graph of LLM workflows, which is a special case of the OPTO problem. These algorithms515

focus on optimizing prompts. SAMMO [14] is an example for prompts that uses additional graph516

structure to make the optimizer efficient. SAMMO represents the prompt parameter itself as a517

program so as to enable more efficient black-box search through the space of programs. DSPy [22]518

can optimize directly the prompts or the few-shot examples to include using scalar reward feedback.519

Retroformer [32] uses another small language model (LM) to provide suggestions/feedback (i.e.520

changing prompts) to improve the behavior of an actor LLM, where the small LM is tuned by offline521

RL. Deep Language Networks [33] view all of the prompts in an LLM worflow as tunable parameters522

and jointly optimizes them. They discovered that optimizing each parameter in isolation instead523

produces subpar results. [34] frames LLM systems as graph where nodes are operations and edges524

are messages/connections. (Note that this is different from the DAG used in Trace; here nodes525

are messages and edges are input-output of operators) and optimizes for the connection on edges526

(binary variables) by REINFORCE using scalar reward feedback and prompts by LLMs . They527

optimize each component separately without considering each other; for example, the prompts are528

optimized individually without considering the graph topology or how they are used down the road.529

We suspect this approach can be less stable. Their prompt optimization part also does not take output530

feedback, but simply use an LLM to self-check whether the prompt meets the need of generating531

desired functions the user specified. In contrast to these works, through the OPTO framing, Trace532

supports joint optimization of all parameters (prompts, hyperparameters, codes) with rich feedback,533

and is agnostic to graph structures (e.g., changing these parameters can dynamically change the graph534

structure and connections between nodes). Users of Trace are free to specify which parameters they535

want to automatically optimize via online interactions.536

LLM-Optimizers for Prompts and Codes There is a huge and fast growing literature on using537

LLMs as optimizers to improve prompts [12, 11, 35–37] or codes [38, 15, 39, 35]. Different from538

the works mentioned above, here the focus has been on an isolated problem (e.g., changing the539

behavior of a single LLM or improving the code generation in the question-answering format) rather540

than considering a non-trivial workflow or agent with multiple components like above. They do not541

consider optimizing prompts or codes as one component of a bigger workflow (e.g. implementing542

an autonomous agent), which is harder and requires the right credit assignment. Trace can also be543

applied to optimize trivial OPTO problems where the returned graph has just a single node of the544

parameter (which are the scenarios considered by these works). Nonetheless, the main focus of this545

paper is to study how optimization can be done efficiently as the graph becomes nontrivial.546

LLM-Optimizers for Hyperparameters Recent works like [40, 41] use LLMs to optimize numer-547

ical hyperparameters, as an alternate to Bayesian optimization. Here in the experiments we show548

that Trace + OptoPrime also can effectively learn hyperparamters, faster than Bayesian optimization.549

The main difference between Trace and the aforementioned work is the representation of the prob-550

lem. In Trace, we provide the graph to the LLM-based optimization (through the pseudo-algorithm551

representation), and we consume rich language feedbacks on the output, both of which accelerates552

hyper-parameter optimization.553

OPTO Related Setups OPTO is a generalization of partial monitoring games [42]. If there exists554

a latent loss function that the feedback f adheres to (e.g. as in [23]), those OPTO instances can be555

written as partial monitoring game. However OPTO admits a more general notion of feedback f , and556
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we discuss solution concepts for them in Appendix F. On the other hand, OPTO can be also viewed557

as a special case of Learning from Language Feedback (LLF) setup defined in [23] with observations558

as the trace feedback. This is a framing of a meta LLF problem. In the LLFBench Meta-World559

experiments of this paper (Section 5), we show Trace can be used to learn policy for LLF problems560

grounded to an application too.561

AutoDiff and Back-propagation Back-propagation has been shown to be a very effective tool in562

optimizing differential computational workflows. Our design of Trace is inspired by back-propagation563

and the ease of use of the AutoDiff framework PyTorch [19]. Nonetheless, we highlight that back-564

propagation (Backward Mode Differentiation) is not the only AutoDiff algorithm. For example, the565

gradient can be computed in a forward mode (Forward Mode Differentiation) as well, and there566

are also techniques of Checkpointing [43] and Truncated Back-Propagation approximation [44] for567

efficiency. What are the equivalent ideas of these methods for general computational workflows? We568

think this is an interesting future research direction.569

B Experiment Details570

B.1 Battleship571

We implement a simple battleship game board in Python. The exact code is in the appendix. The572

game offers a string-based visualization of the board. It randomly places different types of ships on a573

2-dimensional board with pre-specified width and height when it initializes. The agent does not see574

the ship location and has to select a coordinate on the board to hit next. One additional rule of this575

game is that the agent can go again if their previous coordinate selection (fire) is a hit, not counting as576

the finish of a turn. In Figure 1, we ran 10 trials, where in each trial, we ran 20 iterations of training.577

We measure the reward as % of ship squares hit (over all squares occupied by ships). The reward578

plateaued at 60% because the game has a chance element (heuristics and strategies can only go so579

far – strategy is only in effect if a hit happens. Otherwise, there is no information about where ships580

might be).581

B.2 Numerical Optimization582

Any classical numerical optimization problem can be framed as an OPTO problem. Consider h(x)583

and a target y∗, in a context ω finding the y∗ by changing x; we know the most useful corrective584

f feedback to change x is the gradient ∇hx. Similar to Trace, AutoDiff packages like PyTorch’s585

AutoGrad have implemented dynamic graph construction with special classes like torch.Tensor.586

We want to validate whether it is possible to rely on binary text feedback, a graph automatically587

constructed by Trace, and OptoPrime to update x in the context of minimizing |y − y∗|.588

We constructed a synthetic task environment where we can create a complex computation graph with589

arbitrarily complex connections between numerical variables. The focus of this environment is on590

the complexity of the graph, not on the complexity of the numerical operators. Therefore, we only591

use one-dimensional input and basic arithmetic operators to create a numerical optimization problem592

solvable by a first-order optimizer. This environment constructs a computational graph by sampling a593

number of times. At each time, it will either use a previously computed variable or sample a new594

variable, and an operation will be sampled to combine them. The optimization task is, for a fixed595

number of steps, an optimizer needs to output x that minimizes y.596

We evaluate the following baseline methods. Basic Agent: a basic LLM agent that simply stores past597

information of (xt−1, yt−1) in context before choosing the next xt. OPRO Agent: a basic LLM agent598

but we implement the state-of-the-art LLM optimizer OPRO [13], which updates the meta-prompt599

of the basic LLM agent. Torch + Adam: the problem we construct is end-to-end differentiable.600

Therefore, we simply pass in torch.Tensor(x) as input and use Adam optimizer to update. We601

tune the learning rate slightly and found 1e-1 to work well. We compare two kinds of Trace-based602

optimizers: Trace, where we allow OptoPrime to read in the entire computation graph before updating603

x, or Trace Masked, where we hide the computation graph.604

We run 30 trials over different computation graphs and start all methods with the same initial x, y∗.605

We compute the absolute error, which is |y− y∗|. On average, Trace is able to match the best-in-class606

first-order gradient optimizer Adam [24]. It is not entirely surprising that all the other baselines607
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are performing worse due to a lack of access to the computation graph. To our surprise, OPRO,608

by only accessing the history of input and output, as well as changing the meta-prompt, is able to609

eventually discover the correct solution. This confirms why there were early signs of success using610

LLMs for black-box optimization in a simple plug-and-play style. However, OPRO is not an efficient611

optimizer because it lacks access to the Trace oracle. We show OPRO struggles even more when the612

computation graph gets more complex.613

B.3 Traffic Control614

We tested OptoPrime in a traffic control problem which is an instance of hyper-parameter tuning. We615

used UXSim [25] to simulate traffic at a four-way intersection, where the tunable parameters are the616

duration of the green lights for each direction of traffic flow. The feedback is a scalar loss calculated617

by monitoring the flow of a pseudo-random sequence of vehicles arriving at the intersection over a618

period of 30 minutes. The loss computes an estimate of the delay experienced by all vehicles due619

to the intersection, as well as variability in this estimate for every link in the network; lower values620

are better. The goal of an optimizer is to identify values for all of the green light duration so as621

to minimize the loss using the fewest number of traffic simulations. If the green light duration for622

a given traffic flow direction is set too low, then vehicles will queue up over time and experience623

delays, thereby lowering the score for the intersection. However, if the green light duration for a624

given direction is set too high, vehicles in other directions will queue up and experience delays,625

thereby lowering the score for the intersection. Hence an optimizer must find the right trade-off for626

temporally distributed and variable demands.627

In Figure 5 we report the performance of a SOTA heuristic from the traffic control literature,628

SCATS [26] (adapted to this toy setting) as well as two black-box optimization techniques: Gaussian629

Process Minimization (GP) [8] and Particle Swarm Optimization (PSO) [27]. All methods are630

initialized to evaluate the same starting parameter. GP and PSO further evaluate 5 random parameters;631

moreover, if they query a previously evaluated point, that query is replaced by a randomly sampled632

parameter. GP constructs a surrogate model to mimic the black-box traffic simulation function633

which maps from parameters to observed score. Then it minimizes a utility function (e.g. the lower634

confidence bound) using the surrogate model to pick the next parameter to evaluate. PSO on the other635

hand maintains 5 particles in parameter space, each with a position and velocity. At each iteration of636

PSO, particles update their positions according to their previous positions and velocity, evaluate the637

function at the updated positions, and update the velocities of all particles using the observed values.638

Although GP and PSO are both black-box methods, GP can be thought to replace Trace oracle with639

instead a smooth differentiable surrogate function; whereas PSO is very different and maintains a640

candidate set of parameters (can be thought of as conceptually related to OptoPrime with memory).641

GP appears to be bad because even when it converged, the exploration heuristic randomly samples642

parameters rather than pick the converged parameter. PSO appears bad because 10 iterations is643

insufficient for its convergence. Note that given enough number of iterations, black-box approaches644

will eventually perform well. Trace is quickly competitive with the SCATS heuristic, whereas OPRO645

is not. Moreover, we find that memory is crucial for OptoPrime to perform well at this task. Finally,646

Trace consumes additional overhead compared to black-box methods; beyond the space and time647

complexity for running the traffic simulation, Trace additionally materializes the computation graph648

per iteration. Thus it can also be more expensive per LLM call compared to OPRO.649

B.4 BigBench-Hard650

Perhaps more surprisingly, there are many components that a workflow needs to learn. Some of these651

components can be the prompt to generate output from an LLM, while other components can be code652

that needs to further process these outputs. In many workflows today, enabled by LangChain [28]653

and DSPy [22], only a small part of this workflow, predominantly, the input to an LLM API call,654

is optimized. These libraries optimize input to an LLM, and human engineers process that input655

and integrate it into other systems. Indeed, both libraries can enable robust and swift large-scale656

engineering efforts to build LLM-based software. However, if our goal is to develop self-adapting657

agents that can modify their own behavior, we should not ignore one of LLM’s greatest strengths:658

code generation. Trace allows us to unify prompt optimization and code generation, which enables659

the creation of agents capable of fast learning.660
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1 import trace
2
3 class Predict(trace.Module):
4 def __init__(self):
5 self.prompt_template = trace.Node("""
6 Given ‘question ‘, produce the ‘answer ‘.
7 question: {}
8 answer:
9 """,

10 trainable=True)
11
12 def forward(self , question):
13 user_prompt = self.create_prompt(question)
14 response = self.call_llm(user_prompt)
15 answer = self.extract_answer(question ,

response)
16 return answer
17
18 @trace.bundle(trainable=True)
19 def create_prompt(self , question):
20 """ formulate the prompt with the question """
21 return self.prompt_template.format(question)
22
23 @trace.bundle(trainable=True)
24 def extract_answer(self , question , response):
25 """ Extract the answer out of LLM response """
26 answer = response.split("answer:")[1]. strip()
27 return answer

(a) We write a workflow that prompts an LLM for a
question and extracts the answer.

1 import trace
2
3 dataset = load_dataset(link , task)
4 predict = Predict ()
5 optimizer =

trace.Optimizer(predict.parameters ())
6
7 for ex in dataset:
8 # Forward pass
9 response = dp.forward(ex[’question ’])

10 if response == ex[’answer ’]:
11 feedback = "The answer is correct"
12 else:
13 feedback = "The answer is incorrect"
14
15 # Backward pass and update
16 optimizer.zero_feedback ()
17 optimizer.backward(response , feedback)
18 optimizer.step()

(b) The optimizer class takes in any parameter re-
gardless of whether it is code or text. Although the
actual optimization implementation can provide
different treatments to many input types, the user
interface stays consistent.

Figure A.1: LLM-based Workflow Optimization Example.

In this example of an LLM-based workflow (Figure A.1), there are three parameters that are flagged as661

trainable for the optimizer: prompt_template, create_prompt, and extract_answer. Note that662

two of them require the LLM to generate Python code, and one of them requires the LLM to modify663

a text. Trace abstracted away the different data types and enabled direct update and optimization of664

them. Furthermore, a human engineer is often tasked with writing an error-free extract_answer.665

The output of an LLM can be highly stochastic and can often change over time; the code that is666

used to extract the response of an LLM has to be extremely robust and, therefore, arduous to create.667

Whenever a major distribution shift happens in the LLM output, this code needs to be rewritten by a668

human engineer, and it is hard for humans to anticipate all of LLM’s output patterns.669

We set up the task of end-to-end workflow optimization. Unlike a typical LLM benchmark evaluation,670

where a lot of effort went into creating the perfect evaluate(answer, target) method so that all671

kinds of LLM outputs were post-processed, cleaned, and formatted to match the ground truth, we672

choose a simple evaluation function (that extracts a segment or does exact string matching) and place673

the burden on the workflow itself to figure out how to create the right answer to satisfy the evaluation674

metric. We choose Big-Bench Hard [21] as our task because it has 23 subtasks and contains both675

language and algorithmic tasks.676

We split each task dataset into training, validation, and test. For Trace and Trace-CoT, we use the first677

15 examples for training, 5 examples for validation (picking the best learned workflow), and then678

evaluate the performance on test examples. DSPy’s prompt optimization method does not explicitly679

require a validation set, therefore, we just used all 20 examples for training. For both, we only680

optimize for 1 epoch. We either start with the vanilla boilerplate prompt template used by DSPy or681

we use the slightly sophisticated template used by DSPy’s CoT module. Trace optimizes both DSPy’s682

original design and outperform their own optimizer COPRO by 10% on algorithmic tasks.683

Big-Bench Hard requires different answer outputs. Out of 23 tasks, 14 tasks require a multiple-choice684

answer with options provided in the question. 4 of them require yes/no. 1 task requires True/False,685

while 1 task requires valid/invalid. And the 3 remaining tasks require answers that contain words or686

numbers. Even though DSPy’s meta-prompt optimization is trained on each task individually, the687

output of LLM to the evaluation method is still not post-processed, resulting in low performances of688

these tasks. However, Trace can optimize code and LLM prompt jointly to successfully deliver the689

response expected by an automatic evaluation method.690

B.5 LLFBench Meta-World691

We test the ability of Trace to optimize long-horizon workflows with complex dependencies. We692

experiment with using Trace to train controller (python code) for a simulated Sawyer robot ma-693
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Task Name DSPy +CoT DSPy-PO +CoT Trace +CoT

tracking shuffled objects 7 objects 37.39 90.0 90.43 90.43 37.8 87.8
salient translation error detection 51.3 70.87 51.3 69.57 63.0 70.0
tracking shuffled objects 3 objects 39.13 94.35 97.39 93.91 38.7 96.5
geometric shapes 50.43 62.17 59.13 60.43 49.6 62.2
object counting 0.0 40.0 0.0 74.35 42.2 80.4
word sorting 0.0 0.0 0.0 0.43 84.3 74.3
logical deduction five objects 70.0 80.43 70.0 74.78 48.7 75.7
hyperbaton 74.78 86.52 74.78 88.26 78.3 91.7
sports understanding 0.0 0.0 0.0 0.0 79.6 45.7
logical deduction seven objects 68.7 64.78 68.7 64.78 45.7 69.6
multistep arithmetic two 0.0 93.04 0.0 93.04 94.8 88.7
ruin names 84.35 87.83 84.35 87.83 87.8 90.0
causal judgement 7.78 70.66 74.25 70.66 70.1 54.5
logical deduction three objects 85.22 97.39 85.22 97.83 91.7 97.0
formal fallacies 1.74 81.3 62.17 81.3 73.5 67.8
snarks 86.08 87.34 86.08 87.97 81.6 87.3
boolean expressions 0.0 98.26 64.35 98.26 88.7 96.5
reasoning about colored objects 53.04 91.3 89.13 91.3 91.3 95.7
dyck languages 0.0 8.7 7.83 8.7 26.5 9.6
navigate 0.0 95.65 0.0 97.39 59.6 92.6
disambiguation qa 67.83 66.09 73.91 66.09 75.7 59.1
temporal sequences 99.57 99.13 97.39 99.13 97.8 98.3
web of lies 0.0 0.0 0.0 0.0 49.6 90.4
tracking shuffled 5 objects 37.83 96.09 37.83 96.09 58.3 88.7
penguins in a table 69.84 92.86 97.62 92.86 81.7 91.3
movie recommendation 83.48 76.09 83.48 76.09 81.3 75.7
date understanding 69.13 85.65 69.13 85.65 70.4 85.7

Table A.1: Big Bench-Hard Per-Task Result. Some 0.0 here shown is because DSPy cannot find the
clean/stripped output that matches what the automatic evaluation method expects. With additional human
engineering, these numbers can improve.

nipulator. We use the Meta-World environment of LLF-Bench [23] as the simulator and consider694

three tasks reach, pick-place and push. LLF-Bench is a simulated benchmark with gym interface for695

testing an agent’s ability to learn from language feedback. In these LLF-Bench Meta-World tasks,696

the observation is a dictionary where each field denotes a feature of the state and has a vector value697

(e.g., the end-effector position, the goal position, the gripper status, etc.). The keys of the observation698

dictionary can differ for each task. The action space is 4-dimensional, which controls the relative699

position of the end-effector and the state of the gripper. In each time step, the LLF-Bench Meta-World700

simulator returns the observation dictionary and natural language feedback to guide the robot (we use701

the ‘a‘ mode of LLF-Bench, with which the language feedback would contain information about the702

current performance, explanation of past successes and failures, and suggestions for the next step).703

An episode ends if the robot successfully solve the problem or because of time-out. For each task,704

LLF-Bench also provides a task instruction explaining that the task is about controlling a Sawyer705

robot arm and the meaning of the action space (see [23]). We use that as the context ω of the OPTO706

problem. We consider an episodic setting. For each experiment (a random seed), we randomly sample707

an initial configuration. Then for each iteration of optimization, we reset the simulator to that sampled708

initial configuration and run the robot policy for 105 steps or until the episode termination due to709

success. We compute the sum of rewards and gives the output feedback f in texts in the format of710

“Success: <true/false> Return: <score>”. Note that the initial condition for all iterations within an711

experiment is the same so that the optimization problem is deterministic. To evaluate the learned712

policy’s performance, for each experiment, we additionally run the learned policy starting from713

10 held-out initial conditions, different from the fixed training initial condition. For each training714

algorithm discussed, we run it with 30 iterations, where each iteration consists of one episode rollout715

and one update.716

5We set the problem horizon to be 10 steps, as we find the expert policies implemented in LLF-Bench can
solve these problems within 10 steps.
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(a) Reach (Train) (b) Pick-place (Train). (c) Push (Train).

(d) Reach (Test) (e) Pick-place (Test) (f) Push (Test)

Figure A.2: Learning the feedback control policy (code) for a simulated Sawyer manipulator in LLF-Bench
Metawrold. In each iteration (x-axis), one episode of rollout is performed and then the policy is updated. Mean
and standard error of success rate over 10 seeds are shown.

To optimize the controller with Trace, we declare the control code as the parameter using the bundle717

decorator with trainable set to True; the initial control code simply outputs a zero vector [0, 0, 0, 0].718

We decorate also the reset and the step function of the gym environment, so that the entire rollout of719

an episode can be traced end-to-end. In our implementation, a prototypical rollout would create a720

graph with around 30 operations where the controller code parameter is used multiple times. This721

graph structure is similar to that of running a recurrent neural network. For Trace, we experiment722

with OptoPrime with and without a memory of size 10. In addition to Trace, we implement the723

state-of-the-art LLM optimizer OPRO [13] as a baseline. Compared with Trace, OPRO does not use724

the execution trace information but rely on just memory of parameter and feedback pairs6 To run725

OPRO in the OPTO setting, our implementation only proposes a single candidate in each iteration,726

which is then evaluated and provided with the output feedback. Since in [13] OPRO generates about727

10 samples per iteration, so one iteration in [13] is roughly equivalent to 10 iterations here.728

The experimental results are summarized in Fig. A.2, where we show the success rates at both the729

training initial condition as well as the held-out testing initial conditions over 10 seeds. OptoPrime is730

clearly the top-performing optimizer, especially the version with memory. OPRO is able to solve731

Reach at the start but its performance degraded over iterations (this instability was observed in732

[13]) and gets similar performance as OptoPrime (without memory) in Push. To validate that the733

performance of OptoPrime is indeed due to using the execution trace, we include an ablation where734

we mask out information in #Inputs, #Others, #Code, #Definition in the LLM context (see Fig. A.3b),735

which lead to significant degrade in performance and stability. This ablation shows that additionally736

using the execution trace provides more informed search direction compared with just using just the737

output feedback, which agrees with our hypothesis.738

This experiment features the most complex graph structures, and using Trace for optimization here is739

similar to back-propagation over time. The experimental results here are quite impressive, showing740

that Trace is able to learn a complex control logic in a dozens of interactions, not only working on the741

training initial conditions but also on the held-out testing ones too. Nonetheless, we want to point742

out some limitations in the current experimental results. We find that the success rate of the learned743

policy varies largely across random seeds. Except for Reach (the simplest task), in a seed, often744

either it finds a policy close to 1.0 success rate or 0.0 success rate. Therefore, the plots can roughly745

be interpreted as how long it takes to find a working policy. In addition, in these experiments, we find746

that providing task-related context is necessary. We find the context needs to be informative enough747

6The original version of OPRO uses parameter-score pairs. Since we’re interested in the more general setup
of OPTO, we extend it to use parameter-feedback pairs.
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for humans to understand the problem7; otherwise, the optimization can be solved efficiently with the748

time scale considered here. Nonetheless, this requirement is reasonable, as there is no free lunch.749

C Examples of OPTO750

To ground the OPTO setup, we show how OPTO is related to some existing problems with examples.751

Example 4 (Neural network with back-propagation). The parameters are the weights. g is the752

neural computational graph and f is the loss. An example context ω can be “Minimize loss”. The753

back-propagation algorithm, in view of the OPTO formulation, is embedded in the OPTO optimizer.754

For example, an OPTO optimizer here is a composition of back-propagation and gradient descent,755

where back-propagation takes τ to compute the propagated gradient at the parameter.756

Example 5 (Code Debugging). The parameters are the codes. g denotes the stacked trace and f is757

the error message returned by a compiler. ω can be “Make no error”.758

Example 6 (RL). The parameters are the policy. g is the trajectory (of states, actions, rewards)759

resulting from running the policy in a Markov decision process; that is, g documents the graphical760

model of how an action generated by the policy, applied to the transition dynamics which then returns761

the observation and reward, etc. f can be the termination signal or a success flag. ω can be “Maximize762

return” or “Maximize success”.763

Example 7 (Hyperparameter Tuning of ML Pipeline). The parameters are e.g. learning rates and764

architectures. g describes the stages of the ML pipeline and the evaluation on the validation set, and765

f is the validation loss. ω can be “Minimize validation error”.766

Example 8 (Prompt Optimization of an LLM Agent). The parameters are the prompt of an LLM767

workflow. g is the computational graph of the agent and f is the feedback about the agent’s behavior768

(which can be scores or natural language). ω can be “Maximize score” or “Follow the feedback”.769

Example 9 (Multi-Agent Collaboration). The parameters are each agent’s prompts. g describes the770

entire conversation flow between agents, and f is the feedback about whether the task is successful771

after each agent performs their action. ω can be “A group of agents coordinate to finish a task.”.772

As mentioned, the computational graph g returned by the Trace Oracle T may have different graph773

structures. The length of the execution trace, e.g., in the debugging example above depends on how774

far the code executes. Similarly, the rollout length of in the RL problem can be randomly determined.775

The formulation of the Trace Oracle abstracts the details of a computational workflow, so problems776

from different domains can be framed in the unified framework. This abstraction allows us to design777

the computational tool Trace for various applications.778

D Trace Handles Error in Execution as Feedback779

It is worth mentioning that execution error can be directly used as feedback to optimize parameters780

in Trace. When execution error happens within a method decorated by bundle, Trace would adds a781

special exception node to the global computational graph and throw an TraceExecutionError to stop782

the computation. The computational graph ends at where the execution error happens. This exception783

node becomes the new output of the inputs to the decorated method (since the original method raises784

an error) and is the output of the truncated computational graph. Messages in TraceExecutionError785

can then be used as the feedback f in OPTO and propagated from the exception node to the parameters.786

By calling an OPTO optimizer, the parameters can be updated to avoid causing the same execution787

error. See the exception handling code in Fig. 2.788

We find that this error handling mechanism has two convenient usages. First, this allows using Trace789

to automatically debug issues in the workflow due to incorrect parameter settings. Such errors can790

happen frequently especially when codes are parameters, as during optimization codes not satisfying791

7The original instructions in the v2 environments of LLF-Bench does not contain task specific background,
but only the task name. We find this task name alone, except for Reach, is too vague even for humans to
understand how to read the observation dictionary is related to the problem, so we added additionally one line to
explain the task. Pick-place: “The goal of the task is to pick up a puck and put it to a goal position.”. Push: “The
goal of the task is to push a puck to a goal position.”. Without this extra information, none of the LLM-based
optimizers works in the experiments.

19



syntax or downstream API requirements can happen. The second usage is to enforce constraints the792

workflow has to satisfy at different stags of computation. With Trace, if an intermediate computed793

result does not satisfy the constraint, we can simply throw an exception which states the desired794

constraint. This error signal would be caught by Trace and can then provide early feedback to795

efficiently improve the parameters, since the graph is truncated at the error.796

E Analysis of Trace797

E.1 Proof of Complexity798

Algorithm 2 propagates the subgraph, represented by a priority queue (implemented as a min-heap).799

At a time, it needs to maintain the subgraphs coming from W children separately. This leads to800

the space complexity of O(WN). This O(WN) space complexity leads to the extra WN logN801

factor in the time complexity of MSP compared with back-propagation, which is the time needed for802

merging W subgraphs of size O(N).803

E.2 Proof of Lower bounds804

Consider an OPTO problem whose goal is to find a parameter matching a k-digit binary number.805

The computation checks each digit against a reference number in an arbitrary order. The feedback is806

either “N th check failed” or “All checks succeeded”. Propagated feedback must communicate k bits807

of information to interpret the feedback correctly; and the minimal subgraph conveys exactly that808

information. Updating the parameter using the minimal subgraph is trivial, whereas without it there809

are 2k possibilities to check.810

F When is OPTO Efficiently Solvable?811

We show that OPTO covers a wide range of complicated optimization problems. This shows that if812

OPTO can be efficiently solved, then many complex workflows can be efficiently optimized. However,813

the generality of OPTO also raises some fundamental questions, such as if OPTO is well defined814

and when OPTO can be efficiently solved. These questions stem from its generality of the context ω815

and the output feedback f in OPTO, since e.g. they can be anything descriable texts. This flexibility816

makes the scope of OPTO go beyond standard mathematical optimization problems, where a setup817

has a fixed context ω (e.g., “First-order optimization”) and a fixed type of output feedback f (a818

descent direction). Fully characterize the properties of OPTO, due to its generality, is beyond the819

scope of this paper and would require years of future research to come. Nonetheless, here we attempt820

to provide some preliminary answers and point out some research questions.821

F.1 What is a solution?822

Classical mathematical optimization problems have a problem definition which itself is the solution823

concept. For example, in a minimization problem, it is clear we want to find the minimum of an824

objective function; even for problems as abstract and general as an equilibrium problem, the problem825

setup clearly states the solution concept of finding a point/set satisfying an equilibrium inequality [45].826

One common pattern of these problems is that the solution concept is something that can be described827

as conditions on feedback that the parameter should satisfy.828

By contrast, in a OPTO problem (Θ, ω, T ), by varying the context ω, the desired parameter can829

change from one extreme to another. For example ω may state “Follow the feedback” or “The830

feedback is adversarial.”. Therefore, we need define the solution concept of OPTO differently, rather831

than just using the feedback. We need to also consider the context ω appropriately. Below we make832

an attempt to give an axiom of OPTO for its solution to be well defined.833

Axiom 1 (Verifiability). There is an verification oracle (a human, a machine learning model, or a834

polynomial-time algorithm) when given (θ, ω, f) can verify whether θ is a solution or not.835

Notice the verification oracle in Axiom 1 is not limited to just algorithms. This is intentional because836

we currently do not have algorithms that are intelligent enough to process the wide range of contexts837

and feedback that OPTO allows. Therefore, we include human judgement or the use of LLMs or838
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other AI systems as part of the definition, while acknowledging the impreciseness of the statement839

due to OPTO’s soft computing nature. Lastly we note the verifiability is only defined with respect840

to the context ω and the output feedback f , not the execution trace g. That is, the verification of a841

solution depends only on the output of computation.842

F.2 Does a solution exist?843

Under Axiom 1, we can start to ask the basic question of whether a solution to an OPTO problem844

exists or not. There are clearly problems where no solution exists (that is, no parameter in Θ can be845

verified by the verification oracle). For example if the feedback f is contradicting and yet the context846

ω is “Follow the feedback.”, then there would be no solution that is satisfactory. On the other hand, if847

ω is “Ignore the feedback”, all parameters can be solutions. In the following, we assume solutions of848

OPTO under consider exist. This assumption would rule out problems, e.g., where the feedback is849

adversary to the context, and makes solving OPTO is a well-defined search problem.850

Assumption 1. For an OPTO problem (θ, ω, T ), we assume there is at least a parameter θ ∈ Θ such851

that it can be verified as a solution by the verification oracle.852

F.3 Can OPTO be efficiently solved?853

So far our discussion establishes OPTO as a well-defined search problem, based on qualification on854

the context ω and the output feedback f . However search problems can be NP-hard. In other words,855

we know that, without the execution trace, there are search problem instances modeled by some ω and856

oracle giving f that cannot be efficiently solved. Take RL for a tabular MDP as an example of OPTO857

problem. Without the execution trace (i.e., not seeing the Markovian structure and trajectories), the858

problem has an exponential complexity (due to the size of the policy space) and we know by using859

the execution trace here, tabular RL can be solved approximately in polynomial time [46]. Another860

example is training of neural networks. Without the execution trace, we have a complex black-box861

optimization with a loss value, without gradients, whereas an execution trace allows implementation862

of back-propagation to compute the gradients at the parameters.863

More broadly speaking, if we consider a “human” as an optimizer for OPTO, we see that (expert)864

engineers/researchers, when equpped with additional computational tools, can efficiently solve a865

broad range of OPTO problems (such as by using the execution trace. From these observations,866

we conjecture using information in the execution trace is the key to unlock efficient OPTO. More867

precisely, we conjecture that OPTO is efficiently solvable when the context and the trace feedback868

need to provide information to construct a corrective search direction. For example, when the output869

feedback back is just a scalar loss, and yet the context + execution trace feedback does not provide870

enough information to compute a descending direction then OPTO reduces back to a black box871

problem. (See the problem instance in Appendix E.2). Nonetheless, identifying which subsets of872

OPTO are efficiently solvable is a big open research question.873

G Additional Details of Trace and OptoPrime874

G.1 Backward Step of Trace875

The MSP extracts the minimal subgrpah of the full computational graph of the workflow. Here we876

show a visualization using the example in Fig. 4.877

G.2 Prompts used in OptoPrime878

OptoPrime is an LLM-based optimizer. Its prompt is composed of the following parts.879

1. System Prompt: Representation Prompt (Fig. A.4) + ReAct+CoT Output Prompt (Fig. A.5)880

2. User Prompt (Fig. A.6 or Fig. A.7)881

where + denotes concatenation. We list the prompt templates of different components below.882
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x

[ParameterNode]

-1.0

a

[bar] A function...

2.0

y

[add] add inputs..

3.0

z

[mul] multiply..

6.0

Feedback

Execution Flow
Feedback Flow

b

[Node] A node...

1.0

Other parts

(a) This is an illustrative example of the graph con-
structed by Trace and how feedback is backpropagated
to the parameter x.

#Code:
a = bar(x)
y = add(b, a)
z = mul(a, y)

#Definitions:
[mul] This is a multiply operator
[add] This is an add operator.
[bar] This is a method that does

negative scaling.

#Inputs:
b=1.0

#Others:
a=2.0
y=3.0

#Output
z=6.0

#Variable
x=-1.0

#Feedback:
Output should be larger.

(b) We create a succinct summary of the computa-
tion graph using a language that mimics a program.

Figure A.3: Optimization Representation. For a program of x = Node(-1.0); a = bar(x); y = a + 1;
z = a * y and the optimization objective of maxx z, Trace automatically constructs a computation graph and
represent the optimization problem as a debugging report. Note that the real program and the traced execution
graph are different.

1 You ’re tasked to solve a coding/algorithm problem. You will see the instruction, the code,
the documentation of each function used in the code, and the feedback about the execution
result.

2
3 Specifically , a problem will be composed of the following parts:
4 - #Instruction: the instruction which describes the things you need to do or the question

you should answer.
5 - #Code: the code defined in the problem.
6 - #Documentation: the documentation of each function used in #Code. The explanation might

be incomplete and just contain high -level description. You can use the values in
#Others to help infer how those functions work.

7 - #Variables: the input variables that you can change.
8 - #Constraints: the constraints or descriptions of the variables in #Variables.
9 - #Inputs: the values of other inputs to the code, which are not changeable.

10 - #Others: the intermediate values created through the code execution.
11 - #Outputs: the result of the code output.
12 - #Feedback: the feedback about the code’s execution result.
13
14 In #Variables , #Inputs , #Outputs , and #Others , the format is:
15
16 <data_type > <variable_name > = <value >
17
18 If <type > is (code), it means <value > is the source code of a python code, which may

include docstring and definitions.
19

Figure A.4: Representation Prompt that phrases the OPTO update as a pseudo-algorithm question.
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1 Output_format: Your output should be in the following json format , satisfying the json
syntax:

2
3 {{
4 "reasoning ": <Your reasoning >,
5 "answer ": <Your answer >,
6 "suggestion ": {{
7 <variable_1 >: <suggested_value_1 >,
8 <variable_2 >: <suggested_value_2 >,
9 }}

10 }}
11
12 In "reasoning", explain the problem: 1. what the #Instruction means 2. what the

#Feedback on #Output means to #Variables considering how #Variables are used in #Code
and other values in #Documentation , #Inputs , #Others. 3. Reasoning about the suggested
changes in #Variables (if needed) and the expected result.

13
14 If #Instruction asks for an answer , write it down in "answer ".
15
16 If you need to suggest a change in the values of #Variables , write down the suggested

values in "suggestion ". Remember you can change only the values in #Variables , not
others. When <type > of a variable is (code), you should write the new definition in the
format of python code without syntax errors , and you should not change the function
name or the function signature.

17
18 If no changes or answer are needed , just output TERMINATE.
19

Figure A.5: ReAct+CoT Output Prompt that instructs LLMs should respond in the format of (reasoning, answer,
suggestion) and explains the output format.

1 Now you see problem instance:
2
3 ================================
4 {actual_problem_instance}
5 ================================
6
7 Your response:
8

Figure A.6: User Prompt for OptoPrime without Memory

1 Now you see problem instance:
2
3 ================================
4 {actual_problem_instance}
5 ================================
6
7 Below are some variables and their feedbacks you received in the past.
8
9 {

10 "variables": {
11 {variable1_name }: {variable1_value1}
12 {variable2_name }: {variable2_value1}
13 ...
14 },
15 "feedback": {feedback_1}
16 }
17
18 {
19 "variables": {
20 {variable1_name }: {variable1_value2}
21 {variable2_name }: {variable2_value2}
22 ...
23 },
24 "feedback": {feedback_2}
25 }
26 ...
27
28
29 Your response:
30

Figure A.7: User Prompt for OptoPrime with Memory
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1 #Instruction
2 {instruction}
3
4 #Code
5 {code}
6
7 #Documentation
8 {documentation}
9

10 #Variables
11 {variables}
12
13 #Constraints
14 {constraints}
15
16 #Inputs
17 {inputs}
18
19 #Others
20 {others}
21
22 #Outputs
23 {outputs}
24
25 #Feedback:
26 {feedback}

Figure A.8: Problem Template used to fill the User Prompt. By default the Instruction (which is the context ω
of OPTO) is “You need to change the <value> of the variables in #Variables to improve the output in accordance
to #Feedback.”
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H Examples of the Optimized Parameters in the Experiments883

1 ## Iteration 0 ( initialization ) ; Success : False
2 def reason(self , map) -> str:
3 """
4 Given a map , analyze the board in a game. On map , O denotes misses , X denotes successes ,

and . denotes unknown positions.
5 """
6 # Check for first unknown position to try as a potential move
7 for row_index , row in enumerate(map):
8 for col_index , val in enumerate(row):
9 if val == ’.’:

10 return [row_index , col_index]
11 # Default to [0, 0] if no unknown positions found
12 return [0, 0]
13
14 ## Iteration 2 ; Success : True
15 def reason(self , map) -> str:
16 """
17 Given a map , analyze the board in a game. On map , O denotes misses , X denotes successes ,

and . denotes unknown positions.
18 """
19 # Improved strategic approach by checking . surrounded by more . which might indicate

undetected area
20 max_surrounding = -1
21 best_spot = [0, 0]
22 for row_index , row in enumerate(map):
23 for col_index , val in enumerate(row):
24 if val == ’.’:
25 surrounding = 0
26 for di in [-1, 0, 1]:
27 for dj in [-1, 0, 1]:
28 ni, nj = row_index + di, col_index + dj
29 if 0 <= ni < len(map) and 0 <= nj < len(map [0]) and map[ni][nj] ==

’.’:
30 surrounding += 1
31 if surrounding > max_surrounding:
32 max_surrounding = surrounding
33 best_spot = [row_index , col_index]
34 return best_spot
35
36 ## Iteration 8 ; Success : True
37 def reason(self , map) -> str:
38 """
39 Given a map , analyze the board in a game. On map , O denotes misses , X denotes successes ,

and . denotes unknown positions.
40 """
41 max_surrounding = -1
42 best_spot = [0, 0]
43 for row_index , row in enumerate(map):
44 for col_index , val in enumerate(row):
45 if val == ’.’:
46 surrounding = 0
47 for di in [-1, 0, 1]:
48 for dj in [-1, 0, 1]:
49 ni, nj = row_index + di, col_index + dj
50 if 0 <= ni < len(map) and 0 <= nj < len(map [0]):
51 if map[ni][nj] == ’.’:
52 surrounding += 1
53 elif map[ni][nj] == ’X’:
54 surrounding += 1.5 # increasing emphasis on proximity to

successful hits
55 if surrounding > max_surrounding:
56 max_surrounding = surrounding
57 best_spot = [row_index , col_index]
58 return best_spot
59

Figure A.9: Learned Battleship Code. Functions with the same name are learned during different iterations or
trials.
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1 ## Iteration 0 ( initialization )
2 def create_prompt(self , prompt_template , question):
3 """
4 The function takes in a question and then add to the prompt for LLM to answer.
5 Args:
6 prompt_template: some guidance/hints/suggestions for LLM
7 question: the question for the LLM to answer
8 """
9 return prompt_template.format(question)

10
11 ## Iteration > 0
12 def create_prompt(self , prompt_template , question):
13 """
14 The function takes in a question and then add to the prompt for LLM to answer.
15 The prompt should now further instruct the LLM to carefully track the ball swaps

occurring step -by-step.
16 Args:
17 prompt_template: some guidance/hints/suggestions for LLM
18 question: the question for the LLM to answer
19 """
20 prompt_template = ’Process this carefully: Step -by-step.’ + prompt_template
21 return prompt_template.format(question)
22

Figure A.10: Learned BigBench Code. Functions with the same name are learned during different iterations or
trials.

26



1 ## Iteration 0 ( initialization )
2 def extract_answer(self , prompt_template , question , response):
3 """
4 Need to read in the response , which can contain additional thought , delibration and an

answer.
5 Use code to process the response and find where the answer is.
6 Can use self.call_llm (" Return the answer from this text: " + response) again to refine

the answer if necessary.
7
8 Args:
9 prompt_template: The prompt that was used to query LLM to get the response

10 question: Question has a text describing the question but also "Options"
11 response: LLM returned a string response
12 Process it and return the answer in the exact format that the evaluator

wants to see.
13 Be mindful of the type of answer you need to produce.
14 It can be (A)/(B), a number like 8, or a string , or Yes/No.
15 """
16 answer = response.split("Answer:")[1]. strip()
17 return answer
18
19 ## Iteration > 0
20 def extract_answer(self , response):
21 """
22 Need to read in the response , which can contain additional thought , deliberation and an

answer.
23 Use code to process the response and find where the answer is.
24 Can use self.call_llm (" Return the answer from this text: " + response) again to refine

the answer if necessary.
25 Args:
26 response: LLM returned a string response
27 Process it and return the answer in the exact format that the evaluator

wants to see.
28 Be mindful of the type of answer you need to produce.
29 It can be (A)/(B), a number like 8, or a string , or Yes/No.
30 question: Question has a text describing the question but also "Options"
31 """
32 answer = ’’
33 segments = response.split(’\n’)
34 for segment in segments:
35 if ’Answer:’ in segment:
36 answer = segment.split(’Answer:’)[1]. strip()
37 refined_answer = self.call_llm(’Return the refined answer from this text: ’ + answer)
38 return refined_answer
39
40 def extract_answer(self , prompt_template , question , response):
41 """
42 Processes the LLM response and extracts the final answer in the required format.
43 """
44 # Assuming that the relevant part of the response is after ’Answer:’ and before any

further commentary
45 extracted_part = response.split(’Answer: ’)[1]. split(’ ’)[0]. strip()
46 # Find the section of the answer and return it directly
47 result = re.search(’\([A-E]\)’, extracted_part)
48 if result:
49 return result.group()
50 else:
51 return ’No valid answer found’
52
53 def extract_answer(self , prompt_template , question , response):
54 """
55 Processes the LLM response , extracting and formatting the final answer.
56 Uses code to meticulously parse the response to locate the answer section.
57 Optionally refines the answer by querying the LLM again if necessary.
58
59 Args:
60 response: string from LLM , expected format contains ’Answer:’ followed by the answer.
61 question: Description of the question being addressed , may include ’Options ’
62 """
63 answer = response.split(’Answer:’)[1]. split(’.’)[0]. strip().lower ().split(’,’)[0]. strip()
64 return answer)
65

Figure A.11: Learned BigBench Code. Functions with the same name are learned during different iterations or
trials.
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1 ## Iteration 0 ( initialization )
2 prompt_template = """
3 Given the fields ‘question ‘, produce the fields ‘answer ‘.
4
5 ---
6
7 Follow the following format.
8
9 Question:

10 Answer:
11
12 ---
13 Question: {}
14 Answer:
15 """
16
17 ## Iteration >0
18 prompt_template = """
19 Given the fields ‘question ‘, produce the fields ‘answer ‘.
20
21 ---
22
23 Follow the following format.
24
25 Question:
26 Answer: Please respond precisely in the format required.
27
28 ---
29 Question: {}
30 """
31

Figure A.12: Learned BigBench Prompt Template.
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1
2 ## Iteration 0 (initialization); Success: False
3 def controller(obs):
4 """
5 A feedback controller that computes the action based on the observation.
6
7 Args:
8 obs: (dict) The observation from the environment. Each key is a string (indicating a

type of observation) and the value is a list of floats.
9 Output:

10 action: (list or nd.array) A 4-dimensional vector.
11 """
12 return [0, 0, 0, 0]
13
14 ## Iteration 1; Success: False
15 def controller(obs):
16 """
17 A feedback controller that computes the action based on the observation.
18
19 Args:
20 obs: (dict) The observation from the environment. Each key is a string (indicating a

type of observation) and the value is a list of floats.
21 Output:
22 action: (list or nd.array) A 4-dimensional vector.
23 """
24 hand_pos = obs[’hand_pos ’]
25 goal_pos = obs[’goal_pos ’]
26 action = [goal_pos [0] - hand_pos [0], goal_pos [1] - hand_pos [1], goal_pos [2] -

hand_pos [2], 0]
27 # Adjusting the last element of the action based on whether the hand is close enough to

trigger grasping
28 if abs(goal_pos [0] - hand_pos [0]) < 0.02 and abs(goal_pos [1] - hand_pos [1]) < 0.02 and

abs(goal_pos [2] - hand_pos [2]) < 0.02:
29 action [3] = 1 # Assuming action [3] = 1 triggers closing the gripper
30 return action
31
32 ## Interation 5; Success: False
33 def controller(obs):
34 """
35 A feedback controller that computes the action based on the observation.
36
37 Args:
38 obs: (dict) The observation from the environment.
39 Output:
40 action: (list or nd.array) A 4-dimensional vector.
41 """
42 hand_pos = obs[’hand_pos ’]
43 puck_pos = obs[’puck_pos ’]
44 goal_pos = obs[’goal_pos ’]
45 gripper_open = 1 if obs[’gripper_distance_apart ’][0] > 0.5 else 0
46
47 # Adjusting strategy to close the gripper when in proximity of the puck
48 if gripper_open and ((abs(hand_pos [0] - puck_pos [0]) < 0.05) and (abs(hand_pos [1] -

puck_pos [1]) < 0.05) and (abs(hand_pos [2] - puck_pos [2]) < 0.05)):
49 action = [0, 0, 0, 1] # Close the gripper
50 elif not gripper_open:
51 direction_to_goal = [0.09 - hand_pos [0], 0.95 - hand_pos [1], 0.12 - hand_pos [2]]
52 action = [direction_to_goal [0], direction_to_goal [1], direction_to_goal [2], 0] #

Move towards the suggested pose once puck is grasped
53 else:
54 # Move towards the puck first if not carrying it
55 direction_to_puck = [puck_pos [0] - hand_pos [0], puck_pos [1] - hand_pos [1],

puck_pos [2] - hand_pos [2]]
56 action = [direction_to_puck [0], direction_to_puck [1], direction_to_puck [2], 0]
57
58 return action

Figure A.13: Learned Code for LLFBench Meta-World Pick-Place (Part 1). Functions with the same name are
learned during different iterations or trials.
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1
2
3 ## Iteration 10; Success: False
4 def controller(obs):
5 """
6 A feedback controller that computes the action based on the observation.
7
8 Args:
9 obs: (dict) The observation from the environment.

10 Output:
11 action: (list or nd.array) A 4-dimensional vector.
12 """
13 hand_pos = obs[’hand_pos ’]
14 puck_pos = obs[’puck_pos ’]
15 goal_pos = obs[’goal_pos ’]
16 gripper_open = 1 if obs[’gripper_distance_apart ’][0] > 0.5 else 0
17
18 normalize = lambda x: [i / max(abs(max(x, key=abs)), 1) for i in x]
19
20 # Close the gripper when close to the puck and the gripper is open
21 if gripper_open and ((abs(hand_pos [0] - puck_pos [0]) < 0.05) and (abs(hand_pos [1] -

puck_pos [1]) < 0.05) and (abs(hand_pos [2] - puck_pos [2]) < 0.05)):
22 return [0, 0, 0, 1]
23 # When the puck is grasped , move towards the goal position with a normalized direction
24 elif not gripper_open and ((abs(hand_pos [0] - puck_pos [0]) < 0.1) and (abs(hand_pos [1] -

puck_pos [1]) < 0.1) and (abs(hand_pos [2] - puck_pos [2]) < 0.1)):
25 direction_to_goal = [goal_pos [0] - hand_pos [0], goal_pos [1] - hand_pos [1],

goal_pos [2] - hand_pos [2]]
26 return normalize(direction_to_goal) + [0]
27 # When the gripper is open and not close enough to the puck , move towards the puck
28 else:
29 direction_to_puck = [puck_pos [0] - hand_pos [0], puck_pos [1] - hand_pos [1],

puck_pos [2] - hand_pos [2]]
30 return normalize(direction_to_puck) + [0]
31
32 ## Iteration 13; Success: True
33 def controller(obs):
34 """
35 A feedback controller that computes the action based on the observation.
36
37 Args:
38 obs: (dict) The observation from the environment.
39 Output:
40 action: (list or nd.array) A 4-dimensional vector.
41 """
42 hand_pos = obs[’hand_pos ’]
43 puck_pos = obs[’puck_pos ’]
44 goal_pos = obs[’goal_pos ’]
45 gripper_open = 1 if obs[’gripper_distance_apart ’][0] > 0.5 else 0
46
47 normalize = lambda x: [i / max(abs(max(x, key=abs)), 1) for i in x]
48 # Close the gripper when close to the puck and the gripper is open
49 if gripper_open and ((abs(hand_pos [0] - puck_pos [0]) < 0.05) and (abs(hand_pos [1] -

puck_pos [1]) < 0.05) and (abs(hand_pos [2] - puck_pos [2]) < 0.05)):
50 action = [0, 0, 0, 1] # Close the gripper
51 elif not gripper_open and ((abs(hand_pos [0] - puck_pos [0]) < 0.1) and (abs(hand_pos [1] -

puck_pos [1]) < 0.1) and (abs(hand_pos [2] - puck_pos [2]) < 0.1)):
52 # When the puck is grasped , adjust direction towards the goal with improved

precision and ensure successful pickup
53 direction_to_goal = normalize ([ goal_pos [0] - hand_pos [0], goal_pos [1] - hand_pos [1],

goal_pos [2] - hand_pos [2]])
54 action = direction_to_goal + [1] # Keep the gripper closed
55 else:
56 # Move towards the puck first if not carrying it
57 direction_to_puck = normalize ([ puck_pos [0] - hand_pos [0], puck_pos [1] - hand_pos [1],

puck_pos [2] - hand_pos [2]])
58 action = direction_to_puck + [0] # Open the gripper to prepare for grasping
59
60 return action

Figure A.14: Learned Code for LLFBench Meta-World Pick-Place (Part 2). Functions with the same name are
learned during different iterations or trials.
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1 # Iteration 1
2 {
3 "reasoning ": "The task involves controlling a robotic arm to perform a pick -place

operation by interpreting observations and generating appropriate control actions (4D
vectors) to move the arm towards the goal. The objective is to adjust the controller ’s
code (__code0) based on feedback received at each step of the process. The feedback within
#Others suggests whether the movements made by the arm are leading it closer to or
farther from the goal , along with advice on what coordinates to aim for next (e.g.,
[-0.07 0.68 0.12 0. ]). The controller ’s code currently returns a static action [0,
0, 0, 0], which does not adjust based on observations and hence does not efficiently
move the robotic arm towards the goal. Given the repetitive feedback suggesting to go to
[-0.07 0.68 0.12 0. ], it appears that the controller needs to dynamically compute
actions based on the difference between the current positions (hand_pos , puck_pos) and
the goal_pos , along with possibly manipulating the gripper state for pick and place
operation.",

4 "answer ": "",
5 "suggestion ": {...}
6 }
7
8
9 # Iteration 5

10 {
11 "reasoning ": "The instruction involves creating a controller for a Sawyer robot arm to

solve a pick -and -place task by providing sequential control actions based on
observations of the environment and state of the robot. The feedback indicates that
despite the actions taken , the success criteria have not been met , with the latest
attempt achieving a return of 0.9574427394250022. The code provided for __code0 defines
a controller function using the observed state to compute control actions aimed at
grasping a puck and moving it to a goal position while adjusting the gripper based on
its distance from the puck. Feedback throughout the execution indicates that the
controller adapts its strategy based on proximity to the puck and whether it has been
picked up. Feedback also suggests that the gripper ’s opening and closing actions are
central to the task ’s success , with corrections being made to close the gripper when
necessary. The controller ’s logic for determining movements toward the puck or goal and
adjusting the gripper state appears reasonable , but the feedback implies that
adjustments might be required to ensure task completion. This could include fine -tuning
the conditions under which the gripper is closed or adjusting the thresholds for puck
pickup and delivery to the goal.",

12 "answer ": "",
13 "suggestion ": {}
14
15 # Iteration 10
16 {
17 "reasoning ": "The task involves programming a robot arm to pick up a puck and place it

at a goal position by providing sequential 4-dimensional action vectors. The action
vectors represent target positions and gripper states (open or close) based on the
robot ’s and puck ’s current positions. The feedback indicates that despite optimizing the
controller logic to close the gripper when near the puck , move towards the puck when
it’s not grasped , and head towards the goal once the puck is grasped , the actions have
not resulted in task completion. Specifically , repeated suggestions to close the
gripper (indicating it remained open when it should have been closed) and guidance on
where to move next suggest that the action selection logic might not be effectively
responding to the environment ’s state or might not be properly engaging the gripper at
the right times. The latest code includes a condition to normalize the direction of
movement and checks for gripper position , but there seems to be a misunderstanding or
oversight in adjusting the robot ’s behavior based on the scenario to successfully
complete the pick -place task.",

18 "answer ": "",
19 "suggestion ": {...}
20 }
21 }

Figure A.15: Example Responses of LLM for LLFBench Meta-World Pick-Place (Part 1); Content in suggestion
is omitted for space (represented as ...); please see the code examples.
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1 # Iteration 12
2 {
3 "reasoning ": "In this task , the controller function for the Sawyer robot arm manipulates

the robot ’s actions based on the observed environment to achieve a pick -and -place task.
The function correctly defines actions based on the robot ’s hand position , the puck ’s
position , the goal position , and the gripper ’s state. However , the feedback after each
step in the documentation indicates that although the robot is making progress towards
the goal , there is an issue with the gripper ’s action state not being switched to
’close ’ (1) at the crucial moment when the robot is close enough to the puck. Most
feedback comments suggest that the robot is moving in the right direction but fails to
grasp the puck due to the gripper not closing. This inefficiency appears to arise from
the conditions set for closing the gripper and possibly the normalized direction
towards the goal after the puck has been grasped. The condition for closing the gripper
(when close enough to the puck) seems to be met , but the action selected afterwards
does not effectively lead to puck manipulation or goal achievement in the most
optimized manner , as indicated by the ’Feedback ’ messages suggesting movements that
imply needing adjustments in action selection.",

4 "answer ": "",
5 "suggestion ": {...}
6 }
7
8 # Iteration 13 (Success)
9 LLM response:

10 {
11 "reasoning ": "The instruction requests improvements based on feedback for a Sawyer robot

arm ’s controller function , aiming to accomplish a pick -and -place task. The controller
function accepts observations about the robot and the environment and computes an
action to move the robot accordingly. \n\nThe feedback provided indicates the task was
successfully completed with a suggestion that the final command should have been
‘[0.04, 0.88, 0.24, 1]‘, which probably indicates the precise position and gripper
state (closed) needed to achieve the task goal. The feedback suggests the need for
fine -tuning actions especially towards the end of the task to ensure the robot ’s
gripper is appropriately positioned and the gripper state is correct for completing the
task. Since the feedback for the current code positively notes ’Success: True ’ with a
high return value , no modifications are recommended for ‘__code0 ‘. \n\nPrevious feedback
instances with lower success metrics and recommendations for change highlight the
iterative improvements to the controller logic , specifically related to grip control
and movement precision. The aim was to adjust the controller ’s response to observation
inputs to accurately position the gripper and handle the puck. The current code
evidently manages these aspects well by normalizing directions and managing the
gripper ’s open -close state effectively under varying circumstances (proximity to puck
or goal and whether the puck is already grasped). These adjustments have likely led to
the successful output in the described problem.",

12 "answer ": "No changes are recommended as the feedback indicates successful task
completion and suggests the controller ’s current logic adequately addresses the task ’s
requirements .",

13 "suggestion ": {}
14 }

Figure A.16: Example Responses of LLMs for LLFBench Meta-World Pick-Place (Part 2); Content in suggestion
is omitted for space (represented as ...); please see the code examples.

32



NeurIPS Paper Checklist884

1. Claims885

Question: Do the main claims made in the abstract and introduction accurately reflect the886

paper’s contributions and scope?887

Answer: [Yes]888

Justification: The contributions (Trace, OPTO, OptoPrime) are clearly stated in the introduc-889

tion and detailed in Sections 2,3,4, and claimed improvements are validated in Section 5.890

Meanwhile the aspirational goal of self-improving interactive agents is elaborated separately891

in the concluding Section 7.892

Guidelines:893

• The answer NA means that the abstract and introduction do not include the claims894

made in the paper.895

• The abstract and/or introduction should clearly state the claims made, including the896

contributions made in the paper and important assumptions and limitations. A No or897

NA answer to this question will not be perceived well by the reviewers.898

• The claims made should match theoretical and experimental results, and reflect how899

much the results can be expected to generalize to other settings.900

• It is fine to include aspirational goals as motivation as long as it is clear that these goals901

are not attained by the paper.902

2. Limitations903

Question: Does the paper discuss the limitations of the work performed by the authors?904

Answer: [Yes]905

Justification: The limitations are discussed in Section 6.906

Guidelines:907

• The answer NA means that the paper has no limitation while the answer No means that908

the paper has limitations, but those are not discussed in the paper.909

• The authors are encouraged to create a separate "Limitations" section in their paper.910

• The paper should point out any strong assumptions and how robust the results are to911

violations of these assumptions (e.g., independence assumptions, noiseless settings,912

model well-specification, asymptotic approximations only holding locally). The authors913

should reflect on how these assumptions might be violated in practice and what the914

implications would be.915

• The authors should reflect on the scope of the claims made, e.g., if the approach was916

only tested on a few datasets or with a few runs. In general, empirical results often917

depend on implicit assumptions, which should be articulated.918

• The authors should reflect on the factors that influence the performance of the approach.919

For example, a facial recognition algorithm may perform poorly when image resolution920

is low or images are taken in low lighting. Or a speech-to-text system might not be921

used reliably to provide closed captions for online lectures because it fails to handle922

technical jargon.923

• The authors should discuss the computational efficiency of the proposed algorithms924

and how they scale with dataset size.925

• If applicable, the authors should discuss possible limitations of their approach to926

address problems of privacy and fairness.927

• While the authors might fear that complete honesty about limitations might be used by928

reviewers as grounds for rejection, a worse outcome might be that reviewers discover929

limitations that aren’t acknowledged in the paper. The authors should use their best930

judgment and recognize that individual actions in favor of transparency play an impor-931

tant role in developing norms that preserve the integrity of the community. Reviewers932

will be specifically instructed to not penalize honesty concerning limitations.933

3. Theory Assumptions and Proofs934

Question: For each theoretical result, does the paper provide the full set of assumptions and935

a complete (and correct) proof?936
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Answer: [Yes]937

Justification: There are theorems about the computational complexity of Trace and an938

information theoretic lower bound on propagated feedback. Both theorems are proved939

in Appendix E.940

Guidelines:941

• The answer NA means that the paper does not include theoretical results.942

• All the theorems, formulas, and proofs in the paper should be numbered and cross-943

referenced.944

• All assumptions should be clearly stated or referenced in the statement of any theorems.945

• The proofs can either appear in the main paper or the supplemental material, but if946

they appear in the supplemental material, the authors are encouraged to provide a short947

proof sketch to provide intuition.948

• Inversely, any informal proof provided in the core of the paper should be complemented949

by formal proofs provided in appendix or supplemental material.950

• Theorems and Lemmas that the proof relies upon should be properly referenced.951

4. Experimental Result Reproducibility952

Question: Does the paper fully disclose all the information needed to reproduce the main ex-953

perimental results of the paper to the extent that it affects the main claims and/or conclusions954

of the paper (regardless of whether the code and data are provided or not)?955

Answer: [Yes]956

Justification: Experimental setups are outlined in Section 5 and detailed in Appendix B.957

Supplementary material additionally provides the exact code that was run to produce all958

results, and only requires user to supply an OpenAI API key.959

Guidelines:960

• The answer NA means that the paper does not include experiments.961

• If the paper includes experiments, a No answer to this question will not be perceived962

well by the reviewers: Making the paper reproducible is important, regardless of963

whether the code and data are provided or not.964

• If the contribution is a dataset and/or model, the authors should describe the steps taken965

to make their results reproducible or verifiable.966

• Depending on the contribution, reproducibility can be accomplished in various ways.967

For example, if the contribution is a novel architecture, describing the architecture fully968

might suffice, or if the contribution is a specific model and empirical evaluation, it may969

be necessary to either make it possible for others to replicate the model with the same970

dataset, or provide access to the model. In general. releasing code and data is often971

one good way to accomplish this, but reproducibility can also be provided via detailed972

instructions for how to replicate the results, access to a hosted model (e.g., in the case973

of a large language model), releasing of a model checkpoint, or other means that are974

appropriate to the research performed.975

• While NeurIPS does not require releasing code, the conference does require all submis-976

sions to provide some reasonable avenue for reproducibility, which may depend on the977

nature of the contribution. For example978

(a) If the contribution is primarily a new algorithm, the paper should make it clear how979

to reproduce that algorithm.980

(b) If the contribution is primarily a new model architecture, the paper should describe981

the architecture clearly and fully.982

(c) If the contribution is a new model (e.g., a large language model), then there should983

either be a way to access this model for reproducing the results or a way to reproduce984

the model (e.g., with an open-source dataset or instructions for how to construct985

the dataset).986

(d) We recognize that reproducibility may be tricky in some cases, in which case987

authors are welcome to describe the particular way they provide for reproducibility.988

In the case of closed-source models, it may be that access to the model is limited in989

some way (e.g., to registered users), but it should be possible for other researchers990

to have some path to reproducing or verifying the results.991
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5. Open access to data and code992

Question: Does the paper provide open access to the data and code, with sufficient instruc-993

tions to faithfully reproduce the main experimental results, as described in supplemental994

material?995

Answer: [Yes]996

Justification: All of the code to implement Trace and OptoPrime are provided in the997

supplementary material. All of the experiments described in the paper are reproducible with998

the supplied code.999

Guidelines:1000

• The answer NA means that paper does not include experiments requiring code.1001

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/1002

public/guides/CodeSubmissionPolicy) for more details.1003

• While we encourage the release of code and data, we understand that this might not be1004

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not1005

including code, unless this is central to the contribution (e.g., for a new open-source1006

benchmark).1007

• The instructions should contain the exact command and environment needed to run to1008

reproduce the results. See the NeurIPS code and data submission guidelines (https:1009

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.1010

• The authors should provide instructions on data access and preparation, including how1011

to access the raw data, preprocessed data, intermediate data, and generated data, etc.1012

• The authors should provide scripts to reproduce all experimental results for the new1013

proposed method and baselines. If only a subset of experiments are reproducible, they1014

should state which ones are omitted from the script and why.1015

• At submission time, to preserve anonymity, the authors should release anonymized1016

versions (if applicable).1017

• Providing as much information as possible in supplemental material (appended to the1018

paper) is recommended, but including URLs to data and code is permitted.1019

6. Experimental Setting/Details1020

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-1021

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the1022

results?1023

Answer: [Yes]1024

Justification: Experimental setups are outlined in Section 5 and detailed in Appendix B.1025

Guidelines:1026

• The answer NA means that the paper does not include experiments.1027

• The experimental setting should be presented in the core of the paper to a level of detail1028

that is necessary to appreciate the results and make sense of them.1029

• The full details can be provided either with the code, in appendix, or as supplemental1030

material.1031

7. Experiment Statistical Significance1032

Question: Does the paper report error bars suitably and correctly defined or other appropriate1033

information about the statistical significance of the experiments?1034

Answer: [Yes]1035

Justification: All experiments include standard error bars from ≥ 10 replications.1036

Guidelines:1037

• The answer NA means that the paper does not include experiments.1038

• The authors should answer "Yes" if the results are accompanied by error bars, confi-1039

dence intervals, or statistical significance tests, at least for the experiments that support1040

the main claims of the paper.1041
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• The factors of variability that the error bars are capturing should be clearly stated (for1042

example, train/test split, initialization, random drawing of some parameter, or overall1043

run with given experimental conditions).1044

• The method for calculating the error bars should be explained (closed form formula,1045

call to a library function, bootstrap, etc.)1046

• The assumptions made should be given (e.g., Normally distributed errors).1047

• It should be clear whether the error bar is the standard deviation or the standard error1048

of the mean.1049

• It is OK to report 1-sigma error bars, but one should state it. The authors should1050

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis1051

of Normality of errors is not verified.1052

• For asymmetric distributions, the authors should be careful not to show in tables or1053

figures symmetric error bars that would yield results that are out of range (e.g. negative1054

error rates).1055

• If error bars are reported in tables or plots, The authors should explain in the text how1056

they were calculated and reference the corresponding figures or tables in the text.1057

8. Experiments Compute Resources1058

Question: For each experiment, does the paper provide sufficient information on the com-1059

puter resources (type of compute workers, memory, time of execution) needed to reproduce1060

the experiments?1061

Answer: [Yes]1062

Justification: All the experiments use the same compute resources (LLM API for OptoPrime1063

and machine to run Trace), which are listed at the start of Section 5.1064

Guidelines:1065

• The answer NA means that the paper does not include experiments.1066

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,1067

or cloud provider, including relevant memory and storage.1068

• The paper should provide the amount of compute required for each of the individual1069

experimental runs as well as estimate the total compute.1070

• The paper should disclose whether the full research project required more compute1071

than the experiments reported in the paper (e.g., preliminary or failed experiments that1072

didn’t make it into the paper).1073

9. Code Of Ethics1074

Question: Does the research conducted in the paper conform, in every respect, with the1075

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?1076

Answer: [Yes]1077

Justification: The contributions of this paper (a framework analogous to PyTorch to general-1078

ize the backpropagation algorithm) do not have direct safety or security implications.1079

Guidelines:1080

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.1081

• If the authors answer No, they should explain the special circumstances that require a1082

deviation from the Code of Ethics.1083

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-1084

eration due to laws or regulations in their jurisdiction).1085

10. Broader Impacts1086

Question: Does the paper discuss both potential positive societal impacts and negative1087

societal impacts of the work performed?1088

Answer: [Yes]1089

Justification: In Sections 6 and 7 we discuss both the aspirational goals and their broader1090

impacts.1091

Guidelines:1092
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• The answer NA means that there is no societal impact of the work performed.1093

• If the authors answer NA or No, they should explain why their work has no societal1094

impact or why the paper does not address societal impact.1095

• Examples of negative societal impacts include potential malicious or unintended uses1096

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations1097

(e.g., deployment of technologies that could make decisions that unfairly impact specific1098

groups), privacy considerations, and security considerations.1099

• The conference expects that many papers will be foundational research and not tied1100

to particular applications, let alone deployments. However, if there is a direct path to1101

any negative applications, the authors should point it out. For example, it is legitimate1102

to point out that an improvement in the quality of generative models could be used to1103

generate deepfakes for disinformation. On the other hand, it is not needed to point out1104

that a generic algorithm for optimizing neural networks could enable people to train1105

models that generate Deepfakes faster.1106

• The authors should consider possible harms that could arise when the technology is1107

being used as intended and functioning correctly, harms that could arise when the1108

technology is being used as intended but gives incorrect results, and harms following1109

from (intentional or unintentional) misuse of the technology.1110

• If there are negative societal impacts, the authors could also discuss possible mitigation1111

strategies (e.g., gated release of models, providing defenses in addition to attacks,1112

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from1113

feedback over time, improving the efficiency and accessibility of ML).1114

11. Safeguards1115

Question: Does the paper describe safeguards that have been put in place for responsible1116

release of data or models that have a high risk for misuse (e.g., pretrained language models,1117

image generators, or scraped datasets)?1118

Answer: [NA]1119

Justification: There are no models, data or APIs released along with the paper.1120

Guidelines:1121

• The answer NA means that the paper poses no such risks.1122

• Released models that have a high risk for misuse or dual-use should be released with1123

necessary safeguards to allow for controlled use of the model, for example by requiring1124

that users adhere to usage guidelines or restrictions to access the model or implementing1125

safety filters.1126

• Datasets that have been scraped from the Internet could pose safety risks. The authors1127

should describe how they avoided releasing unsafe images.1128

• We recognize that providing effective safeguards is challenging, and many papers do1129

not require this, but we encourage authors to take this into account and make a best1130

faith effort.1131

12. Licenses for existing assets1132

Question: Are the creators or original owners of assets (e.g., code, data, models), used in1133

the paper, properly credited and are the license and terms of use explicitly mentioned and1134

properly respected?1135

Answer: [Yes]1136

Justification: Datasets used in the experiments (e.g. BigBench-Hard) are properly attributed.1137

Guidelines:1138

• The answer NA means that the paper does not use existing assets.1139

• The authors should cite the original paper that produced the code package or dataset.1140

• The authors should state which version of the asset is used and, if possible, include a1141

URL.1142

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.1143

• For scraped data from a particular source (e.g., website), the copyright and terms of1144

service of that source should be provided.1145
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• If assets are released, the license, copyright information, and terms of use in the1146

package should be provided. For popular datasets, paperswithcode.com/datasets1147

has curated licenses for some datasets. Their licensing guide can help determine the1148

license of a dataset.1149

• For existing datasets that are re-packaged, both the original license and the license of1150

the derived asset (if it has changed) should be provided.1151

• If this information is not available online, the authors are encouraged to reach out to1152

the asset’s creators.1153

13. New Assets1154

Question: Are new assets introduced in the paper well documented and is the documentation1155

provided alongside the assets?1156

Answer: [Yes]1157

Justification: There is code implementing Trace and OptoPrime that are released along with1158

the paper. The code repository contains licenses and several tutorial notebooks documenting1159

each functionality. There are no datasets or models in the release, hence datasheets and1160

modelsheets are not applicable for this release.1161

Guidelines:1162

• The answer NA means that the paper does not release new assets.1163

• Researchers should communicate the details of the dataset/code/model as part of their1164

submissions via structured templates. This includes details about training, license,1165

limitations, etc.1166

• The paper should discuss whether and how consent was obtained from people whose1167

asset is used.1168

• At submission time, remember to anonymize your assets (if applicable). You can either1169

create an anonymized URL or include an anonymized zip file.1170

14. Crowdsourcing and Research with Human Subjects1171

Question: For crowdsourcing experiments and research with human subjects, does the paper1172

include the full text of instructions given to participants and screenshots, if applicable, as1173

well as details about compensation (if any)?1174

Answer: [NA]1175

Justification: There are no crowdsourcing or human subject studies conducted in this paper.1176

Guidelines:1177

• The answer NA means that the paper does not involve crowdsourcing nor research with1178

human subjects.1179

• Including this information in the supplemental material is fine, but if the main contribu-1180

tion of the paper involves human subjects, then as much detail as possible should be1181

included in the main paper.1182

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,1183

or other labor should be paid at least the minimum wage in the country of the data1184

collector.1185

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human1186

Subjects1187

Question: Does the paper describe potential risks incurred by study participants, whether1188

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)1189

approvals (or an equivalent approval/review based on the requirements of your country or1190

institution) were obtained?1191

Answer: [NA]1192

Justification: The paper does not involve crowdsourcing nor research with human subjects.1193

Guidelines:1194

• The answer NA means that the paper does not involve crowdsourcing nor research with1195

human subjects.1196
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• Depending on the country in which research is conducted, IRB approval (or equivalent)1197

may be required for any human subjects research. If you obtained IRB approval, you1198

should clearly state this in the paper.1199

• We recognize that the procedures for this may vary significantly between institutions1200

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the1201

guidelines for their institution.1202

• For initial submissions, do not include any information that would break anonymity (if1203

applicable), such as the institution conducting the review.1204
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