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Abstract
Several works have in recent years applied equiv-
ariant neural fields in, e.g., computer vision and
scientific machine learning. However, those
works usually restricted themselves to predict-
ing scalar quantities and considered only a single
type of symmetry. We study Steerable Implicit
Neural Representations (SINRs) from a more gen-
eral perspective, accommodating scalar, vector,
or even multivector or tensor fields while consid-
ering equivariances with respect to translations,
scaling, rotations, and reflections (or subgroups
of these). Empirically, we explore promising use
cases such as estimating vector fields, optical flow
fields in 2D vision, or surface normals in 3D vi-
sion. In the 3D vision case, we furthermore apply
a new way to obtain occupancy grids through
a classification task, avoiding the typical expen-
sive preprocessing steps required to obtain ground
truth occupancy values. Our work highlights the
versatility and potential of SINRs in advancing
these domains.

1. Introduction
Implicit neural representations, also known as neural fields
(NeFs) or coordinate-based neural networks, have made
tremendous impact in several scientific domains. In com-
puter vision, for example, they have advanced neural repre-
sentation learning (Park et al., 2019; Mescheder et al., 2019;
Mildenhall et al., 2022), differentiable rendering (Sitzmann
et al., 2020; Lombardi et al., 2019), flow field representa-
tions (Li et al., 2021b), texture fields (Oechsle et al., 2019),
and generative modeling (Zhang et al., 2023). In scien-
tific deep learning, the seminal work by Raissi et al. (2019)
caused a surge of interest in learning solutions to differential

*Equal contribution 1AMLab, Amsterdam, Netherlands
2AI4Science Lab, Amsterdam, Netherlands 3Anton Pannekoek
Institute, Amsterdam, Netherlands. Correspondence to: David
Ruhe <david.ruhe@gmail.com>.

Accepted as an extended abstract for the Geometry-grounded Rep-
resentation Learning and Generative Modeling Workshop at the
41 st International Conference on Machine Learning, ICML 2024,
Vienna, Austria. Copyright 2024 by the author(s).

equations using neural networks directly. Other works in
this direction include Wang (2021); Chen et al. (2023); Yin
et al. (2023); Kawano et al. (2021). Neural fields also influ-
ence domains such as medical imaging (Molaei et al., 2023)
and compression (Strümpler et al., 2022). Recently, neural
fields have been used to implicitly represent and generate
geometric surfaces (Berzins et al., 2024).

Related work Relatively little work has been conducted
towards making these implicit neural representations agnos-
tic to a chosen coordinate system or reference frame. An
early high-impact work in computer vision is the neural
descriptor field (Simeonov et al., 2022b;a). Later works in-
clude Chen et al. (2022); Wu et al. (2023). Recently, Knigge
et al. (2024a); Wessels et al. (2024); Knigge et al. (2024b)
propose equivariant neural fields for, e.g., PDE solutions.
These works focus either on (1) interpreting the latent vari-
able as a latent point cloud, (2) focus on 3D vision or PDE
solving tasks, (3) specialize to a single type of symmetry
(e.g., rotations), or (4) include only on scalar fields. This
work presents a general theory of equivariant neural fields
that builds on these works while addressing a broader spec-
trum of symmetries and fields.

Contributions In this work, we formalize equivariant
neural fields as Steerable Implicit Neural Representations
(SINR) in a general setting. That is, we start from the gen-
eral transformation properties of fields, and then define how
one can obtain these properties after conditioning on a la-
tent variable. Specifically, we show that a neural network
(MLP) becomes steerable if it is equivariant with respect to
both the coordinate transformation and the latent variable.
This framework accommodates scalar, vector, or even multi-
vector or tensor fields while supporting equivariances with
respect to translations, scaling, rotations, and reflections.
This is in contrast to all previous works, which have focused
solely on scalar fields, which have trivial output represen-
tations. Furthermore, those methods usually restrict to a
single type of symmetry (e.g., rotations), while we consider
multiple symmetries simultaneously.

SINRs are promising in several settings, which we explore
empirically. First, the latent variable z can be considered as
a chosen basis, which can then at test time be used to steer
the output of the neural field. I.e., we can rotate, scale, or
translate the output of the neural field simply by modifying
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Figure 1. Visualization of a vector field under a rotation. We see
that the response at x in the rotated field (highlighted with blue)
can be computed by looking up the original vector at the inversely
rotated coordinate g−1x, and then applying the forward rotation
ρg to the vector.

the latent variable, which can be advantageous for efficient
scene synthesis and composition. Second, the latent variable
can be used to condition the output of the neural field on
some other information. If done equivariantly, the neural
field will respect the orientation of the latent variable. For
example, the neural field can represent a solution to a PDE,
conditioned on its initial conditions, boundary conditions,
and so on, while respecting the symmetries of the PDE
(Knigge et al., 2024b).

We explore these ideas in several use cases, such as approx-
imating a synthetic flow, optical flow fields in 2D vision,
or surface normals in 3D vision. In the 3D vision case, we
furthermore apply a new way to obtain occupancy grids
through a classification task, avoiding the typical expensive
preprocessing steps required to obtain ground truth occu-
pancy values. A notable advantage of our approach is that
when z is encoded from e.g. point cloud or graph data, the
equivariance is exact and does not suffer from gridding arti-
facts. Furthermore, since the neural field can be evaluated at
any point in space, it can perform zero-shot super-resolution.

2. Method
2.1. SINR

In the following, we follow Weiler et al. (2018); Weiler &
Cesa (2019). Let F be a set of smooth functions f : X → Y ,
where we set X := Rd and Y := Rm. As such, f ∈ F maps
a d-dimensional coordinate to an m-dimensional output
space (e.g. a vector field). We further assume that the output
can be decomposed into several geometric quantities (e.g.,
scalars, vectors, tensors, multivectors). Let G be a specific
fixed symmetry group acting on both input and output spaces
such that for g ∈ G, x ∈ X , and y ∈ Y , we have x 7→ gx
and y 7→ ρYg y. As a result, F also carries a G-action ρF

Figure 2. Synthesizing and composing scenes using several orien-
tations, dilations, and translations of the latent variable z.

Figure 3. Visualization of the normal field under rotations, dila-
tions, and translations of the latent variable z. Note that the nor-
mals also transform correctly.

defined as

ρFg [f ](x) := ρYg f
(
g−1x

)
. (1)

The intuition behind this definition becomes clear by study-
ing, e.g., Weiler et al. (2018) (Figure 1). For completeness,
we also include a visualization in Figure 1. Note that pre-
vious methods focused mainly on scalar fields, which have
trivial (i.e., ρYg = id) representations.

We now introduce a map h : Z → F that maps a latent
variable z ∈ Z := Rn to a function f ∈ F . Z also has a
G-representation ρZ and can be thought of as an encoding
of some geometric information (e.g., a point cloud) or a
chosen basis. After parameterization, we efficiently share
parameters across many different fields in an amortized
way; each z producing a new f . We would like h to respect
G-actions on z by making it equivariant, i.e., acting on z
should induce Equation (1).

h
(
ρZg z

)
= ρFg [h(z)] . (2)

This then allows one to steer the resulting field through
transforming z, leading to a steerable implicit neural repre-
sentation (SINR).

In practice, mapping to the infinite-dimensional F is in-
feasible, so we uncurry the map h to receive a function
f : X × Z → Y (overloading the notation a bit) with

f(x; z) := h(z)(x) . (3)

2



SINR: Equivariant Neural Vector Fields

/2 0 /2

/2

0

/2

/2 0 /2 /2 0 /2 /2 0 /2

Figure 4. Implicit neural flow field under 90 degree rotations of the latent code z. Both the output grid and the flow vectors are transformed
correctly (i.e., also rotated by 90 degrees). The MSE (all orientations) to the ground truth field is approx. 10−7 without explicitly training
on rotated data.

Figure 5. The in- and output frames of the optical flow task which
is to predict the flow field between the two frames.

By the following simple argument,

h
(
ρZg z

)
(x) = f

(
x; ρZg z

)
(4)

= f
(
gg−1x; ρZg z

)
(5)

!
= ρYg f

(
g−1x; z

)
(6)

= ρFg [h(z)] (x) , (7)

we see that G-equivariance of h is equivalent to f being
equivariant (commutes with the G-action) in both argu-
ments. Note that Z must be sufficiently ‘large’ to make
f maximally expressive. For example, for G := O(d) with
Y = Rd then z must contain at least d vectors spanning Rd

(Villar et al. (2021); Lemma 3). In addition, one wants to
grow the latent space to encode as much features as possible.

2.2. Parameterizations

There are many ways to parameterize SINRs modulo the
equivariance constraints with respect to the chosen symme-
try group G. Examples of feedforward architectures (that
consider various G) include Vector Neurons (Deng et al.,
2021), Geometric Vector Perceptrons (Jing et al., 2021),
E(3)-NN (Geiger & Smidt, 2022), Clifford Group Equiv-
ariant Neural Networks (Ruhe et al., 2023), E-MLP (Finzi
et al., 2021), PONITA (Bekkers et al., 2024), and so on. In
this explorative work, we keep things relatively simple. We
start by considering m = 1, i.e., f : X × Z → R. Let

z = (s, v, t) contain scalars, vectors v ∈ Rd that transform
under O(d) · R>0 ⊆ GL(d) and t ∈ Rd that transforms
under (O(d) ·R>0)⋉Rd: the Euclidean group with scaling.

We can then featurize the input ϕ to our model as follows:

ϕ(x, z) :=
(
⟨γ−1(x− t), γ−1v⟩, ∥γ−1(x− t)∥, s

)
, (8)

where γ := ∥v∥. Here, ⟨·, ·⟩ denotes the (inner) product
between x and all vectors in z, concatenating the results.
In Appendix A we show the equivariance of this parame-
terization and explicitly show how the group G acts. We
put

fθ(x; z) := MLPθ (ϕ(x, z)) , (9)

where MLPθ is a multilayer perceptron with parameters θ.
Under this parameterization, we have

fθ(x; ρ
Z
g z) = fθ

(
g−1x; z

)
= ρYg fθ(g

−1x; z) , (10)

satifying the equivariance condition. For vector fields f :
X ×Z → Y , where Y := Rd only transforms under scaling
and rotation, we can set

fθ(x; z) :=

d∑
i=1

MLPi
θ(ϕ(x, z)) vi (11)

We then have

fθ(x; ρ
Z
g z) =

d∑
i=1

MLPi
θ(ϕ(g

−1x, z)) ρZg vi (12)

= ρYg

d∑
i=1

MLPi
θ(ϕ(g

−1x, z)) vi (13)

where MLPi
θ is scalar-valued and we assume that v con-

tains at least d linearly independent vectors. Using E(3)-
NN (Geiger & Smidt, 2022) or Clifford Group Equivariant
Neural Networks (Ruhe et al., 2023) we can extend this to
higher-order fields.
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Figure 6. Visualization of the neural optical flow field between the frames shown in Figure 5 when the input frame is rotated by 90 degrees.
The flow field is transformed correctly, i.e., also rotated by 90 degrees. The grid and flow vectors are orientation-independent. MSE with
ground truth is in all orientations approx. 10−3 without explicitly training on rotated data.

3. Experiments
3.1. 3D Vision

We consider the task of estimating the surface occupancy
and surface normals of a 3D object (Eslami et al., 2018;
Chen & Zhang, 2019; Park et al., 2019). In particular, we fo-
cus on the Stanford Bunny mesh (Turk & Levoy, 1994). We
then train a SINR to predict the surface occupancy and sur-
face normals of the bunny. I.e., given a point x ∈ [−1, 1]3,
we have the ground-truth indicator

Ibunny(x) =

{
1 if x is on the boundary
0 otherwise .

(14)

We sample points from the surface of the bunny which can
be done very efficiently. We also sample negative points
from the unit cube. We sample these at a 50-50 ratio. Using
a binary cross-entropy loss, we train the SINR to predict
whether a point lies on the surface of the bunny. Note that
this is a different task than predicting the occupancy grid,
which is a common task in neural rendering. It avoids the
need for expensive preprocessing steps to obtain ground
truth occupancy values. I.e., sampling the mesh surface and
the negative points can be done on-line during training. We
also sample the ground truth surface normals directly from
the mesh.

At test time, we sample a grid of points in the unit cube and
predict the surface occupancy and surface normals. Postpro-
cessing steps can then include mathematical morphology
steps such as binary closing, and binary dilation for solid-
ifying the surface. The surface can then be turned into a
mesh using, e.g., Marching Cubes. In practice, we so far
find that Marching Cubes already produces a good mesh
directly from the SINR output (before postprocessing).

We set z = (v, t) contain a (scaled) orthogonal system:
v = (e1, e2, e3) ∈ O(3)·R>0 ⊆ GL(3) which is sometimes
called the conformal orthogonal group. t ∈ R3 contains the
translation.

At test time, we can then rotate, scale, or translate the output
of the neural field simply by modifying the latent variable.

We can therefore synthesize scenes with the bunny in differ-
ent orientations, scales, and positions. See Figure 2.

Normal Estimation We now consider cases where the
codomain transformation is not invariant. In particular, we
consider the task of estimating the surface normals of the
bunny (Ben-Shabat et al., 2019; Li et al., 2023; Wang et al.,
2015). When we transform the coordinates, the surface
normals also transform. This is depicted in Figure 3. We
see that the bunny rotates, translates, and dilates, and the
normals also transform correctly.

3.2. Fluid Flow

Recently, neural networks for fluid mechanics have gained
significant popularity (e.g., (Brandstetter et al., 2022; Li
et al., 2021a)). We consider a simple time-dependent syn-
thetic flow field u : R2 × T → R2. Consider Appendix B
for the exact equations used. We use as ‘latent code’ z the
initial conditions at (0, 0, 0) with G := O(2). In more
advanced settings, one would encode the initial conditions
using a more sophisticated equivariant neural network. We
now train a SINR to predict the flow field at a later time t
using a MSE loss. In Figure 4, we visualize SINR output at
t = π. We see that SINR is agnostic to the orientation of the
initial condition, and generalizes over several orientations.

3.3. Optical Flow

Optical flow is a classic computer vision task that estimates
the motion of objects in a scene. In modern computer vision,
optical flow is often estimated using deep learning methods
(Dosovitskiy et al., 2015; Ilg et al., 2017; Sun et al., 2018).
We use the Middlebury dataset (Baker et al., 2011) to train
a SINR to predict the optical flow field between two frames.
We use the ‘Dimetrodon’ class which also provides ground
truth flow. Given a coordinate x ∈ R2, we implicitly model
the ground truth flow field f(x) ∈ R2.

Given the two frames in Figure 5, we output the flow field
shown in Figure 6. We see that the SINR generalizes well
over different orientations of the flow field. We use the orien-
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tation of the input frame as the latent variable z, estimated
by multiplying the pixel intensities with their respective
coordinates and then spatially averaging.

4. Discussion
We discussed Steerable Implicit Neural Representations
(SINRs) as a general framework for equivariant neural fields.
We explored several use cases in computer vision or scien-
tific machine learning. In the future, SINR can be extended
in several ways. First and foremost, the conditioning scheme
was explorative and simple. Encoding more complex input
data into equivariant latent representations is a promising
direction. Second, we can apply boundary conditions di-
rectly in the neural field, by using e.g. sinusoidal positional
encodings or enforcing the boundary conditions in the loss
function. Third, we can consider higher-order fields, such as
tensors or multivectors. Fourth, one can consider more ex-
pressive equivariant neural networks. Fifth, one can consider
settings with more complex symmetries, such as spacetime
symmetries. Finally, SINRS can be explored in generative
modeling, medical imaging, or compression. We hope that
this work will inspire future research in these directions.
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A. Equivariance Derivation
We show that our parameterization is invariant with respect to the chosen symmetry group G = (O(d) · R>0)⋉Rd which
contains translations, rotations, reflections, and scaling. Note that it suffices to show for g ∈ G: ϕ(gx, ρZg z) = ϕ(x, z),
since we can reparameterize x′ := g−1x to obtain ϕ(gx′, ρZg z) = ϕ(x′, z). Therefore, ϕ(x, ρZg z) = ϕ(g−1x, z), showing
the claim.

Let z = (s, v, t) contain scalars, vectors v that transform under O(d) · R>0 ⊆ GL(d) and t that transforms under
(O(d) · R>0)⋉Rd ⊆ GL(d): the Euclidean group with scaling.

We can then set the featurize the input ϕ to our model as follows

ϕ(x, z) :=
(
⟨γ−1(x− t), γ−1v⟩, ∥γ−1(x− t)∥, s

)
, (15)

with γ := ∥v∥.

Then, ρZg z = (s, αRv, αRt+ β) where R ∈ O(d), α ∈ R>0, and β ∈ Rd. As such,

ϕ(gx, ρZg z) =
(
⟨α−1γ−1(αRx+ β − αRt− β), α−1γ−1αRv⟩, ∥α−1γ−1(αRx+ β − αRt− β)∥, s

)
(16)

=
(
⟨γ−1⟨R(x− t), γ−1Rv⟩, ∥γ−1R(x− t)∥, s

)
(17)

=
(
⟨γ−1(x− t), γ−1v⟩, ∥γ−1(x− t)∥, s

)
(18)

= ϕ(x, z) , (19)

showing the invariance of the featurization, leading to the equivariance of the model preditions (see main paper).

B. Flow Field Equations
The time-dependent field u : R2 × T → R2 is defined as

u1(x, y, t) :=

(
sin(t)(sin(x)− cos(y))
cos(t)(cos(x) + sin(y))

)
(20)

u2(t) :=

(
0.5 cos(t)

0

)
(21)

u(x, y, t) := u1(x, y, t) + u2(t) (22)

We use as ‘latent code’ the initial condition z := (u1(0, 0, 0), u2(0)).
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