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Figure 1: Different approaches to solve the portrait image super resolution (ISR) task: (a) General
ISR models like (Wu et al., 2024a) may produce unnatural faces when applied to portrait photos
due to the lack of face-specific supervision; (b) While introducing an extra face ISR expert (Zhou
et al., 2022) can generate a more natural face, the blending procedure will introduce inconsistent
boundaries. (c) Our portrait ISR approach, HeadsUp, can generate a natural portrait photo without
introducing inconsistent boundaries around faces using an all-in-one face-aware restoration model.

ABSTRACT

Portrait pictures, which typically feature both human subjects and natural back-
grounds, are one of the most prevalent forms of photography on social media.
Existing image super-resolution (ISR) techniques generally focus either on generic
real-world images or strictly aligned facial images (i.e., face super-resolution). In
practice, separate models are blended to handle portrait photos: the face specialist
model handles the face region, and the general model processes the rest. However,
these blending approaches inevitably introduce blending or boundary artifacts
around the facial regions due to different model training recipes, while human
perception is particularly sensitive to facial fidelity. To overcome these limitations,
we study the portrait image supersolution (PortraitISR) problem, and propose
HeadsUp, a single-step diffusion model that is capable of seamlessly restoring
and upscaling portrait images in an end-to-end manner. Specifically, we build
our model on top of a single-step diffusion model and develop a face supervision
mechanism to guide the model in focusing on the facial region. We then integrate
a reference-based mechanism to help with identity restoration, reducing face am-
biguity in low-quality face restoration. Additionally, we have built a high-quality
4K portrait image ISR dataset dubbed PortraitSR-4K, to support model training
and benchmarking for portrait images. Extensive experiments show that HeadsUp
achieves state-of-the-art performance on the PortraitISR task while maintaining
comparable or higher performance on both general image and aligned face datasets.

1 INTRODUCTION

Image super-resolution (ISR) is an essential computer vision task that aims to recover high-quality,
high-resolution images from degraded low-quality counterparts. Significant advancements in ISR
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have been driven by collecting high-quality image datasets (Cai et al., 2019; Wei et al., 2020),
realistic degradation simulation via the combination of pre-set degradations (Wang et al., 2021c;
Zhang et al., 2021), learning from real-world degradation distributions (Wang et al., 2021a; Fritsche
et al., 2019; Yuan et al., 2018), and leveraging priors from generative foundation models (Wu et al.,
2024b; Wang et al., 2024b; Sun et al., 2024b; Wu et al., 2024a). Despite general success across
various image domains, however, existing models often exhibit notably inferior performance when
applied to in-the-wild portrait pictures that contain human faces, an area where human perception is
especially sensitive to errors in detail and fidelity. Portrait images actually account for a large portion
of online photography; thus, failing to handle both face and background at the same time will cause
inconsistency. For instance, imagine upscaling portrait photos of your family members; incorrect
facial restoration that alters their identity would lead to significant dissatisfaction and discomfort.

To better handle facial images, a variety of methods train specialist face ISR models on aligned facial
images by leveraging face geometric prior (Yu et al., 2018; Shen et al., 2018; Chen et al., 2018;
Kim et al., 2019), reference signals (Zhang et al., 2024; Li et al., 2020a;b; 2018b; Chong et al.,
2025), generative prior (Wang et al., 2021b; Yang et al., 2025; Wang et al., 2024c), and quantized
codebooks (Wang et al., 2024c; Zhou et al., 2022). These approaches have substantially improved
the reconstruction quality of facial images with better detail and perceptual quality. However, they
are restricted to aligned facial data, limiting their utility for generic portrait photography, which
requires the restoration of human faces and bodies as well as natural backgrounds. A practical
solution to implement portrait ISR is to employ a hybrid fusion strategy (Zhou et al., 2022; Wang
et al., 2021c)—using a generalist ISR for backgrounds and a specialist face ISR model for facial
regions in a crop-project-restore-blend paradigm. Unfortunately, this segmented processing approach
frequently results in visible boundary artifacts and inconsistencies between facial regions and the
surrounding background, significantly degrading the overall perceptual quality of enhanced portraits.

To this end, we investigate the Portrait Image Super-Resolution problem, PortraitISR for short, and
propose an end-to-end portrait image super-resolution approach that ❶ achieves seamless portrait
ISR without any boundary effects, and ❷ maintains high-quality background and high-fidelity face as
the blending-based methods. Our journey starts with a naı̈ve end-to-end baseline diffusion model
by training a general ISR model on portrait data. However, we found achieving such an integrated
model is non-trivial due to several identified challenges: Firstly, while face is usually the most
sensitive part with insufficient details and low-fidelity, it only occupies a relatively small portion
of the whole image in most circumstances—the small 20% region gets the big 80% importance.
Diverse scales, positions, and orientations of faces present in casual captures further worsen this issue.
Secondly, extremely low-quality inputs introduce substantial ambiguity, making precise facial detail
reconstruction a particularly challenging ill-posed problem. Finally, while abundant data is available
for general ISR (Li et al., 2023; Agustsson & Timofte, 2017; Wang et al., 2018) as well as the aligned
facial ISR (Liu et al., 2015; Karras et al., 2019) individually, a dedicated, high-quality portrait
dataset with diverse in-the-wild faces for PortraitISR tasks remains absent.

In response to the above challenges, we propose HeadsUp, an end-to-end framework for high-fidelity,
face-aware PortraitISR using a single model. Specifically, we first propose a face-aware region loss
that emphasizes both face perceptual quality and face identity. Additionally, we design an adaptive
face identity module that allows information flow from a reference face image as a promptable
identity guidance. Finally, we construct a large-scale, high-resolution benchmark, PortraitSR-
4K, that contains 30k high-quality 4K portrait images, curated and filtered from web-scale data.
Experimental evaluations demonstrate that our proposed approach achieves state-of-the-art results in
portrait ISR, surpassing existing methods in terms of perceptual quality and fidelity, while maintaining
competitive performance on general ISR benchmarks. In summary, our contributions include:

• We study the PortraitISR problem and introduce HeadsUp, a novel end-to-end framework
specifically designed for seamless portrait image super-resolution without any need for post-
processing blending, producing high-quality outputs without any boundary artifacts.

• We propose a face-aware region loss and a reference-guided adaptive face identity mechanism to
improve facial restoration quality significantly, which better trains our proposed diffusion model.

• We build PortraitSR-4K, the first-of-its-kind, carefully curated, high-resolution (4K) portrait ISR
dataset containing 30k images, facilitating future research in portrait ISR tasks.

• We have established a benchmark on our proposed PortraitSR-4K, where comprehensive experi-
mental results demonstrate superior performance of HeadsUp over existing ISR and face-specific
methods. We have also conducted ablation studies to show the design components of our model.
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Figure 2: Pipeline of HeadsUp. Starting from a pre-trained latent diffusion model, we add a LoRA
adapter to the VAE encoder and denoising network. HeadsUp takes as input an LQ image and an
optional reference, and denoises for only one step to produce an HQ image. In the training stage, we
employ face-specific losses to improve facial restoration quality.

2 METHODOLOGY

2.1 PRELIMINARY

To make the representation compact, latent diffusion models (LDMs) represent images in a low-
resolution latent space. LDM consists of two procedures. The forward procedure gradually introduces
Gaussian noise on the latent codes until the noise-added latent codes are subject to a Gaussian
distribution. The forward procedure is denoted as q(xt|xt−1) = N (xt,

√
1− βtxt−1, βtI), where

xt and xt−1 are the latent code at step t and t − 1. To recover the clean latent code x0 from the
random noise xT , diffusion models progressively remove noise from xT , described as pθ(xt−1|xt) =
N (µθ(xt, t),Σθ(xt, t)), where µθ and Σθ are learned denoising functions. In practice, we usually
learn a neural network ϵθ to predict the noise in xt. With DDIM we can jump to any diffusion step
s from step t by using xs = αsx

′
0 + βsϵθ(xt, t), x′

0 is estimated via x′
0 = xt−βtϵθ(xt,t)

αt
. However,

one-step diffusion super-resolution models (e.g., OSEDiff (Wu et al., 2024a)), in contrast to generative
models, often start from a latent code encoded from LQ images rather than a randomly initialized
noise, thus they can usually use fewer denoising steps by directly estimating x0 from xt using DDIM.

2.2 PORTRAIT IMAGE SUPER-RESOLUTION (PORTRAITISR)
We follow OSEDiff (Wu et al., 2024a) to formulize the general image super-resolution task as
x̂H = argminxH

Ldata(Φ(xH), xL) + λLreg(xH), where x̂H is the predicted high-quality (HQ)
restored image, xL the input low-quality (LQ) image, Φ the degradation function, Ldata the pair-
wise supervise term, and Lreg the regularization term. For portrait images, we separately model
the entire portrait image and the face region. We denote P the portrait image set and F the set
of aligned face images. For each portrait image xp ∈ P , we can extract its face image and
align it with a standard template using an affine transformation, denoted as xf = Ω(xp) ∈ F ,
where Ω is the projection function to transform portrait images to aligned face images. We also
introduce a reference facial image xr ∈ F to better guide the model. Thus we introduce the task
of portrait image super-resolution (PortraitISR): given input LQ image xL ∈ P and an optional
reference face image xr ∈ F or xr = 0, estimate an HQ image x̂H that (1) the enhanced HQ image
should be consistent with the input LQ image; (2) the face in the enhanced image should be consistent
with both the LQ face and reference face; (3) the entire HQ image should follow the natural image
prior. We modify the portrait ISR formula from the general one as follows:

x̂H = argmin
xH∈P

λPLP(ΦP(xH),xL) + λFLF (ΦF (Ω(xH)),Ω(xL),xr) + λregLreg(xH),

where LP and LF respectively measures the fidelity on the entire portrait image and the face region;
Lreg represents the regularization term the as the general ISR task; λP , λF and λreg is the coefficients
to balance the different terms.

3
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Similar to the general ISR task (Wu et al., 2024a), we learn a neural network model Gθ to recover
the HQ image. The training data is formulized as triplets S = {(xL,xH ,xr)|xL,xH ∈ P,xr ∈
F or xr = 0}. The learning problem is described as:

θ∗ = argmin
θ

E(xL,xH ,xr)∼S [L(xH ,xL,xr, Gθ)] (1)

L = λPLP(xH , Gθ(xL)) + λFLF (Ω(xH),Ω(Gθ(xL)),xr) + λregLreg(Gθ(xL)), (2)

where LP ,LF and Lreg are the loss or regularize terms. In the following section, we will introduce
the detailed design of the loss functions and the model.

2.3 FACE AWARE SUPERVISION

As mentioned above, simply training an ISR model on portrait data can face the problem of insufficient
supervision on face images and ambiguity for face identities. To tackle these problems, we carefully
design the face objectives LF in Eq. 2 while the other terms are derived from (Wu et al., 2024a),
which includes MSE, LPIPS, and VSD loss. Specifically, the face loss LF consists of three parts,
the face fidelity loss Lfid

F , the reference involved face identity loss Lid
F , and the face adversarial loss

Ladv
F , denoted as:

LF (x
f
H , x̂f

H ,xr) = λfidLfid
F (xf

H , x̂f
H) + λidLid

F (xf
H , x̂f

H ,xr) + λadvLF (x
f
H , x̂f

H ,xr),

where xf
H = Ω(xH)) the cropped and aligned face region in the HQ image, x̂f

H = Ω(Gθ(xL) the
face image of the model prediction, and xr the reference face image.

Face Fidelity Loss. To learn a model that can restore portrait images with a more fine-grained face,
we employed a face fidelity loss that is specifically applied on the aligned face region, denoted as

Lfid
F (xf

H , x̂f
H) = ||xf

H − x̂f
H ||2 + λLPIPSLLPIPS(x

f
H , x̂f

H). (3)

Face Identity Loss. To guide the model to preserve the identity of the face region, we developed an
identity loss. We further introduce a reference face image into the system to deal with the ambiguity
problem. To model face identity, inspired by (Wang et al., 2024a), we employ an off-the-shelf face
recognition model R : F → Rd as a feature extractor, then we build a pair-wise identity criterion
based on the cosine similarity of their recognition features as follows:

φ(x,y) =
⟨R(x), R(y)⟩

||R(x)||2 · ||R(y)||2
∈ [−1, 1] (4)

where x, y are two aligned facial images, ⟨·⟩ the inner production, and || · ||2 the L2-norm of vector.
Then we construct the identity loss considering the HQ face xf

H ∈ F , predicted face x̂f
H ∈ F and the

optional reference image xr ∈ F or xr = 0. The intuition is that the predicted face should always be
similar to the HQ face (the GT term). If there is a reference face, the identity loss should encourage
the model to take information from the reference face by explicitly taking the identity similarity of
the predicted and reference faces into account (the reference term). Further, we weight the terms by
the similarity between the HQ face and the reference face. The identity loss is formalized as follows:

Lid
F (xf

H , x̂f
H ,xr) = − log(

φ(x̂f
H ,xf

H) + 1

2
)− log(

φ(x̂f
H ,xr) + 1

2
)φ(xf

H ,xr).

Note that if there is no reference image, we define its similarity with any face to zero, i.e., φ(x, 0) =
0, ∀x ∈ F . In this case, the identity loss will have the GT term only.

2.4 ONE-STEP PORTRAITISR FRAMEWORK

Overview. As mentioned in 2.2, the portrait ISR model Gθ takes as input an LQ image xL ∈ P and
an optional reference image xr ∈ F or xr = 0. If the reference image is provided, we additionally
introduce a binary mask M ∈ {0, 1}h×w to specify the face location in the LQ image, where h and
w are the height and width of the LQ image. The model then predicts the HQ portrait image x̂H

from the given conditions. Following (Wu et al., 2024a), we build Gθ as a one-step diffusion model.
As it also requires a text prompt as input, we employ a text extractor T : P → T to estimate the
corresponding text prompt from the LQ image, where T is the text set. The portrait ISR procedure is
formalized as x̂H = Gθ(xL,xr,M, T (xL)).

4
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Architecture. As shown in Fig. 2, we start from a pre-trained latent diffusion model Ψ = (E, ϵ,D),
where E, ϵ, D represent the VAE encoder, the denoiser, and the VAE decoder, respectively. We fixed
the decoder and apply a LoRA (Hu et al., 2022) adaption to he encoder and denoiser, denoted as
Gθ = (Ẽθ1, ϵ̃θ2, D), where M̃θ means adding a LoRA adapter parameterized by θ to the module
M . We omit the subscript θ in the following. Further, to enable the denoiser with the reference
latent and mask as input, we extend its first convolution layer with additional zero-initialized filter
channels. The inference procedure is described as follows: (1) the LQ image and reference image
are encoded into latent space zL = Ẽ(xL), zr = Ẽ(xr). (2) the latents and the resized face mask
are concatenated and the denoised for one step ẑH = zL−βϵ̃(zL,zr,M

resize)
α , where α and β are the

diffusion scalar and M resize is the face mask resized to latent resolution. (3) The denoised latent are
decoded into HQ portrait image x̂H = D(ẑH).

3 PORTRAITSR-4K DATASET

While large-scale datasets (Li et al., 2023; Agustsson & Timofte, 2017; Wang et al., 2018; Liu
et al., 2015; Karras et al., 2019) have significantly facilitated the ISR and FSR field, the lack of a
high-quality portrait image dataset limits the development of PortraitISR approaches. In this work,
we propose PortraitSR-4K, a large-scale portrait dataset which consists of 30k high-quality 4K
portrait images from the internet.

Image Collection We collected the raw videos from existing datasets, including Laion2B (Schuh-
mann et al., 2022), Photo Concept Bucket1, and PD12M (Meyer et al., 2024). We selected the images
with at least 4K resolution as our raw image candidates, denoted as P .

Portrait Data Construction. After collecting the raw image set, we employ a face detector ϕ to
detect the faces in each of the images. We construct the portrait set P ⊂ P by removing the images
that include no face or the face is too small. We then cropped and aligned the detected faces via affine
transformation to form the face image set F . We construct the reference pairs R by employing the
identity criteria in Eq. 4 on each face pairs and collecting the pairs whose similarity is above certain
threshold γ, i.e. R = {(x,y)|x ∈ F ,y ∈ F , φ(x,y) > γ}. The training pairs S is constructed as
S = {(Φ(x),x,y)|x ∈ F , (Ω(x),y) ∈ R}, where the terms in the triplet represents the LQ portrait,
the HQ portrait, and the reference face image.

Dataset Splitting We collected 30k portrait data. The training set (PortraitSR-4K-Tr) consists of
27k images, and the testing set (PortraitSR-4K-Te) consists of 3k images. We construct pairs within
each subset. For the training set, all valid pairs are recorded, totaling 163k training pairs. For the
testing set, each face will have at most one reference face; if multiple similar faces are detected, we
simply select the most similar one. Finally, we reserved 190 portrait-reference testing pairs.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

Datasets. Training: To maintain a fair performance on general ISR tasks, we train our model
on a mixture of PortraitSR-4K-Tr, LSDIR (Li et al., 2023), and DIV2K (Agustsson & Timofte,
2017). The training resolution is at 1024× 1024, and the degradation pipeline is derived from Real-
ESRGAN (Wang et al., 2021c). Testing: For portrait ISR, we test our model on our PortraitSR-4K-Te,
with the input resolution at 256× 256. For general ISR, we follow (Wu et al., 2024a) to evluate the
models, consisting of images from DIV2K-VAL (Agustsson & Timofte, 2017), RealSR (Cai et al.,
2019), and DRealSR (Wei et al., 2020), whose LQ and HQ image is at 128 × 128 and 512 × 512
resolution, respectively. For FSR, following (Tsai et al., 2024), we choose celeba-Test (Liu et al.,
2015) as the testing set.

Baselines. PortraitISR: To the best of our knowledge, there is no PortraitISR specialist model, thus
we employed two kinds of baselines: (1) The General ISR (GISR) approaches, including OSEDiff (Wu
et al., 2024a), and PiSA-SR (Sun et al., 2024a). (2) The practical blending approaches, which are
the combination of an ISR and an FSR model. Specifically, we choose Real-ESRGAN (Wang et al.,

1https://huggingface.co/datasets/bghira/photo-concept-bucket
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Figure 3: Qualitative Results. While general ISR approaches can achieve good overall quality, they
can not produce high-fidelity faces. The blending approaches produce better face fidelity, but suffer
from the border effect that causes inconsistency between the face and other regions.

2021c) + CodeFormer (Wu et al., 2024b) and OSEDiff (Wu et al., 2024a) + OSEDiff Face (Wu
et al., 2024a) as the baselines. GISR: Following PiSA-SR (Sun et al., 2024a), we choose state-of-
the-art diffusion-based methods (Yue et al., 2023; Wang et al., 2024b; Lin et al., 2024; Yang et al.,
2024; Wang et al., 2024d; Wu et al., 2024b;a; Sun et al., 2024a) as baselines. FSR: We align our
baseline models with recent DEAFR (Tsai et al., 2024). The baselines are set to PSFRGAN (Chen
et al., 2021a), GFP-GAN (Wang et al., 2021b), GPEN (Yang et al., 2021), RestoreFormer (Wang
et al., 2022), CodeFormer (Zhou et al., 2022), VQFR (Gu et al., 2022), DR2 (Wang et al., 2023b),
DAEFR (Tsai et al., 2024).

Table 1: Comparison on Face ISR. We compare
HeadsUp with specialist face restoration models. We
achieve the best performance on many metrics, with the
rest of the metrics comparable to other methods. The
top two performances are labeled in red and blue.

Method PSNR↑ SSIM↑ LPIPS↓ FID↓ NIQE↓ IDA↓
PSFRGAN 20.303 0.536 0.450 66.367 3.811 1.260
GFP-GAN 19.574 0.522 0.453 46.130 4.061 1.268

GPEN 20.545 0.552 0.425 55.308 3.913 1.141
RestoreFormer 20.146 0.494 0.467 54.395 4.013 1.231
CodeFormer 21.449 0.575 0.365 62.021 4.570 1.049

VQFR 19.484 0.472 0.456 54.010 3.328 1.237
DR2 20.327 0.595 0.409 63.675 5.104 1.215

DAEFER 19.919 0.553 0.388 52.056 4.477 1.071
Ours 22.924 0.684 0.345 29.226 4.264 1.103

Metrics. Following (Wu et al., 2024a),
we employ PSNR, SSIM (Wang
et al., 2004), LPIPS (Zhang et al.,
2018a), FID (Heusel et al., 2017), and
NIQE (Zhang et al., 2015) as evaluation
metrics for all tasks. For the FISR task,
we add the IDA (Deng et al., 2019) metric
to align with in (Tsai et al., 2024). For
the GISR task, we further use MUSIQ (Ke
et al., 2021), CLIPIQA (Wang et al.,
2023a), DISTS (Ding et al., 2020) and
MANIQA (Yang et al., 2022) as the
evaluating metrics, which is consistent
with (Wu et al., 2024a). For PortraitISR,
we employed MUSIQ (Ke et al., 2021), DISTS (Ding et al., 2020) and MANIQA (Yang et al., 2022).
We employ the similarity score as defined in Eq. 4 to evaluate the identity similarity. However, the
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Table 2: Comparison on PortraitISR. We compare HeadsUp with state-of-the-art general ISR
models and blending-based models. OSEDiff Face indicates OSEDiff trained on face images. We
achieve the best performance on most of the metrics.

Type Method PSNR↑ SSIM↑ LPIPS↓ DISTS↓ FID↓ NIQE↓ MUSIQ↑ ID-Score↑ WRid ↑ WRN ↑

General ISR OSEDiff 25.19 0.7802 0.3287 0.1755 116.80 4.8639 66.0657 0.2821 0.21 0.24
PiSA-SR 24.93 0.7519 0.3506 0.1725 119.79 4.3204 66.4237 0.3118 0.17 0.13

Blending RealESRGAN+Codeformer 24.86 0.7400 0.4700 0.2600 187.61 5.2831 48.8817 0.1664 0.06 0.02
OSEDiff+OSEDiff Face 25.26 0.7810 0.3311 0.1728 116.86 4.8791 64.9308 0.3128 0.16 0.21

Portrait ISR Ours 25.64 0.8060 0.2573 0.1398 101.13 4.8813 67.7528 0.3715 0.40 0.40

Table 3: Comparison on General ISR. We compare HeadsUp with state-of-the-art GISR models on
the DIV2K, RealSR, and DRealSR dataset. We achieve state-of-the-art performance on some metrics
while maintaining comparable on the rest metrics. We highlight the top two performances on each
metric using red and blue. ‘S’ indicates the number of diffusion steps.

DataSet Method PSNR↑ SSIM↑ LPIPS↓ DISTS↓ FID↓ NIQE↓ MUSIQ↑ CLIPIQA↑ MANIQA↑

DIV2K

ResShift-S15 24.69 0.6175 0.3374 0.2215 36.01 6.82 60.92 0.6089 0.5450
StableSR-S200 23.31 0.5728 0.3129 0.2138 24.67 4.76 65.63 0.6682 0.6188
DiffBIR-S50 23.67 0.5653 0.3541 0.2129 30.93 4.71 65.66 0.6652 0.6204
PASD-S20 23.14 0.5489 0.3607 0.2219 29.32 4.40 68.83 0.6711 0.6484
SinSR-S1 24.43 0.6012 0.3262 0.2066 35.45 6.02 62.80 0.6499 0.5395

SeeSR-S50 23.71 0.6045 0.3207 0.1967 25.83 4.82 68.49 0.6857 0.6239
OSEDiff-S1 23.72 0.6108 0.2941 0.1976 26.32 4.71 67.97 0.6683 0.6148
PiSA-SR-S1 23.87 0.6058 0.2823 0.1934 25.07 4.55 69.68 0.6927 0.6400

Ours-S1 23.83 0.6170 0.3265 0.2102 28.91 4.45 64.15 0.6445 0.6162

RealSR

ResShift-S15 26.31 0.741 0.3489 0.2498 142.81 7.27 58.10 0.5450 0.5305
StableSR-S200 24.69 0.7052 0.3091 0.2167 127.20 5.76 65.42 0.6195 0.6211
DiffBIR-S50 24.88 0.6673 0.3567 0.2290 124.56 5.63 64.66 0.6412 0.6231
PASD-S20 25.22 0.6809 0.3392 0.2259 123.08 5.18 68.74 0.6502 0.6461
SinSR-S1 26.30 0.7354 0.3212 0.2346 137.05 6.31 60.41 0.6204 0.5389

SeeSR-S50 25.33 0.7273 0.2985 0.2213 125.66 5.38 69.37 0.6594 0.6439
OSEDiff-S1 25.15 0.7341 0.2921 0.2128 123.50 5.65 69.09 0.6693 0.6339
PiSA-SR-S1 25.50 0.7417 0.2672 0.2044 124.09 5.50 70.15 0.6702 0.6560

Ours-S1 25.22 0.7238 0.2671 0.1943 131.07 4.86 65.05 0.6296 0.6332

DRealSR

ResShift-S15 28.45 0.7632 0.4073 0.2700 175.92 8.28 49.86 0.5259 0.4573
StableSR-S200 28.04 0.7460 0.3354 0.2287 147.03 6.51 58.50 0.6171 0.5602
DiffBIR-S50 26.84 0.6660 0.4446 0.2706 167.38 6.02 60.68 0.6292 0.5902
PASD-S20 27.48 0.7051 0.3854 0.2535 157.36 5.57 64.55 0.6714 0.6130
SinSR-S1 28.41 0.7495 0.3741 0.2488 177.05 7.02 55.34 0.6367 0.4898

SeeSR-S50 28.26 0.7698 0.3197 0.2306 149.86 6.52 64.84 0.6672 0.6026
OSEDiff-S1 27.92 0.7835 0.2968 0.2165 135.29 6.49 64.65 0.6963 0.5899
PiSA-SR-S1 28.31 0.7804 0.2960 0.2169 130.61 6.20 66.11 0.6970 0.6156

Ours-S1 27.70 0.7826 0.2885 0.2038 137.48 5.81 61.59 0.6609 0.5970

cosine distance-based metric may be noisy; we further conduct user studies to measure the identity
similarity. We conducted extra user studies to evaluate the identity similarity and the naturalness of
the faces produced by different models. In the user study, the participants are given several candidate
face images, and they are asked to select one image that best meets a certain criterion. We report the
“win rate (WR)” as the user study metric. The win rate of one method is the frequency it is selected as
the best image, out of all the selections. We denote the face naturalness metric as WRN, where users
are asked to select the most natural face. The identity similarity is measured by WRid, where users
are given the ground-truth face and asked to select the most similar candidate face image.

Implementation Details. We initialize the base diffusion model Ψ using SD 2.1 model (Rombach
et al., 2021). The degradation function Φ is derived from Real-ESRGAN (Wang et al., 2021c). The
face extractor is set as CVLFace (Kim et al., 2024). For the text prompt extractor, we adopt the
DAPE module in (Wu et al., 2024b). The LoRA rank for all modules is set to 4. We train our
model with AdamW (Loshchilov & Hutter, 2017) optimizer with the learning rate of 5× 10−5. The
loss weighting is set as λfid = 1, λid

LPIPS = 0.8, λid = 4, while the rest weights are derived from
OSEDiff (Wu et al., 2024a). We train our model on eight A100 GPUs.

4.2 COMPARISON ON PORTRAITISR

We compare our model with the baselines on PortraitSR-4K-Te dataset. The quantitative results are
shown in Tab. 2. We observe that HeadsUp continuously achieves state-of-the-art performance on
most of the metrics. The qualitative results are illustrated in Fig 3, from which we observe that (1)
the general ISR approaches can achieve good enhancement in non-facial regions, but they usually
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Table 4: Ablation Studies. We ablate the key component of HeadsUp. Compare the first and fourth
row, adding the face-aware loss significantly improves both the photometric criteria of the entire
image and the identity similarity of the face region. Adding Lfid

F alone (second row) slightly improves
the identity similarity. Using Lid

F alone (third row) can significantly improve the identity similarity, at
the cost of introducing significant blur effects, shown by the low non-reference metrics and Fig. 4.
Comparing the fourth and fifth row, adding a reference image can slightly improve identity similarity.
Lfid

F Lid
F w/ xr PSNR ↑ SSIM ↑ LPIPS ↓ DISTS↓ FID↓ NIQE↓ MUSIQ ↑ ID-Score↑

25.07 0.8059 0.2755 0.1533 111.16 4.9286 69.2658 0.2600
✓ 25.65 0.8113 0.2770 0.1631 110.44 5.1377 67.4218 0.3010

✓ 25.85 0.8122 0.2680 0.1527 104.82 5.7209 64.5272 0.4348
✓ ✓ 25.74 0.8040 0.2517 0.1360 99.55 4.5785 69.0616 0.3634
✓ ✓ ✓ 25.64 0.8060 0.2573 0.1398 101.13 4.8813 67.7528 0.3715

suffer from hallucinated faces. (2) The hybrid blending approaches, in contrast, can preserve more
detail and identity of the face, but can easily cause inconsistency around the boundary regions.

4.3 COMPARISON ON GISR AND FISR TASKS

In this section, we evaluate HeadsUp on the general image super-resolution (GISR) and face image
super-resolution (FISR) datasets. The experimental results show that our method can generalize to
other datasets and achieves competitive performance on all the tasks.

Comparison on GISR task. We show that our model can generalize to the GISR task. We compare
our model with state-of-the-art GISR methods on real-world image super-resolution datasets. The
results are shown in Tab. 3. We achieve state-of-the-art in multiple metrics (NIQE on RealSR,
LPIPS on DRealSR, etc.). Regarding the rest of the metric, we reach comparable performance to the
state-of-the-art general image super-resolution approaches.

Comparison on FISR task. We also show the HeadsUp’s ability to generalize to the face image
super-resolution task. We employed the widely used synthetic face dataset CelebA-Test (Liu et al.,
2015) as the testing set. CelebA-Test consists of 3000 cropped and aligned faces. Following the
settings in (Tsai et al., 2024), we evaluated HeadsUpon the aligned face dataset, and compared it with
the state-of-the-art specialist FISR models. The results can be found in Tab. 1. We achieve the best
performance on most metrics and comparable performance on the rest of the metrics.

4.4 ABLATION STUDIES

Figure 4: Ablation Studies. Us-
ing the identity loss only, though,
improves the identity-preservation
ability, but will lead to over-smooth
and blurred faces.

Ablation on Face Aware Losses. We ablate each compo-
nent of the face-aware losses. From Tab. 4 we observe that
without face-aware supervision (first row ) will lead to better
no-reference metrics, while the identity of the face is not pre-
served. Adding Lfid

P (second row )can improve the ID-Score.
Using the identity loss alone (third row) can encourage the
model to keep the identity, but the image quality will signif-
icantly drop. The reason is that the identity loss employed a
feature similarity score, which may encourage the model to
produce blurred and smoothed faces, as shown in Fig. 4.

Ablation on Reference Images. Our model can restore por-
trait images with or without a reference image. We compare
the performance of the models with reference (last row) and
without reference (fourth row). We observe that the reference
image slightly improves the identity score but reduces image
quality by a small margin.

5 RELATED WORKS

5.1 GENERAL IMAGE SUPER-RESOLUTION

General image super-resolution (GISR) aims to restore HQ images from LQ inputs. SRCNN (Dong
et al., 2015) first employed convolutional neural networks to solve the GISR problem. Following
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approaches further developed more powerful deep learning approaches for GISR by improving CNN
structure (Lim et al., 2017; Zhang et al., 2018c;b), introducing attentions (Dai et al., 2019; Zhang et al.,
2022) or transformers (Chen et al., 2023a;b; Liang et al., 2021; Chen et al., 2021b), or leveraging
multi-scale features (Li et al., 2018a; Gao & Zhuang, 2019). With the development of generative
models, SR-by-generating became an important branch of GISR. SRGan (Ledig et al., 2017) first
introduced the generative prior of GAN (Goodfellow et al., 2020) into image super-resolution. The
generative prior enables SR models to produce better texture details. The following works (Zhang
et al., 2021; Wang et al., 2021c; Xie et al., 2023; Liang et al., 2022b;a; Zhang et al., 2021) push
super-resolution to real-world images, whose degradation is unknown to the algorithm, by developing
complex degradation pipelines. Recently, many works have explored leveraging generative priors in
diffusion models for GISR (Wu et al., 2024b; Yue et al., 2023; Yang et al., 2024; Wu et al., 2024a;
Wang et al., 2024d; Sun et al., 2024a; Lin et al., 2024). Although achieving great success regarding
the general image quality, just like other GISR methods, they often produce unnatural and low-fidelity
faces for portrait images.

5.2 FACE IMAGE SUPER-RESOLUTION

Face image super-resolution (FISR) is a task that specifically focuses on aligned facial images.
Compared to general natural images, humans are more sensitive to the details of faces. Thus, FISR
requires more fine-grained restoration of details. Many designs have been made to achieve high-
fidelity face image super-resolution. For example, some approaches (Chen et al., 2018; Shen et al.,
2018; Kim et al., 2019; Yu et al., 2018; Zhang & Wu, 2022) employed face structure or landmarks to
provide a geometric prior in FISR. Reference-based methods (Zhang et al., 2024; Li et al., 2020a;b;
2018b; Chong et al., 2025) leverage one or more reference images to alleviate ambiguity and preserve
more identity while conducting super-resolution. Quantized codebook (Wang et al., 2024c; Zhou
et al., 2022; Tsai et al., 2024) is an effective way to model general face features. By querying the
codebook, these kinds of methods can generate high-quality face images from the low-quality ones.
Similar to GISR, there are also a large number of FISR models that leverage the generative prior
from GAN (Yang et al., 2020; Wan et al., 2020; Menon et al., 2020; Wang et al., 2021b) or diffusion
models (Wang et al., 2024c; Yang et al., 2023). Most FISR methods rely on the prior where the face
images are roughly aligned with a template face. When applying to a portrait image, another GISR
model is required to enhance the non-facial regions.

5.3 DIFFUSION MODELS IN IMAGE SUPER-RESOLUTION

Recent success on pre-trained large diffusion model (Rombach et al., 2021; Zhang et al., 2023; Esser
et al., 2024; Peebles & Xie, 2023) has significantly facilitated a large number of visual tasks (Li et al.,
2024b; Lugmayr et al., 2022; Saxena et al., 2023; Baranchuk et al., 2021). StableSR (Wang et al.,
2024b) employs a trainable adapter to leverage the generative prior of pre-trained diffusion models.
SeD (Li et al., 2024a) combined GANs and diffusion models to produce more photo-realistic images.
PASD (Yang et al., 2024) leverages both high- and low-level features to enable diffusion models
to perceive image local structures at a pixel-wise level. Further, several efforts have been put into
reducing the diffusion steps (Wu et al., 2024a; Wang et al., 2024d; Sun et al., 2024a). Further, PiSA-
SR (Sun et al., 2024a) provides a flexible trade-off between the pixel-wise fidelity and semantic-level
details by introducing two adjustable guidance scales on two LoRA modules.

6 CONCLUDING REMARKS

We introduce the task of PortraitISR, which aims to enhance portrait images that consist of both a
human face and other components, such as the human body and natural background. Existing ISR
approaches either general images or aligned face images, which usually suffer from low-fidelity
face restoration or inconsistency around boundaries when applied to portrait images. We propose
HeadsUp, the first end-to-end PortraitISR framework. We designed a face-aware region loss and a
reference-guidance structure to improve facial restoration quality. We further build PortraitSR-4K,
a high-resolution portrait data, facilitating future research and benchmarking in PortraitISR tasks.
Experimental results on multiple datasets show that we achieve state-of-the-art performance on the
PortraitISR task and competitive performance on the general ISR and face ISR tasks. Our proposed
PortraitSR-4K provides high-quality portrait data, which can potentially facilitate various future
research and benchmarking in fields like portrait super-resolution, generation, matting, among others.
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Ethics Statement. This work does not involve human subjects, private data, or sensitive content. All
datasets used are publicly available. The PortraitSR-4K provides high-quality portrait data, which can
potentially facilitate various future research and benchmarking in fields like portrait super-resolution,
generation, matting, etc. On the other hand, the PortraitISR model and data can be used in training
deep-fake or anti-mosaic models, which can be potentially misused.

Reproducibility Statement. We have described the procedure to construct the PortraitSR-
4K dataset in Sec. 3 and Sec. C. We have described the implementation of the proposed method and
the experimental settings in Sec. 4.1 and Sec. B. The details of the user studies are described in
Sec. B. We will make the code, checkpoints, and the dataset publicly available upon the acceptance
of this paper.
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A APPENDIX OVERVIEW

Due to space constraints in the main draft, we include implementation details, the data curation,
and experimental results in the appendix. Specifically, in Sec. B, we offer further explanation of
the implementation of our framework and the experiments. In Sec. C, we present the details of
PortraitSR-4K. Finally, in Sec. D, we present additional visual results of the main experiments.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Figure 5: Visualization of some portrait images sampled from PortraitSR-4K.

B IMPLEMENTATION DETAILS

Backbone Settings. We use the Stable Diffusion 2.1 model (Rombach et al., 2021) as the base
model for LoRA finetuning. We employ the CVLFace (Kim et al., 2024) as the face feature extractor.
The DAPE model as in (Wu et al., 2024b) is utilized to extract the language description of the input
LQ images, while the negative prompt is fixed as “painting, oil painting, illustration, drawing, art,
sketch, cartoon, CG Style, 3D render, unreal engine, blurring, dirty, messy, worst quality, low quality,
frames, watermark, signature, jpeg artifacts, deformed, lowres, over-smooth” to avoid synthetic and
low-quality styles.

Model details. We concatenated the LQ latent (4 channels), the reference latent (4 channels), and
the resize binary mask (one channel) before sending them to the denoise UNet. We modify the
‘conv-in’ layer to enable the denoising UNet with a nine-channel input. The first four channels for the
new convolution filter are initialized from the base model, while the five channels are initialized to
zero. The bias of the convolution layer is initialized from the base model.

Face Alignment. We leverage FaceLib to detect face landmarks following (Zhou et al., 2022).
We then estimate the affine transformation between the detected landmark and a template landmark
using the ‘estimateAffinePartial2D’ in OpenCV. The wrapping transformation is implemented using
‘affine grid’ and ‘grid sample’ in PyTorch to ensure the procedure is differentiable.

Training and Evaluation. The training and inference resolution is at 1024× 1024. We train the
model for 150k steps in two stages. The first consists of 40k steps, the ratio of training data is
PortraitSR− 4K : ffhq : lsdir : div2k = 0.15 : 0.05 : 1.7 : 0.3. The second stage consists of
the remaining 110k steps, and the ratio of mixed training data is PortraitSR− 4K : ffhq : lsdir :
div2k = 1.5 : 0.5 : 1.7 : 0.3. The probability of dropping the reference image in both stages is
0.2. For evaluation metrics, we use pyiqa (Chen & Mo, 2022) to calculate the PSNR, SSIM, LPIPS,
DISTS, NIQE, MUSIQ, CLIPIQA, and MANIQA-pipal scores. The rest of the metrics are calculated
using their original codes.

User Study Details. We collected 36 questionnaires for the win rate on similarity (WRid), each
questionnaire contains 58 questions randomly sampled from the testset. For each question, participants
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are given five face images produced by the five approaches in Tab. 2, and one ground-truth face image.
Participants are asked to select the image that is most similar to the ground-truth face image. We
collected 28 questionnaires for the win rate on naturalness (WRN), each questionnaire contains 58
questions randomly sampled from the testset. For each question, participants are provided with five
face images produced by the five models. The ground-truth image is not provided. Participants are
asked to select the most natural face out of the five given images. In both questionnaires, the order of
options is randomly shuffled.

C PORTRAITSR-4K DETAILS

We selected the images that are at least 3840× 2160, with the longest side exceeding 3840 pixels,
as candidates. The aspect ratio of the images ranges from 0.6 to 1.6. We further filter the images
using the Q-align (Wu et al., 2023) aesthetic and quality scores. We detect the face in each image
using FaceLib. We drop faces whose distance between the two eyes is less than 64 pixels. We
leverage CVLFace(Kim et al., 2024) to estimate the similarity of face pairs. We exclude face pairs
whose similarity is below 0.65. The reference face is cropped and aligned using the face alignment
techniques described in Sec. B. We visualize several portrait images sampled from PortraitSR-4K in
Fig. 5.

D EXPERIMENTAL RESULTS

We show more visualization results on the PortraitISR task in Fig. 6. As shown in the figure, our
model achieves better face fidelity compared to general ISR models, while avoiding inconsistent
borders compared to blending-based approaches. The visual results for the GISR task are shown in
Fig. 7, which demonstrate our competitive performance compared to the state-of-the-art models. The
visual results for the FISR task are shown in Fig. 8. Our model achieves performance comparable to
that of the specialists for face image super-resolution.

E THE USE OF LARGE LANGUAGE MODELS (LLMS)

We leverage ChatGPT-4o (Achiam et al., 2023) to polish the paper presentation at the sentence level.
Specifically, we provided the LLM with some of the draft sentences, and asked the LLM if there was
a better version of the given sentence.
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GTOSEDiff RESR+CFOSEdiff-Face OursPiSA-SRInput

Figure 6: Visual Comparison on PortraitISR. OSEDiff-Face is a blending-based approach, the
background is handled by OSEDiff (Wu et al., 2024a) trained for general image super-resolution,
and the face region is processed by a specialist DSEDiff model that is trained on the face dataset.
Similarly, RESR+CF is the blending-based approach which combines Real-ESRGAN (Wang et al.,
2021c) and CodeFormer (Zhou et al., 2022).
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Figure 7: Visual Comparison on GISR. Our model achieves competitive results.
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GTCodeFormer DEAFR OursInput

Figure 8: Visual Comparison on FISR. Our model achieves performance comparable to that of the
FISR specialists.
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