Under review as submission to TMLR

Circuit Explained: How Does a Transformer Perform
Compositional Generalization

Anonymous authors
Paper under double-blind review

Abstract

Compositional generalization—the systematic combination of known components into novel
structures—is fundamental to flexible human cognition, but the mechanisms in neural net-
works remain poorly understood in both machine learning and cognitive science|Lake & Ba-
roni| (2023)) showed that a compact encoder-decoder transformer can achieve simple forms
of compositional generalization in a sequence arithmetic task. In this work, we identify and
mechanistically interpret the circuit responsible for compositional generalization in such a
model. Using causal ablations, we isolate the circuit and further show that this understand-
ing enables precise activation edits to steer the model’s outputs predictably. We found that
the circuit leverages the disentangled representation of position and token so that functional
transformations can be applied to positions in a token-independent manner. Our findings
advance the understanding of how compositionality can emerge in neural networks and offer
testable hypotheses for similar mechanisms in other neural architectures and compositional
tasks. Code will be published after double-blind review.

Keywords: Transformer; Mechanistic Interpretability; Compositionality

1 Introduction

Humans excel at compositional generalization—the ability to combine known components to solve novel
problems. For example, once we learn the concept of "swap," we can apply it to any two objects, regardless
of their identity. This capacity for relational abstraction appears early: even infants generalize rules like
same-different or before-after to unfamiliar contexts (Gentner}, |1983; Holyoak & Thagard}, |1994; Marcus et al.|
1999). While cognitive science has long studied this ability, its neural basis remains unknown.

In parallel, compositional generalization has posed a longstanding challenge in machine learning. Building
flexible, general-purpose systems requires models to go beyond memorization and exhibit systematic gen-
eralization. Classic critiques, such as those by |Fodor| (1979)), argued that connectionist models lack the
structure required for compositionality. While this concern shaped decades of skepticism, recent advances
with transformer-based models (Vaswani et al.l [2017)—and large-scale training paradigms (Kaplan et al.,
2020; [Bubeck et al., |2023) have provided substantial counterexamples.

In recent work, |[Lake & Baroni| (2023)) demonstrated that a compact encoder-decoder transformer can achieve
human-like compositional generalization in a symbolic sequence arithmetic task. Here, we leverage the small
scale of this model and provide an end-to-end mechanistic interpretation of how it solves this compositional
generalization task. We trace the model’s behavior to a minimal, interpretable circuit and reverse-engineer
the attention dynamics into a human-readable algorithm. We validate the circuit’s role by predictably
steering the model’s output.

This study revealed two core principles underlying the model’s success:

1. The model relies on disentangled representations of position (slot) and token (content) embeddings.

2. Functions operate on disentangled position embeddings allowing generalized transformations of ar-
bitrary token identities.

Under review as submission to TMLR

While the model and task we have considered are specific, the principles of compositional generalization we
have identified may apply to broad compositional tasks in machine learning and cognitive science.

We discuss Related Work on Transformer Clircuit Interpretation and Compositional Generalization in
Transformers in the Appendix.

2 Experimental Setup

Our experimental setup involves a synthetic function composition task (Figure [1)) designed to probe compo-
sitional generalization in a compact Transformer (Lake & Baroni), 2023). We outline the task structure, the

Transformer basics (including attention mechanisms), and the training protocol.

2.1 Task Structure

AsB=0@

. . DecoderT

Each episode consists of a Support Set and a

. . . Layer 1
Question (Figure [1): Encoder | — ~
Support Set: Layer 1 > Cross-attention |
Specifies (i) how the Primitives are symbol-to-color MLP
mappings (e.g., B maps to blue, written as [B] = Layer 0
blue, with [] as an interpretation function for Layer 0 ())
tra.nslating inputs to outputs; or D maps to pink, MLP ‘[@
written as [D] = pink). The Support Set also spec-
ifies (ii) Functions as symbolic operations that take ——
primitives as arguments, and calls the interpreta- A A
tion function on those arguments in a new order. Support: SOS (Start of Sentence)
For instance, the function S might take two argu- A=._ D=) Be
ments and evaluate them in the order of (e.g., [B S Ezi;. °

D] = [D][B][D] = pink blue pink. The 2nd to-
ken is always the function token; the 1st and 3rd
tokens are always the argument tokens to the func-
tion. The length of function output ranges from 2

Question:
ASB=?

Prompt:

ASB|A=red | D= pink | B=Dblue|BS D= pink blue pink | EOS

to 5.

Question:

\

)

question

Output:

support set

SOS blue red blue EOS
Presents a new composition of primitives and func-

tions defined in the Support Set. Figure 1: Top, schematic of the transformer model and

task. Bottom, the prompt and output format for the

The model generates answers to the Question as o .
compositional generalization task.

token sequences emitted from the decoder, with a
SOS (start of sentence) token as the first input to
the decoder and an EOS (end of sentence) marking the end of the emission. The model operates strictly
via in-context learning—weights remain frozen during inference, and test episodes are disjoint from training
data. The model must infer latent variable bindings (primitives and functions) from the Support Set and
dynamically compose these bindings to solve the novel Question.

2.2 Model
2.2.1 Transformer Basics

Our transformer uses an encoder-decoder architecture that involves two types of attentions:

o Self-Attention: Captures within-sequence interactions.
R7nput X dmodel ig projected into Queries, Keys, and Values:

Q=XWq,

The token embedding matrix X €

K=XWg, V=XWy,

Under review as submission to TMLR

where Wo, Wi, Wy € Rmodel Xdnead gre learnable weight matrices.

o Cross-Attention: Enables the decoder to attend to encoder outputs. Here, the Queries (Q) come
from the decoder tokens, while the Keys (K) and Values (V) come from the encoder tokens. We
denote the different tokens used to compute Q@ K V as Xg X Xv.

The attention mechanism operates through two separate circuits on embedding X € R™nputXdmodel for each
attention head:

« QK Circuit (WoWL): Determines from where information flows to each token by computing atten-
tion scores between token pairs, with higher scores indicating stronger token-to-token relationships:

XQWQ(XKWK)T
Vv dhead

where softmazx is applied along the Key dimension and independently for each head.

Attention(Q, K) = softmax (> € RMavery XNey

o OV Circuit (WyWp): Controls what information gets written to each token position. Combined
with the QK Circuit, this produces the output of the attention head:

7z = Attention(Q, K) . XVWVWO c anllel‘denlodel’

where Wg € R¥neadXdmodel is g learnable weight matrix.

Following attention blocks, each transformer layer includes a position-wise MLP block, which applies a
non-linear transformation to each token embedding independently. However, prior work by |Wang et al.
(2022)) demonstrated that MLPs are less relevant for induction tasks. Therefore, our circuit analysis focuses
exclusively on attention heads.

2.2.2 Model Training

We adopt an encoder-decoder Transformer with 2 layers in the encoder and 2 layers in the decoder (Figure
with each layer containing 8 attention heads. Further model details appear in the Appendix.

We train on 10,000 such episodes for 50 epochs and evaluate on 2,000 test (held-out) episodes. The model
achieves 94% accuracy on this test set, indicating strong compositional generalization capabilities. In the
test set, primitive assignments and function definitions are conjunctively different from those in the training
set (i.e., some primitives or some functions might be in the training set, but not the whole combination of
them), preventing a memorization strategy. Please refer to the Appendix for additional details.

3 Results

We first outline the high-level algorithm the model appears to implement. We then describe our circuit dis-
covery process, using causal methods to isolate the attention heads driving compositional behavior. Finally,
we validate the mechanism through targeted interventions that predictably steer model outputs. Throughout,
we use l-indexing (count from 1) for tokens.

3.1 The High-Level Algorithm

The overall algorithm the model implements can be described in terms of three logical steps (Figure .

1. Unbind: The function output in the Support is coded in terms of an array of positions associated
with the argument tokens.

2. Rebind: The new argument tokens in the Question bind with the original argument positions in
the Support forming new position-token pairs.

Under review as submission to TMLR

3. Produce: Reapply the function coded in terms of positions to the new position-token pairs to form

an array of output tokens.

In essence, the model uses token-independent positions as a pointer system that through unbinding and

rebinding can generalize to different token identities.

3.2 Transformer Solution with Attention Operations

Support
Next, we map each step to specific attention heads and A=@. D= B=
walk through the attention operations with a guidance BSD=
episode in Figure 1.Unbind 5 - @ —ig. Do = igx
Nomenclature: given a function definition in the BE 5 " ’

prompt (e.g.,’...| B S D=pink blue pinkl..."), func-
tion Left-Hand-Side (LHS) refers to tokens on the left
(e.g., B S D’); function Right-Hand-Side (RHS) refers to
tokens on the right (e.g., 'pink blue pink’). Index-on-
LHS/RHS refers to the relative position of tokens on the
LHS/RHS, (e.g., '‘B=1st, pink=1st’). Similarly, index-
in-question refers to a token’s relative position in the
Question. The attention heads are named by their in-
terpreted roles, which are detailed in the Circuit Dis-

SRR Y SR
idx, S idx, = [idx,] [idx,] [idx,]

2. Rebind ' ASB="7

3. Produce

idx,=A=@), idx,=B =
idx, S idx, = [idx,] [idx,] [idx,]

idx, S idx, =

covery

Step 1:

Step 2:

Step 3:

section.

Unbind

Figure 2: Schematic of the compositional algo-
rithm. For Unbind, in B S D’, B is the 1st to-
ken (idzy), and 'B=blue’, so 'B=blue=idz;’; sim-
ilar for ’D’. For Rebind, in 'A S B’, A is the 1st
token (idr1), and 'A=red’, so ’idri=A=red’; sim-
ilar for 'B’.

Primitive- and Function-Retrieval Heads
(Figure [3p): Color tokens on the function RHS
(pink) attend to their associated primitive to-
kens on the function LHS (D), inheriting the latter’s index-on-LHS (3rd). The heads are detailed in

Figure [10]
Rebind

Question-Broadcast Head (Fig.): Primitive input tokens in the Support (e.g., B) attend to
the same primitive tokens in the Question (B), inheriting the latter’s index-in-question (3rd). The
head is detailed in Figure [Gp.

Primitive-Pairing Head (Fig.[3t): Color tokens (blue) attend to their associated primitive tokens
(B), inheriting the latter’s index-in-question (3rd). The head is detailed in Figure [6h.

Produce

RHS-Scanner Head (Fig. [B{): The 1st token in the Decoder (S0S) attends to the 1st tokens on
the function Right Hand Side (RHS) (pink), inheriting the latter’s former-inherited index-on-LHS
(3rd). The head is detailed in Figure [9}

Output Head (Fig. |3¢): SOS token (with inherited index-on-LHS=3rd) attends to color tokens
(blue) with the same index-in-question (3rd), inheriting the latter’s token identity (blue), and
generates the next prediction (blue). The head is detailed in Figure Then the 2nd token in
the Decoder (blue) repeats the operation with the RHS-Scanner Head until completion of function
RHS.

Together, these heads form a modular circuit that performs compositional generalization via pointer-based
binding, mirroring symbolic execution through argument extraction, rebinding, and output generation.

Under review as submission to TMLR

Prompt:

ASB|A=red | D= pink | B =Dblue|BS D= pink blue pink | EOS
\)\)
question support set

Output:

SOS blue red blue EOS

a. Primitive-Retrieval &

Function-Retrieval b. Question-Broadcast c. Primitive-Pairing

A A

B S S
s B Emb=B idx=3rd B
|

K_» D idx=3rd (LHS) | IK JV
[1]*(= \\‘/ Q

—B idx—=3rdi K —R .
@\ pink idx=1st (RHS) idx=3 BINNESR idx=3rd] B Emb=5 .
blue = Q = lv .
blue i i
d. RHS-Scanner e. Output
blue Emb=blue idx=3rd blue Emb=blue idx=3rd
K
B B
S S
D D

pink idx=1st (RHS) idx=3rd (LHS) pink
blue K blue \

Q
SOS idx=1st idx=3rd (LHS) Ei
blue < nexttoken

Figure 3: Summary of circuit for compositional generalization. Top, the example episode’s input and
output. For a-e, the yellow boxes indicate self-attention heads and the blue boxes indicate cross-attention
heads. Titles refer to the functional attention heads that execute the steps (details in Circuit Discovery
section). We unfold all relevant information superimposed in tokens’ embeddings and highlight their roles
in attention operations. [1]*, the QK alignment discussed in Primitive-Retrieval Head section. [2]*, the QK
alignment discussed in Primitive-Pairing Head section.

3.3 Circuit Discovery

Nomenclature: for attention heads, Enc-self-0.5 stands for Encoder, self-attention, layer 0, head 5; similarly,
Dec-cross-1.5 stands for Decoder, cross-attention, layer 1, head 5.

3.3.1 Output Head (Dec-cross-1.5; Figure [dp)

We discovered the model’s circuit backwards from the unembedding layer using logit attribution (nostal-
gebraist| 2020), which measures each decoder attention head’s linear contribution to the final token logits
(adjusted by the decoder’s output LayerNorm). We identified Dec-cross-1.5 (decoder cross attention layer
1 head 5) as the primary contributor (Figure {h).

Dec-cross-1.5’s Q tokens always attend to the K tokens from the Encoder that are the next predicted ones.
For example, in Figure [@p, the SOS token attends to instances of red in the Support Set, which is indeed the
correct next output prediction. This attention accuracy (i.e., max-attended token being the next-emitted

Under review as submission to TMLR

token) of Dec-cross-1.5 remains above 90% for the first three tokens in the responses across all test episodes
(Figure), with Dec-cross-1.1 and -1.3 partially compensating beyond that point.

These observations suggest that Dec-cross-1.5’s OV circuit feeds token identities directly to the decoder
unembedding layer (output layer). Specifically, we observe that the output of the OV circuit, X W, W,,
align closely (strong inner product) with the unembedding vectors of the corresponding tokens (Figure)
Hence, we designate Dec-cross-1.5 as the Output Head (while Dec-cross-1.1 and -1.3 perform similar but less
dominant roles).

Next, we show how the Output Head identifies the correct token through QK interactions.

a Output logit contribution
0.16
Dec-cross-1 . . .
0.12
Dec-self-1
0.08
Dec-cross-0
0.04
Dec-self-0
0

HO H1 H2 H3 H4 H5 He H7

Output Head (Decoder-cross-1.5)

Query o=

505 !
[}
£OS o

AFC|B=@|CFB-000 |BFC-000 |CFA=- @@ |C=@| A= |BDC=0@ |EOS

Key
C d
1 0.14 Cross-1.5to
08 _ umembed
9 2 0.10 Shuffle
0.6 S
: :
g 0.4 é 0.06
0.2 0.02
0 1 2 3 4 05 0 05 1
Nt output Inner product

Figure 4: (a) Logit contributions of each decoder head to the logits of correct tokens (fraction to total
logits). (b) Attention pattern of Dec-cross-1.5. (c¢) For Dec-cross-1.5, the percentage of attention focused
on the next predicted token. (d) For Dec-cross-1.5, alignment (inner product) between its OV output (e.g.,
ZredWyW,) and the corresponding unembedding vector (e.g., Unemb,..4). We estimated the null distribution
by randomly sampling unembedding vectors.

3.3.2 The K-Circuit to the OQutput Head

We first determine which encoder heads critically feed into the Output Head’s K. To do this, we performed
path-patching (Wang et al.,2022) by ablating all but one single encoder head and then measuring how much of
Output Head’s QK behavior (i.e., attention accuracy) remained. During these experiments, Output Head’s
Q were frozen using clean-run activations. Here we report patching results with mean-ablation (qualitative
similar to random-sample ablation) (details in Appendix).

Through this process, we identified Enc-self-1.1 and Enc-self-0.5 as the primary contributors to Output
Head’s K, acting in a sequential chain (Figure [5]). Next, we show how they sequentially encode symbols’
index-in-question critical for the QK alignment.

Primitive-Pairing Head (Enc-self-1.1; Figure [6) This head exhibits a distinct attention pattern
that pairs each color token with its associated primitive symbol token (e.g., in the Support Set, all instances
of red attend to C). In other words, Enc-self-1.1 relays information (described below, as computed by e.g.,

Under review as submission to TMLR

Enc-self-0.5) from the primitive symbols to their corresponding color tokens via its QK circuit. Hence, we

call Enc-self-1.1 the Primitive-Pairing Head.

To investigate which upstream heads feed into the
OV circuit of the Primitive-Pairing Head, we ap-
plied a sequential variant of path-patching, isolating
the chain:

Upstream heads (e.g. Enc-self-0.5) —
Primitive-Pairing Head (V) —
Output Head (K),

while mean-ablating all other direct paths to Out-
put Head’s K. We identified Enc-self-0.5 as an
important node (Figure [6p).

Question-Broadcast Head (Enc-self-0.5; Fig-
ure @3) All input symbol in the Support Set at-
tend to their copies in the input Question. In other
words, Enc-self-0.5 broadcasts question-related in-
formation (including token identity and position)
across symbols in the Support Set (henceforth the
Question-Broadcast Head). We hypothesize that

A
Encoder Decoder
Primitive-Pairing K> Output Head
Self-1.1 v>»_ Cross-1.5

— r

(———T——
Question-Broadcast
Self-0.5

— ¥

Figure 5: Enc-self-1.1 and Enc-self-0.5 serve as the
main contributors of the K-circuit for the Output
Head.The K-circuit encodes primitive symbols’ index-
in-question.

the primitive symbols’ index-in-question is the critical information passed from the Question-Broadcast
Head’s Z through the Primitive-Pairing Head’s Z and lastly into the Output Head’s K.

a Contribution to Output Head’s K

0.8
0.5
0.1

HO H1 H2 H3 H4 H5 Hé6 H7

Enc-self-1

Enc-self-0

Primitive-Pairing Head (Encoder-self-1.1)

Qi o —@ i o>

1> —00®) A o—0O

Query

~—0®

G—00 1 noo—" I >—@

b Contribution to Output Head’s K
via Primitive-Pairing Head’s V 0.5
Enc—self—O{ HOB
HO H1 H2 H3 H4 H5 He H7 Lo

Question-Broadcast Head (Encoder-self-0.5)

Query
3—00) noo— 1>01I 00 | > 000 OO x @ > >

AFC|B=@|CFB-000|BFC-000|CFA=-"00|C=-0|A=

Key

| BDC =@@ |EOS

Figure 6: (a) Top, contributions to Output Head’s performance (percentage of attention on the correct
next token) via K. Bottom, attention pattern of Enc-self-1.1. (b) Top, contributions to the Output Head’s
performance through the Primitive-Pairing Head’s V. Bottom, attention pattern of Enc-self-0.5.

Index-In-Question Tracing To validate this hypothesis, we examined the Question-Broadcast Head’s Z
for each primitive-symbol token. We reduced these outputs to two principal components and colored each

Under review as submission to TMLR

point by its index-in-question. As illustrated in Figure [7h, the Question-Broadcast Head’s Z exhibit clear
clustering, indicating that the index-in-question is robustly encoded at this stage (quantified by the R? score,
i.e., the amount of variance explained by index identity, details in Appendix). We further confirmed that the
Primitive-Pairing Head’s Z preserves index-in-question (Figure [Tp) and that the resulting Output Head’s K
also reflect the same clustering (Figure [7).

a b C
Causal Ablation Finally, we verified that this cir- Question-Broadcast’s Z Primitive-Pairing’s Z Output Head's K
cuit indeed causally propagates index-in-question. =;§3R2=°'6 Ri=061 .RZ;O'”
Ablating the Question-Broadcast Head’s Z (to- ' '
gether with the similarly functioning Enc-self-0.7) i ‘ "
obliterates the clustering in the Primitive-Pairing Pe2
Head’s Z; ablating the Primitive-Pairing Head’s % =
Z (together with similarly functioning Enc-self-1.0) T 1
disrupts the clustering in the Output Head’s K (Fig- Primive-Pairing’s Z ablated Output Head's K ablated

R?=0.08 R?=0.06
ure . We therefore conclude that the Question- ® e

Broadcast Head, the Primitive-Pairing Head and
heads with similar functions form a crucial K-
circuit pathway, passing index-in-question informa-
tion from primitive tokens to their associated color
tokens in the Output Head’s K.

3.3.3 The Q-Circuit to the Output Head Figure 7: Principal Components Analysis (PCA) of

token embeddings, colored by their associated index-
Having established the role of the K-circuit, we next in-question. Concretely, for a prompt like A S B |
investigate where its @ originates. We again relied A=red | B=blue | ...’, in (a), points are the Z of
on sequential path-patching to pinpoint which de- ’A’ and 'B’ in the Support (A labeled 1st, B labeled
coder heads ultimately provide the Output Head’s 3rd); in (b), points are the Z of 'red’ and "blue’ in the
Q. We identified Dec-cross-0.6 as the main con- Support (red labeled 1st, blue labeled 3rd); in (c),
duit for the @ values of the Output Head. Enc-self- points are the K of 'red’ and "vlue’ in the Support
1.0 and -1.2 supply positional embeddings that en- (red labeled ist, blue labeled 3rd). The distinct
able the decoder to track primitive symbol’s index- clusters suggest strong index information. R? score
on-LHS, thereby completing the QK alignment for quantifies the percentage of total variance explained
correct predictions (Figure . by the index identity.

Unembed

Function-
Encoder Retrievel Decoder

o Output Head
Retrievel

v v Figure 8: Schematic of the @-circuit. The
Output Head inherits its @ from Dec-cross-
0.6, which aggregates positional informa-
tion passed from Enc-self-1.0 and Enc-self-
1.2. The Q-circuit encodes primitive sym-
bols’ index-on-LHS.

RHS-Scanner Head (Dec-cross-0.6; Figure [Ob) We identify Dec-cross-0.6 as the dominant con-
tributor to the the Output Head’s @ (Figure @a) Analyzing Dec-cross-0.6’s attention patterns reveals that
each @) token (from Decoder in the cross-attention) sequentially attends to the color tokens (in the Support
Set) on the function’s RHS (Figure [Op). For example, the first Decoder token (SOS) attends to the first
RHS tokens (purple, red, yellow), and the second query token (red) attends to the second RHS tokens
(red, purple, red), and so on. This iterative scanning mechanism enables the decoder to reconstruct the
transformation defined by the function. Hence we call Dec-cross-0.6 the RHS-Scanner Head.

Under review as submission to TMLR

A Contribution to Output Head’s Q

Dec-self-1 0.35
oo M N -
Dec-self-0 0.15

HO H1 H2 H3 H4 H5 H6 H7

RHS-Scanner Head (Decoder-cross-0.6)

(o p

SOs
®

EOS

Query

AFC|B=@|CFB-00@®|BFC-000®|CFA-=

Key

@0 | C=-@ | A= |BDC =00 [EOS

Figure 9: (a) Contribution to Output Head’s performance via Q.(b) Attention pattern of Dec-cross-0.6.

Primitive-Retrieval Head (Enc-self-1.0; Figure[10b) and Function-Retrieval Head (Enc-self-1.2;
Figure) Next, we looked for critical encoder heads that feeds to the RHS-Scanner Head and finally
contributes to the Output Head’s . Unlike the K-circuit discovery, where “keep-only-one-head” ablations
is sufficient, multiple heads appear to contribute partial but complementary information. To isolate their
roles, we measured drops in the output head’s accuracy when ablating each encoder head individually while
keeping the others intact (the “ablate-only-one-head” approach, more discussion in Appendix).

This analysis highlighted Enc-self-1.0 and Enc-self-1.2 as critical (Figure) In Enc-self-1.0, within
the Support Set, each color token on the RHS attends back to its corresponding symbol on the LHS,
inheriting that symbol’s token and positional embedding (henceforth the Primitive-Retrieval Head) (Fig.
110b). Meanwhile, Enc-self-1.2 is similar, such that each color token on the RHS attends back to its function
symbol on the LHS, passing that token and positional embedding on to the color token (henceforth the
Function-Retrieval Head) (Fig. [10F).

Why do the color tokens on the RHS attend back to both kinds of information on the LHS? We reason
that if a color token on the RHS were to encode it’s primitive symbol’s index-on-LHS: for example, in ’. . . |
D=pink | B S D=pink blue pink |...’, pink were to encode 3rd inherited from D (D is 3rd in ‘B S D’),
the absolute position of D must be compared with the absolute position of the S to yield a relative position.
Now that with the Primitive- and Function-Retrieval Heads, each RHS color token carries two positional
references: (1) the associated LHS primitive, and (2) the function symbol, we hypothesize that by comparing
these references, the model can infer the primitive symbols’ index-on-LHS for each of the associated color
tokens on the RHS.

Index-On-LHS Tracing To confirm that our discovered circuit genuinely encodes the index-on-LHS in
the Output Head’s @), we conducted three complementary ablation experiments summarized in Figure

e Retaining only the Primitive- and Function-Retrieval Heads When all other encoder heads
are ablated, the RHS-Scanner Head’s Z still carries index-on-LHS that propagate to the Output
Head’s @, indicating that these two heads alone provide sufficient index information.

e Ablating the Primitive- or Function-Retrieval Head individually Ablating either head dis-
rupts the clustering by index-on-LLHS in the RHS-Scanner Head’s Z, demonstrating that both heads
are necessary to preserve the full index information.

o Ablating the RHS-Scanner Head (together with Dec-cross-0.0 and -0.3) These decoder
heads share similar attention patterns that track color tokens on the function’s RHS. When all three
are ablated, clusterings by index-on-LHS are eliminated from the Output Head’s Q.

Under review as submission to TMLR

a Contribution to Output Head'’s Q
via RHS-Scanner Head's V

Enc-self-1

Enc-self-0

HO H1 H2 H3 H4 H5 He H7
Primitive-Retrieval (Encoder-self-1.0
[]

(= n

)

d Function-Retrieval (Encoder-self-1.2)

>

Ao @0®) »m —@ i o

I1>n— 000 Ao 000 o @I >— >

Query

Query
— @0 "O— 1 >— @1 —OO® || > —O

1>—@1 ~—0®

—00) "Ow—

g
g

AFC|[B=-@|CFB= |BFC= |CFA= |C=@|A="|BDC=-0@ [E05

Key

Figure 10: (a) Contribution to Output Head’s performance via Q. (b) Contribution to Output Head’s
performance via the RHS-Scanner’s V.. (c¢) Attention pattern of Dec-cross-0.6. (d) and (e) Attention patterns
of Enc-self-1.0 and Enc-self-1.2.

Thus, we conclude that the Q-circuit depends on the RHS-Scanner Head to capture the index-on-LHS
information supplied by the Primitive- and Function-Retrieval Heads. By aligning these @ signals with the
K, the model consistently determines which token to generate next.
a b

RHS-Scanner's Z Output Head's Q

R*=0.16 1st R’=0.19
-

Enc-self-1.0 o 1 g
nc-s w % j ‘E!ﬁ"‘
Function-Retrieval o) - > K

Encoder

B
H

Q RHS-Scanner Z's ablated G Output Head’s Q ablated
R?=0.01

R?=0.02

PC2

PC1

Figure 11: PCA for token embeddings labeled by index-on-LHS. Concretely, for an episode with prompt 'A
S B | A=red | B=blue | B S A=red blue red’ and prediction ’SOS blue red blue EO0S’, in (a), points
are the Z of ’S0S’ and "blue’ in the decoder input tokens (S0S is labeled 3rd, because S0S attends to the
red on function RHS, and A is the 3rd on the LHS; similarly, blue is labeled 1st); in (b), points are the Q
of decoder input tokens (S0S is labeled 3rd, red is labeled 1st). R? score quantifies the percentage of total
variance explained by the index identity.

10

Under review as submission to TMLR

3.4 Targeted Perturbation Steers Output

Our circuit analysis indicates that the Output Head’s K-circuit encodes the primitive symbols’ index-in-
question, while its @-circuit encodes their indez-on-LHS. If the model indeed relies on this positional indexing
for token prediction, then perturbing (i.e., swapping) this index information should systematically alter the
attention patterns and consequently the model’s behavior.

Perturbation Alters Attention Patterns Concretely, consider an input like’A S B | A=red | B=blue
| ...’, where 'red’ inherits 1st (from A) and ’blue’ inherits 3rd (from B) in the K-circuit. If the @-
circuit expects a token with index value of 1st ('red’ in this case), swapping these positional embeddings
between A and B at the earliest node (Question-Broadcast Head’s V') of the K-circuit—while freezing the
Q-circuit—should revert the Output Head’s attention from ’red’ to 'blue’ (Figure)

Indeed, performing this targeted swap of positional embeddings caused the Output Head to shift its attention
predictably from 'red’ to ’blue’, corresponding precisely to their swapped positions (Figure [12b). A control
experiment using random positional embedding shuffles did not produce this systematic attention shift,
confirming the causal role of positional indexing in the Output Head’s QK alignment.

Perturbation Partially Alters Model Outputs We further assessed whether this targeted perturbation
affects the final output logits. Post-perturbation, model accuracy dropped from 94% to 76%, remaining
above chance but far below the original performance. Correspondingly, the logits for originally correct tokens
decreased while those for swapped tokens increased (Figure) The partial logit swap aligns with earlier
observations (Figure {4)), where Dec-cross-1.1 and -1.3 also provide significant contributions to final token
logits. Again, random positional embedding shuffles did not replicate this systematic logit alteration.

Together, these targeted perturbations confirm the causal role of the identified compositional circuit, demon-
strating that precise manipulation of internal activations can systematically steer model outputs.
a Encoder residual stream
ASB|A=red| ..
V:3rd Vst

swap pos emb

b Output Head (Dec-cross-1.5) C Unembedding layer
1.0y cleanrun swap shuffle clean run swap shuffle
' pos emb pos emb 101 pos emb pos emb
€ 0.81 |
) 51 !
¢ 0.6 -]
c @01
2 0.4 9
< 4
£ 02 E
< 1] T
0 S X S X X 10— I y X \. \
e L8 (OS> S & & (OB
(Jo‘@ & (Jo‘@ & (,o"& @0‘\ & o's\e & o&e & &
%\e %\e & C ,&e C \\5& %\e

Figure 12: (a) Schematic illustrating the targeted swap of position embeddings. (b) Attention weights from
the Output Head comparing the original correct token and swapped token across three conditions: unper-
turbed (left), targeted position swap (middle), and random shuffle control (right). (c¢) Similar comparison
as (b), but for final output logits rather than attention weights.

4 Discussion

In this work, we investigated how a compact transformer model performs compositional generalization on a
synthetic sequence arithmetic task. Using path-patching and causal ablations, we uncovered a detailed QK

11

Under review as submission to TMLR

circuit that encodes index information from both the Question and the function’s LHS. We further showed
that precisely swapping these positional embeddings predictably alters the model’s behavior, confirming the
causal role of this circuit in supporting compositional generalization. These results demonstrate that even
for complex functions, transformers can implement structured and interpretable mechanisms.

4.1 Limitations and Future Work

Model Scale. Our circuit analysis focused on a relatively small transformer. Establishing whether similar
interpretable circuits exist in larger models remains an important open question for future work.

Partial Perturbations. Although our targeted activation edits successfully influenced the Output Head’s
behavior, they did not fully control the predicted tokens. This is likely due to the distributed nature of
the mechanism, where multiple heads perform overlapping roles. Coordinated interventions across these
redundant heads will require more systematic and automated methods, which we aim to develop in future
work.

Specialized Compositional Generalization The identified circuit is brittle and highly specialized to the
compositional tasks we defined. Indeed, simply repositioning the function symbol (e.g., ’A S B’ to’S A B’)
completely disrupts performance to chance level, which indicates that the model always assumes the function
symbol to be on the 2nd position, lacking flexibility in symbol recognition. More flexible compositionality
involving multiple or recursive functions clearly requires more complex circuit mechanisms, which remains
an important direction for future exploration.

Despite these limitations, our findings offer new insights for both machine learning and cognitive science.
First, we provide a rigorous, end-to-end circuit analysis methodology of a transformer solving a complex task.
We demonstrate that such interpretability can guide targeted steering of model output through activation-
level edits. This circuit-tracing workflow can serve as a template for future interpretability efforts across
different transformer architectures and tasks.

Second, we identify two high-level principles that underlie successful compositional generalization in this
model: (1) token identity (content) and token position (slot) are represented in a disentangled fashion, and (2)
functions operate by transforming positional slots, abstracting away from token identities. These principles
generate testable hypotheses for other neural architectures—for example, whether similar representational
signatures exist in recurrent architectures and diffusion models when solving this type of composition. They
also offer a guide for detecting mechanisms for other types of compositional problems.

We hope this research motivates targeted experiments and analyses on compositional generalization in cog-
nitive science, and inspires further work on the mechanistic foundations of compositionality in large-scale
models across broader task domains.

References

Adithya Bhaskar, Alexander Wettig, Dan Friedman, and Dangi Chen. Finding transformer circuits with edge
pruning. In The Thirty-eighth Annual Conference on Neural Information Processing Systems, November
2024.

Sébastien Bubeck, Varun Chandrasekaran, Ronen Eldan, Johannes Gehrke, Eric Horvitz, Ece Kamar, Peter
Lee, Yin Tat Lee, Yuanzhi Li, Scott Lundberg, Harsha Nori, Hamid Palangi, Marco Tulio Ribeiro, and
Yi Zhang. Sparks of artificial general intelligence: Early experiments with GPT-4. arXiv [cs.CL], March
2023.

Arthur Conmy, Augustine N Mavor-Parker, Aengus Lynch, Stefan Heimersheim, and Adria Garriga-Alonso.
Towards automated circuit discovery for mechanistic interpretability. arXiv [cs.LG], April 2023.

DeepSeek-Al, Aixin Liu, Feng, and Others. DeepSeek-V3 technical report. arXiv [es. CL], December 2024.
Nelson Elhage, Neel Nanda, Catherine Olsson, Tom Henighan, Nicholas Joseph, Ben Mann, Amanda Askell,
Yuntao Bai, Anna Chen, Tom Conerly, Nova DasSarma, Dawn Drain, Deep Ganguli, Zac Hatfield-Dodds,

12

Under review as submission to TMLR

Danny Hernandez, Andy Jones, Jackson Kernion, Liane Lovitt, Kamal Ndousse, Dario Amodei, Tom
Brown, Jack Clark, Jared Kaplan, Sam McCandlish, and Chris Olah. A mathematical framework for
transformer circuits. https://transformer-circuits.pub/2021/framework/index.html, 2021. Ac-
cessed: 2025-2-4.

Jerry A Fodor. The language of thought. The Language and Thought Series. Harvard University Press,
London, England, July 1979.

D Gentner. Structure-mapping: A theoretical framework for analogy. Cogn. Sci., 7(2):155-170, June 1983.

Nicholas Goldowsky-Dill, Chris MacLeod, Lucas Sato, and Aryaman Arora. Localizing model behavior with
path patching. arXiv [cs.LG], April 2023.

Michael Hanna, Ollie Liu, and Alexandre Variengien. How does GPT-2 compute greater-than?: Interpreting
mathematical abilities in a pre-trained language model. In Thirty-seventh Conference on Neural Informa-
tion Processing Systems, November 2023.

Stefan Heimersheim and Jett Janiak. A circuit for python docstrings in a 4-layer attention-only transformer.
2023.

Felix Hofstatter. Explaining the transformer circuits framework by example. 2023.

Keith J Holyoak and Paul Thagard. Mental Leaps: Analogy in creative thought. The MIT Press, December
1994.

Aliyah R Hsu, Georgia Zhou, Yeshwanth Cherapanamjeri, Yaxuan Huang, Anobel Y Odisho, Peter R Carroll,
and Bin Yu. Efficient automated circuit discovery in transformers using contextual decomposition. arXiv
[es.AI], June 2024.

Dieuwke Hupkes, Verna Dankers, Mathijs Mul, and Elia Bruni. Compositionality decomposed: how do
neural networks generalise? arXiv [cs.CL], August 2019.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child, Scott Gray,
Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language models. arXiv [cs.LG],
January 2020.

Brenden M Lake and Marco Baroni. Human-like systematic generalization through a meta-learning neural
network. Nature, October 2023.

LawrenceC, Adria Garriga-alonso, Nicholas Goldowsky-Dill, ryan_greenblatt, Ansh Radhakrish-
nan, Buck, and Nate Thomas. Causal scrubbing: a method for rigorously testing inter-
pretability hypotheses [redwood research]. https://www.lesswrong.com/posts/JvZhhzycHu2Yd57RN/
causal-scrubbing-a-method-for-rigorously-testing, 2022. Accessed: 2025-2-5.

G F Marcus, S Vijayan, S Bandi Rao, and P M Vishton. Rule learning by seven-month-old infants. Science,
283(5398):77-80, January 1999.

nostalgebraist. interpreting GPT: the logit lens. https://www.alignmentforum.org/posts/
AcKRB8wDpdaN6v6ru/interpreting-gpt-the-logit-1lens|, 2020. Accessed: 2025-2-5.

Catherine Olsson, Nelson Elhage, Neel Nanda, Nicholas Joseph, Nova DasSarma, Tom Henighan, Ben Mann,
Amanda Askell, Yuntao Bai, Anna Chen, Tom Conerly, Dawn Drain, Deep Ganguli, Zac Hatfield-Dodds,
Danny Hernandez, Scott Johnston, Andy Jones, Jackson Kernion, Liane Lovitt, Kamal Ndousse, Dario
Amodei, Tom Brown, Jack Clark, Jared Kaplan, Sam McCandlish, and Chris Olah. In-context learning
and induction heads. arXiv [cs.LGJ, September 2022.

Daking Rai, Yilun Zhou, Shi Feng, Abulhair Saparov, and Ziyu Yao. A practical review of mechanistic
interpretability for transformer-based language models. arXiv [cs.Al], July 2024.

13

https://transformer-circuits.pub/2021/framework/index.html
https://www.lesswrong.com/posts/JvZhhzycHu2Yd57RN/causal-scrubbing-a-method-for-rigorously-testing
https://www.lesswrong.com/posts/JvZhhzycHu2Yd57RN/causal-scrubbing-a-method-for-rigorously-testing
https://www.alignmentforum.org/posts/AcKRB8wDpdaN6v6ru/interpreting-gpt-the-logit-lens
https://www.alignmentforum.org/posts/AcKRB8wDpdaN6v6ru/interpreting-gpt-the-logit-lens

Under review as submission to TMLR

Clayton Sanford, Daniel Hsu, and Matus Telgarsky. Transformers, parallel computation, and logarithmic
depth. arXiv [es.LG], February 2024.

Ashish Vaswani, Noam M Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Neural Inf Process Syst, 30:5998-6008, June 2017.

Kevin Ro Wang, Alexandre Variengien, Arthur Conmy, Buck Shlegeris, and Jacob Steinhardt. Interpretabil-
ity in the wild: a circuit for indirect object identification in GPT-2 small. In The Eleventh International
Conference on Learning Representations, September 2022.

Mingze Wang and Weinan E. Understanding the expressive power and mechanisms of transformer for
sequence modeling. arXiv [cs.LG], February 2024.

Dylan Zhang, Curt Tigges, Zory Zhang, Stella Biderman, Maxim Raginsky, and Talia Ringer. Transformer-
based models are not yet perfect at learning to emulate structural recursion. Trans. Mach. Learn. Res.,
2024, January 2024.

Zhongwang Zhang, Pengxiao Lin, Zhiwei Wang, Yaoyu Zhang, and Zhi-Qin John Xu. Complexity control
facilitates reasoning-based compositional generalization in transformers. arXiv [cs.CL], January 2025.

A Appendix

A.1 Related Work

Transformer circuit interpretation. Mechanistic interpretability of transformers began with analysis
of simplified models, identifying attention heads as modular components that implement specific functions.
In their seminal work, [Elhage et al.| (2021) and |Olsson et al.| (2022)) introduced "induction heads" as critical
components for in-context learning in small attention-only models. These heads perform pattern completion
by attending to prior token sequences, forming the basis for later work on compositional generalization. Case
studies have dissected transformer circuits for specific functions, such as the ’greater than’ circuit (Hanna
et al., 2023, the 'docstring’ circuit (Heimersheim & Janiak, [2023)), the ’indirect object’ circuit (Wang et al.
2022)), and the 'max of list’ circuit (Hofstatter] [2023)). These case studies successfully reverse-engineered the
transformer into the minimal-algorithm responsible for the target behavior.

To facilitate identification of relevant circuits, researchers have proposed circuit discovery methods such as
logit lens (nostalgebraist], [2020), path patching (Goldowsky-Dill et all [2023), causal scrubbing |LawrenceC
et al.[(2022). For large-scale transformers, automated circuit discovery methods are also proposed (Conmy!
et al.l 2023} [Hsu et al.| |2024} [Bhaskar et al.l [2024)). So far, transformer interpretability work still requires
extensive human efforts in the loop for hypothesis generation and testing. We point to a review paper for a
more comprehensive review (Rai et al. [2024)).

Compositional generalization in transformers. In their study, Hupkes et al.| (2019) evaluated compo-
sitional generalization ability on different families of models, and found that transformers outperformed RNN
and ConvNet in systematic generalization, i.e., recombination of known elements, but still incomparable to
human performance. [Zhang et al.| (2024) pointed out that transformers struggle with composing recursive
structures. Recently, Lake & Baroni| (2023|) showed that after being pre-trained with data generated by a
'meta-grammar’, small transformers (less than 1 million parameters) can exhibit human-like compositional
ability in novel in-context learning cases. This is in line with the success of commercial large language models
(LLM) in solving complex out-of-distribution reasoning tasks (Bubeck et al.| [2023;|DeepSeek-Al et al., 2024)),
where compositional generalization is necessary.

Several studies highlighted factors that facilitate transformer’s compositional ability. Wang & E| (2024])
identified initialization scales as a critical factor in determining whether models rely on memorization or
rule-based reasoning for compositional tasks. |Zhang et al. (2025) revealed that low-complexity circuits
enable out-of-distribution generalization by condensing primitive-level rules. (Sanford et al.,|2024) identified
logarithmic depth as a key constraint for transformers to emulate computations within a sequence. Here, we
offer a complementary mechanistic understanding of how transformers perform compositional computations.

14

Under review as submission to TMLR

A.2 Transformer Model

We adopt an encoder-decoder architecture, which naturally fits the task by allowing the encoder to process
the prompt (Question + Support) with bidirectional self-attention and the decoder to generate an output
sequence with causal and cross-attention. Specific hyperparameters include:

e Token embedding dimension: dyoqe1 = 128
o Attention embedding dimension: dpeaq = 16
o Eight attention heads per layer (both encoder and decoder)

o Pre-LayerNorm (applied to attention/MLP modules) plus an additional LayerNorm at the encoder
and decoder outputs

e Standard sinusoidal positional embeddings

The encoder comprises two layers of bidirectional self-attention + MLP, while the decoder comprises two
layers of causal self-attention + cross-attention + MLP. We train the model by minimizing the cross-entropy
loss (averaged over tokens) using the Adam optimizer. The learning rate is initialized at 0.001 with a warm-
up phase over the first epoch, then linearly decays to 0.00005 over training. We apply dropout of 0.1 to
both input embeddings and internal Transformer layers, and train with a batch size of 25 episodes. All
experiments are performed on an NVIDIA A100 GPU.

A.3 Task Structure

In each episode, the Support Set and Question are concatenated into a single prompt for the encoder, with
question tokens placed at the start. Question, primitive assignments, and function assignments are separated
by ‘|¢ tokens, while primitive and function assignments are identified by ‘= Overall, there are 6 possible
colors and 9 symbols that may serve as either color primitives or function symbols. Each episode contains

2—4 function assignments and 3-4 color assignments.

A function may be a single-argument (arg func) or double-argument (argl func arg2) function. The
function’s right-hand side (RHS) describes how arguments are transformed, generated by randomly sampling
up to length-5 sequences of arguments and mapping them to color tokens. Each prompt ends with an ‘E0S
token. During decoding, the model begins with an ‘S0S‘ token and iteratively appends each newly generated
token until it emits ‘E0S*.

We randomly generate 10,000 episodes for training and 2,000 for testing, ensuring that the primitive and
function assignments in testing episodes do not overlap with those in the training set.

A.4 Path Patching

Path patching is a method for isolating how a specific source node in the network influences a particular
target node. It proceeds in three runs:

1. Clean Run: Feed the input through the model normally and cache all intermediate activations
(including those of the source and target nodes).

2. Perturbed Run: Freeze all direct paths into the target node using their cached activations from
the clean run. For the source node alone, replace its cached activation with mean-ablated values.
Record the new, perturbed activation at the target node.

3. Evaluation Run: Supply the target node with the perturbed activation from Step 2, then measure
any resulting changes in the model’s output. This quantifies how the source node’s contribution
(altered via mean-ablation) affects the target node’s behavior.

15

Under review as submission to TMLR

Chained Path Patching. When analyzing circuits that span multiple nodes in sequence, we extend path
patching in a chain-like manner. For instance, to evaluate a chain A - B — C"

e We first perform path patching on the sub-path B — C' as usual.

e Next, to capture how A specifically influences B, we isolate and record A’s effect on B via mean-
ablation on all other inputs to B.

e Finally, we patch that recorded activation into B and evaluate its effect on C.

For a chain of length N, we run N + 1 forward passes, ensuring the measured impact on the target node
reflects only the chained pathway. This approach precisely attributes the model’s behavior to the intended
sequence of dependencies.

Two Modes of Ablation. To assess how individual heads or nodes contribute to the target node, we use
two complementary modes:

1. Keep-only-one-head: Mean-ablate all direct paths to the target node except for one node, which
retains its clean-run activation. If the target node’s performance remains stable, this single node
is sufficient for driving the relevant behavior. However, this method may fail when multiple heads
each provide partial information that is only collectively sufficient.

2. Ablate-only-one-head: Keep all source nodes from the clean run except one, which is mean-
ablated. If performance degrades, that ablated node is necessary. However, if the node’s information
is redundant or duplicated across other paths, the target node’s performance will not significantly
change.

By combining both modes, we identified the putative QK-circuit of the output head. We then validate
the circuits by inspecting the information they propagates and causally erasing the information by ablating
specific upstream nodes.

A.5 R? Score

To quantify how much an activation dataset Y encodes a particular latent variable Z, we compute a linear
regression of Z (one-hot encoded) onto Y and measure the explained variance:

SSres

R*=1- .
SStotal

An R? value of 1.0 indicates that Z fully explains the variance in Y, whereas an R? near 0.0 implies Z
provides no information about Y.

16

	Introduction
	Experimental Setup
	Task Structure
	Model
	Transformer Basics
	Model Training

	Results
	The High-Level Algorithm
	Transformer Solution with Attention Operations
	Circuit Discovery
	Output Head (Dec-cross-1.5; Figure 4b)
	The K-Circuit to the Output Head
	The Q-Circuit to the Output Head

	Targeted Perturbation Steers Output

	Discussion
	Limitations and Future Work

	Appendix
	Related Work
	Transformer Model
	Task Structure
	Path Patching
	R2 Score

