
Tackling Polysemanticity with Neuron Embeddings

Alex Foote 1 2

Abstract

We present neuron embeddings, a representation
that can be used to tackle polysemanticity by
identifying the distinct semantic behaviours in a
neuron’s characteristic dataset examples, making
downstream manual or automatic interpretation
much easier. We apply our method to GPT2-small,
and provide a UI for exploring the results. Neu-
ron embeddings are computed using a model’s in-
ternal representations and weights, making them
domain and architecture agnostic and removing
the risk of introducing external structure which
may not reflect a model’s actual computation. We
describe how neuron embeddings can be used to
measure neuron polysemanticity, which could be
applied to better evaluate the efficacy of Sparse
Auto-Encoders (SAEs). We additionally provide
a proof-of-concept that incorporates a new loss
term based on neuron embeddings into the SAE
loss function, and show that this has interesting
results when applied to a small toy MLP trained
on MNIST, trading off some representation ac-
curacy and activation sparsity for more monose-
mantic neurons, and significantly reducing the
prevalence of dead neurons. We provide another
UI for exploring these results.

1. Introduction
Mechanistic Interpretability (MI) aims to decompose neural
networks into their constituent parts and understand how
these parts interact to create the behaviour of the network,
with the ultimate goal of understanding models in enough
detail to determine whether they’re safe to deploy. One
of the key suppositions of MI is that it’s possible to break
models apart into meaningful units, often called features
(Olah et al., 2020). One natural basis for these units is the
neuron, and visualisation techniques developed for vision
models had significant success in understanding the function

1Ripjar 2Apart Research. Correspondence to: Alex Foote
<alexjfoote@icloud.com>.

Vienna, Austria. PMLR 235, 2024. Copyright 2024 by the au-
thor(s).

of many neurons, as well as how they compose to implement
increasingly complex behaviours (Cammarata et al., 2020).

However, a major obstacle to this approach is the fact that
neurons often respond to several completely distinct con-
cepts, a phenomenon called polysemanticity. This makes
it much harder to find a clean and simple explanation for a
neuron’s behaviour, and undermines the idea that neurons
are the natural basis for decomposing a model. Polyseman-
ticity is particularly prevalent in language models, and has
made interpreting their MLP layers a significant challenge
(Elhage et al., 2022a).

One common method for interpreting the behaviour of a neu-
ron in a language model is to collect and study the dataset ex-
amples which cause the highest neuron activation. Patterns
in a neuron’s dataset examples provide an indication of what
the neuron responds to. However, polysemanticity makes
these dataset examples much harder to interpret, as there
are often many separate behaviours to understand, some
of which may be related and others entirely distinct. This
becomes increasingly challenging as you collect examples
further down the activation spectrum, which is important
for gaining a complete understanding of a neuron, but often
reveals a wider range of behaviours (Bolukbasi et al., 2021).

To tackle the problem of polysemanticity, we introduce neu-
ron embeddings, which capture the information that a given
neuron is responding to in a given input. Given a neuron
which we’re trying to understand and an input which causes
that neuron to activate, we define the neuron embedding of
the input as the element-wise product of the vector repre-
sentation that the neuron receives and the neuron’s input
weights. We show that this representation can be used to
cluster a neuron’s dataset examples, making it possible to
disentangle the neuron’s behaviour into it’s constituent parts.
Dataset examples are used for both manual and automated
interpretability (Bills et al., 2023; Foote et al., 2023), so
making them easier to interpret has significant potential ben-
efit for a variety of downstream applications. We apply this
method to GPT2-small (Radford et al., 2019) and provide
case studies on individual neurons, as well a website for
exploring the results for the full model 1.

Crucially, neuron embeddings also allow us to measure a

1https://feature-clusters.streamlit.app

1

https://feature-clusters.streamlit.app


Tackling Polysemanticity with Neuron Embeddings

proxy for a neuron’s degree of polysemanticity by comput-
ing simple metrics on the geometry of the points and the
clusters that form. Sparse Auto-Encoders (SAEs) (Bricken
et al., 2023) are a promising technique for dealing with pol-
ysemanticity, which learn to disentangle a layer of neurons
into a wider, sparse MLP layer with monosemantic neu-
rons. However, we lack effective metrics for evaluating the
quality of SAEs, instead relying on simple heuristics like
reconstruction error and activation sparsity, as well as time
consuming manual analysis. Neuron embeddings may be
able to bridge this gap by providing better metrics for mea-
suring polysemanticity of the SAE neurons, which typically
corresponds well with neuron interpretability.

Finally, we also provide a proof-of-concept demonstrating
how we can incorporate neuron embeddings into the training
of SAEs, by computing a measure of neuron monosemanticy
and including it in the SAE loss. We show how this affects
SAEs for a toy MLP trained on MNIST (Deng, 2012), de-
creasing the reconstruction accuracy and activation sparsity
but increasing monosemanticity and significantly decreasing
the prevalence of dead neurons which never activate.

2. Related Work
The favoured explanation for the cause of polysemanticity is
superposition, which supposes that models learn to encode
features across multiple neurons, allowing them to represent
many more features than they have neurons. Superposition
has been compellingly demonstrated in toy models (Elhage
et al., 2022b) and large language models (Gurnee et al.,
2023).

One thread of research aimed to tackle superposition and
polysemanticity by introducing a new activation function,
called a Softmax Linear Unit (SoLU) (Elhage et al., 2022a),
which encourages neurons to activate sparsely. However,
they found that this resulted in polysemanticity effectively
being pushed into other neurons and the Layer Norm com-
ponent, rather than truly eliminated.

Dictionary learning is an alternative and very promising
method for interpreting language models in spite of superpo-
sition and polysemanticity. It aims to decompose a model’s
internal embeddings or MLP layers into features, by training
a Sparse Auto-Encoder (SAE) layer to reconstruct their acti-
vations. SAEs have been explored by a number of groups
(Bricken et al., 2023; Cunningham et al., 2023; Yun et al.,
2023), most notably in a recent paper that applied them
to the residual stream of a very large production language
model and found a rich array of interpretable features (Tem-
pleton et al., 2024).

3. Method
3.1. Neuron Embeddings

Given a model containing l (potentially non-contiguous)
MLP layers, we denote the ith layer as Li, and the jth neu-
ron in Li as Ni,j , which has input weights wi,j . For a given
model input x, we denote the internal vector representation
of x immediately before layer Li as hi−1, which we refer
to as the pre-MLP embedding.

We then define the neuron embedding of x for the neuron
Ni,j as ei,j , where ei,j is the Hadamard product of the pre-
MLP embedding hi−1 and the input weights of the neuron
wi,j :

ei,j = hi−1 ⊙wi,j (1)

This is exactly the first stage of computing the neuron’s acti-
vation - summing ei,j and applying the activation function
would complete the process. Constraining ourselves to use
a representation that is computed internally to the model
reduces the risk of introducing additional structure which
may not be true to what the model is actually doing. It also
means neuron embeddings can be computed for any MLP
neurons, regardless of the rest of the model architecture
(CNNs, Transformers, etc.) or the domain (vision, language,
etc.).

Intuitively, the input weights of a neuron represent what the
neuron is “looking for” in an input - with different parts
of the weights potentially looking for different features.
The neuron embedding then, in some sense, represents the
feature that the neuron found in the input that caused it to
activate. If this does indeed produce a good representation
of the feature which caused activation, we should then be
able to use it to separate the mixture of dataset examples
into their distinct semantic behaviours. Figure 1 illustrates
this process.

3.2. Feature Clusters

We now apply neuron embeddings to tackle the problem
of polysemantic neurons by creating feature clusters. A
feature cluster is a set of highly activating dataset examples
that capture a single semantic behaviour of a neuron, created
by clustering the neuron embeddings of a neuron’s dataset
examples. We demonstrate how feature clusters can be
computed for autoregressive GPT-style language models,
but note that this technique can be applied to any model
containing MLP layers.

Extending the above notation, we define the kth dataset
example for a neuron Ni,j as xi,j,k, which consists of a se-
quence of tokens t = t1 · · · tn where Ni,j strongly activates
on the last token tn. The neuron embedding ei,j,k of the
dataset example xi,j,k for neuron Ni,j is therefore:

ei,j,k = hi−1,k,n ⊙wi,j , (2)

2



Tackling Polysemanticity with Neuron Embeddings

Figure 1. An illustration of the neuron embedding process. We compute the element-wise products of the pre-MLP embedding of the
inputs and the neuron input weights to produce the neuron embeddings. These are then clustered based on similarity. The neuron weights
select the relevant information from the embedding, such that the neuron embeddings of two different inputs can be brought together or
pushed apart.

where hi−1,k,n is the pre-MLP embedding of the activating
token tn.

Given a set of highly activating dataset examples for a tar-
get neuron, we compute the neuron embeddings for each
example. We then compute the pairwise distance matrix be-
tween all pairs of embeddings, where the distance d between
dataset examples ka and kb is:

d = 1− SC(ei,j,ka
, ei,j,kb

), (3)

where SC(·) is the cosine similarity. We use Hierarchical
Agglomerative Clustering (HAC) on the distance matrix
with a distance threshold that controls when clusters merge,
which we set to 0.5. HAC also provides a full cluster hi-
erarchy, which can give additional insight into a neuron’s
behaviour. In particular, neurons may have some seman-
tically related but distinct features, as well as completely
unrelated features. The hierarchy clearly captures these rela-
tionships between clusters, as well as between sub-clusters.

3.3. Monosemantic Training

3.3.1. MEASURING POLYSEMANTICITY

By computing the neuron embeddings for a neuron’s dataset
examples, we can naturally compute metrics on the em-
bedded points, allowing us to measure proxies for monose-
manticity. We compute simple metrics like the maximum
distance between any pair of points, the mean distance be-
tween points, and metrics on the clustering such as mean
inter- and intra-cluster distance, and the number of clusters.

We can also apply this method to the neurons in Sparse
Auto-Encoders (SAEs), which are trained to disentangle
the features represented in MLP layers. Evaluating SAEs
currently relies on a few heuristics that tend to correlate with
interpretable, monosemantic neurons, such as the average
number of SAE neurons activating per example, in combi-
nation with manual interpretation of neurons (Bricken et al.,
2023). These neuron embeddings metrics more directly
measure neuron monosemanticity, and so would be a nat-

ural addition to SAE evaluation to bridge the gap between
fast but loosely-correlated heuristics, and slow manual inter-
pretation.

3.3.2. SPARSE AUTO-ENCODER LOSS

When training SAEs, we want each SAE neuron to represent
a single, interpretable feature. This is achieved by pushing
the neurons to activate sparsely by including the L1 norm
of the neuron activations in the loss. However, this does
not directly penalise neurons for responding to multiple
features. We show that we can utilise the ability of neuron
embeddings to capture the similarity between features to
directly penalise polysemantic neurons via a term in the
SAE loss.

Intuitively, we want to push neurons to respond to a sin-
gle feature, which corresponds to a neuron having a single
dense cluster in it’s neuron embedding space. To do this effi-
ciently during training, for each SAE neuron we maintain a
neuron embedding of the inputs which activated the neuron,
and then convert this to a neuron embedding on the fly to
measure the similarity of the combined neuron embedding
with the neuron embedding of the current input. We then
take the sum of these similarities for all neurons over a batch
of inputs and include it in the SAE loss.

Assume we’re training an SAE layer with dimensionality d,
inserted after layer Li of the original model. Concretely, at
a given training step, for each input xb in a batch of size n,
{x0 · · ·xn−1}, we collect all the SAE neurons with a non-
zero activation. For each neuron, we check if it’s activated
before. If it hasn’t, we store the pre-SAE embedding hi

in a lookup mapping the neuron to an embedding. If it
has, we retrieve the averaged embedding hi,j,avg stored in
the lookup and convert it to a neuron embedding ei,j,avg
by taking it’s Hadamard product with wSAE

i,j , the weights
of SAE neuron NSAE

i,j . We similarly compute the neuron
embedding ei,j,b of the current input xb which has caused
the neuron to activate, using it’s pre-SAE embedding hi,b.

We then compute the distance between the two neuron em-

3



Tackling Polysemanticity with Neuron Embeddings

beddings, 1− SC(ei,j,avg, ei,j,b), which measures whether
the feature the neuron is responding to in the current input
is similar to the average feature the neuron has responded
to throughout training. We take the sum of the distances
across all neurons and all inputs in the batch to compute the
neuron embedding loss LN . In a single equation:

LN =

n∑
b=0

d∑
j=0

1−SC(hi,j,avg⊙wSAE
i,j , hi,b⊙wSAE

i,j ) (4)

We then incorporate this into the standard SAE loss LSAE ,
weighted by λ2:

LSAE = MSE(ai, a
SAE
i )+λ1 · ∥aSAE

i ∥1+λ2 ·LN , (5)

where MSE is the mean-squared error, ai denotes the MLP
activations of Li and aSAE

i denotes the reconstructed acti-
vations from the SAE.

To update the average embedding hi,j,avg for a neuron
NSAE

i,j across training, we use a momentum-based update:

hi,j,avg = m · hi,j,avg + (1−m) · hi,b, (6)

where m controls the balance between the existing embed-
ding and the new embedding. This allows information from
earlier embeddings to decay, putting more weight on the
more recent embeddings which should better reflect what
the neuron is learning to respond to. We set m to 0.9 in our
experiments.

Intuitively, this new loss term pushes each neuron to respond
to a single feature, as the distance between the combined
neuron embedding and the current neuron embedding will
increase if the combined neuron embedding contains multi-
ple features.

4. Results
4.1. Feature Clusters

4.1.1. EXPERIMENTAL SETUP

We show that neuron embeddings can effectively capture
semantic similarity between a neuron’s dataset examples by
applying feature clustering to GPT2-small. We processed
10,000 input examples from OpenWebText (Gokaslan & Co-
hen, 2019) with the model and retrieved the model’s internal
activations using the TransformerLens library (Nanda &
Bloom, 2022). For each neuron, we collected any example
that induced at least 75% of the maximum observed activa-

tion of the neuron 2, up to a maximum of 100 examples per
neuron. We chose to keep the first 100 examples over this
activation threshold, rather than the top 100 most activating
examples, to better capture the diversity of behaviours that
occur below maximal activation. A basic implementation of
this process took a few hours to run on a single GPU, but
could likely be made dramatically more efficient with more
engineering effort, to enable it to scale to larger models.

We then applied feature clustering to each neuron to group
the dataset examples into their distinct features. We analyse
some examples of neurons to demonstrate the efficacy of
the technique, and also provide a UI for navigating the
full model 3. The UI additionally provides insight into
which tokens were important for neuron activation using
the method from (Foote et al., 2023), as well as links to
similar features from other neurons identified via Nearest
Neighbour search on the embeddings of the central example
in each feature cluster.

4.1.2. NEURON EXAMPLES

Figure 2 shows the results of applying clustering to a neu-
ron in the 7th layer (of 12) of the model. The dendrogram
shows the results of the hierarchical clustering of the neuron
embeddings, where each branch point shows the average
distance between the embeddings in the two clusters (where
a cluster contains one or more points). The examples sepa-
rate into six clusters (colour and numerically coded), with
snippets of the dataset examples in each cluster shown. The
highlighting indicates the strength of neuron activation on
each token, and the brightest token is the key token which
we use to produce the neuron embedding. Note we also
show the following five tokens after the key token for con-
text, but these do not influence the neuron embedding as the
model is auto-regressive.

The clusters each contain a distinct behaviour, and success-
fully group examples that represent the same concept with
different wording. The hierarchy captures similarity at mul-
tiple levels, with highly similar examples with the same
key token clustering first, with these sub-clusters then merg-
ing into the full clusters. Additionally, similar but distinct
clusters, such as the red and green cluster which both re-
late to numbers of events, also appear closer together in the
hierarchy.

This phenomenon, where a neuron has multiple related but
distinct behaviours, is quite common in GPT2-small, and
may be related to feature splitting (Bricken et al., 2023),
where a neuron in a Sparse Auto-Encoder (SAE) repre-
sents multiple closely related features, which then split

2Maximum activation was obtained from Neuroscope (Nanda,
2022), which measured neuron activation on a much larger dataset

3https://feature-clusters.streamlit.app/

4

https://feature-clusters.streamlit.app/


Tackling Polysemanticity with Neuron Embeddings

Figure 2. An example of feature clustering applied to a neuron in layer 7 of GPT2-small. The clusters (colour and numerically coded)
each show a distinct semantic behaviour, and the dendrogram shows how the cluster hierarchy formed. The highlighting corresponds to
neuron activation on each token, with the neuron embedding derived from the maximally activating token.

into increasingly fine-grained features as the size of the
Auto-Encoder is scaled up. Applying feature clustering to
neurons in SAEs may be able to identify which neurons
contain multiple sub-features which might split after scal-
ing up, which could be useful for measuring the prevalence
of these neurons and better understanding feature splitting
more generally.

Figure 3 shows an example of a different class of neuron,
where there is a common primary behaviour and a rarer
secondary behaviour. In this case, dataset examples for the
primary behaviour (orange) outnumber those for the rare
behaviour (blue) almost 50:1 4. Without feature clustering,
it’s very easy to miss these rarer behaviours during inter-
pretation - unless you review a large number of examples
even after there appears to be a clear hypothesis for the
behaviour, you would naturally conclude that this is a mono-
semantic neuron. Feature clustering allows us to collect a
much larger number of examples and automatically con-
dense them, making it much easier to quickly identify all
the relevant behaviours of an neuron. This could help to ad-
dress the illusion of interpretability (Bolukbasi et al., 2021),
where examining the top examples for a neuron suggests a
simple explanation of the behaviour, but expanding to lower
activating examples reveals an array of hidden behaviours.

4The dendrogram doesn’t show the full hierarchy for simplicity
- some of the orange leaves are actually clusters with multiple
elements

4.1.3. COMPARISON TO EMBEDDINGS

Whilst we choose to use neuron embeddings to cluster a
neuron’s dataset examples, we could instead just use the pre-
MLP embedding of the key token, without then multiplying
it by the neuron’s weights. Table 1 compares the median
intra- and inter-cluster distances of the dataset example
clusterings for all neurons in GPT2-small when using the
pre-MLP embeddings or neuron embeddings. It shows that
neuron embeddings lead to denser clusters with reduced
intra-cluster distance, with better seperation between these
clusters from the increased inter-cluster distance. Figure
4 clearly illustrates this, showing a pair of clusters with
significantly higher density and separation using neuron
embeddings compared to pre-MLP embeddings.

The improved separation between clusters implies that fea-
ture clusters derived from neuron embeddings will have
fewer errors than those derived from pre-MLP embeddings.
Anecdotally, we found this to be the case, particularly when
using simpler but faster clustering algorithms such as the
Sub-Cluster Component algorithm (Monath et al., 2021).

The better performance of neuron embeddings also indicate
that they better capture the similarity between a neuron’s
dataset examples. Intuitively, this is because a neuron may
not respond to all information in the pre-MLP embedding,
so by incorporating the neuron weights, which represent
what the neuron is “looking for” in an input, we select out
the relevant information to the neuron, providing a better

5



Tackling Polysemanticity with Neuron Embeddings

Figure 3. An example of a neuron with a common primary behaviour (orange) and a rare secondary behaviour (blue).

Table 1. Intra- and inter-cluster distance of embedded dataset ex-
amples averaged across all neurons in GPT2-small, comparing
pre-MLP embeddings with neuron embeddings. Neuron embed-
dings on average result in denser clusters with better separation
between clusters.

DISTANCE INTRA-CLUSTER INTER-CLUSTER

PRE-MLP 0.31 0.63
NEURON 0.21 0.73

representation of what caused the neuron to activate.

4.2. Training Sparse Auto-Encoders

We provide a proof-of-concept showing how we can inte-
grate information from neuron embeddings into the loss
function when training Sparse Auto-Encoders (SAEs). We
first train an MLP with one hidden layer containing 64
neurons on the MNIST dataset (Deng, 2012) for 3 epochs,
until the loss converges. We then experiment with training
an SAE for the hidden layer with and without the neuron
embedding loss term, and measure the effect on various
evaluation metrics.

Each SAE has a hidden dimension of 512 (i.e., 8× the MLP
hidden dimension), and we train them for one epoch over
the training set. When incorporating the neuron embedding
loss, we train for 200 steps (∼ 40% of an epoch) without the
loss, then switch it on. This should allow the SAE neurons
to stabilise, at which point the neuron embedding loss could
be useful for pushing them to be more monosemantic.

We provide a UI 5 which allows a user to examine any
neuron in the MLP hidden layer or the SAE, and provides
visualisations for interpreting the neuron’s behaviour, which
can be used to understand how the SAE neurons differ be-
tween the two models.

5https://mechmnistic.streamlit.app

Table 2. Evaluation metrics for SAEs trained with and without the
neuron embedding (NE) loss. Accuracy loss is the absolute drop
in accuracy after ablating the MLP neurons with the reconstructed
activations from the SAE, from a starting accuracy of 94.0%.

MSE L1 L0 / % ACC. LOSS / %

STANDARD 0.33 2600 2.4 1.5
+ NE LOSS 0.55 3300 9.1 4.6

Table 3. Additional evaluation metrics for SAEs trained with and
without the neuron embedding (NE) loss. Distances are measured
on the neuron embeddings of each neuron’s test set dataset ex-
amples, and size is the number of test set examples that induce a
non-zero activation for a neuron. Dead refers to the percentage of
neurons which don’t activate for any example from the training
dataset.

MAX DIST MEAN DIST SIZE DEAD / %

STANDARD 0.45 0.21 7 23.8
+ NE LOSS 0.28 0.08 32 3.7

Tables 2 and 3 show a suite of evaluation metrics for the
SAEs trained with and without the neuron embedding (NE)
loss. Table 2 shows the typical evaluation metrics that mea-
sure reconstruction error and activation sparsity, measured
on the held-out test data. Adding the NE loss increases the
reconstruction error, reflected in the increased mean-squared
error on the reconstructed activations and the significantly
greater drop in absolute accuracy when ablating the MLP
activations with the SAE reconstructions. It also decreases
the sparsity, with the percentage of active neurons per in-
put almost quadrupling from 2.4% to 9.1% and the L1 loss
increasing as well. Note that decreasing sparsity is not intrin-
sically good or bad, but in the normal regime it is typically
associated with decreased interpretability.

In contrast, Table 3 shows improvements in the distance met-
rics. For each SAE neuron, we collected the test examples

6

https://mechmnistic.streamlit.app


Tackling Polysemanticity with Neuron Embeddings

Figure 4. A comparison between feature clusters derived from neuron embeddings vs pre-MLP embeddings. The neuron embeddings
clearly result in denser clusters with better separation between the clusters. Examples from the two clusters are shown in their corresponding
colours.

which caused a non-zero activation (up to a maximum of
100 examples) and computed their neuron embeddings. We
then measured the max and mean distance between points
for each set of neuron embeddings, and took the median of
these values over all neurons. We see significant decreases
in the average max and mean distance between embeddings,
which indicates potential improvements in monosemantic-
ity.

Interestingly, this is in spite of the decrease in sparsity and a
corresponding increasing in the average number of activat-
ing examples (denoted “size” in the table). We might expect
that improvements in monosemanticity would come from
neurons becoming more specific and responding to fewer
examples, but in actuality we speculate that they have come
from neurons moving to represent single, broader features,
which respond to a wider variety of examples but look for
the same information across all the examples. Anecdotally,
we would tentatively suggest that this has corresponded
to an improvement in SAE neuron interpretability, but we
would recommend that readers investigate this for them-
selves by exploring the two different SAEs in the provided
UI 6.

Figure 5 shows an example neuron from the SAE trained
with the NE loss that illustrates these broad, more general
features that are learnt. The activation map shows the max-
imal activation that can be induced by each pixel, and the
importance map is the element-wise product of the activa-

6https://mechmnistic.streamlit.app/

tion map and the average example. Note that this neuron
had a single feature cluster with a mean and max distance
of 0.01 and 0.04 between the neuron embeddings of the
examples.

The neuron appears to respond to lines or curves along the
middle of the image, particularly towards the left and right
edges. The logit effects show that the neuron increases the
probability of predicting 9’s, as well as 6’s, 4’s, and to a
lesser extent 7’s and 8’s. This fits with the visual interpre-
tation of the feature, and the randomly selected activating
examples. This neuron visualisation demonstrates the style
of feature which is commonly learned after including the
NE loss, as well as how we can effectively understand a
neuron’s behaviour using some simple visualisations.

We also observe a more than 6× decrease in the percentage
of dead neurons, which don’t activate for any example in the
training set, from 23.8% to 3.7%. Dead neurons are a sig-
nificant challenge when training SAEs, particularly as they
are scaled up (Templeton et al., 2024). We haven’t investi-
gated why the NE loss causes such a significant decrease
in the prevalence of dead neurons. Dead neurons shouldn’t
be directly penalised by the NE loss in theory, as it’s only
computed over the active neurons for a given input - in fact,
increasing activation sparsity should decrease both the L1
and NE losses, but the NE loss seems to decrease sparsity
instead. We speculate that encouraging neuron monoseman-
ticity may force the SAE to utilise more of it’s neurons and
to learn more general features to avoid significant increases

7

https://mechmnistic.streamlit.app/


Tackling Polysemanticity with Neuron Embeddings

Figure 5. Visualisations for an SAE neuron. The activation map shows the maximum magnitude of neuron activation for each pixel in the
input, and the importance map is the average dataset example scaled by the activation map.

in the reconstruction error. Understanding the mechanism
and effect of the NE loss in more detail would be a valuable
direction for further research.

5. Conclusion
We presented neuron embeddings, and showed they can be
used to effectively tackle neuron polysemanticity in a vari-
ety of ways. We used them to identify the distinct semantic
behaviours of neurons in GPT2-small, and showed that they
can capture the similarity between both individual exam-
ples and clusters of examples. By creating feature clusters
to separate a neuron’s dataset examples into their distinct
behaviours we make it much easier to interpret the neuron,
and also reduce the risk of running into the interpretability
illusion by making it feasible to collect and summarise a
wide variety of examples from across the activation spec-
trum. As dataset examples are an input into some automated
interpretability techniques, applying feature clustering first
could improve the results of these tools as well.

However, we note that our work doesn’t consider features
that may only emerge when considering several neurons to-
gether, which is a significant limitation. Future work could
investigate using neuron embeddings and feature clusters
in circuit analysis, or even look to extend the representa-
tion to multiple neurons. For example, it could be easier to

understand how neurons co-activate to compensate for super-
position by measuring which sub-neuron features activate
together, rather than analysing neuron activation correlations
directly as polysemanticity makes this very challenging. Ad-
ditionally, in language models we only use the pre-MLP
embedding of the token with the highest neuron activation.
Combining the embeddings of multiple tokens, perhaps in
proportion to their activation, may offer a better representa-
tion of the input.

We described how neuron embeddings can be used to mea-
sure neuron polysemanticity, which could be very useful
for better evaluating SAEs. We also provided a proof-of-
concept demonstrating how we can integrate information
from neuron embeddings into the SAE loss. Applying this to
a toy MLP model trained on MNIST showed several interest-
ing effects, appearing to trade-off decreased reconstruction
accuracy and activation sparsity for increased monoseman-
ticity, as well as significantly decreasing the proportion of
dead neurons.

We note that this is early-stage research on a small toy model,
so it remains unclear how these results would transfer to
larger models. Applying neuron embeddings as an evalua-
tion metric for SAEs trained on real-world language models,
as well as experimenting with the neuron embedding loss
when training such SAEs, would both be very interesting
directions for future work.

8



Tackling Polysemanticity with Neuron Embeddings

Impact Statement
This work presents a new method with applications in mech-
anistic interpretability of vision and language models. There
are no specific ethical implications or societal consequences
of this work that we feel need to be highlighted here.

References
Bills, S., Cammarata, N., Mossing, D., Tillman, H.,

Gao, L., Goh, G., Sutskever, I., Leike, J., Wu,
J., and Saunders, W. Language models can
explain neurons in language models. https:
//openaipublic.blob.core.windows.net/
neuron-explainer/paper/index.html,
2023.

Bolukbasi, T., Pearce, A., Yuan, A., Coenen, A., Reif, E.,
Viégas, F., and Wattenberg, M. An interpretability illusion
for bert, 2021.

Bricken, T., Templeton, A., Batson, J., Chen, B., Jermyn, A.,
Conerly, T., Turner, N., Anil, C., Denison, C., Askell, A.,
Lasenby, R., Wu, Y., Kravec, S., Schiefer, N., Maxwell,
T., Joseph, N., Hatfield-Dodds, Z., Tamkin, A., Nguyen,
K., McLean, B., Burke, J. E., Hume, T., Carter, S.,
Henighan, T., and Olah, C. Towards monosemanticity:
Decomposing language models with dictionary learning.
Transformer Circuits Thread, 2023. https://transformer-
circuits.pub/2023/monosemantic-features/index.html.

Cammarata, N., Goh, G., Carter, S., Schubert, L.,
Petrov, M., and Olah, C. Curve detectors.
Distill, 2020. doi: 10.23915/distill.00024.003.
https://distill.pub/2020/circuits/curve-detectors.

Cunningham, H., Ewart, A., Riggs, L., Huben, R., and
Sharkey, L. Sparse autoencoders find highly interpretable
features in language models, 2023.

Deng, L. The mnist database of handwritten digit images
for machine learning research. IEEE Signal Processing
Magazine, 29(6):141–142, 2012.

Elhage, N., Hume, T., Olsson, C., Nanda, N., Henighan,
T., Johnston, S., ElShowk, S., Joseph, N., DasSarma,
N., Mann, B., Hernandez, D., Askell, A., Ndousse, K.,
Jones, A., Drain, D., Chen, A., Bai, Y., Ganguli, D.,
Lovitt, L., Hatfield-Dodds, Z., Kernion, J., Conerly, T.,
Kravec, S., Fort, S., Kadavath, S., Jacobson, J., Tran-
Johnson, E., Kaplan, J., Clark, J., Brown, T., McCan-
dlish, S., Amodei, D., and Olah, C. Softmax linear units.
Transformer Circuits Thread, 2022a. https://transformer-
circuits.pub/2022/solu/index.html.

Elhage, N., Hume, T., Olsson, C., Schiefer, N.,
Henighan, T., Kravec, S., Hatfield-Dodds, Z., Lasenby,

R., Drain, D., Chen, C., Grosse, R., McCandlish,
S., Kaplan, J., Amodei, D., Wattenberg, M., and
Olah, C. Toy models of superposition. Trans-
former Circuits Thread, 2022b. https://transformer-
circuits.pub/2022/toymodel/index.html.

Foote, A., Nanda, N., Kran, E., Konstas, I., Cohen, S., and
Barez, F. Neuron to graph: Interpreting language model
neurons at scale, 2023.

Gokaslan, A. and Cohen, V. Openwebtext corpus. http://
Skylion007.github.io/OpenWebTextCorpus,
2019.

Gurnee, W., Nanda, N., Pauly, M., Harvey, K., Troitskii, D.,
and Bertsimas, D. Finding neurons in a haystack: Case
studies with sparse probing, 2023.

Monath, N., Dubey, K. A., Guruganesh, G., Zaheer, M.,
Ahmed, A., McCallum, A., Mergen, G., Najork, M., Terz-
ihan, M., Tjanaka, B., Wang, Y., and Wu, Y. Scalable
hierarchical agglomerative clustering. In Proceedings of
the 27th ACM SIGKDD Conference on Knowledge Dis-
covery amp; Data Mining, KDD ’21. ACM, August 2021.
doi: 10.1145/3447548.3467404. URL http://dx.doi.
org/10.1145/3447548.3467404.

Nanda, N. Neuroscope, 2022. URL https://
neuroscope.io/index.html.

Nanda, N. and Bloom, J. Transformerlens.
https://github.com/TransformerLensOrg/
TransformerLens, 2022.

Olah, C., Cammarata, N., Schubert, L., Goh, G., Petrov,
M., and Carter, S. Zoom in: An introduction to cir-
cuits. Distill, 2020. doi: 10.23915/distill.00024.001.
https://distill.pub/2020/circuits/zoom-in.

Radford, A., Wu, J., Child, R., Luan, D., Amodei,
D., and Sutskever, I. Language models are unsuper-
vised multitask learners. 2019. URL https://api.
semanticscholar.org/CorpusID:160025533.

Templeton, A., Conerly, T., Marcus, J., Lindsey, J., Bricken, T.,
Chen, B., Pearce, A., Citro, C., Ameisen, E., Jones, A., Cun-
ningham, H., Turner, N. L., McDougall, C., MacDiarmid,
M., Freeman, C. D., Sumers, T. R., Rees, E., Batson, J.,
Jermyn, A., Carter, S., Olah, C., and Henighan, T. Scaling
monosemanticity: Extracting interpretable features from
claude 3 sonnet. Transformer Circuits Thread, 2024. URL
https://transformer-circuits.pub/2024/
scaling-monosemanticity/index.html.

Yun, Z., Chen, Y., Olshausen, B. A., and LeCun, Y. Trans-
former visualization via dictionary learning: contextualized
embedding as a linear superposition of transformer factors,
2023.

9

https://openaipublic.blob.core.windows.net/neuron-explainer/paper/index.html
https://openaipublic.blob.core.windows.net/neuron-explainer/paper/index.html
https://openaipublic.blob.core.windows.net/neuron-explainer/paper/index.html
http://Skylion007.github.io/OpenWebTextCorpus
http://Skylion007.github.io/OpenWebTextCorpus
http://dx.doi.org/10.1145/3447548.3467404
http://dx.doi.org/10.1145/3447548.3467404
https://neuroscope.io/index.html
https://neuroscope.io/index.html
https://github.com/TransformerLensOrg/TransformerLens
https://github.com/TransformerLensOrg/TransformerLens
https://api.semanticscholar.org/CorpusID:160025533
https://api.semanticscholar.org/CorpusID:160025533
https://transformer-circuits.pub/2024/scaling-monosemanticity/index.html
https://transformer-circuits.pub/2024/scaling-monosemanticity/index.html

