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Abstract001

Although Large Language Models (LLMs) per-002
form well in general tasks, domain-specific ap-003
plications suffer from hallucinations and ac-004
curacy limitations. Continual Pre-Training005
(CPT) approaches encounter two key issues:006
(1) domain-biased data degrade general lan-007
guage skills, and (2) improper corpus-mixture008
ratios limit effective adaptation. To address009
these, we propose a novel framework, Mix-010
ture of Losses (MoL), which decouples opti-011
mization objectives for domain-specific and012
general corpora. Specifically, cross-entropy013
(CE) loss is applied to domain-corpus to ensure014
knowledge acquisition, while Kullback-Leibler015
(KL) divergence aligns general-corpus training016
with the base model’s foundational capabilities.017
This dual-loss architecture preserves universal018
skills while enhancing domain expertise, avoid-019
ing catastrophic forgetting. Empirically, we020
validate that a 1:1 domain-to-general corpus021
ratio optimally balances training and overfit-022
ting without the need for extensive tuning or023
resource-intensive experiments. Furthermore,024
our experiments demonstrate significant per-025
formance gains compared to traditional CPT026
approaches, which often suffer from degra-027
dation in general language capabilities; our028
model achieves 27.9% higher accuracy on the029
Math-500 benchmark in the non-think reason-030
ing mode, and an impressive 83.3% improve-031
ment on the challenging AIME25 subset in the032
think mode, underscoring the effectiveness of033
our approach.034

1 Introduction035

Despite the remarkable success of Large Language036

Models (LLMs) in general text and code gener-037

ation tasks (Grattafiori et al., 2024; Yang et al.,038

2024, 2025; Guo et al., 2025), challenges persist in039

domain-specific applications, notably in the form040

of hallucinations and inadequate accuracy. Contin-041

ual Pre-Training (CPT) strategies have been pro-042

posed to address these issues (Sun et al., 2020; Jin043

et al., 2021b; Mendieta et al., 2023). However, two 044

major problems arise with such approaches. Firstly, 045

there is the challenge of maintaining general ca- 046

pabilities in CPT. Due to the limited quantity and 047

quality of domain-specific data, along with its diver- 048

gence from general data distributions, certain gen- 049

eral competencies of LLMs may experience unpre- 050

dictable degradation, even catastrophic forgetting 051

(Cossu et al., 2024). Secondly, the determination 052

of the optimal mixture ratio between the general- 053

corpus and downstream domain-corpus remains a 054

persistent challenge. While a sufficient proportion 055

of general-corpus data is indispensable to preserve 056

the model’s foundational capabilities, identifying 057

the ideal balance between the two corpora remains 058

elusive, resulting in suboptimal performance of the 059

fine-tuned model (Mehta et al., 2023; Wu et al., 060

2022). Recent work introduces the domain-specific 061

Scaling Law to determine the optimal mixture ratio 062

in CPT (Que et al., 2024). However, this Scaling 063

Law primarily focuses on achieving an optimal 064

compromise between domain-specific capabilities 065

and general capabilities. 066

This paper introduces a novel training frame- 067

work based on Mixture of Losses (MoL) compu- 068

tation to elegantly address the above two primary 069

problems in CPT. During training, domain-corpus 070

and general-corpus are randomly shuffled, but dis- 071

tinct loss functions are applied to each dataset type. 072

Specifically, traditional cross-entropy (CE) loss is 073

employed for domain-corpus to ensure effective 074

learning of domain knowledge, while the loss for 075

general-corpus is calculated using the Kullback- 076

Leibler (KL) divergence relative to the base LLM 077

(Hinton et al., 2015). This dual-strategy approach 078

ensures that LLMs effectively incorporate special- 079

ized domain knowledge through CE optimization 080

while maintaining the stability of their general ca- 081

pabilities via KL divergence. Furthermore, the 082

inherent dichotomy of corpora into general and 083

domain-specific categories naturally suggests an 084
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optimal 1:1 ratio between the two datasets (Abdel-085

hamid and Desai, 2024; Carriero et al., 2025). This086

balanced training configuration mitigates potential087

model biases that could arise from dataset imbal-088

ance, ensuring more equitable learning across both089

knowledge domains. Our main contributions are090

summarized as follows.091

(1) The MoL framework ensures the simultaneous092

preservation of general capabilities and enhanced093

domain-specific performance through its dual-loss094

architecture. By decoupling the optimization ob-095

jectives for domain-corpus (via CE) and general-096

corpus (via KL divergence), the model avoids the097

degradation of foundational skills while systemati-098

cally absorbing specialized knowledge. This is em-099

pirically validated through controlled experiments100

that demonstrate consistent performance gains in101

domain tasks without sacrificing general capabili-102

ties.103

(2) We empirically establish the rationale behind104

the 1:1 corpus ratio as an optimal balance for hy-105

brid training. This not only provides a principled106

guideline for dataset composition but also general-107

izes across diverse domains, eliminating the need108

for costly hyperparameter tuning for ratio optimiza-109

tion.110

2 Related Work111

Domain-specific CPT The domain-specific CPT112

paradigm is primarily designed to enhance the per-113

formance of LLMs on downstream tasks within114

specialized domains, such as medical consultation115

and legal Q&A systems (Qiu et al., 2024; Singhal116

et al., 2023; Yue et al., 2024). Typically, researchers117

need to curate high-quality domain-corpus along-118

side a certain volume of general-corpus for CPT.119

However, determining the optimal proportion of120

these two data components remains a challenging121

and computationally intensive task, often requiring122

extensive GPU resources for iterative optimization123

to achieve satisfactory results (Cossu et al., 2024;124

Mehta et al., 2023; Wu et al., 2022). Recent ad-125

vancements in domain-specific Scaling Laws have126

attempted to provide systematic guidelines for cor-127

pus composition in CPT (Que et al., 2024), yet128

practical implementation still proves cumbersome129

and heavily dependent on numerous fitting experi-130

ments for calibration.131

LLMs Distillation To transfer the capabilities132

of LLMs to a smaller one, knowledge distillation133

is commonly used (Hinton et al., 2015; Gou et al.,134

2021). When only the teacher model’s API is acces- 135

sible or there are vocabulary mismatches between 136

the models, the black-box distillation approach is 137

typically employed (Taori et al., 2023; Chiang et al., 138

2023; Peng et al., 2023). However, for open source 139

LLMs with a shared vocabulary, white-box distil- 140

lation is generally preferable (Sanh et al., 2019; 141

Wang et al., 2020; Song et al., 2020). This method 142

leverages the per token KL divergence between the 143

teacher- and student-model distributions to com- 144

pute the training loss. To mitigate the tendency of 145

student models to overemphasize low-probability 146

regions in the teacher distribution, recent studies 147

have proposed substituting the conventional for- 148

ward KL divergence with reverse KL divergence 149

(Gu et al., 2023). 150

Learning without Forgetting In traditional neu- 151

ral network frameworks, incrementally introducing 152

new capabilities into multitask architectures typ- 153

ically requires access to all task datasets, which 154

is often impractical due to the inaccessibility of 155

historical data and the prohibitive computational 156

costs associated with retraining (Caruana, 1997). 157

In the context of convolutional neural network 158

(CNN) classification tasks, a regularization strat- 159

egy combining KL divergence with CE loss in a 160

weighted formulation has been proposed to address 161

catastrophic forgetting when the model capabil- 162

ities are incrementally expanded(Li and Hoiem, 163

2017). Empirical evaluations demonstrate that this 164

approach achieves performance comparable to the 165

upper bound established by joint training of all 166

tasks simultaneously, offering a computationally 167

efficient alternative to full retraining while mitigat- 168

ing the degradation of previously learned skills. 169

3 Methods 170

The roles of domain-corpus and general-corpus 171

in CPT fundamentally differ. Domain-corpus are 172

primarily designed to enhance a model’s domain- 173

specific capabilities by fine-tuning its understand- 174

ing and generation within specialized contexts. In 175

contrast, general-corpus serve to preserve and re- 176

fine the model’s general capabilities, which are crit- 177

ical for both ensuring broad applicability in diverse 178

tasks and maintaining foundational competencies 179

such as chain-of-thought (CoT) reasoning (Jaech 180

et al., 2024; Xie et al., 2024). 181

A notable method to preserve the capabilities 182

of LLM during training is the use of KL diver- 183

gence as an objective function (Adler et al., 2021). 184

2



Figure 1: Schematic illustration of the MoL framework architecture. Unlike existed single-objective pre-training
approaches, our MoL framework introduces an additional metadata input ("add-info") to distinguish between
domain-specific and general corpora during training. This information determines the loss function selection: CE
loss for domain corpora and KL divergence loss for general corpora (highlighted in red). The model’s forward
computation and backpropagation mechanisms retain the standard implementation pipeline of traditional LLMs.

Unlike traditional CE loss, which enforces deter-185

ministic "hard labels" by treating each token as an186

absolute target, KL divergence treats the output187

probability distribution of a base model as "soft188

labels" (Gu et al., 2023). This approach allows189

the target model to learn context-dependent gener-190

ation patterns rather than memorizing fixed token191

sequences.192

Thus, our MoL framework integrates domain-193

specific and general corpora under a dual-194

perspective optimization strategy in CPT. For195

domain-corpus, we employ the CE loss with hard196

labels to enforce precise domain-specific knowl-197

edge acquisition. While for general-corpus, the198

KL divergence loss with soft labels is adopted to199

preserve the model’s pre-existing generalization ca-200

pabilities. The loss function L for each sequence s201

in our MoL framework is formulated as follows:202

L(s) =


LCE(s), if s ∈ Cd,

LKL(s), if s ∈ Cg,

(1)203

204

LCE(s) = − 1

ns

∑
i

log pθ(si), (2)205

LKL(s) =
1

ns

∑
i

KL[pθ||p0](si), (3)206

where the average is performed over the total num- 207

ber of effective tokens (ns). p0 represents the prob- 208

ability distribution of the base LLM, and pθ de- 209

notes the probability distribution of the CPT model 210

parameterized by θ. The sets Cd and Cg corre- 211

spond to domain-specific and general corpora, re- 212

spectively. The specific operational workflow of 213

our MoL framework is illustrated in Figure 1. This 214

dual-loss architecture parallels human cognitive 215

development: the KL divergence loss maintains 216

alignment with foundational knowledge (like re- 217

taining language fundamentals during domain ex- 218

pertise acquisition), while the CE loss drives in- 219

tentional knowledge expansion (similar to targeted 220

skill development). The combination ensures that 221

the model both preserves its general capabilities 222

and systematically builds domain-specific expertise 223

through complementary learning modes. 224

In practice, we introduce a small coefficient α 225

to slightly adjust the final loss function to ensure 226

training stability (Müller et al., 2019). Specifically, 227

for the domain-corpus, the loss function is defined 228

as 229

L = (1− α)LCE + αLKL, (4) 230

while for the general-corpus, it is formulated as 231

L = αLCE + (1− α)LKL. (5) 232
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Figure 2: Training loss evolution across aggregated datasets and individual subsets, depicting CE loss dynamics
for both domain-specific and general corpora. "train_MoL" represents the loss on the training set under the MOL
framework. The domain-corpus include medical-o1-sft, MedicationQA, and MedQA, while Light-R1 is the general-
corpus. The "_val" indicates the validation set, and "_CE" denotes CE loss. The validation set’s CE loss is calculated
every 10 steps, resulting in a smoother curve compared to the training set loss. The CE loss for general-corpus
remains nearly constant throughout training, while the domain-corpus exhibits a steady decline in loss until reaching
convergence at nearly 1.3 epochs (marked by the dashed Line).

In our experiments, α is set to 0.01 unless otherwise233

specified.234

In Equation 3, we adopt the proposal of reverse235

KL divergence to mitigate overestimation of low-236

probability regions in the base model’s output distri-237

bution (Gu et al., 2023). To further enhance regular-238

ization effectiveness, we introduce a cross-model239

probability aggregation scheme that jointly con-240

siders the probability distributions from both the241

base LLM and the CPT model for low-probability242

tokens, as formulated in Equation A. This optimiza-243

tion framework significantly reduces GPU memory244

consumption during KL divergence computation.245

4 Experiments246

Our objective is to validate the efficacy of the MoL247

training framework through empirical evaluation in248

the medical domain. Specifically, we conduct CPT249

on a hybrid dataset comprising medical-domain cor- 250

pora and open source corpus using an open source 251

model architecture. Subsequently, we evaluate the 252

trained model’s performance in both the medical 253

domain and general domain to assess the validity 254

and robustness of the proposed framework under 255

real-world application scenarios. 256

Base Model The open source Qwen3-8B model 257

(Yang et al., 2025) serves as the base for CPT. Ad- 258

ditionally, this model is utilized to compute KL 259

divergence during training within the MoL frame- 260

work for consistency in optimization. 261

Training Our training data are derived from two 262

primary sources: 263

(1) Domain-corpus: Training sections from the 264

medical-o1-sft (Chen et al., 2024), MedicationQA 265

(Abacha et al., 2019), and MedQA (Jin et al., 266
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Qwen3-8B + D&G 1:1

Domain
MedQA 74.87 77.25
MMLU-cli 78.86 80.52

General
C-Eval 67.45 77.65
MMLU 72.56 75.79

Coding
MBPP 68.40 68.00
HumanEval 86.59 82.32

Math (Non-thinking) MATH-500 85.40 84.40

Math (Thinking)
MATH-500 96.60 97.80
AIME 24 76.67 80.00
AIME 25 66.67 73.33

Table 1: Performance comparison of various models across different task categories, including Domain, General,
Coding, and Math tasks. The metrics represent the accuracy or performance scores achieved by each model on the
respective tasks. The D&G 1:1 refers to the training of base model using an nearly equal mix of domain-specific
and general corpora.

2021a).267

(2) General-corpus: High-quality chain-of-thought268

data from the open source Light-r1 corpus (Wen269

et al., 2025), serving as a supplementary training270

resource for broader reasoning capabilities.271

With applying chat-template and concatenating,272

we can adopt a mixed CPT strategy, enabling train-273

ing both textual and QA samples within a sin-274

gle pipeline. (Yang et al., 2024) The total tem-275

plated and concatenated domain-corpus comprises276

approximately 10,000 samples, with 100 samples277

randomly selected as the validation set. For the278

general-corpus, we use the stage1 part of the Light-279

r1 dataset with 76 K training samples, allowing for280

flexible adjustment of the ratio between domain-281

specific and general corpora during experimental282

design.283

Experiments are conducted using the Low-rank284

adaptation (LoRA) training approach (with a rank285

of 64) (Hu et al., 2022). All training is performed286

with the model’s context length fixed at 8,192 to-287

kens, ensuring compatibility with long input se-288

quences. For LoRA training, we use a learning rate289

of 1e-4. All other hyperparameters remain consis-290

tent across experiments, including a cosine decay291

learning schedule with a warm-up ratio of 0.1 and292

a global batch size of 128.293

Evaluation We perform a comprehensive evalua-294

tion of the trained models. The evaluation focuses295

on its performance in terms of domain, general296

knowledge, mathematics, and coding capabilities.297

The evaluation dataset of the trained model con-298

tains these benchmarks:299

• Domain Tasks: We use benchmarks including300

predefined test set of MedQA (Jin et al., 2021a), 301

including 3426 Chinese questions and 1273 US 302

questions. And MMLU-cli, the medicine-related 303

test data in MMLU (Hendrycks et al., 2020), in- 304

cluding 134 Anatomy questions, 264 Clinical ques- 305

tions, 143 College biology questions, 172 college 306

medicine questions, 99 Medical Genetic questions 307

and 271 professional medicine questions. 308

• General Tasks: MMLU (Hendrycks et al., 2020) 309

and C-Eval (Huang et al., 2023) (5 shots) 310

• Coding Tasks: MBPP (Austin et al., 2021) and 311

HumanEval (Chen et al., 2021) 312

• Math Tasks: MATH-500 (Lightman et al., 2023), 313

AIME 24 and AIME 25 (AIME, 2025). 314

The evaluation of Domain, General, and Coding 315

tasks occurs under a non-thinking mode. In con- 316

trast, MATH-500 is assessed under both thinking 317

and non-thinking modes. AIME 24 and AIME 25 318

are exclusively evaluated in thinking mode. For all 319

models operating in thinking mode, we employ a 320

sampling temperature of 0.6, a top-p value of 0.95, 321

and a top-k value of 20. In the non-thinking mode 322

for General, Coding, and Math Tasks, the sampling 323

hyperparameters are configured as follows: temper- 324

ature = 0.7, top-p = 0.8, top-k = 20, and presence 325

penalty = 1.5. The settings of evaluation parameter 326

above are fully consistent with the official Qwen3 . 327

For domain tasks evaluated in non-thinking mode, 328

the sampling hyperparameters are set with a temper- 329

ature of 0.01. For both thinking and non-thinking 330

modes, the maximum output length is capped at 331

30,720 tokens. Non-thinking mode is achieved 332

by setting "enable_thinking=False" (Yang et al., 333

2025). 334
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D&G 1:1 D&G 1:0.5 D&G 1:1.5 D&G 1:2

Domain
MedQA 77.25 75.68 77.17 77.19
MMLU-cli 80.52 79.22 79.87 79.59

General
C-Eval 77.65 77.04 77.20 77.59
MMLU 75.79 76.48 74.73 69.36

Coding
MBPP 68.00 66.00 67.00 69.00
HumanEval 82.32 81.10 80.49 83.54

Math (Non-thinking) MATH-500 84.40 84.20 81.20 80.60

Math (Thinking)
MATH-500 97.80 96.40 97.20 96.40
AIME 24 80.00 80.00 76.67 70.00
AIME 25 73.33 70.00 70.00 66.67

Table 2: Performance evaluation of model variants trained on Qwen3-8B across diverse task categories, including
Domain, General, Coding, and Math tasks. The D&G ratios indicate the adjusted proportions of domain-specific to
general corpora used for training, showing the influence of these ratios on model performance across different tasks.

5 Results335

5.1 Main Results336

Determination of Optimal Training Steps We337

first conduct experiments on Qwen3-8B using a338

nearly 1:1 ratio of medical and general corpora339

to investigate the training dynamics of the MoL340

framework. As shown in Figure 2, the CE loss for341

general corpora remains nearly constant throughout342

training, due to the use of KL divergence as the loss343

function for these samples. In contrast, the CE loss344

for domain-specific corpora exhibits a consistent345

downward trend until convergence. This observa-346

tion aligns precisely with our hypothesis that MoL347

can effectively enhance domain knowledge while348

preserving general language capabilities. Notably,349

we observe that all datasets’ CE losses approach350

convergence at approximately 1.3 training epochs.351

This finding establishes a critical reference point352

for subsequent model comparisons, and therefore353

we standardize all evaluations at this epoch for fair354

performance assessment across different training355

paradigms.356

Performance Evaluation at Convergence The357

results of 1.3 training epochs are presented in Table358

1. Our model using the MoL training framework359

demonstrates superior performance over the base360

Qwen3-8B model across three critical dimensions:361

domain-specific capabilities, general abilities, and362

math reasoning. We also observe a significantly363

larger discrepancy in C-Eval performance scores364

before and after training, which was primarily at-365

tributed to insufficient instruction-following (IF)366

capability in the base model. This limitation leads367

to systematic misinterpretation of multiple-choice368

answers during evaluation. However, the imple- 369

mentation of the MoL training approach effectively 370

resolves this issue, resulting in complete elimina- 371

tion of parsing errors in the CPT model. Detailed 372

comparisons are presented in Appendix B. 373

Given that the open source medical corpus has 374

probably already been exposed to Qwen3, further 375

training on these domain-specific data may yield 376

limited performance improvements in specialized 377

medical tasks. To address this limitation and fur- 378

ther validate the robustness of our MoL approach, 379

we conducted additional experiments using a dif- 380

ferent foundational architecture and an internal cor- 381

pus. The domain-to-general data ratio was care- 382

fully balanced by augmenting the general compo- 383

nent through threefold repetition of another internal 384

general-corpus. This setup enabled us to main- 385

tain sufficient training scale while ensuring domain 386

relevance. The results, as shown in Appendix C, 387

demonstrate that the proposed method achieves no- 388

table performance gains on the internal domain 389

evaluation set compared to the baseline. Impor- 390

tantly, the model’s general linguistic capabilities 391

remain consistent with the base model’s perfor- 392

mance on standard benchmarks, confirming that 393

domain adaptation does not come at the cost of 394

foundational language proficiency. 395

Optimal Domain-to-General Corpus Ratio Re- 396

garding the optimization problem of domain-to- 397

general corpus ratio, we conduct extensive exper- 398

iments using the medical domain-specific corpus 399

as the fixed unit and vary the proportion of general- 400

corpus (0.5, 1, 1.5, and 2) accordingly, as illus- 401

trated in Table 2. The experimental results demon- 402

strate that, for our MoL framework, a ratio near 1:1 403

6



D&G 1:1 D&G 1:1 CE D&G 1:1 (α = 0.5)

Domain
MedQA 77.25 77.57 73.19
MMLU-cli 80.52 80.24 78.95

General
C-Eval 77.65 76.23 73.86
MMLU 75.79 57.71 76.99

Coding
MBPP 68.00 62.20 64.80
HumanEval 82.32 78.66 84.15

Math (Non-thinking) MATH-500 84.40 66.00 82.40

Math (Thinking)
MATH-500 97.80 94.20 96.60
AIME 24 80.00 63.33 70.00
AIME 25 73.33 40.00 56.67

Table 3: Performance evaluation of model variants trained on Qwen3-8B across diverse task categories, including
Domain, General, Coding, and Math tasks. The D&G 1:1 corresponds to the definition provided in Table 1. The
D&G 1:1 CE configuration utilizes CE as the loss function across all data. The final column represents results
obtained with a α parameter of 0.5 in Equation 4 and 5.

achieves the most balanced performance between404

domain-specific and general language capabilities.405

This configuration consistently outperforms other406

tested ratios across most of the evaluation metrics,407

indicating that the optimal trade-off point for this408

specialized loss mechanism lies in maintaining ap-409

proximately equal proportions of domain-specific410

and general corpora.411

5.2 Ablation Studies and Critical Analysis412

5.2.1 Influence of KL Divergence413

To evaluate the necessity of KL divergence in our414

framework, we conduct one control experiment un-415

der the optimal mixture ratio of 1:1 (Table 2). This416

experiment replaces all KL divergence calculations417

with CE counterparts. Our training results demon-418

strate significantly superior performance compared419

to this alternative, as detailed in Table 3. The sig-420

nificant performance gains, particularly a 27.9%421

(84.40−66.00
66.00 ) increase in accuracy on the Math-500422

benchmark in the non-think reasoning mode and423

an impressive 83.3% (73.33−40.00
40.00 ) improvement on424

the challenging AIME 25 subset in the think mode.425

These results not only reflect the superiority of our426

method, but also suggest that the alternative ap-427

proach using CE may suffer from a degradation428

in generalization capability under the same experi-429

mental setup. This decline in general performance430

across different reasoning modes and benchmarks431

further supports the necessity of KL divergence in432

enhancing the robustness and adaptability of our433

model.434

Regarding domain-specific capabilities, we ob-435

serve that the CE losses of various domain-specific436

corpora under the MOL framework are closely 437

aligned with those of the control experiment that 438

employs CE exclusively, as shown in Figure 3 (A). 439

This suggests that our method is on par with the 440

traditional CE-based training approach in terms of 441

domain adaptation and specialization. However, as 442

previously discussed, our framework significantly 443

outperforms the CE-only alternative in general rea- 444

soning tasks, particularly in complex and abstract 445

reasoning scenarios. 446

Furthermore, we visualize the gradient magni- 447

tudes of both the KL divergence-based and CE- 448

based training frameworks during the training pro- 449

cess, as presented in Figure 3 (B). While the two 450

curves exhibit a similar overall trend, the gradients 451

from the KL divergence-based framework remain 452

consistently smaller than those from the CE-based 453

alternative throughout the training process, until 454

convergence is reached. Upon convergence, the 455

two gradient curves become sufficiently close, in- 456

dicating that the gradient contribution from the KL 457

divergence gradually approaches that of the CE 458

counterpart. This observation is particularly note- 459

worthy, given that the KL divergence is computed 460

with respect to the base model, which implies that 461

the initial gradient from KL divergence is close to 462

zero. As training progresses, the KL divergence be- 463

gins to exert a more significant influence, leading to 464

a gradual increase in its gradient contribution. This 465

dynamic behavior resembles a negative feedback 466

mechanism, similar to those identified in adaptive 467

learning systems (Zhao et al., 2018). Consequently, 468

the introduction of KL divergence within the MOL 469

framework elegantly ensures the preservation of 470
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Figure 3: (A) Comparison of CE loss across various validation sets during training on Qwen3-8B. The main plot
depicts the loss trends across different domain-corpus, including medical-o1-sft, MedQA and MedicationQA, while
the inset offers a magnified view focusing on the performance of the medical-o1-sft under the two configurations.
Specifically, D&G 1:1 refers to the setup described in Table 1, while D&G 1:1 CE denotes the alternative
configuration that replaces KL divergence with CE throughout the training. The "_val" indicates the validation set,
and "_CE" denotes CE loss. (B) Comparison of gradient norm during training. The main plot illustrates the gradient
norm dynamics of the D&G 1:1 and D&G 1:1 CE configurations across training epochs. While both configurations
exhibit similar temporal evolution patterns, the D&G 1:1 consistently shows smaller magnitudes than D&G 1:1 CE
until convergence, after which the two curves align closely. The inset provides a zoomed-in view centered at 1.3
training epochs.

general reasoning capabilities, thereby demonstrat-471

ing its necessity.472

5.2.2 Influence of Coefficient α473

Furthermore, while the efficacy of KL divergence474

has been demonstrated, it is essential to justify475

whether the hyperparameter α in Equation 4 and476

5 significantly influences the final outcomes. To477

investigate this, we configure α to 0.5, effectively478

assigning equal importance to domain-specific and479

general corpora. Our experiments reveal that a480

near-zero α value consistently yielded superior per-481

formance. The quantitative validation supporting482

this observation is detailed in Table 3.483

6 Disscussion484

This work proposes an MoL framework to address485

the dual challenges of continual learning in LLMs,486

by decoupling loss functions for domain knowledge487

and general knowledge. This aligns with lifelong488

learning principles (Zheng et al., 2025), enabling489

LLMs to dynamically integrate specialized knowl-490

edge without catastrophic forgetting.491

The 1:1 general-domain corpus ratio, empiri-492

cally validated as optimal, reflects a natural bal-493

ance observed in real-world systems. For instance,494

in Retrieval-Augmented Generation (RAG), the495

ratio between retrieved external knowledge and496

pre-trained model priors often mirrors this equi-497

librium. Similarly, in agent-environment interac- 498

tions, the proportion of environmental feedback 499

(domain-specific) and prior knowledge (general) 500

typically aligns with 1:1-like dynamics in context- 501

action pairs. This inherent balance simplifies de- 502

ployment, offering a scalable solution for adaptive 503

LLMs in evolving domains. 504

7 Conclusion 505

This study introduces the MoL framework, a dual- 506

loss architecture that synergistically preserves gen- 507

eral language capabilities while enhancing domain- 508

specific performance through decoupled optimiza- 509

tion. By applying CE loss for domain-corpus train- 510

ing and KL divergence for general-corpus align- 511

ment, the framework mitigates catastrophic forget- 512

ting in foundational skills while systematically in- 513

tegrating specialized knowledge. The 1:1 domain- 514

to-general corpus ratio is empirically validated as 515

optimal, demonstrating its ability to prevent overfit- 516

ting while avoiding laborious and computationally 517

intensive hyperparameter tuning processes. These 518

contributions establish MoL as a principled, scal- 519

able solution for multi-domain language model 520

training, offering both theoretical insights and prac- 521

tical deployment advantages in real-world hetero- 522

geneous scenarios. 523
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Limitations524

While the MoL framework achieves notable im-525

provements, one limitation lies in the unexpected526

enhancement of AIME reasoning and IF capabili-527

ties through general KL divergence alignment on528

general-corpus. This phenomenon, though empir-529

ically observed, lacks a systematic analysis of its530

underlying mechanism. More research is required531

to clarify its role in bridging general and special-532

ized performance within the MoL framework.533
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A Optimization of KL Divergence740

We introduce an additional regularization scheme by aggregating the probability values of low-probability741

tokens across both the base LLM and the CPT model. The aggregated probability distribution is then used742

for calculating the reverse KL divergence. This approach focuses the optimization process on aligning743

the high-probability regions of the base model’s generation behavior, sharing conceptual parallels with744

physical systems analysis where attention is directed towards low-energy states that dominate system745

behavior (Schollwöck, 2005).746

For example, the vocabulary of Qwen3 exceeds 150,000 tokens (Yang et al., 2025). However, we747

employ a dynamic probability truncation strategy to reduce the vast vocabulary size by focusing on the748

most probable tokens at each generation step. Specifically, given the base model’s probability distribution,749

we retain the top n most probable tokens (denoted as set T ), preserving their individual probabilities. The750

remaining probabilities outside of T are aggregated into a single residual probability mass,751

p′0, residual =
∑
t/∈T

p0(t),

p′θ,residual =
∑
t/∈T

pθ(t),
(6)752

resulting in a reduced distribution p′ that maintains the total probability mass of 1. In our work, we set the753

parameter n to 31.754

B Analysis of C-Eval Results755

We observe that the C-eval benchmark exhibits lower evaluation results for the Qwen3-8B model. Analysis756

of the evaluation results 1 and 2 (already translated into English) reveals that even in non-thinking mode757

with 5-shot examples, the model may sequentially analyze options, leading to incorrect identification758

of the first capital letter as the final answer selection. The trained model demonstrates improved IF759

capabilities, enabling more accurate output generation based on provided examples.760

C More Results761

We evaluate the MoL framework using Qwen2.5-7B-Instruct as the base model, training on a 330M-token762

internal domain corpus and a 300M-token general corpus (100M-token Magpie-built corpus repeated763

three times). This configuration achieves a domain-to-general token ratio of approximately 1:1 while764

maintaining sufficient training scale. The general corpus was explicitly constructed using the Magpie765

framework (Xu et al., 2024). Full-parameter training was implemented with a learning rate of 1e-5 and a766

batch size of 1024, while all other hyperparameters were aligned with those specified in the main text.767

The results showed significant performance improvements on the internal domain evaluation set768

compared to the baseline, with no degradation in general linguistic capabilities. The model retained769

consistent performance on standard benchmarks, demonstrating the framework’s ability to preserve770

foundational language skills during domain-specific training. Table 4 summarizes these findings.771
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Qwen3-8B Model Outputs on C-eval with 5-Shot Examples

Wrong Result:
{

"prompt": [
...(previous shots)
{

"role": "HUMAN",
"prompt": ...(omitted prompt),

},
{

"role": "BOT",
"prompt": "D",

},
{

"role": "HUMAN",
"prompt": "The following is a single-choice question from a logic exam in

China...\nAnswer: "
}

],
"origin_prediction": "This question tests an argument support type logical reasoning question.

We need to find an option that can most effectively support the conclusion in the original text...###
Option analysis:\n\nA...",

"predictions": "A",
"references": "C"

}
772

CPT Model Outputs on C-eval with 5-Shot Examples

Right Result:
{

"prompt": [
...(previous shots)
{

"role": "HUMAN",
"prompt": ...(omitted prompt),

},
{

"role": "BOT",
"prompt": "D",

},
{

"role": "HUMAN",
"prompt": "The following is a single-choice question from a logic exam in

China..."\nAnswer: "
}

],
"origin_prediction": "C",
"predictions": "C",
"references": "C"

}
773
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Qwen2.5-7B-Instruct + D&G 1:1

Domain

Concept-explanation 58.33 67.96
Summarize 39.84 53.50
Simple-QA 48.67 57.70
Ops-FAQ 17.37 63.59
Product-FAQ 23.34 41.32

General

C-Eval 79.10 79.06
MMLU 74.27 74.39
CMMLU 78.67 78.68
BBH 69.70 67.04
HellaSwag 81.87 81.91

Coding
MBPP 66.60 64.80
HumanEval 81.10 81.10

Math
MATH 57.60 57.56
Gsm8k 85.14 85.15

Table 4: Performance comparison of various models across different task categories, including Domain, Business-
related, Coding, General, and Math tasks. The D&G 1:1 corresponds to the definition provided in Table 1.
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