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ABSTRACT

Accurately solving partial differential equations (PDEs) is critical for understand-
ing complex scientific and engineering phenomena, yet traditional numerical
solvers are computationally expensive. Surrogate models offer a more efficient
alternative, but their development is hindered by the cost of generating sufficient
training data from numerical solvers. In this paper, we present a novel framework
for active learning (AL) in PDE surrogate modeling that reduces this cost. Unlike
the existing AL methods for PDEs that always acquire entire PDE trajectories, our
approach strategically generates only the most important time steps with the nu-
merical solver, while employing the surrogate model to approximate the remain-
ing steps. This dramatically reduces the cost incurred by each trajectory and thus
allows the active learning algorithm to try out a more diverse set of trajectories
given the same budget. To accommodate this novel framework, we develop an ac-
quisition function that estimates the utility of a set of time steps by approximating
its resulting variance reduction. We demonstrate the effectiveness of our method
on several benchmark PDEs, including the Heat equation, Korteweg–De Vries
equation, Kuramoto–Sivashinsky equation, and the incompressible Navier-Stokes
equation. Extensive experiments validate that our approach outperforms existing
methods, offering a cost-efficient solution to surrogate modeling for PDEs.

1 INTRODUCTION

In many scientific and engineering applications, accurately solving partial differential equations
(PDEs) in the form of trajectories of states evolving over time is essential for understanding complex
phenomena (Holton & Hakim, 2013; Atkins et al., 2023; Murray, 2007; Wilmott et al., 1995). The
traditional approach involves running numerical solvers, which provide accurate solutions but are
computationally costly, taking several hours, days or even weeks to run depending on the complexity
of the problem (Cleaver et al., 2016; Cowan et al., 2001). As a result, there is significant interest
in developing surrogate models (Greydanus et al., 2019; Bar-Sinai et al., 2019; Sanchez-Gonzalez
et al., 2020; Li et al., 2020; Brandstetter et al., 2022b; Lippe et al., 2024) that can approximate
the solutions more efficiently. Surrogate models are obtained by solving regression tasks on some
“ground truth” data. The ground truth data for PDEs are generated by numerical solvers, which
are costly compared to those of standard regression problems. As a result, the expense of data
acquisition presents a major bottleneck in the development of surrogate models for PDEs.

Active Learning (AL, Chernoff, 1959; MacKay, 1992; Settles, 2009) can address this challenge by
adaptively acquiring the most informative inputs, effectively reducing the amount of ground-truth
data required to obtain a high-quality surrogate model. However, there is a general lack of research
in AL for regression tasks (Wu, 2018; Holzmüller et al., 2023), let alone PDEs. Existing studies
on AL for PDEs have predominantly dealt with univariate outputs such as energy (Pestourie et al.,
2020; Pickering et al., 2022), or predictions at a single, fixed time point (Bajracharya et al., 2024; Wu
et al., 2023b). To our surprise, the only work directly addressing AL for prediction of trajectories is
that of Musekamp et al. (2024). In this work, the surrogate model is set as an autoregressive model
that predicts the evolved state of a PDE at time t + ∆t given a state at an arbitrary time point t,
and is trained on data acquired by existing regression-based AL methods (Holzmüller et al., 2023).
Specifically, at each round of acquisition, the AL method chooses initial conditions from which
entire trajectories are acquired. However, we argue that querying all the states in a trajectory is not
sample-efficient, especially for autoregressive surrogate models.
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Figure 1: Conceptual illustration of our framework for
data acquisition. Each dot represents a PDE state, and
a path connecting two dots represents a time step of a
simulation. Black solid lines are obtained with a nu-
merical solver and red dotted lines with a surrogate
model.

(a) QoI (b) Single-state

(c) Autoregressive

Figure 2: Task settings assumed by pre-
vious works in active learning of PDEs.

Acquiring entire trajectories is inefficient mainly for two reasons. First, states within a trajectory are
often strongly correlated, undermining their diversity or the joint information gain (Houlsby et al.,
2011; Kirsch et al., 2019). We validate this assertion in Appendix C.1 through principal component
analysis. Secondly, even if they are not strongly correlated, it can be the case that only certain time
steps of a trajectory are the most informative due to the dynamics of the PDE. In both cases, noting
that the main cost is in running the numerical solver, it would be ideal to selectively acquire only the
most important time steps with the numerical solver, for a fraction of the cost of acquiring the entire
trajectory. However, this is usually impossible without querying all the time steps that come earlier.

In this paper, we propose a novel, flexible framework for data acquisition that circumvents the
constraint of having to query all time steps in a trajectory, along with an AL strategy that leverages
this flexibility. Our method combines both a numerical solver and a surrogate model to acquire data
along a trajectory with reduced cost. Specifically, it selects which time steps along a trajectory to
query from the solver, while using the surrogate model to approximate the remaining steps. We also
develop a novel acquisition function that guides our AL strategy in choosing which time steps to
query to the numerical solver in each trajectory.

Overall, our framework, equipped with the novel AL strategy, significantly improves surrogate
model performance over previous methods. We validate our approach through extensive experiments
on benchmarks, including the Heat equation, Korteweg–De Vries equation, Kuramoto–Sivashinsky
equation, and the Navier-Stokes equation. Additionally, we analyze the behavior of our AL method,
providing insights into the factors that contribute to its effectiveness.

2 BACKGROUND

2.1 PRELIMINARIES

We consider PDEs with one time dimension t ∈ [0, T ] and possibly multiple spatial dimensions
x = [x1, x2, . . . , xD] ∈ X where X is the spatial domain such as the unit interval. These can be
written in the form

∂tu = F (t,x,u, ∂xu, ∂xxu, . . . ), (1)

where u : [0, T ] × X → Rn is a solution to the PDE. We are also given a specific boundary
condition and a fixed time interval ∆t. If the PDE is well-posed (Evans, 1988), there exists, for each
t0 ∈ R, an evolution operator Gt0 which maps an initial condition u0 := u(t0, ·) to the solution
u1 := u(t0 + ∆t, ·). For simplicity, we only consider time-independent PDEs, for which the
evolution operator Gt is the same for all t, say G. Iterating over G multiple times, we can obtain a
trajectory

(
ui

)L
i=1

of length L, where ui := G(i)[u0] with G(i) being the i-th iterate of G. Although
a numerical solver Gsolver is only an approximation to G, we shall not distinguish between the two
for the remainder of this paper.

There are three primary tasks in active learning for PDEs, each depending on the type of surrogate
model being trained. The first task, univariate Quantity of Interest (QoI) prediction, focuses on
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learning a model to directly predict a scalar QoI, denoted as y, from an initial condition u0. The
second task, single-state prediction, involves learning a model to predict a single state transition
from u0 to u1 over a fixed time interval ∆t. The third task, autoregressive trajectory prediction,
aims to approximate the ground truth evolution operator G using a surrogate model to predict the
entire time evolution of the states. Fig. 2 provides a visual comparison of the three tasks. In this
paper, we focus on the autoregressive trajectory prediction task.

We train a neural surrogate model Ĝ with input-output pairs (ui−1,ui) from the numerical solver
G. Active learning builds a high quality training dataset by adaptively selecting informative inputs
to be fed into the solver G. Prior work (Musekamp et al., 2024) operates on the the framework
where initial conditions u0 are selected from a pool P , from which full trajectories of length L are
obtained. For instance, Query-by-Committee (QbC, Seung et al., 1992) queries initial conditions
u0 that maximize the predictive uncertainty estimated from a committee of M models,

aQbC(u
0) =

1

M

M∑
m=1

L∑
i=1

∥ûi
m − ¯̂ui∥22 (2)

where ûi
m is the prediction of the ith state from the mth surrogate model in the committee and

¯̂ui := 1
M

∑M
m=1 û

i is the mean prediction from the committee.

2.2 PROBLEM SETTING

Our ultimate objective is to obtain a surrogate model Ĝ that approximates the expensive numerical
solver G with low error

1

Ntest

Ntest∑
j=1

err
(
(G(i)[u0

j ])
L
i=1, (Ĝ

(i)[u0
j ])

L
i=1

)
(3)

where err(·, ·) is an error metric. Obtaining the surrogate model requires sampling training data
from the numerical solver, which incurs a nontrivial cost. AL aims to improve sample efficiency by
sampling only the most important data. In particular, AL utilizes the current surrogate model Ĝ, or
a committee of surrogate models {Ĝm}Mm=1, to inform its choice. After acquiring the data chosen
by AL, we retrain the surrogate Ĝ with the expanded training dataset.

We assume that there exists a pool P of initial conditions u0. At each round of AL, we train a
committee of M surrogate models {Ĝm}Mm=1 with the training dataset collected from G up to that
round. We then use this committee to select a batch of inputs to be queried to the solver G and add
them to the training dataset. The cost at each round, defined as the number of inputs queried to the
numerical solver G, is limited to a certain budget B. Our aim is to achieve low errors at each round,
so an AL strategy would ideally acquire data with cost as close to or equal to the budget (Li et al.,
2022a).

3 FLEXIBLE ACTIVE LEARNING FOR PDES

3.1 FRAMEWORK OF DATA ACQUISITION

We present our method, FLEXAL, which operates under a framework of data acquisition that is
much more sample efficient than previous works. Algorithm 1 provides an overview of our frame-
work. We start with a surrogate model Ĝ, or a committee of surrogate models {Ĝm}Mm=1, trained
with the initial dataset D. At every round of AL, we choose an initial condition u0 from the pool
P , similar to the existing AL methods for PDE trajectories. However, while existing methods ac-
quire the entire trajectory starting from the chosen initial condition u0 (Musekamp et al., 2024), our
method acquires a partial trajectory. Specifically, we select a subset of time steps to simulate from
u0, rather than acquiring the full trajectory. The rationale behind this approach is that, given a fixed
budget, acquiring as many trajectories as possible—albeit partially—from different initial conditions
is often more beneficial than fully acquiring fewer trajectories. This strategy enables more efficient
exploration of the data space and improves the overall sample efficiency of the framework.
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Algorithm 1 Overview of Flexible Active Learning (FLEXAL)

Require: Pool P of initial conditions, budget B per round, number of rounds R, numerical solver
G, trajectory length L, initial training dataset D

Ensure: Trained surrogate model Ĝ
1: Train Ĝ on D
2: for round = 1 to R do
3: cost← 0
4: while cost < B do
5: Choose initial condition u0 from P ▷ Section 3.3
6: P ← P \ {u0}
7: Choose sampling pattern S = (b1, . . . , bL) ▷ Sections 3.2 and 3.3
8: û0 ← u0

9: for i = 1 to L do

10: ûi ←
{
G[ûi−1] if bi = true

Ĝ[ûi−1] if bi = false
11: if bi = true then
12: D ← D ∪ {(ûi−1, ûi)}
13: cost← cost + 1
14: end if
15: end for
16: end while
17: Train Ĝ on D
18: end for

More specifically, for a given initial condition u0, we define a boolean sequence of length
L, S = (b1, . . . , bL), which we refer to as the sampling pattern. For example, S could be
(true, false, . . . , true). The sampling pattern specifies that data will be acquired only at time steps
corresponding to true values while skipping those marked false.

After selecting the sampling pattern S, the next step is to acquire the PDE trajectory. While ac-
quiring a full trajectory is straightforward using a numerical solver G, obtaining a partial trajectory
corresponding to S can be tricky. We want to run the solver G only for the time steps specified by S
(those with true patterns), but the solver requires the skipped time steps (those with false patterns) as
intermediate inputs. If we just run the solver for all time steps for this reason, we wouldn’t be saving
any cost. To address this, we use a simple heuristic: for the skipped time steps, we replace the simu-
lation with predictions from the surrogate model (we use the average surrogate Ĝ = 1

M

∑M
m=1 Ĝm

when we have a committee). That is, starting with û0 = u0, we iterate over 1 ≤ i ≤ L:

ûi =

{
G[ûi−1] if bi = true

Ĝ[ûi−1] if bi = false.
(4)

We add to our dataset D only the input-output pairs obtained with the solver G, namely (ûi−1, ûi)
with bi = true.

In comparison to full trajectory acquisition, which requires L executions of the numerical solver,
our strategy invokes the numerical solver ∥S∥ :=

∑L
i=1 1[bi = true] times and utilizes the surro-

gate model L − ∥S∥ times. Since the surrogate model is significantly cheaper to evaluate than the
numerical solver, this approach substantially reduces the cost of acquisition, enabling us to explore
more initial conditions within the same budget. In fact, as discussed in Section 2.2, we define the
acquisition cost precisely as ∥S∥. We repeat expanding our training dataset with new initial condi-
tions and sampling patterns until the cost incurred in the current round reaches a budget B. At the
end of each round, we retrain the surrogate Ĝ with the expanded training dataset D.

Previous methods listed in Musekamp et al. (2024) can be considered a special case of ours where the
sampling pattern S is always full of true entries. Our framework is therefore a strict generalization
of previous works. In the remainder of this section, we describe how FLEXAL adaptively chooses
initial conditions u0 and sampling patterns S.
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3.2 ACQUISITION FUNCTION

To adaptively select the sampling pattern S with the initial condition u0, we propose a novel ac-
quisition function a(u0, S) that assesses the utility of S. Given a committee {Ĝm}Mm=1, consider
(Ĝa, Ĝb) for some a, b ∈ [M ] := {1, . . . ,M} with a ̸= b. We define the utility of the sampling
pattern S for the pair (Ĝa, Ĝb) as the resulting variance reduction in the pair’s rolled-out trajecto-
ries. Specifically, let ûa and ûb be the trajectories estimated by Ĝa and Ĝb, starting from u0. Next,
we obtain a rollout using Eq. 4 with our sampling pattern S and surrogate model Ĝb, where Ĝa

serves as a stand-in for the ground-truth solver G. We denote the resulting trajectory as ûb,S,a. The
variance reduction is defined as

R(a, b, S) :=

L∑
i=1

(
∥ûi

a − ûi
b∥2 − ∥ûi

a − ûi
b,S,a∥2

)
. (5)

The sampling pattern S that maximizes R(a, b, S) is the one where the current models Ĝa and Ĝb

disagree the most, and acquiring data from S effectively reduces this discrepancy. Our acquisition
function is defined as the average variance reduction between all the distinct pairs in the committee:

a(u0, S) =
1

M(M − 1)

∑
a,b∈[M ],a ̸=b

R(a, b, S). (6)

We observe that our acquisition function simplifies to QbC in Eq. 2 when S acquires all the time
steps, differing only by a constant factor of two. This occurs because, in that case, ûb,S,a = ûa,
which makes the second term in the summand of Eq. 2 vanish. Consequently, we can interpret our
acquisition function as a generalization of QbC that accommodates for the selection of time steps.

As an additional sanity check, consider the scenario where S does not sample any time steps. In
this situation, ûb,S,a = ûb, leading the two terms in the summand to cancel each other out, resulting
in zero variance reduction. Since acquiring no data should yield zero utility, we confirm that our
acquisition function behaves as expected in this limiting case. Appendix D.1 further details the
precise motivation behind the design of our acquisition function.

3.3 BATCH ACQUISITION ALGORITHM

With the acquisition function defined above, we present a batch acquisition algorithm given a pool
P of initial conditions . We define the cost of a batch {(u0

j , Sj)}Nj=1 as the total number of queries
to the solver,

∑N
j=1 ∥Sj∥. A standard objective is to maximize

∑N
j=1 a(u

0
j , Sj) under a budget

constraint
∑

j ∥Sj∥ ≤ B, to which there is a known approximate solution (Salkin & De Kluyver,
1975) that greedily maximizes the cost-weighted acquisition function a∗(u0, S) = a(u0, S)/∥S∥
until the total cost exceeds the budget B. However, this method faces two problems. First, it’s
questionable whether the sum

∑N
j=1 a(u

0
j , Sj) of individual acquisition values is actually a good

representative for the utility of a batch. In fact, numerous works report that picking instances that
maximize individual acquisition values can severely underperform compared to methods that take
into account the interactions between those instances (Kirsch et al., 2019; Ash et al., 2019). The
problem is chiefly attributed to the lack of diversity and representativeness (Wu, 2018) caused by
oversampling of small, high value regions (Smith et al., 2023). Secondly, we are actually searching
over the product pool of the sampling pattern S and the pool P of initial conditions, whose size is
on the order of O(2L|P|). Both terms impose significant computational burden on optimizing the
cost-weighted objective a∗(u0, S).

We therefore propose FLEXAL as an add-on to existing AL methods that acquire full trajectories.
Specifically, a full-trajectory AL method A, which we call a base method, first selects an initial
condition u0. Musekamp et al. (2024) introduces several possibilities for such a method, including
QbC (Seung et al., 1992), Largest Cluster Maximum Distance (LCMD, Holzmüller et al., 2023),
Core-Set (Sener & Savarese, 2017), and stochastic batch active learning (SBAL, Kirsch et al.,
2023). We then optimize the cost-weighted acquisition function a(u0, S) over the sampling pattern
S while holding u0 fixed, and add the pair (u0, S) to the current batch. We iterate this two-stage
process until the cost of the batch reaches our budget limit. Additionally, if the cost ever exceeds
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the budget after adding a pair, we truncate the sampling pattern so that the cost is exactly equal
to the budget. By using FLEXAL as an add-on, the diversity and representativeness promoted by
base AL methods (Holzmüller et al., 2023; Kirsch et al., 2023; Musekamp et al., 2024) are upheld,
and the size of the optimization space for FLEXAL is reduced to O(2L). The problem remains,
however, that O(2L) is a prohibitively large space for optimization. We therefore use a simple
greedy algorithm for searching S. In the greedy algorithm, we start by initializing S with all entries
set to true. At each step of the greedy algorithm, we propose a neighboring pattern S′ by applying
a bit-flip mutation, where each bit of S is flipped with a probability of ϵ. The proposal is accepted
only if the acquisition value a∗(u0, S′) is higher than the current value a∗(u0, S). This process of
proposal and acceptance/rejection is repeated T times. We use T = 100 and ϵ = 0.1 throughout our
experiments. A more concise summary of the batch acquisition algorithm is given in Appendix D.2.
The algorithmic complexity of batch acquisition is discussed in Section 5.7.

4 RELATED WORK

AL for PDEs. The works by Pestourie et al. (2020); Pickering et al. (2022); Gajjar et al. (2022)
apply active learning to problems involving PDEs, but their tasks are limited to predicting QoI,
such as the maximum value of an evolved state. Li et al. (2024); Wu et al. (2023b) apply their AL
methods to single-state prediction. Bajracharya et al. (2024) explores the use of active learning in
tasks of predicting steady states of PDEs, which can be seen as predicting single states at t → ∞.
Finally, Musekamp et al. (2024) experiments with active learning in predicting PDE trajectories with
autoregressive models.

Active selection of time points. While our work is the first to propose time step selection in active
learning (AL) for PDEs, the concept of selecting time points has been explored in other contexts.
For example, in physics-informed neural networks (PINNs), active selection of collocation points for
training has been widely studied (Arthurs & King, 2021; Gao & Wang, 2023; Mao & Meng, 2023;
Wu et al., 2023a; Turinici, 2024). “Labels” for PINNs, or the residual loss, can be calculated directly
at any time point using closed form equations. There are also methods in Bayesian experimental
design (BED) that choose observation times that maximize information gain about parameters of
interest (Singh et al., 2005; Cook et al., 2008). In those works, a trajectory is already “there”, but the
cost is attributed to the act of observing a time point. In contrast, in our setting, we cannot directly
acquire a time point, because there is a cost in the simulation of the trajectory.

Multi-fidelity AL. Closely related to our work is multi-fidelity active learning Li et al. (2022b);
Wu et al. (2023b); Hernandez-Garcia et al. (2023); Li et al. (2024), where outputs are acquired at
varying fidelity levels for each input, with associated costs inherent to each fidelity. In our context,
the task of actively selecting a sampling pattern for a given initial condition can be seen as a fidelity
selection problem, where acquiring all time steps corresponds to the highest fidelity but also incurs
the highest cost.

5 EXPERIMENTS

5.1 BASELINE AL METHODS

To compare with our method, we experiment with AL for full trajectory sampling introduced in
Musekamp et al. (2024). Random sampling from the pool set is the simplest method. QbC (Seung
et al., 1992) is a simple active learning algorithm that selects points according to maximum dis-
agreement among members of a committee. LCMD (Holzmüller et al., 2023) is an AL algorithm
that uses a feature map. We concatenate the last hidden layer activations of committee members at
all time steps of a trajectory, and sketch the concatenated features to a dimension of 512 using a ran-
dom projection. Kirsch et al. (2023) proposes SBAL, which randomly samples data points x with
a probability distribution proportional to its temperature-scaled acquisition value p(x) ∝ a(x)m.
We use the acquisition function of QbC with temperature m = 1. We leave out Core-Set (Sener &
Savarese, 2017) because it generally underperforms compared to the above methods, according to
both Holzmüller et al. (2023) and Musekamp et al. (2024).
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(a) Heat (b) KdV

(c) KS (d) NS

Figure 3: RMSE of AL strategies, measured across 10 rounds of acquisition. Each round incurs
constant cost of data acquisition, namely the budget B.

5.2 TARGET PDES

We evaluate our method on a range of PDEs. The first is the Heat equation in one spatial dimension.
Next, we test the nonlinear Korteweg–De Vries (KdV) equation, which is known for exhibiting soli-
tary wave pulses with weak interactions (Zabusky & Kruskal, 1965). We then apply our method to
the Kuramoto–Sivashinsky (KS) equation, another nonlinear PDE in one dimension, notable for its
chaotic dynamics. Lastly, we consider the vorticity form of the incompressible Navier-Stokes equa-
tion (NS) in two spatial dimensions. All equations are solved with periodic boundary conditions.
Additional details are in Appendix A.1.

5.3 SURROGATE MODELS

We use a Fourier Neural Operator (FNO, Li et al., 2020) to model the evolution operator G. In
particular, we train it to predict the differences between states in adjacent time steps, following
Musekamp et al. (2024). All models have four hidden layers. We use 16, 256, 128, and 32 modes
for Heat, KdV, KS, and NS equations, respectively. We also normalize the data according to the
initial dataset’s mean and standard deviation over all temporal and spatial dimensions. We use
teacher-forcing to train the FNOs, meaning that it’s simply trained on ground truth input-output
pairs from the solver G without backpropagating through two or more time steps. All models were
trained with Adam (Kingma, 2014) for 100 epochs, using a learning rate of 10−3, a batch size of 32,
and a cosine annealing scheduler (Loshchilov & Hutter, 2016).

5.4 RESULTS

We compare between the four baselines introduced in Section 5.1, and our method combined with
SBAL (SBAL+FLEXAL). The pool set has 10,000 initial conditions, and we always start with an
initial dataset of 32 fully sampled trajectories. The initial conditions in the test set are sampled from
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Table 1: Log RMSE of baseline methods and SBAL+FLEXAL, averaged across 10 rounds of ac-
quisition

Random QbC LCMD SBAL SBAL+FLEXAL

Heat −5.688±0.021 −5.924±0.025 −5.741±0.024 −5.901±0.017 −6.304±0.015

KdV 0.191±0.058 0.266±0.027 0.256±0.030 0.030±0.029 −0.088±0.040

KS −0.258±0.003 −0.268±0.003 0.046±0.013 −0.275±0.014 −0.349±0.003

NS −2.050±0.011 −2.057±0.009 −2.018±0.017 −2.052±0.009 −2.092±0.003

Table 2: Log RMSE of FLEXAL averaged across 10 rounds, and their improvement over base
methods. ∆ refers to the improvements from baselines. Negative ∆ indicates better performance of
FLEXAL.

Random QbC LCMD
+FLEXAL ∆ +FLEXAL ∆ +FLEXAL ∆

Heat −6.193± 0.021 −0.505± 0.030 −6.195± 0.015 −0.271± 0.029 −6.131± 0.024 −0.390± 0.034
KdV −0.067± 0.054 −0.258± 0.079 0.134± 0.035 −0.132± 0.044 0.286± 0.034 0.030± 0.045
KS −0.335± 0.012 −0.077± 0.012 −0.331± 0.013 −0.063± 0.013 −0.138± 0.016 −0.184± 0.021
NS −2.080± 0.003 −0.030± 0.011 −2.079± 0.008 −0.022± 0.012 −2.050± 0.007 −0.032± 0.018

the same distribution as those in the pool set. An ensemble size of M = 2 is used, as it has been
shown to be sufficient for good AL performance (Pickering et al., 2022; Musekamp et al., 2024).
We perform 10 rounds of acquisition, and the budget of each round is set to B = 8 × L where
L is the length of a trajectory. This means that full trajectory algorithms sample 8 trajectories per
round. We report their RMSE, defined in Appendix A.2. Reports of other metrics are provided in
Appendix B. Fig. 3 shows plots of the committee’s mean RMSE across the 10 rounds of acquisition,
and Table 1 summarizes the results with mean logarithmic RMSEs, where a mean is taken over all
10 rounds. We can observe from the plots that SBAL+FLEXAL outperforms other AL baselines in
a robust manner. Most notably, it improves the surrogate models on both the KS and NS equations,
where no other baseline improves significantly over random sampling. On NS, SBAL+FLEXAL
achieves an RMSE below 0.12 at the fifth round, which is only achieved by the best baseline at the
tenth round. FLEXAL has effectively halved the cost of acquisition required to obtain this accuracy.
All experiments were conducted on 8 NVIDIA GeForce RTX 2080 Ti GPUs, and the results are
averages from 5 seed values.

5.5 OTHER BASE METHODS

We also report the mean log RMSE of FLEXAL when combined with the three other base methods,
in Table 2. We find that the performance always improves over the base method with the addition
of FLEXAL, except for the case of LCMD on KdV where the difference is negligible. Fig. 4 shows
three plots of RMSE on the NS equation, where each contains a base method and its combination
with FLEXAL. We find that the discrepancy between the two are noticeably larger for base methods
that did not perform robustly when used alone. For instance, QbC tends to perform worse than
Random in the later rounds, which is also where the discrepancy between QbC and QbC+FLEXAL
becomes more noticeable. Also, LCMD performs the worst when used alone, and also creates the
largest improvement when FLEXAL is added. We can infer that adding FLEXAL has the effect
of swinging back to some loss curve, and that this effect is stronger for base methods that deviate
more from it. We do note, however, that the loss curves of FLEXAL are distinct for different base
methods.

5.6 RANDOM BERNOULLI SAMPLING OF TIME STEPS

We plot in Fig. 5 the distribution of time steps that our method chooses. The plot clearly shows
the general tendency of FLEXAL to acquire the early time steps, with an occasional selection of
the later time steps. The distributions still show clear differences between tasks, such as in their
average number of time steps per trajectory or the frequency of later time steps. These suggests that
FLEXAL is choosing time steps in an adaptive manner that’s different for each task at hand.
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(a) Random (b) QbC (c) LCMD

Figure 4: RMSE of base methods with and without FLEXAL on NS, measured across 10 rounds of
acquisition

(a) Heat (b) KdV (c) KS (d) NS

Figure 5: Timesteps chosen by SBAL+FLEXAL. Each row corresponds to an acquired trajectory,
where the black cells indicate the selected time steps. Half of all trajectories acquired in the first
rounds of active learning are shown.

We then ask ourselves: what if we perform random selection, for instance with a probability p,
for every time step? We call this method Bernoulli sampling, or Ber(p), where each entry of S
is true with probability p. Table 3 summarizes the performance of Ber(p) for p = 1/16, 1/8, 1/4,
and 1/2. Results show that FLEXAL outperforms Bernoulli sampling, except for the case of KS
where Ber(1/16) serves as a strong alternative. In general, Bernoulli sampling improves over the
base method SBAL, but it can also severely underperform at certain values of p, such as for KdV.
Still, for each PDE, there exists a value of p at which Bernoulli sampling provides an advantage
over the base method SBAL. These observations show altogether that sparse sampling of time steps
itself has an inherent advantage over full-trajectory sampling, and that FLEXAL amplifies this gain
by adaptively choosing not only the frequency of the time steps to acquire, but also their locations.
We report the full results in Appendix C.3, along with a variant of Bernoulli sampling that enforces
acquiring consecutive initial time steps.

5.7 ALGORITHMIC COMPLEXITY OF FLEXAL

The time complexity of computing our acquisition function for a single instance of (u0, S) is
O(M2L). Since we optimize the acquisition function with T steps, and we can acquire at most
B initial conditions, the time complexity of our batch acquisition algorithm is O(M2LBT ) in the
worst case. We can parallelize the optimization of multiple Sj’s to a certain extent using graphics
processing unit (GPU), which can significantly alleviate the burden of B. We can further reduce
the cost by at most a factor of M with FLEXAL MF described in Appendix A.4. Yet another al-
ternative is to decrease the number of greedy optimization steps T from 100 to 10, which reduces
the cost by a factor of 10. We call this variant FLEXAL 10. The wall-clock time of each baseline
method and FLEXAL is summarized in Table 4. The performance of SBAL with FLEXAL and its
two variants are summarized in Appendix C.4, as well as the wall-clock times on all equations. Note
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Table 3: Log RMSE with Bernoulli sampling averaged across 10 rounds of acquisition

SBAL +FLEXAL +Ber(1/16) +Ber(1/8) +Ber(1/4) +Ber(1/2)

Heat −5.901±0.017 −6.304±0.015 −6.093±0.018 −6.071±0.020 −6.057±0.026 −6.010±0.035

KdV 0.030±0.029 −0.088±0.040 0.053±0.014 0.049±0.014 0.018±0.024 −0.064±0.031

KS −0.275±0.014 −0.349±0.003 −0.365±0.008 −0.359±0.006 −0.346±0.008 −0.324±0.007

NS −2.052±0.009 −2.092±0.003 −2.088±0.005 −2.081±0.008 −2.079±0.007 −2.075±0.009

Table 4: Wall-clock time of each procedure during batch selection in NS. Measured with a single
NVIDIA GeForce RTX 2080 Ti GPU. Note that these are not the costs of data acquisition, but the
computational cost of batch selection algorithms.

Random QbC LCMD SBAL +FLEXAL +FLEXAL MF +FLEXAL 10

Time taken
(seconds) 0.1±0.1 45.5±0.2 72.2±1.4 45.1±0.2 92.2±2.6 55.9±0.4 10.5±1.2

that FLEXAL 10 incurs only a fraction of computational cost over the baseline methods, while still
achieving a significant boost in performance over its base method. After all, the increased com-
putational cost of the selection process is negligible in practical settings because the cost of data
acquisition usually far exceeds the cost of selection. In fact, without running the numerical solver
in batch mode, obtaining data for a single round in the KdV experiment takes around 20 minutes,
which is far greater than any of the costs incurred by the selection algorithms. Moreover, increasing
the pool size increases the runtime of base methods, but doesn’t incur any additional runtime on
FLEXAL.

6 CONCLUSION

In this paper, we presented a novel framework for active learning in surrogate modeling of par-
tial differential equation (PDE) trajectories, significantly reducing the cost of data acquisition while
maintaining or improving model accuracy. By selectively querying only a subset of time steps in
a PDE trajectory, our method FLEXAL enables the acquisition of informative data at a fraction of
the cost of acquiring entire trajectories. We introduced a new acquisition function that estimates
the utility of a set of time steps based on variance reduction, effectively guiding the selection pro-
cess in an adaptive manner. Through extensive experiments on benchmark PDEs, including the
Heat equation, Korteweg–De Vries equation, Kuramoto–Sivashinsky equation, and incompressible
Navier-Stokes equation, we demonstrated that our approach consistently outperforms existing AL
methods, providing a more cost-efficient and accurate solution for PDE surrogate modeling.

Our results show that FLEXAL can significantly enhance surrogate modeling in PDEs, particularly
in scenarios where the numerical solver is computationally expensive. We further showed that the
success of FLEXAL is driven by its ability to prioritize both diverse and informative time steps.
Moving forward, this framework could be extended to more complex systems and integrated with
other machine learning techniques, providing broader applicability in scientific and engineering
simulations. Future work may also explore alternative acquisition functions and applications to
simulations outside the domain of PDEs.
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REPRODUCIBILITY STATEMENT.

We present detailed description of our algorithm in Section 3.3. Details regarding the algorithm’s
hyperparameters, model architecture, training, active learning procedure, and data generation are
provided in Section 5 and Appendix A.

ETHICS STATEMENT.

We propose a new method that improves the cost efficiency of acquiring data for building a surrogate
model of PDE trajectories. Although our approach doesn’t have a direct positive or negative impact
in ethical or societal aspects, it accelerates the process of building a surrogate model for an arbi-
trary PDE. This could be used for good, such as medical simulations, environmental modeling, and
optimizing engineering designs, potentially leading to advancements in healthcare, sustainability,
and technological innovation. However, like many technologies, this method could also be misused
in domains where rapid simulations could have harmful consequences, such as the development of
hazardous materials. Therefore, researchers and practitioners should apply these methods with con-
sideration of their broader societal implications, aiming to ensure that the benefits of the technology
are used responsibly and ethically.
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A EXPERIMENTAL DETAILS

A.1 DETAILS ON PDES

In this section, we describe the PDEs used in our experiments. Each of these equations plays a
critical role in modeling physical phenomena and showcases diverse behaviors, from diffusion and
soliton dynamics to chaotic systems and fluid flow. Examples of PDE trajectories are shown in
Fig. 6.

(a) Heat (b) KdV (c) KS

(d) NS

Figure 6: Example trajectories of PDEs. (a), (b), (c): Horizontal and vertical axes represent the
temporal and spatial domain. (d): Two-dimensional states at six time points are shown.

Heat Equation The one-dimensional (1D) Heat equation is given by:

∂tu = ∂xxu, (7)

where u = u(x, t) represents the temperature distribution as a function of space x and time t. This
equation describes the process of heat conduction and diffusion in a medium. The simplicity of
the Heat equation makes it a fundamental model for understanding diffusion-like processes across
various fields in science and engineering, such as thermal conduction, population dynamics, and
chemical diffusion. For our experiments, we solve this equation using the pseudospectral method
with Dormand–Prince solver as in Brandstetter et al. (2022a).

Korteweg–De Vries (KdV) Equation The second equation we study is the Korteweg–De Vries
(KdV) equation, given by:

∂tu+ u∂xu+ ∂xxxu = 0, (8)

where u = u(x, t) represents a wave profile evolving over space and time. This nonlinear PDE
describes the evolution of shallow water waves, and its most famous characteristic is the presence of
solitons—solitary, stable wave packets that maintain their shape over long distances and weak inter-
actions with other waves (Zabusky & Kruskal, 1965). Solitons have important applications in fluid
dynamics, plasma physics, and optical fiber communications. The KdV equation’s nonlinearity and
third-order spatial derivative (∂xxx) allow it to capture complex wave behavior. The equation is also
known for conserving key quantities like energy. We solve this equation using the pseudospectral
method with Dormand–Prince solver as in Brandstetter et al. (2022a).

Kuramoto–Sivashinsky (KS) Equation The Kuramoto–Sivashinsky (KS) equation is a fourth-
order nonlinear PDE, written as:

∂tu+ ∂xxu+ ∂xxxxu+ u∂xu = 0, (9)
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Table 5: Domain lengths and discretizations for trajectory learning.

PDE Domain Length (T,X) Resolution (L,Nx)

Heat (13.0, 6.28) (13, 256)
KdV (52.0, 128.0) (13, 256)
KS (13.0, 1.0) (26, 256)
NS (13.0, 1.0, 1.0) (13, 32, 32)

where u = u(x, t) is the evolving field in space and time. The KS equation is known for its chaotic
behavior and is used to model phenomena such as flame front propagation, plasma instabilities,
and thin film dynamics. Its chaotic nature arises from the interplay between destabilizing nonlinear
terms and stabilizing higher-order diffusion terms. The equation is particularly challenging to solve
due to its sensitivity to initial conditions and long-term unpredictability. To handle this complexity,
we use the Exponential Time Differencing (ETD) fourth-order Runge-Kutta method, as introduced
by Kassam & Trefethen (2005). This numerical method is well-suited for stiff PDEs like the KS
equation.

Navier-Stokes (NS) Equation The final equation we consider is the vorticity form of the incom-
pressible Navier-Stokes (NS) equation, which governs the motion of viscous fluid flows. In two
spatial dimensions, the vorticity formulation is given by:

∂tu+ v · ∇u = ν∇2u+ f, ∇ · v = 0, (10)

where u(x1, x2, t) is the vorticity, v is the velocity field, ν is the kinematic viscosity, and f(x1, x2)
is an external forcing term. The Navier-Stokes equations describe the behavior of incompressible
fluid flow, playing a central role in understanding turbulence, weather patterns, and aerodynamics.
The external forcing term f(x1, x2) is set to

f(x) = 0.1 (sin(2π(x1 + x2)) + cos(2π(x1 + x2))) , (11)

which injects energy into the system, driving complex fluid dynamics. In our experiments, we adapt
the Crank–Nicolson method implemented by Li et al. (2020).

Initial conditions As per Brandstetter et al. (2022a), states are first sampled from a simple dis-
tribution and then evolved for a certain time to obtain the initial conditions. The evolved initial
conditions are more realistic than the sampled states, in that they are more likely to be observed
under a system governed by the respective PDEs. This procedure hence approximates applications
where the initial conditions of interest are realistic states either from observed data (Jumper et al.,
2021; Kalnay, 2003; Chassignet et al., 2007; Taylor et al., 2012) or carefully crafted synthetic data
(Jarrin et al., 2006; Kusner et al., 2017). For 1D equations, the states are sampled from truncated
Fourier series with random coefficients (Brandstetter et al., 2022a), and for the 2D NS equation,
states are sampled from a Gaussian random field as described in Li et al. (2020). The lengths and
discretizations of trajectories are summarized in Table 5.

A.2 ERROR METRICS

The test set always consists of 1,000 trajectories, on which several error metrics are defined. The
RMSE is defined on a trajectory u as√√√√ 1

LNx

L∑
i=1

Nx∑
j=1

∥ui(xj)− ûi(xj)∥22. (12)

Similarly, the NRMSE is defined as√∑
i,j ∥ui(xj)− ûi(xj)∥22∑

i,j ∥ui(xj)∥22
(13)
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Table 6: Acquired datasize in KdV

Round 0 1 2 3 4 5 6 7 8 9 10

SBAL 416 520 624 728 832 936 1040 1144 1248 1352 1456
SBAL+FLEXAL 416 507 611 715 819 923 1027 1131 1235 1339 1443

and the MAE as

1

LNx

L∑
i=1

Nx∑
j=1

|ui(xj)− ûi(xj)|. (14)

The metrics are averaged across all trajectories in the test set. We also report their logarithmic
values averaged across all AL rounds, following Holzmüller et al. (2023). Note that we do not use
a committee’s mean prediction for computing the metrics, but instead compute the metrics for each
model and report their average.

A.3 SIMULATION INSTABILITY

It was observed that using FLEXAL on the KdV equation, the simulation crashes on a small subset
of synthetic inputs. Analysis reveals that these synthetic inputs have unusually large norms and
particularly appear in later parts of trajectories due to accumulated error. We do not attempt to fix
this problem explicitly due to the risk of over-complicating our method, and simply refrain from
adding these time steps to the training dataset. This means that FLEXAL actually acquires a smaller
number of time steps than the budget B per round of acquisition, which could be problematic when
a large subset of inputs do crash. However, we find that this is not the case, and the number of such
inputs is small enough that FLEXAL can outperform other baselines. We report the comparison of
datasize across rounds in Table 6, for a single experiment. We can see that 13 time steps were left
out in the first round due to instability, and no instability occurred in the rounds after.

Since queries that crash incur a cost, they should be avoided as much as possible. Previous works
in Bayesian optimization (Gelbart et al., 2014; Hernández-Lobato et al., 2015) propose methods
to learn these unknown constraints. Alternatively, one could simply test out large, random inputs.
In fact, we find that the maximum absolute value of an input being above 10 is a robust criterion
for predicting that the solver will crash. Either way, we could simply filter out time steps that fall
outside of these constraints during runtime of the solver, and use the freed up budget on acquiring
other trajectories. Another possible approach is to impose physical constraints on the surrogate
model (Goswami et al., 2022) that reduces the risk of outputting abnormal synthetic inputs. For
instance, the KdV equation is energy-conserving, and when this prior knowledge is encoded into the
surrogate model, the synthetic inputs would never be abnormally large like we experienced with our
naive surrogate models.

A.4 FLEXAL MF

We can also define a simpler acquisition function in the spirit of mean-field approximation. We take
the mean model Ĝ = 1

M

∑
m Ĝm, and define the variance reduction R(Ĝ, b, S) between Ĝ and a

model Ĝb in the same way as before. We then average the variance reduction between the mean
model and all models in the committee:

aMF(u
0, S) =

1

M

∑
b∈[M ]

R(Ĝ, b, S), (15)

which reduces the computational cost by a factor of M in the best case. We call this modified version
FLEXAL MF.

B FULL REPORT OF RESULTS ON MAIN EXPERIMENT

We provide a full report of all results from the main experiment. Table 7, Table 8, Table 9, Table 10
show the full results on Heat, KdV, KS, and NS equations, respectively. Fig. 7 shows the plots of
RMSE quantiles on all PDEs. Fig. 8 shows the plots of NRMSE on all PDEs.
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(a) 99% quantile, Heat (b) 95% quantile, Heat (c) 50% quantile, Heat

(d) 99% quantile, KdV (e) 95% quantile, KdV (f) 50% quantile, KdV

(g) 99% quantile, KS (h) 95% quantile, KS (i) 50% quantile, KS

(j) 99% quantile, NS (k) 95% quantile, NS (l) 50% quantile, NS

Figure 7: Mean logarithmic values of RMSE quantiles
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Table 7: Mean log metrics for Heat Equation

RMSE NRMSE MAE 99% 95% 50%

Random −5.688±0.021−6.486±0.018−7.486±0.021−4.211±0.029−4.712±0.022−5.992±0.020

SBAL −5.901±0.017−6.644±0.015−7.699±0.018−4.624±0.049−5.073±0.035−6.111±0.008

LCMD −5.741±0.024−6.494±0.023−7.541±0.024−4.466±0.027−4.945±0.026−5.940±0.023

QbC −5.924±0.025−6.637±0.025−7.724±0.024−4.848±0.027−5.222±0.024−6.068±0.024

SBAL+FLEXAL −6.304±0.015−7.014±0.015−8.114±0.015−5.284±0.020−5.653±0.012−6.433±0.014

Random+FLEXAL−6.193±0.021−6.953±0.017−7.997±0.021−4.862±0.037−5.348±0.032−6.426±0.016

QbC+FLEXAL −6.195±0.015−6.880±0.018−8.008±0.015−5.401±0.010−5.654±0.013−6.273±0.017

LCMD+FLEXAL −6.132±0.024−6.843±0.023−7.944±0.024−5.147±0.033−5.512±0.027−6.247±0.023

Table 8: Mean log metrics for KdV Equation

RMSE NRMSE MAE 99% 95% 50%

Random 0.191±0.058 −1.193±0.050−2.034±0.0452.449±0.0471.395±0.049−1.196±0.043

SBAL 0.030±0.029 −1.282±0.030−2.139±0.0271.875±0.0391.267±0.028−1.267±0.027

QbC 0.266±0.027 −1.019±0.029−1.879±0.0291.859±0.0371.251±0.029−1.019±0.031

LCMD 0.256±0.030 −1.033±0.036−1.879±0.0331.868±0.0341.322±0.034−1.100±0.038

SBAL+FLEXAL −0.088±0.040−1.378±0.040−2.239±0.0431.731±0.0401.280±0.043−1.378±0.040

Random+FLEXAL−0.067±0.054−1.425±0.047−2.228±0.0361.885±0.0331.296±0.038−1.424±0.044

QbC+FLEXAL 0.134±0.035 −1.130±0.037−2.004±0.0351.721±0.0311.120±0.037−1.286±0.035

LCMD+FLEXAL 0.286±0.034 −0.978±0.034−1.824±0.0391.799±0.0361.128±0.034−1.129±0.032

Following Holzmüller et al. (2023), we also report the 99%, 95%, and 50% quantiles of RMSE. This
is useful for analyzing the behavior of AL strategies. AL methods tend to improve performance on
points with extreme errors, thus improving performance significantly in the top quantiles, while not
so much in the middle quantiles. This is why AL methods perform differently depending on the
nature of problem. For instance, problems with more irregularities tend to benefit signficantly more
from AL methods, since the top quantile errors contribute significantly to the average error in those
problems.

As expected, the baseline methods improve performance over random sampling in the 99% quantile,
but not so much in the 95% and 50% quantiles. Suprisingly, FLEXAL robustly outperforms the
baselines in all error quantiles, which is rarely the case for existing AL methods. We can therefore
infer that FLEXAL isn’t simply sacrificing the surrogate model’s performance in some trajectories
to improve its performance in others. FLEXAL both sees a more diverse set of trajectories, and
samples the most informative time steps in each trajectory, effectively accounting for how it can
improve performance in both the high and middle quantiles of error.

C ADDITIONAL EXPERIMENTS

C.1 DIVERSITY OF SPARSELY SELECTED TIME STEPS

We provide a simple analysis to show that time steps sampled in a sparse manner are more diverse
than time steps from entire trajectories. Out of 128 trajectories, we first randomly chose 10 trajecto-
ries, which contains L×10 states. Then, out of all L×128 states, we randomly chose L×10 states.
The first choice represents full trajectory sampling, and the latter represents spare time steps sam-
pling. We probe an FNO surrogate model trained on all the 128 trajectories at its hidden layer, and
observe the hidden layer activation at each of the L×128 states. The result is shown in Fig. 9, where
black points represent states from the fully sampled trajectories and red points represent sparsely se-
lected states. The latter states are visibly more diverse, which partially explains how sampling time
steps in a sparse manner from trajectories can benefit a surrogate model.
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Table 9: Mean log metrics for KS Equation

RMSE NRMSE MAE 99% 95% 50%

Random −0.258±0.004−1.683±0.004−2.165±0.0041.097±0.0030.752±0.005−0.575±0.004

SBAL −0.275±0.014−1.700±0.014−2.184±0.0141.086±0.0170.732±0.023−0.594±0.012

QbC −0.268±0.004−1.693±0.004−2.178±0.0041.077±0.0080.739±0.013−0.582±0.006

SBAL+FLEXAL −0.349±0.003−1.774±0.003−2.265±0.0031.042±0.0110.672±0.012−0.674±0.008

Random+FLEXAL−0.335±0.014−1.759±0.014−2.248±0.0141.060±0.0150.691±0.007−0.662±0.015

QbC+FLEXAL −0.331±0.014−1.756±0.014−2.246±0.0141.050±0.0130.681±0.020−0.650±0.013

LCMD 0.046±0.015 −1.378±0.015−1.829±0.0151.204±0.0090.954±0.011−0.203±0.016

LCMD+FLEXAL −0.138±0.017−1.561±0.016−2.033±0.0171.139±0.0060.841±0.014−0.431±0.016

Table 10: Mean log metrics for NS Equation

RMSE NRMSE MAE 99% 95% 50%

SBAL −2.052±0.009−4.253±0.009−4.592±0.008−0.970±0.011−1.260±0.019−2.217±0.010

Random −2.050±0.011−4.249±0.011−4.590±0.010−0.959±0.029−1.266±0.011−2.208±0.016

QbC −2.057±0.009−4.258±0.009−4.597±0.009−0.962±0.006−1.261±0.019−2.217±0.011

LCMD −2.018±0.017−4.219±0.017−4.560±0.016−0.967±0.017−1.248±0.022−2.168±0.019

SBAL+FLEXAL −2.092±0.003−4.293±0.003−4.632±0.003−0.988±0.005−1.309±0.004−2.249±0.011

Random+FLEXAL−2.080±0.003−4.280±0.003−4.621±0.003−0.980±0.008−1.303±0.005−2.235±0.007

QbC+FLEXAL −2.079±0.008−4.280±0.008−4.619±0.008−0.979±0.003−1.293±0.017−2.238±0.005

LCMD+FLEXAL −2.051±0.007−4.253±0.007−4.593±0.007−0.984±0.011−1.258±0.009−2.211±0.013

C.2 REGULARIZATION FOR TRAJECTORY LEARNING

Brandstetter et al. (2022b) identifies a potential problem with training an autoregressive surrogate
model with teacher-forcing. The model experiences a distribution shift during inference, because
errors accumulate during rollout unlike during training. They propose a simple fix, called the push-
forward trick, which supervises the model Ĝ not with pairs of ui−1 and ui, but with pairs of Ĝ[ui−2]

and ui, where Ĝ is constantly changing throughout training. An even simpler fix that they experi-
ment with is augmenting the inputs with a Gaussian noise.

One might hypothesize that the advantage of FLEXAL comes from its regularizing effect, since the
synthetic inputs in the training set are outputs from the surrogate model Ĝ. We therefore apply the
pushforward trick and Gaussian noise augmentation on the best performing baseline method, SBAL.
The results in Table 11 shows that the effect of such regularization methods is minimal compared
to the effect of FLEXAL. This shows that the advantage of FLEXAL lies not just in its regularizing
effect.

C.3 RANDOM BERNOULLI SAMPLING OF TIME STEPS

We provide the whole list of results with Bernoulli sampling described in Section 5.6. Also, we can
enforce consecutive initial time steps sampling by bringing all the true entries in S to the beginning.
We call this method Initial Bernoulli sampling, or Initial Ber(p). We report the results with SBAL
in Table 12 and Table 13. Initial Bernoulli sampling always performs the worst, possibly because
they rarely see the time steps at the end.

C.4 EFFICIENT VARIANTS OF FLEXAL

We provide results with two efficient variants of FLEXAL, namely FLEXAL MF and FLEXAL 10.
The results are summarized in Table 14. We provide the wall-clock times of selection algorithms in
all equations, in Table 15.

We haven’t done extensive experiments with different values of T and ϵ. Increasing T improves
performance until it plateaus. Increasing ϵ values higher than a certain point deteriorates the perfor-
mance slightly. On the other hand, decreasing ϵ too much also deteriorates the performance, but can
be recovered with a higher value of T , leading to higher computational cost.
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(a) Heat (b) KdV

(c) KS (d) NS

Figure 8: NRMSE of AL strategies, measured across 10 rounds of acquisition. Each round incurs
constant cost of data acquisition, namely the budget B. These are simply scaled versions of the
RMSE plots.

D FURTHER EXPLANATION OF ACQUISITION WITH FLEXAL

D.1 MOTIVATION BEHIND THE ACQUISITION FUNCTION

Here we detail the motivation behind our acquisition function defined in Section 3.2. First, one can
imagine several alternative acquisition functions.

The most straightforward alternative is to simply use the sum of the variances at time points for
which bi = true. The variances are larger for the later time steps since they accumulate, and in our
preliminary experiments, we found that this is catastrophic as undersampling the earlier time steps
leads to the sampled trajectory being very out-of-distribution, and hence the trained surrogate model
underperforming on the test distribution.

It quickly became clear to us that we need some kind of measure of "how much total uncertainty
will be reduced by sampling these time steps", instead of "how uncertain is our model on these time
steps?" This would help select sampling patterns that reduce the out-of-distribution-ness introduced
by Ĝ. One way to approximate this is to use mutual information, as used by Li et al. (2022b). In
other words, we would rollout M trajectories with M surrogate models, and compute the mutual
information between time steps for which bi = true and all time steps. However, in preliminary
experiments, we found that this method underperforms, which we hypothesize is because relying
simply on the covariance matrix of the committee between time steps is not a good enough method
for computing the posterior uncertainty.

We identified two "pathways" through which sampling a time step reduces uncertainty in the remain-
ing time steps. First, there is the "indirect" pathway: sampling a time step will reduce the model’s
uncertainty on similar inputs, hence reducing uncertainty on the remaining time steps. This is what
is approximated by mutual information. Then, there is the "direct" pathway: sampling a time step
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(a) Heat

(b) KdV

(c) KS

(d) NS

Figure 9: PCA of FNO hidden layer’s activation pattern for both entire trajectories (black) and
sparsely sampled time steps (red)
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Table 11: Effect of regularization

SBAL +FLEXAL +Pushforward +Gaussian

Heat
RMSE −5.901±0.017 −6.304±0.015 −3.086±1.584 −5.844±0.011

NRMSE −6.644±0.015 −7.014±0.015 −3.755±1.627 −6.558±0.013

MAE −7.699±0.018 −8.114±0.015 −4.884±1.583 −7.630±0.012

KdV
RMSE 0.030±0.029 −0.088±0.040 0.924±0.613 0.017±0.042

NRMSE −1.282±0.030 −1.378±0.040 −0.245±0.689 −1.292±0.042

MAE −2.139±0.027 −2.239±0.043 −1.077±0.690 −2.162±0.041

KS
RMSE −0.275±0.014 −0.349±0.003 1.148±0.795 −0.259±0.012

NRMSE −1.700±0.014 −1.774±0.003 −0.283±0.792 −1.684±0.012

MAE −2.184±0.014 −2.265±0.003 −0.473±0.956 −2.167±0.012

NS
RMSE −2.052±0.009 −2.092±0.003 −0.060±1.118 −2.067±0.012

NRMSE −4.253±0.009 −4.293±0.003 −2.258±1.119 −4.267±0.012

MAE −4.592±0.008 −4.632±0.003 −2.619±1.107 −4.606±0.012

Table 12: Bernoulli sampling

SBAL +FLEXAL +Ber(1/16) +Ber(1/8) +Ber(1/4) +Ber(1/2)

Heat

RMSE −5.901±0.017 −6.304±0.015 −6.093±0.018 −6.071±0.020 −6.057±0.026 −6.010±0.035

NRMSE −6.644±0.015 −7.014±0.015 −6.823±0.019 −6.801±0.020 −6.791±0.027 −6.748±0.033

MAE −7.699±0.018 −8.114±0.015 −7.893±0.019 −7.872±0.019 −7.858±0.027 −7.810±0.034

KdV

RMSE 0.030±0.029 −0.088±0.040 0.053±0.014 0.049±0.014 0.018±0.024 −0.064±0.031

NRMSE −1.282±0.030 −1.378±0.040 −1.254±0.017 −1.257±0.014 −1.288±0.020 −1.370±0.033

MAE −2.139±0.027 −2.239±0.043 −2.082±0.016 −2.083±0.018 −2.120±0.025 −2.207±0.034

KS

RMSE −0.275±0.014 −0.349±0.003 −0.365±0.008 −0.359±0.006 −0.346±0.008 −0.324±0.007

NRMSE −1.700±0.014 −1.774±0.003 −1.790±0.008 −1.784±0.006 −1.771±0.008 −1.749±0.007

MAE −2.184±0.014 −2.265±0.003 −2.282±0.007 −2.276±0.006 −2.262±0.009 −2.237±0.009

NS

RMSE −2.052±0.009 −2.092±0.003 −2.088±0.005 −2.081±0.008 −2.079±0.007 −2.075±0.009

NRMSE −4.253±0.009 −4.293±0.003 −4.288±0.005 −4.282±0.008 −4.279±0.007 −4.276±0.009

MAE −4.592±0.008 −4.632±0.003 −4.626±0.004 −4.620±0.008 −4.617±0.007 −4.614±0.009

i gives out the i + 1 th state, which starts a chain reaction of reducing model uncertainty on all
successive states. Note that these two pathways are not distinct from a strictly theoretical view, but
are rather two ways of approximating uncertainty reduction.

The direct pathway motivated our acquisition function based on variance reduction. In variance
reduction, we calculate the posterior uncertainty by rolling out the trajectories with N surrogate
models, but collapse into one surrogate model at time steps for which bi = true. This effectively
computes the reduced uncertainty due to the effect of the direct pathway. With experiments, we
confirmed that this acquisition function behaves just like we wanted: it is slightly biased towards
sampling the earlier time steps, and it chooses an appropriate frequency of time steps to sample that
leads to good performance.
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Table 13: Initial Bernoulli sampling

Initial Ber(1/16) Initial Ber(1/8) Initial Ber(1/4) Initial Ber(1/2)

Heat
RMSE −6.278±0.016 −6.254±0.015 −6.182±0.019 −6.080±0.017

NRMSE −6.989±0.014 −6.966±0.014 −6.902±0.018 −6.811±0.017

MAE −8.088±0.016 −8.062±0.014 −7.987±0.019 −7.881±0.017

KdV
RMSE 0.032±0.016 −0.015±0.014 −0.001±0.018 0.011±0.014

NRMSE −1.278±0.014 −1.321±0.017 −1.303±0.018 −1.294±0.014

MAE −2.150±0.016 −2.197±0.014 −2.181±0.018 −2.168±0.014

KS
RMSE −0.302±0.009 −0.293±0.008 −0.287±0.005 −0.283±0.009

NRMSE −1.728±0.009 −1.719±0.008 −1.713±0.005 −1.708±0.009

MAE −2.216±0.008 −2.206±0.008 −2.199±0.007 −2.194±0.010

NS
RMSE −2.045±0.016 −2.044±0.014 −2.051±0.019 −2.058±0.014

NRMSE −4.246±0.014 −4.244±0.014 −4.251±0.019 −4.258±0.014

MAE −4.596±0.016 −4.594±0.014 −4.598±0.019 −4.602±0.014

Table 14: Log RMSE of more efficient FLEXAL variants averaged across 10 rounds.

SBAL +FLEXAL +FLEXAL MF +FLEXAL 10

Heat −5.901±0.017 −6.304±0.015 −6.303±0.009 −6.058±0.020

KdV 0.030±0.029 −0.088±0.040 −0.065±0.034 −0.118±0.024

KS −0.275±0.014 −0.349±0.003 −0.326±0.004 −0.316±0.009

NS −2.052±0.009 −2.092±0.003 −2.093±0.004 −2.078±0.010

D.2 BATCH ACQUISITION ALGORITHM

Algorithm 2 summarizes the batch selection algorithm of FLEXAL. Starting with an empty batch
B, the algorithm repeatedly selects initial conditions and their sampling patterns until reaching the
budget limit. It first uses the base active learning method A to choose an initial condition u0.
Then, it optimizes which time steps to sample through a greedy procedure: starting with a pattern
S that samples all time steps (all true values), it performs T iterations of random mutations. In
each iteration, it generates a candidate pattern S′ by randomly flipping entries in S with probability
ϵ (using a binary mask C where each entry is drawn from a Bernoulli distribution and the XOR
operation ⊕). If this new pattern achieves a better value according to the cost-weighted acquisition
function a∗, it becomes the current pattern. To ensure the budget isn’t exceeded, if adding the
current pattern would go over budget, the algorithm truncates it by keeping only enough true values
to exactly meet the budget. The pair of initial condition and its optimized sampling pattern (u0, S)
is then added to the batch B.
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Equation QbC +FlexAL +FlexAL 10

Heat 10.3 43.0 4.3
KdV 10.6 40.1 4.5
KS 18.1 78.4 8.6
NS 45.5 92.2 10.5

Table 15: Wall-clock times of selection algorithms for all equations

Algorithm 2 Batch Acquisition Algorithm

Require: Budget B, base active learning algorithm A, probability ϵ, number of iterations T for
greedy optimization, pool P of initial conditions, cost function cost(·) for batches.

Ensure: A batch B of initial conditions and sampling patterns.
1: B ← ∅
2: while cost(B) < B do
3: Acquire an initial condition u0 with A.
4: Initialize S ← (true, . . . , true).
5: for i = 1 to T do
6: C = (C1, . . . , CL) where C1, . . . , CL

i.i.d.∼ Ber(ε).
7: S′ = S ⊕ C
8: if a∗(u0, S′) ≥ a∗(u0, S) then
9: S ← S′.

10: end if
11: end for
12: if ∥S∥+ cost(B) > B then
13: Keep only the first (B − cost(B)) trues from S and flip the remaining trues.
14: end if
15: B ← B ∪ {(u0, S)}.
16: end while
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