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Zinc-finger proteins (ZNFs) constitute the largest family of transcription factors and play crucial roles in various
cellular processes. Missense mutations in ZNFs significantly alter protein-DNA interactions, potentially leading to
the development of various types of cancers. This study presents ZFP-CanPred, a novel deep learning-based

E’;‘i‘:f:rr model for predicting cancer-associated driver mutations in ZNFs. The representations derived from protein
Neutral language models (PLMs) from the structural neighbourhood of mutated sites were utilized to train ZFP-CanPred
Mutations for differentiating between cancer-causing and neutral mutations. ZFP-CanPred, achieved a superior perfor-

mance with an accuracy of 0.72, Fl-score of 0.79, and area under the Receiver Operating Characteristics (ROC)
Curve (AUC) of 0.74, on an independent test set. In a comparative analysis against 11 existing prediction tools
using a curated dataset of 331 mutations, ZFP-CanPred demonstrated the highest AU-ROC of 0.74, outperforming
both generic and cancer-specific methods. The model’s balanced performance across specificity and sensitivity
addresses a significant limitation of current methodologies. The source code and other related files are available
on GitHub at https://github.com/amitphogat/ZFP-CanPred.git. We envisage that the present study contributes

Neural network
Protein language model

to understand the oncogenic processes and developing targeted therapeutic strategies.

1. Introduction

Protein-DNA interactions play an important role in various cellular
processes, such as gene expression, regulation, methylation, DNA
replication and repair. These interactions involve specific recognition of
DNA sequences by DNA-binding proteins (DBPs) [1]. The DNA-binding
proteins interact with DNA using specialized domains known as DNA-
binding domains with primarily two types of interactions: direct or
water-mediated hydrogen bonds and van der Waals interactions with
the major groove of the DNA double helix. Additionally, they recognize
specific DNA sequences known as motifs. There are various types of
motifs involved in DNA binding, including helix-turn-helix (HTH), zinc-
finger (ZF), leucine-zipper, helix-loop-helix (HLH), and high mobility
group (HMG) [2]. Zinc-finger containing proteins (ZNFs) belong to the
largest transcription factor (TFs) family. The transcription factors
recognize and bind to DNA sequences for regulating transcription of
many genes. The zinc-finger domain typically comprises conserved
cysteine and histidine residues that coordinate a Zn?' ion. This

coordination forms a stable, finger-like structure through a combination
of alpha-helical and beta-sheet folding patterns. Upon binding to its
target site, the zinc-finger domain aligns three base pairs of DNA with
specific amino acids in the a-helix structure. The amino acid composi-
tion at the contact site determines the DNA sequence recognition spec-
ificity of zinc-fingers [3]. Missense mutations in ZNFs alter the protein
structure and conformation at the protein-DNA interface, affecting the
expression of many genes and leading to diseases such as cancer.

ZNFs play significant roles in the development of various types of
cancer. Specific ZNFs have been identified as oncogenes or tumor sup-
pressors in different malignancies. For instance, ZNF322A and ZNF251
have been characterized as oncogenes that promote lung carcinogenesis.
In breast cancer, ZNF711, ZNF143, and ZNF224 have been implicated in
tumor progression. Hepatocellular carcinoma development has been
associated with alterations in ZHX1 and ZHX2 expression. Furthermore,
ZNF479 and ZNF281 have been linked to gastric cancer, while ZNF350
and ZNF703 have been shown to contribute to colorectal cancer devel-
opment [4]. Munro et al.,, [5] analyzed the transcription factors
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containing Cys2His2 type zinc-finger domain and showed that arginine
at the 9th position responsible for dimer formation, is frequently
mutated to isoleucine, leading to the development of uterine and colo-
rectal carcinomas, as well as histidine at the 11th position coordinating
with Zn?" is frequently mutated to tyrosine in multiple melanomas. The
CCCTC-binding factor (CTCF) is a protein with 11 zinc-finger domains
responsible for gene regulation and development of various types of
cancers. Several mutations in zinc-fingers 3 to 7 of CTCF including,
R339Q, S354T, Q418R, R448Q, R377C, and R377H, abolish the
hydrogen-bonding and electrostatic interactions at the interface,
resulting in an unstable protein-DNA complex and affecting downstream
gene regulation [6]. These findings underscore diverse effects of muta-
tions in ZNFs, and highlight their potential as diagnostic biomarkers or
therapeutic targets to treat cancers. Given the effects of various missense
mutations and critical functions of ZNFs in cancer development, it is
essential to identify cancer-causing mutations in these proteins to un-
derstand the molecular basis of diseases and the development of thera-
peutic strategies. Identifying cancer-causing mutations experimentally
is a time-consuming and labor-intensive task [7,8]. Hence, computa-
tional methods need to be developed for predicting the effect of muta-
tions in cancer development, to accelerate target identification. With
emerging efforts to develop drugs against specific mutant proteins in
cancers such as p53 [9], KRAS [10], and IDH1 [11], predictive models to
identify cancer-causing mutations in cancer-associated proteins can
significantly contribute toward drug development.

Numerous computational methods or tools have been developed to
predict the impact of mutations in diseases. These tools utilize diverse
features, including conservation metrics, spatial localization of muta-
tions within protein structures, physicochemical properties, multiple
sequence alignment, and various other structural parameters for model
development. Some methods integrate multiple prediction scores from
other tools, leveraging ensemble techniques to enhance predictive ac-
curacy [12]. These methods can be categorized into three main groups:
rule-based algorithms, machine learning-based methods, and deep
learning-based methods. Rule-based algorithms include SIFT4G [13],
FATHMM [14], MutationAssessor [15], and PROVEAN [16]. Machine
learning-based methods comprise MutationTaster [17], PolyPhen-2
[18], MetaSVM [19], MetaLR [19], DEOGEN2 [20], and M—CAP [21].
Deep learning-based methods consist of MVP [22], PrimateAl [23],
AlphaMissense [24], and ESM1b [25]. Buel and Walters [26] reported
that AlphaFold2.0 is not capable of efficiently predicting the impact of
missense mutations in protein three-dimensional structures. In addition,
various cancer-specific tools have also been developed for predicting the
effect of cancer specific mutations [27-30]. ZNFs consist of multiple
zinc-finger domains that function synergistically to achieve sequence-
specific DNA recognition. Limited availability of mutational data for
ZNFs as compared to other DNA-binding protein families has led to poor
performance of existing methods on ZNFs [3].

In this work, a model was trained on the dataset containing muta-
tions specific to ZNFs. The resultant model, ZFP-CanPred, is a deep
learning-based method for predicting the effect of mutations in cancer-
associated zinc-finger proteins, using the representations from protein
language models (PLMs) such as Evolutionary Scale Modeling (ESM-2)
[31]. By leveraging the latent representations from the state-of-the-art
LLMs, the model inherits a notion of similarity between different
ZNFs. This is essential in aiding the model to distinguish between
different mutants at the residue-level and predict their effect in cancer
development. ZFP-CanPred achieved an accuracy of 0.72 and AU-ROC
of 0.74 on a test dataset. In comparative analysis against existing
computational tools, ZFP-CanPred showed an improved performance
when evaluated on a standardized test dataset. We anticipate that this
method will aid in developing targeted therapeutic strategies against
mutant ZNFs in cancers.
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2. Materials and methods
2.1. Dataset

The data available on cancer-causing mutations was collected from
the COSMIC database v97 [32]. The frequency of each mutation was
computed in the dataset and mutations observed at least three times in
different samples were considered as driver mutations. Mutations spe-
cific to DNA-binding proteins were collected from UniProt [33] and
mapped to disease-associated mutations from the COSMIC dataset. To
remove redundancy from the dataset, the proteins were first clustered
based on sequence identity (similarity cut-off of >20%) using CD-HIT
[34]. The representative proteins obtained after clustering were taken
and the corresponding mutations were used to create the final dataset.
The DNA-binding domain information for all the proteins was taken
from InterPro [35]. The neutral mutations for these proteins were
extracted from Clinvar [36], dbSNP [37], HuVarBase [38] and dbCPM
[39] databases. Mutations annotated as benign or likely benign, which
do not alter protein function or contribute to disease pathogenesis, were
classified as neutral mutations. We cross-referenced the neutral muta-
tions against the driver mutations, excluding any overlapping variants
between the two datasets. The final dataset was then stratified into
training (80%), validation (10%), and test (10%) subsets using a protein-
level splitting approach that prevents data leakage and maintains the
independence of each subset, ensuring no proteins were shared across
these datasets.

2.2. Feature extraction

2.2.1. Structural neighbor extraction

The protein structures were extracted from the AlphaFold [40]
database, as the complete experimental structures were not available.
The mutant structures were generated using the latest version of FoldX
(v5.0) [41]. The structural neighbors of driver and neutral mutations
were extracted using a distance cut-off of 8 A, to include short-, medium-
, and long-range interactions [42]. This dataset is termed as structural
neighbors for driver and neutral mutations in this study.

2.2.2. Extracting representations

The protein language models (PLMs) were used to extract the fea-
tures from wild-type and mutant structural neighbors. The model’s
output is a multi-dimensional vector reflecting biochemical properties
and remote similarities between proteins. The following language
models were tested for feature extraction:

a) ESM representation

ESM-2 [31] is a protein language model trained on 250 million
protein sequences using unsupervised learning. The model takes a pro-
tein sequence as input, and provides a 1280-dimensional vector repre-
sentation as an output. The learned representation space spans multiple
scales, encompassing biochemical characteristics of amino acids and
remote similarities between proteins.

b) ProteinBERT representations

ProteinBERT [43] was pre-trained using approximately 106 million
protein sequences along with associated Gene Ontology (GO) annota-
tions sourced from UniProtKB/UniRef90 [33,44]. The protein sequences
are inputs for the model. The output of the model is a 1024-dimensional
numerical vector.

c) ProtTrans representations

ProtTrans [45] is a collection of protein language models (Trans-
former-XL, XLNet, BERT, Albert, Electra, and T5) trained on up to 393
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Fig. 1. Workflow of the development of ZFP-CanPred model.

billion amino acids from UniRef and BFD datasets. It generates vector
representations of 1024 dimensions, which capture physicochemical
properties.

d) ProtFlash representations

ProtFlash [46] is a lightweight protein language model with linear
complexity. The model’s architecture combines local and global context
processing using chunk-based attention patterns and multiple positional
encoding schemes. The model generates embedding vectors of 728 di-
mensions that encode semantic information from protein sequence.

2.3. Model development

The complete workflow for ZFP-CanPred development is provided in
Fig. 1. The representations are calculated for wild-type (WTg) and
mutant structural neighbours (MTg). The difference between these
representations (Ag) is used as the input feature for the deep neural
network, which was created using the PyTorch library [47]. It consists of
n number of layers including the input and output layers where, the
input layer receives the feature vector (Ag). The outputs from each layer
were processed through the ReLU activation function followed by a
dropout layer to prevent overfitting. The output layer uses the sigmoid
activation function to convert the final output into a probability value
suitable for binary classification of the mutation of interest as driver or
neutral.

2.3.1. Model optimization

The model training process employed the focal loss function [48] to
address class imbalance in the training dataset. Hyperparameter opti-
mization to finalize the architecture and training parameters was
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Table 1
The range of values of hyperparameters used for fine
tuning the models.

Hyperparameter Range
Batch size 64 to 300
Learning rate le-5to le-1
Epochs 25 to 200
Alpha Oto1l
Gamma lto3

performed using the Optuna framework [49]. The hyperparameter space
was searched, encompassing architectural parameters (number of hid-
den layers, nodes per layer), training dynamics (batch size, learning rate,
number of epochs), and focal loss-specific parameters (alpha, gamma)
(Table 1). Optuna utilizes search algorithms, such as tree-structured
Parzen Estimators (TPE), which facilitate effective traversal of the
high-dimensional hyperparameter space. This optimization approach
was aimed to identify the optimal configuration that maximizes model
performance while mitigating overfitting.

2.4. Model performance evaluation

The deep neural network model was evaluated for classifying cancer-
causing and neutral mutations. The evaluation metrics used were:

Sensitivity = TP/(TP +FN) @
Specificity = TN/(TN + FP) @
Accuracy = (TP+TN)/(TP+ FN + FP+ TN) 3
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Table 2

Occurrence of topmost 10 mutations in driver and neutral datasets.
Driver Mutations Frequency Neutral Mutations Frequency
E-K 0.075 P->S 0.035
R-C 0.075 P-L 0.033
R—-H 0.070 A>T 0.033
R-Q 0.055 R-Q 0.026
R-W 0.054 A->V 0.024
A>T 0.051 T—A 0.024
A-V 0.048 R-H 0.024
P->S 0.042 D-E 0.022
P-L 0.042 E—-D 0.022
S—>L 0.038 G->S 0.021

*Bold: mutations present in both driver and neutral datasets.
*Frequency is the ratio between number of individual mutations and total
mutations in the dataset.

Balanced accuracy = (Sensitivity + Specificity)/2 “4)
F1 —score = TP/ (TP+M> 5)

where, TP, TN, FN, and FP represent the number of true positives, true
negatives, false negatives and false positives, respectively. The cancer-
causing mutations were considered as positive class while neutral mu-
tations were considered as negative class. The model performance was
also assessed with F1-score and AU-ROC.

3. Results and discussion
3.1. Dataset statistics

The dataset of 147,518 mutations was extracted from the COSMIC
database, corresponding to 1,920 DNA-binding proteins (DBPs). A non-
redundant dataset comprising 1,180 representative protein sequences
was generated through sequence clustering using CD-HIT [34] to elim-
inate redundancy. Further, domain annotation information from Inter-
Pro [35] was utilized to identify ZNFs. The resulting dataset contained
2,811 driver mutations and 723 neutral mutations, distributed across
208 distinct ZNFs. The topmost 10 preferred mutations in driver and
neutral datasets are presented in Table 2. In the driver dataset, the
predominant mutations were E—~K, R—C, and R—H. Conversely, the
neutral dataset exhibited a higher frequency of P-S, P—L, and A—T
being the most prevalent. While some mutations were exclusive to either
dataset, a considerable overlap was observed, with many mutations
occurring in both datasets at varying frequencies. This poses a signifi-
cant challenge in discriminating between driver and neutral mutations.

0.14 KS test p-value: 2.27e-21
KS statistic: 0.204
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e
°
3

e
°
&

Probability Density

e
e

0.02

0.00
0 10 20 30 40 50

Length (in residues)

Methods 235 (2025) 55-63

We observed that the incorporation of structural neighbor information is
capable of handling such cases for discriminating driver and neutral
mutations (Section 3.2).

A comparative analysis of the spatial distribution of driver and
neutral mutations showed that 10.3% driver and 6.2% neutral sites
occur within the zinc-finger domain. To quantify the relative enrichment
of driver mutations in domain regions, the odds ratio was calculated
(Equation (6).

Nz /Ny

Oddsratio = No /N,

©

where, Ndz, and Nnz denote the number of driver and neutral sites in
zinc finger domain, respectively. Nd and Nn are total number of driver
and neutral sites, respectively. The resulting odds ratio was 1.65 indi-
cating a significant enrichment of driver mutations within the zinc-
finger domain of ZNFs. The observation suggested that driver muta-
tions are more likely to occur within zinc-finger domain as compared to
neutral mutations.

A comparison between zinc-finger domain length and protein length
was also performed. The majority of proteins were between 300 and 600
residues in length, whereas zinc-finger domains predominantly span
between 50 and 100 residues.

The structural neighbors of wild-type and mutant sites are compared
for driver and neutral datasets and the results are shown in Fig. 2A and
B. The analysis showed that driver mutations exhibited a higher number
of structural neighbors (15-25 residues) compared to neutral mutations
(5-10 residues) with a p-value of close to zero. This observation sug-
gested that driver mutations interact with a greater number of residues
in zinc finger proteins, potentially disrupting more interactions within
the protein structure. Conversely, neutral mutations interact with fewer
surrounding residues, indicating less impact on the protein’s structural
integrity. These findings imply that the surrounding residues of mutated
site play a significant role in determining the impact of mutations on
protein function and stability.

3.2. Performance of protein language based models

The models were trained using the representations from ESM-2,
ProteinBERT, ProtTrans and ProtFlash. Following hyperparameter
optimization, the performance of the best-performing models for each
PLM was evaluated on an independent test dataset. The ESM-based
model demonstrated a superior performance, achieving a balanced ac-
curacy of 0.90 on training dataset and 0.70 on test dataset (Supple-
mentary Table S1). The ProtFlash model showed comparable training
performance with a balanced accuracy of 0.89, with a lower test set
performance of 0.67. Similarly, the ProtTrans-based model achieved a
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Fig. 2. Density plots showing the probability density for various lengths (in residues) of structural neighbors: (A) mutant driver and neutral sites and (B) wild-type

driver and neutral sites. MT: Mutant, WT: Wild-Type.
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Fig. 3. Performance evaluation of ZFP-CanPred for predicting cancer driver mutations. (A) Comparison of ROC curves for ESM-based model (AUC = 0.74), ProtTrans
(AUC = 0.73), ProtFlash (AUC = 0.73) and ProteinBERT-based model (AUC = 0.55). (B) Comparison of our ZFP-CanPred model (AUC = 0.74) against 11 existing

prediction tools.

Table 3
Comparison prediction results of ZFP-CanPred with existing methods.
Tool Np Specificity Sensitivity Accuracy Balanced AU-ROC
(ACO) ACC

Polyphen2 HDIV 356 0.53 (0.61) 0.76 (0.76) 0.68 (0.72) 0.64 (0.66) 0.67 (0.74)
Polyphen2 HVAR 227 0.59 (0.58) 0.62 (0.75) 0.61 (0.7) 0.60 (0.64) 0.67 (0.71)
MutationTaster 351 0.03 (0.62) 1.00 (0.77) 0.70 (0.72) 0.52 (0.69) 0.54 (0.74)
MutationAssessor 356 0.27 (0.62) 0.79 (0.76) 0.63 (0.72) 0.53 (0.69) 0.55 (0.74)
MetaSVM 143 1.00 (0.59) 0.04 (0.79) 0.19 (0.76) 0.52 (0.69) 0.49 (0.69)
MetaLR 143 1.00 (0.59) 0.03 (0.79) 0.18 (0.76) 0.52 (0.69) 0.78 (0.69)
M—CAP 194 0.75 (0.57) 0.41 (0.77) 0.47 (0.73) 0.58 (0.67) 0.59 (0.69)
MVP 341 0.89 (0.61) 0.20 (0.77) 0.40 (0.72) 0.55 (0.69) 0.54 (0.74)
PrimateAl 221 0.80 (0.61) 0.43 (0.77) 0.52 (0.73) 0.62 (0.69) 0.68 (0.72)
DEOGEN2 357 0.84 (0.62) 0.31 (0.77) 0.47 (0.72) 0.57 (0.69) 0.58 (0.74)
LIST-S2 240 0.69 (0.63) 0.53 (0.75) 0.59 (0.71) 0.61 (0.69) 0.63 (0.76)
AlphaMissense 226 0.85 (0.65) 0.34 (0.75) 0.53 (0.71) 0.60 (0.7) 0.70 (0.76)
SIFT4G 357 0.75 (0.62) 0.53 (0.77) 0.60 (0.72) 0.64 (0.69) 0.32 (0.74)
FATHMM 141 0.99 (0.59) 0.01 (0.7) 0.40 (0.65) 0.50 (0.62) 0.31 (0.71)
PROVEAN 344 0.79 (0.62) 0.46 (0.77) 0.56 (0.72) 0.62 (0.69) 0.33 (0.75)
ESM1b 357 0.72 (0.62) 0.50 (0.77) 0.57 (0.72) 0.61 (0.69) 0.36 (0.74)
CADD 357 1.00 (0.62) 0.00 (0.77) 0.31 (0.72) 0.50 (0.69) 0.74 (0.74)
DANN 357 0.10 (0.62) 0.96 (0.77) 0.69 (0.72) 0.53 (0.69) 0.72 (0.74)
Fathmm-MKL 357 0.32 (0.62) 0.81 (0.77) 0.66 (0.72) 0.57 (0.69) 0.64 (0.74)
ZFP-CanPred 357 0.62 0.77 0.72 0.69 0.74

Ny,: predicted number of mutations; the performance of ZFP-CanPred on the same dataset is shown in parentheses.

balanced accuracy of 0.83 on training dataset and 0.69 on test dataset.
While the ProtTrans model’s balanced accuracy were comparable to the
ESM model, ESM outperformed ProtTrans with higher sensitivity (0.77)
and overall accuracy (0.72). In contrast, the ProteinBERT-based model
exhibited a balanced accuracy of 0.50 on both the training and test
datasets, indicating poor generalization capabilities. The relative per-
formance of these models is represented in the ROC curve (Fig. 3A). The
comparative analysis of protein language models revealed the ESM-
based model demonstrated superior performance across multiple met-
rics. The marked difference in performance between these models
indicated that ESM-derived representations is more effective in
capturing the relevant features for distinguishing driver and neutral
mutations.

3.3. Model performance and validation

The ESM-based model was selected as the final model based on its
superior performance over the ProteinBERT-based model (Fig. 3A). The
neural network architecture comprised an input layer, six hidden layers,
and an output layer, with a total of 410,068 trainable parameters. To
mitigate overfitting, a dropout layer with a rate of 0.42 was
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implemented after each hidden layer. Training was conducted using a
batch size of 64, a learning rate of 2.28 x 10>, and 99 epochs. The focal
loss function was employed with « = 0.462 and y = 2.51. The model
exhibited robust performance, achieving an average training and vali-
dation loss of 3.33 and 0.42, respectively, indicating effective learning
and generalization. Ten-fold cross-validation resulted in an average
validation accuracy of 0.69 and an AU-ROC of 0.67, which aligned with
the model’s performance on the test dataset, indicating robust gener-
alizability to unseen data (Supplementary Table S2).

3.4. Model comparison

A comparative analysis of ZFP-CanPred was performed with existing
methods and the results are presented in Table 3. The comparison was
done with 18 different tools including SIFT4G [13], FATHMM [14],
MutationAssessor [15], PROVEAN [16], MutationTaster [17],
PolyPhen-2 [18], MetaSVM [19], MetaLR [19], DEOGEN2 [20], M—CAP
[21], MVP [22], PrimateAl [23], AlphaMissense [24], ESM1b [25] and
cancer-specific methods including CADD [27], DANN [28], LIST-S2
[29], and fathmm-MKL_coding [30]. For evaluation, the prediction score
of all methods were taken from the dbNSFP database (v4) [50] and
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Table 4

Comparison of ZFP-CanPred with other existing tools based on balanced accuracy for different subtypes of missense mutations.
Tools H-H H-PC H-PU PC-H PC-PC PC-PU PU-H PU-PC PU-PU
Polyphen2 HDIV 0.56 0.61 0.62 0.64 0.52 0.52 0.73 0.48 0.56
Polyphen2 HVAR 0.52 0.45 0.57 0.78 0.53 0.57 0.66 0.48 0.48
MutationTaster 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50
MutationAssessor 0.49 0.53 0.50 0.42 0.46 0.60 0.64 0.34 0.54
MVP 0.52 0.47 0.54 0.70 0.54 0.52 0.47 0.52 0.44
DEOGEN2 0.55 0.36 0.64 0.38 0.52 0.57 0.59 0.62 0.60
CADD 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50
DANN 0.49 0.44 0.54 0.50 0.54 0.50 0.56 0.50 0.60
Fathmm-MKL 0.50 0.34 0.54 0.61 0.60 0.44 0.66 0.55 0.64
SIFT4G 0.61 0.62 0.60 0.78 0.55 0.56 0.74 0.62 0.42
FATHMM 0.48 0.50 0.50 0.50 0.50 0.51 0.50 0.50 0.58
PROVEAN 0.57 0.50 0.66 0.52 0.61 0.70 0.60 0.45 0.50
ESM1b 0.54 0.47 0.54 0.75 0.70 0.50 0.60 0.38 0.40
ZFP-CanPred 0.62 0.64 0.52 0.94 0.72 0.52 0.77 0.36 0.62

* H = Hydrophobic, PC = Polar Charged, PU = Polar Uncharged.

assessed against ZFP-CanPred using a curated test dataset comprising Table 5

able

247 driver and 110 neutral mutations. To ensure unbiased evaluation,
mutations present in the training datasets of FATHMM and PolyPhen-2
were excluded from our test dataset. For other tools such as SIFT4G,
PROVEAN, MutationTaster, MutationAssessor, MetaSVM, and MetaLR,
the training datasets were not accessible. Several tools including ESM1b,
AlphaMissense, PrimateAl, LIST-S2, CADD, DANN, and DEOGEN2 uti-
lize extensively large training datasets, making direct comparison
impractical. The performance of tools was evaluated using a set of
metrics, including accuracy, specificity, sensitivity, and AU-ROC.

A significant limitation observed in existing tools was their inability
to predict the impact of all 357 mutations in the test dataset. The eval-
uation was conducted on a subset of mutations for which prediction data
was available from each respective tool. The classification cut-off 15 was
used for CADD [51]. Moreover, most tools exhibited a trade-off between
sensitivity and specificity. For instance, FATHMM, MetaSVM, MetaLR,
CADD, and MVP showed the highest specificity at the cost of extremely
low sensitivity. Conversely, MutationTaster and DANN achieved almost
100% sensitivity with the specificity of 0 and 0.1, respectively. As
compared to other tools, ZFP-CanPred stands out with a specificity of
0.62 and sensitivity of 0.77, resulting in an accuracy of 0.72 and a
balanced accuracy of 0.69. ZFP-CanPred maintained a more balanced
performance across these metrics compared to other tools and achieved
maximum AU-ROC of 0.74 on test dataset. The Receiver Operating
Characteristic (ROC) curve illustrated in Fig. 3B was constructed using
the prediction scores by selecting 331 (234 driver and 97 neutral) mu-
tations removing prediction tools with over 100 missing predictions
ensuring consistent comparison across the predictive models. Further,
we compared ZFP-CanPred’s performance with existing tools for
different subtypes of missense mutations categorized by changes in
amino acid properties using the curated dataset of 331 mutations pre-
viously used for AU-ROC analysis (Table 4). The analysis revealed that
ZFP-CanPred demonstrates superior to existing tools. ZFP-CanPred
achieved a high balanced accuracy for polar charged to hydrophobic
(PC-H: 0.94) and polar uncharged to hydrophobic (PU-H: 0.77) sub-
stitutions, outperforming all existing tools in these categories. For polar
charged to polar charged (PC-PC) mutations, ZFP-CanPred showed
strong performance with an balanced accuracy of 0.72, followed by
ESM1b and PROVEAN with 0.7 and 0.61 respectively. While ZFP-Can-
Pred’s performance for hydrophobic to polar uncharged (H-PU: 0.52)
and polar charged to polar uncharged (PC-PU: 0.52) substitutions was
moderate, it achieved competitive balanced accuracy for polar un-
charged to polar uncharged (PU-PU: 0.62) mutations.

These results demonstrate ZFP-CanPred’s consistent and reliable
performance across different types of amino acid property changes.
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The number of driver-specific and neutral-specific features identified through
the Integrated Gradient method.

Top n features Driver-specific features Neutral-specific features

100 7 0
300 38 11
500 72 26
700 124 50
900 194 81
1100 264 137
1280 357 193

3.5. Model interpretation

The ZFP-CanPred model, which utilizes protein structural neighbor
representations derived from the ESM-2 (PLM), demonstrates superior
predictive performance for classifying cancer-associated mutations in
ZNFs. The model’s high AUC of 0.74 indicates significant discriminative
potential between driver and passenger mutations. We employed the
Integrated Gradients method [52], a feature attribution technique
implemented using the Captum library [53], which quantifies the
contribution of individual input features to the model’s output. We also
considered Shapley analysis for model interpretation, prior to Integrated
Gradients, but the computational complexity was very high due to the
number of features present in our model as reported in previous studies
[54].

Analysis of the test dataset revealed a subset of features exhibiting
bipolar contributions: positive attribution values for driver mutations
and negative for neutral mutations, or vice versa. With this approach we
were able to identify the driver specific features and neutral specific
features (Table 5), learned by the model. As the number of top features
increases, there is a consistent trend of more features being associated
with driver mutations compared to neutral mutations. For instance,
among the top 1280 features, 357 features specifically contribute to
predicting driver mutations, while only 193 are associated with neutral
mutations. This difference in number of predictive features explains the
observed higher sensitivity relative to specificity in the model’s per-
formance on test dataset.

We investigated whether the observed difference between sensitivity
and specificity could be attributed to dataset imbalance. To address this,
we attempted two approaches to balance the dataset: (i) augmenting the
neutral mutations by including data from non-zinc finger proteins and
(ii) reducing the number of driver mutations (Supplementary Table S3).
However, neither approach yielded significant performance improve-
ments. This may be due to two factors: (i) reducing the dataset size
limited the neural network’s learning capabilities and (ii) including
neutral mutations from non-zinc finger proteins proved unsuitable due
to their distinct structural and functional properties.
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Fig. 4. The mutation R339W, A) Wild type residue Arginine at 339th position B) Mutant residue Tryptophan at 339th Position. *Red color is the neighbor residues

our model is considering for predicting the mutation effect.
4. Application

We collected disease-causing mutations in the human CCCTC bind-
ing factor, (CTCF, UniProt ID: P49711) transcriptional repressor protein
from published literature [55-57], ensuring that this protein was not
represented in our training dataset. This independent test set comprised
35 cancer-associated mutations, of which ZFP-CanPred correctly clas-
sified 31 mutations as pathogenic, achieving an accuracy of 88.6%
(Supplementary Table S5). This performance on a novel protein dem-
onstrates the model’s robust generalization capability beyond its
training data.

Fig. 4 illustrates the impact of the R339W mutation within the zinc
finger domain of CTCF, specifically in its DNA-binding region [56]. This
substitution not only disrupts the direct protein-DNA interactions at the
mutation site but also induces conformational changes that affect
neighboring residues’ interaction capabilities. The ZFP-CanPred cap-
tures these biochemical perturbations, demonstrating its ability to
recognize both local and distributed effects of the mutation. This
example particularly highlights the potential of our method for inter-
preting subtle changes in the protein’s functional environment, as the
replacement of a positively charged residue, Arg with the aromatic
residue, Trp, likely alters the electrostatic landscape and structural dy-
namics of the DNA-binding interface.

We also tried to extend the applicability of ZFP-CanPred to non-zinc
finger proteins such as High mobility group box domain and Basic-
leucine zipper domain (Supplementary Table S4). The AU-ROC values
(0.68-0.70) suggest a limited discriminative capability, indicating that
the model’s performance may be constrained by the inherent complexity
of these protein families. This analysis showed that the performance is
moderate, and method specific to each family could improve the
performance.

5. Conclusion

The study presents a novel approach to the identification of driver
mutations in zinc-finger proteins (ZNFs), a critical class of transcription
factors implicated in numerous cellular processes and oncogenic path-
ways. By leveraging advanced protein language models, particularly the
ESM-2 architecture, we have developed a robust neural network-based
predictor, ZFP-CanPred, that demonstrates superior performance in
distinguishing driver mutations from neutral variants in ZNFs specific to
cancer. Our analysis of mutational patterns revealed critical insights into
the nature of driver mutations in ZNFs, including their propensity to
occur within functional domains and their association with extended
neighboring sequence lengths. These findings contribute to our under-
standing of the structural and functional impacts of mutations on
protein-DNA interactions. The superior performance of our model, as
evidenced by its high accuracy (0.72), and AU-ROC (0.74), coupled with
its ability to balance specificity and sensitivity, represents a significant
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improvement over existing methods of mutation effect prediction spe-
cific to ZNFs.
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