
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

FLEXIBLE ACTIVE LEARNING OF PDE TRAJECTORIES

Anonymous authors
Paper under double-blind review

ABSTRACT

Accurately solving partial differential equations (PDEs) is critical for understand-
ing complex scientific and engineering phenomena, yet traditional numerical
solvers are computationally expensive. Surrogate models offer a more efficient
alternative, but their development is hindered by the cost of generating sufficient
training data from numerical solvers. In this paper, we present a novel framework
for active learning (AL) in PDE surrogate modeling that reduces this cost. Unlike
the existing AL methods for PDEs that always acquire entire PDE trajectories, our
approach strategically generates only the most important time steps with the nu-
merical solver, while employing the surrogate model to approximate the remain-
ing steps. This dramatically reduces the cost incurred by each trajectory and thus
allows the active learning algorithm to try out a more diverse set of trajectories
given the same budget. To accommodate this novel framework, we develop an ac-
quisition function that estimates the utility of a set of time steps by approximating
its resulting variance reduction. We demonstrate the effectiveness of our method
on several benchmark PDEs, including the Heat equation, Korteweg–De Vries
equation, Kuramoto–Sivashinsky equation, and the incompressible Navier-Stokes
equation. Extensive experiments validate that our approach outperforms existing
methods, offering a cost-efficient solution to surrogate modeling for PDEs.

1 INTRODUCTION

In many scientific and engineering applications, accurately solving partial differential equations
(PDEs) in the form of trajectories of states evolving over time is essential for understanding complex
phenomena (Holton & Hakim, 2013; Atkins et al., 2023; Murray, 2007; Wilmott et al., 1995). The
traditional approach involves running numerical solvers, which provide accurate solutions but are
computationally costly, taking several hours, days or even weeks to run depending on the complexity
of the problem (Cleaver et al., 2016; Cowan et al., 2001). As a result, there is significant interest
in developing surrogate models (Greydanus et al., 2019; Bar-Sinai et al., 2019; Sanchez-Gonzalez
et al., 2020; Li et al., 2020; Brandstetter et al., 2022b; Lippe et al., 2024) that can approximate
the solutions more efficiently. Surrogate models are obtained by solving regression tasks on some
“ground truth” data. The ground truth data for PDEs are generated by numerical solvers, which
are costly compared to those of standard regression problems. As a result, the expense of data
acquisition presents a major bottleneck in the development of surrogate models for PDEs.

Active Learning (AL, Chernoff, 1959; MacKay, 1992; Settles, 2009) can address this challenge by
adaptively acquiring the most informative inputs, effectively reducing the amount of ground-truth
data required to obtain a high-quality surrogate model. However, there is a general lack of research
in AL for regression tasks (Wu, 2018; Holzmüller et al., 2023), let alone PDEs. Existing studies
on AL for PDEs have predominantly dealt with univariate outputs such as energy (Pestourie et al.,
2020; Pickering et al., 2022), or predictions at a single, fixed time point (Bajracharya et al., 2024; Wu
et al., 2023b). To our surprise, the only work directly addressing AL for prediction of trajectories is
that of Musekamp et al. (2024). In this work, the surrogate model is set as an autoregressive model
that predicts the evolved state of a PDE at time t + ∆t given a state at an arbitrary time point t,
and is trained on data acquired by existing regression-based AL methods (Holzmüller et al., 2023).
Specifically, at each round of acquisition, the AL method chooses initial conditions from which
entire trajectories are acquired. However, we argue that querying all the states in a trajectory is not
sample-efficient, especially for autoregressive surrogate models.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Figure 1: Conceptual illustration of our framework for
data acquisition. Each dot represents a PDE state, and
a path connecting two dots represents a time step of a
simulation. Black solid lines are obtained with a nu-
merical solver and red dotted lines with a surrogate
model.

(a) QoI (b) Single-state

(c) Autoregressive

Figure 2: Task settings assumed by pre-
vious works in active learning of PDEs.

Acquiring entire trajectories is inefficient mainly for two reasons. First, states within a trajectory are
often strongly correlated, undermining their diversity or the joint information gain (Houlsby et al.,
2011; Kirsch et al., 2019). We validate this assertion in Appendix C.1 through principal component
analysis. Secondly, even if they are not strongly correlated, it can be the case that only certain time
steps of a trajectory are the most informative due to the dynamics of the PDE. In both cases, noting
that the main cost is in running the numerical solver, it would be ideal to selectively acquire only the
most important time steps with the numerical solver, for a fraction of the cost of acquiring the entire
trajectory. However, this is usually impossible without querying all the time steps that come earlier.

In this paper, we propose a novel, flexible framework for data acquisition that circumvents the
constraint of having to query all time steps in a trajectory, along with an AL strategy that leverages
this flexibility. Our method combines both a numerical solver and a surrogate model to acquire data
along a trajectory with reduced cost. Specifically, it selects which time steps along a trajectory to
query from the solver, while using the surrogate model to approximate the remaining steps. We also
develop a novel acquisition function that guides our AL strategy in choosing which time steps to
query to the numerical solver in each trajectory.

Overall, our framework, equipped with the novel AL strategy, significantly improves surrogate
model performance over previous methods. We validate our approach through extensive experiments
on benchmarks, including the Heat equation, Korteweg–De Vries equation, Kuramoto–Sivashinsky
equation, and the Navier-Stokes equation. Additionally, we analyze the behavior of our AL method,
providing insights into the factors that contribute to its effectiveness.

2 BACKGROUND

2.1 PRELIMINARIES

We consider PDEs with one time dimension t ∈ [0, T] and possibly multiple spatial dimensions
x = [x1, x2, . . . , xD] ∈ X where X is the spatial domain such as the unit interval. These can be
written in the form

∂tu = F (t,x,u, ∂xu, ∂xxu, . . .), (1)

where u : [0, T] × X → Rn is a solution to the PDE. We are also given a specific boundary
condition and a fixed time interval ∆t. If the PDE is well-posed (Evans, 1988), there exists, for each
t0 ∈ R, an evolution operator Gt0 which maps an initial condition u0 := u(t0, ·) to the solution
u1 := u(t0 + ∆t, ·). For simplicity, we only consider time-independent PDEs, for which the
evolution operator Gt is the same for all t, say G. Iterating over G multiple times, we can obtain a
trajectory

(
ui

)L
i=1

of length L, where ui := G(i)[u0] with G(i) being the i-th iterate of G. Although
a numerical solver Gsolver is only an approximation to G, we shall not distinguish between the two
for the remainder of this paper.

There are three primary tasks in active learning for PDEs, each depending on the type of surrogate
model being trained. The first task, univariate Quantity of Interest (QoI) prediction, focuses on

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

learning a model to directly predict a scalar QoI, denoted as y, from an initial condition u0. The
second task, single-state prediction, involves learning a model to predict a single state transition
from u0 to u1 over a fixed time interval ∆t. The third task, autoregressive trajectory prediction,
aims to approximate the ground truth evolution operator G using a surrogate model to predict the
entire time evolution of the states. Fig. 2 provides a visual comparison of the three tasks. In this
paper, we focus on the autoregressive trajectory prediction task.

We train a neural surrogate model Ĝ with input-output pairs (ui−1,ui) from the numerical solver
G. Active learning builds a high quality training dataset by adaptively selecting informative inputs
to be fed into the solver G. Prior work (Musekamp et al., 2024) operates on the the framework
where initial conditions u0 are selected from a pool P , from which full trajectories of length L are
obtained. For instance, Query-by-Committee (QbC, Seung et al., 1992) queries initial conditions
u0 that maximize the predictive uncertainty estimated from a committee of M models,

aQbC(u
0) =

1

M

M∑
m=1

L∑
i=1

∥ûi
m − ¯̂ui∥22 (2)

where ûi
m is the prediction of the ith state from the mth surrogate model in the committee and

¯̂ui := 1
M

∑M
m=1 û

i is the mean prediction from the committee.

2.2 PROBLEM SETTING

Our ultimate objective is to obtain a surrogate model Ĝ that approximates the expensive numerical
solver G with low error

1

Ntest

Ntest∑
j=1

err
(
(G(i)[u0

j])
L
i=1, (Ĝ

(i)[u0
j])

L
i=1

)
(3)

where err(·, ·) is an error metric. Obtaining the surrogate model requires sampling training data
from the numerical solver, which incurs a nontrivial cost. AL aims to improve sample efficiency by
sampling only the most important data. In particular, AL utilizes the current surrogate model Ĝ, or
a committee of surrogate models {Ĝm}Mm=1, to inform its choice. After acquiring the data chosen
by AL, we retrain the surrogate Ĝ with the expanded training dataset.

We assume that there exists a pool P of initial conditions u0. At each round of AL, we train a
committee of M surrogate models {Ĝm}Mm=1 with the training dataset collected from G up to that
round. We then use this committee to select a batch of inputs to be queried to the solver G and add
them to the training dataset. The cost at each round, defined as the number of inputs queried to the
numerical solver G, is limited to a certain budget B. Our aim is to achieve low errors at each round,
so an AL strategy would ideally acquire data with cost as close to or equal to the budget (Li et al.,
2022a).

3 FLEXIBLE ACTIVE LEARNING FOR PDES

3.1 FRAMEWORK OF DATA ACQUISITION

We present our method, FLEXAL, which operates under a framework of data acquisition that is
much more sample efficient than previous works. Algorithm 1 provides an overview of our frame-
work. We start with a surrogate model Ĝ, or a committee of surrogate models {Ĝm}Mm=1, trained
with the initial dataset D. At every round of AL, we choose an initial condition u0 from the pool
P , similar to the existing AL methods for PDE trajectories. However, while existing methods ac-
quire the entire trajectory starting from the chosen initial condition u0 (Musekamp et al., 2024), our
method acquires a partial trajectory. Specifically, we select a subset of time steps to simulate from
u0, rather than acquiring the full trajectory. The rationale behind this approach is that, given a fixed
budget, acquiring as many trajectories as possible—albeit partially—from different initial conditions
is often more beneficial than fully acquiring fewer trajectories. This strategy enables more efficient
exploration of the data space and improves the overall sample efficiency of the framework.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Algorithm 1 Overview of Flexible Active Learning (FLEXAL)

Require: Pool P of initial conditions, budget B per round, number of rounds R, numerical solver
G, trajectory length L, initial training dataset D

Ensure: Trained surrogate model Ĝ
1: Train Ĝ on D
2: for round = 1 to R do
3: cost← 0
4: while cost < B do
5: Choose initial condition u0 from P ▷ Section 3.3
6: P ← P \ {u0}
7: Choose sampling pattern S = (b1, . . . , bL) ▷ Sections 3.2 and 3.3
8: û0 ← u0

9: for i = 1 to L do

10: ûi ←
{
G[ûi−1] if bi = true

Ĝ[ûi−1] if bi = false
11: if bi = true then
12: D ← D ∪ {(ûi−1, ûi)}
13: cost← cost + 1
14: end if
15: end for
16: end while
17: Train Ĝ on D
18: end for

More specifically, for a given initial condition u0, we define a boolean sequence of length
L, S = (b1, . . . , bL), which we refer to as the sampling pattern. For example, S could be
(true, false, . . . , true). The sampling pattern specifies that data will be acquired only at time steps
corresponding to true values while skipping those marked false.

After selecting the sampling pattern S, the next step is to acquire the PDE trajectory. While ac-
quiring a full trajectory is straightforward using a numerical solver G, obtaining a partial trajectory
corresponding to S can be tricky. We want to run the solver G only for the time steps specified by S
(those with true patterns), but the solver requires the skipped time steps (those with false patterns) as
intermediate inputs. If we just run the solver for all time steps for this reason, we wouldn’t be saving
any cost. To address this, we use a simple heuristic: for the skipped time steps, we replace the simu-
lation with predictions from the surrogate model (we use the average surrogate Ĝ = 1

M

∑M
m=1 Ĝm

when we have a committee). That is, starting with û0 = u0, we iterate over 1 ≤ i ≤ L:

ûi =

{
G[ûi−1] if bi = true

Ĝ[ûi−1] if bi = false.
(4)

We add to our dataset D only the input-output pairs obtained with the solver G, namely (ûi−1, ûi)
with bi = true.

In comparison to full trajectory acquisition, which requires L executions of the numerical solver,
our strategy invokes the numerical solver ∥S∥ :=

∑L
i=1 1[bi = true] times and utilizes the surro-

gate model L − ∥S∥ times. Since the surrogate model is significantly cheaper to evaluate than the
numerical solver, this approach substantially reduces the cost of acquisition, enabling us to explore
more initial conditions within the same budget. In fact, as discussed in Section 2.2, we define the
acquisition cost precisely as ∥S∥. We repeat expanding our training dataset with new initial condi-
tions and sampling patterns until the cost incurred in the current round reaches a budget B. At the
end of each round, we retrain the surrogate Ĝ with the expanded training dataset D.

Previous methods listed in Musekamp et al. (2024) can be considered a special case of ours where the
sampling pattern S is always full of true entries. Our framework is therefore a strict generalization
of previous works. In the remainder of this section, we describe how FLEXAL adaptively chooses
initial conditions u0 and sampling patterns S.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

3.2 ACQUISITION FUNCTION

To adaptively select the sampling pattern S with the initial condition u0, we propose a novel ac-
quisition function a(u0, S) that assesses the utility of S. Given a committee {Ĝm}Mm=1, consider
(Ĝa, Ĝb) for some a, b ∈ [M] := {1, . . . ,M} with a ̸= b. We define the utility of the sampling
pattern S for the pair (Ĝa, Ĝb) as the resulting variance reduction in the pair’s rolled-out trajecto-
ries. Specifically, let ûa and ûb be the trajectories estimated by Ĝa and Ĝb, starting from u0. Next,
we obtain a rollout using Eq. 4 with our sampling pattern S and surrogate model Ĝb, where Ĝa

serves as a stand-in for the ground-truth solver G. We denote the resulting trajectory as ûb,S,a. The
variance reduction is defined as

R(a, b, S) :=

L∑
i=1

(
∥ûi

a − ûi
b∥2 − ∥ûi

a − ûi
b,S,a∥2

)
. (5)

The sampling pattern S that maximizes R(a, b, S) is the one where the current models Ĝa and Ĝb

disagree the most, and acquiring data from S effectively reduces this discrepancy. Our acquisition
function is defined as the average variance reduction between all the distinct pairs in the committee:

a(u0, S) =
1

M(M − 1)

∑
a,b∈[M],a ̸=b

R(a, b, S). (6)

We observe that our acquisition function simplifies to QbC in Eq. 2 when S acquires all the time
steps, differing only by a constant factor of two. This occurs because, in that case, ûb,S,a = ûa,
which makes the second term in the summand of Eq. 2 vanish. Consequently, we can interpret our
acquisition function as a generalization of QbC that accommodates for the selection of time steps.

As an additional sanity check, consider the scenario where S does not sample any time steps. In
this situation, ûb,S,a = ûb, leading the two terms in the summand to cancel each other out, resulting
in zero variance reduction. Since acquiring no data should yield zero utility, we confirm that our
acquisition function behaves as expected in this limiting case. Appendix D.1 further details the
precise motivation behind the design of our acquisition function.

3.3 BATCH ACQUISITION ALGORITHM

With the acquisition function defined above, we present a batch acquisition algorithm given a pool
P of initial conditions . We define the cost of a batch {(u0

j , Sj)}Nj=1 as the total number of queries
to the solver,

∑N
j=1 ∥Sj∥. A standard objective is to maximize

∑N
j=1 a(u

0
j , Sj) under a budget

constraint
∑

j ∥Sj∥ ≤ B, to which there is a known approximate solution (Salkin & De Kluyver,
1975) that greedily maximizes the cost-weighted acquisition function a∗(u0, S) = a(u0, S)/∥S∥
until the total cost exceeds the budget B. However, this method faces two problems. First, it’s
questionable whether the sum

∑N
j=1 a(u

0
j , Sj) of individual acquisition values is actually a good

representative for the utility of a batch. In fact, numerous works report that picking instances that
maximize individual acquisition values can severely underperform compared to methods that take
into account the interactions between those instances (Kirsch et al., 2019; Ash et al., 2019). The
problem is chiefly attributed to the lack of diversity and representativeness (Wu, 2018) caused by
oversampling of small, high value regions (Smith et al., 2023). Secondly, we are actually searching
over the product pool of the sampling pattern S and the pool P of initial conditions, whose size is
on the order of O(2L|P|). Both terms impose significant computational burden on optimizing the
cost-weighted objective a∗(u0, S).

We therefore propose FLEXAL as an add-on to existing AL methods that acquire full trajectories.
Specifically, a full-trajectory AL method A, which we call a base method, first selects an initial
condition u0. Musekamp et al. (2024) introduces several possibilities for such a method, including
QbC (Seung et al., 1992), Largest Cluster Maximum Distance (LCMD, Holzmüller et al., 2023),
Core-Set (Sener & Savarese, 2017), and stochastic batch active learning (SBAL, Kirsch et al.,
2023). We then optimize the cost-weighted acquisition function a(u0, S) over the sampling pattern
S while holding u0 fixed, and add the pair (u0, S) to the current batch. We iterate this two-stage
process until the cost of the batch reaches our budget limit. Additionally, if the cost ever exceeds

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

the budget after adding a pair, we truncate the sampling pattern so that the cost is exactly equal
to the budget. By using FLEXAL as an add-on, the diversity and representativeness promoted by
base AL methods (Holzmüller et al., 2023; Kirsch et al., 2023; Musekamp et al., 2024) are upheld,
and the size of the optimization space for FLEXAL is reduced to O(2L). The problem remains,
however, that O(2L) is a prohibitively large space for optimization. We therefore use a simple
greedy algorithm for searching S. In the greedy algorithm, we start by initializing S with all entries
set to true. At each step of the greedy algorithm, we propose a neighboring pattern S′ by applying
a bit-flip mutation, where each bit of S is flipped with a probability of ϵ. The proposal is accepted
only if the acquisition value a∗(u0, S′) is higher than the current value a∗(u0, S). This process of
proposal and acceptance/rejection is repeated T times. We use T = 100 and ϵ = 0.1 throughout our
experiments. A more concise summary of the batch acquisition algorithm is given in Appendix D.2.
The algorithmic complexity of batch acquisition is discussed in Section 5.7.

4 RELATED WORK

AL for PDEs. The works by Pestourie et al. (2020); Pickering et al. (2022); Gajjar et al. (2022)
apply active learning to problems involving PDEs, but their tasks are limited to predicting QoI,
such as the maximum value of an evolved state. Li et al. (2024); Wu et al. (2023b) apply their AL
methods to single-state prediction. Bajracharya et al. (2024) explores the use of active learning in
tasks of predicting steady states of PDEs, which can be seen as predicting single states at t → ∞.
Finally, Musekamp et al. (2024) experiments with active learning in predicting PDE trajectories with
autoregressive models.

Active selection of time points. While our work is the first to propose time step selection in active
learning (AL) for PDEs, the concept of selecting time points has been explored in other contexts.
For example, in physics-informed neural networks (PINNs), active selection of collocation points for
training has been widely studied (Arthurs & King, 2021; Gao & Wang, 2023; Mao & Meng, 2023;
Wu et al., 2023a; Turinici, 2024). “Labels” for PINNs, or the residual loss, can be calculated directly
at any time point using closed form equations. There are also methods in Bayesian experimental
design (BED) that choose observation times that maximize information gain about parameters of
interest (Singh et al., 2005; Cook et al., 2008). In those works, a trajectory is already “there”, but the
cost is attributed to the act of observing a time point. In contrast, in our setting, we cannot directly
acquire a time point, because there is a cost in the simulation of the trajectory.

Multi-fidelity AL. Closely related to our work is multi-fidelity active learning Li et al. (2022b);
Wu et al. (2023b); Hernandez-Garcia et al. (2023); Li et al. (2024), where outputs are acquired at
varying fidelity levels for each input, with associated costs inherent to each fidelity. In our context,
the task of actively selecting a sampling pattern for a given initial condition can be seen as a fidelity
selection problem, where acquiring all time steps corresponds to the highest fidelity but also incurs
the highest cost.

5 EXPERIMENTS

5.1 BASELINE AL METHODS

To compare with our method, we experiment with AL for full trajectory sampling introduced in
Musekamp et al. (2024). Random sampling from the pool set is the simplest method. QbC (Seung
et al., 1992) is a simple active learning algorithm that selects points according to maximum dis-
agreement among members of a committee. LCMD (Holzmüller et al., 2023) is an AL algorithm
that uses a feature map. We concatenate the last hidden layer activations of committee members at
all time steps of a trajectory, and sketch the concatenated features to a dimension of 512 using a ran-
dom projection. Kirsch et al. (2023) proposes SBAL, which randomly samples data points x with
a probability distribution proportional to its temperature-scaled acquisition value p(x) ∝ a(x)m.
We use the acquisition function of QbC with temperature m = 1. We leave out Core-Set (Sener &
Savarese, 2017) because it generally underperforms compared to the above methods, according to
both Holzmüller et al. (2023) and Musekamp et al. (2024).

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

(a) Heat (b) KdV

(c) KS (d) NS

Figure 3: RMSE of AL strategies, measured across 10 rounds of acquisition. Each round incurs
constant cost of data acquisition, namely the budget B.

5.2 TARGET PDES

We evaluate our method on a range of PDEs. The first is the Heat equation in one spatial dimension.
Next, we test the nonlinear Korteweg–De Vries (KdV) equation, which is known for exhibiting soli-
tary wave pulses with weak interactions (Zabusky & Kruskal, 1965). We then apply our method to
the Kuramoto–Sivashinsky (KS) equation, another nonlinear PDE in one dimension, notable for its
chaotic dynamics. Lastly, we consider the vorticity form of the incompressible Navier-Stokes equa-
tion (NS) in two spatial dimensions. All equations are solved with periodic boundary conditions.
Additional details are in Appendix A.1.

5.3 SURROGATE MODELS

We use a Fourier Neural Operator (FNO, Li et al., 2020) to model the evolution operator G. In
particular, we train it to predict the differences between states in adjacent time steps, following
Musekamp et al. (2024). All models have four hidden layers. We use 16, 256, 128, and 32 modes
for Heat, KdV, KS, and NS equations, respectively. We also normalize the data according to the
initial dataset’s mean and standard deviation over all temporal and spatial dimensions. We use
teacher-forcing to train the FNOs, meaning that it’s simply trained on ground truth input-output
pairs from the solver G without backpropagating through two or more time steps. All models were
trained with Adam (Kingma, 2014) for 100 epochs, using a learning rate of 10−3, a batch size of 32,
and a cosine annealing scheduler (Loshchilov & Hutter, 2016).

5.4 RESULTS

We compare between the four baselines introduced in Section 5.1, and our method combined with
SBAL (SBAL+FLEXAL). The pool set has 10,000 initial conditions, and we always start with an
initial dataset of 32 fully sampled trajectories. The initial conditions in the test set are sampled from

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 1: Log RMSE of baseline methods and SBAL+FLEXAL, averaged across 10 rounds of ac-
quisition

Random QbC LCMD SBAL SBAL+FLEXAL

Heat −5.688±0.021 −5.924±0.025 −5.741±0.024 −5.901±0.017 −6.304±0.015

KdV 0.191±0.058 0.266±0.027 0.256±0.030 0.030±0.029 −0.088±0.040

KS −0.258±0.003 −0.268±0.003 0.046±0.013 −0.275±0.014 −0.349±0.003

NS −2.050±0.011 −2.057±0.009 −2.018±0.017 −2.052±0.009 −2.092±0.003

Table 2: Log RMSE of FLEXAL averaged across 10 rounds, and their improvement over base
methods. ∆ refers to the improvements from baselines. Negative ∆ indicates better performance of
FLEXAL.

Random QbC LCMD
+FLEXAL ∆ +FLEXAL ∆ +FLEXAL ∆

Heat −6.193± 0.021 −0.505± 0.030 −6.195± 0.015 −0.271± 0.029 −6.131± 0.024 −0.390± 0.034
KdV −0.067± 0.054 −0.258± 0.079 0.134± 0.035 −0.132± 0.044 0.286± 0.034 0.030± 0.045
KS −0.335± 0.012 −0.077± 0.012 −0.331± 0.013 −0.063± 0.013 −0.138± 0.016 −0.184± 0.021
NS −2.080± 0.003 −0.030± 0.011 −2.079± 0.008 −0.022± 0.012 −2.050± 0.007 −0.032± 0.018

the same distribution as those in the pool set. An ensemble size of M = 2 is used, as it has been
shown to be sufficient for good AL performance (Pickering et al., 2022; Musekamp et al., 2024).
We perform 10 rounds of acquisition, and the budget of each round is set to B = 8 × L where
L is the length of a trajectory. This means that full trajectory algorithms sample 8 trajectories per
round. We report their RMSE, defined in Appendix A.2. Reports of other metrics are provided in
Appendix B. Fig. 3 shows plots of the committee’s mean RMSE across the 10 rounds of acquisition,
and Table 1 summarizes the results with mean logarithmic RMSEs, where a mean is taken over all
10 rounds. We can observe from the plots that SBAL+FLEXAL outperforms other AL baselines in
a robust manner. Most notably, it improves the surrogate models on both the KS and NS equations,
where no other baseline improves significantly over random sampling. On NS, SBAL+FLEXAL
achieves an RMSE below 0.12 at the fifth round, which is only achieved by the best baseline at the
tenth round. FLEXAL has effectively halved the cost of acquisition required to obtain this accuracy.
All experiments were conducted on 8 NVIDIA GeForce RTX 2080 Ti GPUs, and the results are
averages from 5 seed values.

5.5 OTHER BASE METHODS

We also report the mean log RMSE of FLEXAL when combined with the three other base methods,
in Table 2. We find that the performance always improves over the base method with the addition
of FLEXAL, except for the case of LCMD on KdV where the difference is negligible. Fig. 4 shows
three plots of RMSE on the NS equation, where each contains a base method and its combination
with FLEXAL. We find that the discrepancy between the two are noticeably larger for base methods
that did not perform robustly when used alone. For instance, QbC tends to perform worse than
Random in the later rounds, which is also where the discrepancy between QbC and QbC+FLEXAL
becomes more noticeable. Also, LCMD performs the worst when used alone, and also creates the
largest improvement when FLEXAL is added. We can infer that adding FLEXAL has the effect
of swinging back to some loss curve, and that this effect is stronger for base methods that deviate
more from it. We do note, however, that the loss curves of FLEXAL are distinct for different base
methods.

5.6 RANDOM BERNOULLI SAMPLING OF TIME STEPS

We plot in Fig. 5 the distribution of time steps that our method chooses. The plot clearly shows
the general tendency of FLEXAL to acquire the early time steps, with an occasional selection of
the later time steps. The distributions still show clear differences between tasks, such as in their
average number of time steps per trajectory or the frequency of later time steps. These suggests that
FLEXAL is choosing time steps in an adaptive manner that’s different for each task at hand.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

(a) Random (b) QbC (c) LCMD

Figure 4: RMSE of base methods with and without FLEXAL on NS, measured across 10 rounds of
acquisition

(a) Heat (b) KdV (c) KS (d) NS

Figure 5: Timesteps chosen by SBAL+FLEXAL. Each row corresponds to an acquired trajectory,
where the black cells indicate the selected time steps. Half of all trajectories acquired in the first
rounds of active learning are shown.

We then ask ourselves: what if we perform random selection, for instance with a probability p,
for every time step? We call this method Bernoulli sampling, or Ber(p), where each entry of S
is true with probability p. Table 3 summarizes the performance of Ber(p) for p = 1/16, 1/8, 1/4,
and 1/2. Results show that FLEXAL outperforms Bernoulli sampling, except for the case of KS
where Ber(1/16) serves as a strong alternative. In general, Bernoulli sampling improves over the
base method SBAL, but it can also severely underperform at certain values of p, such as for KdV.
Still, for each PDE, there exists a value of p at which Bernoulli sampling provides an advantage
over the base method SBAL. These observations show altogether that sparse sampling of time steps
itself has an inherent advantage over full-trajectory sampling, and that FLEXAL amplifies this gain
by adaptively choosing not only the frequency of the time steps to acquire, but also their locations.
We report the full results in Appendix C.3, along with a variant of Bernoulli sampling that enforces
acquiring consecutive initial time steps.

5.7 ALGORITHMIC COMPLEXITY OF FLEXAL

The time complexity of computing our acquisition function for a single instance of (u0, S) is
O(M2L). Since we optimize the acquisition function with T steps, and we can acquire at most
B initial conditions, the time complexity of our batch acquisition algorithm is O(M2LBT) in the
worst case. We can parallelize the optimization of multiple Sj’s to a certain extent using graphics
processing unit (GPU), which can significantly alleviate the burden of B. We can further reduce
the cost by at most a factor of M with FLEXAL MF described in Appendix A.4. Yet another al-
ternative is to decrease the number of greedy optimization steps T from 100 to 10, which reduces
the cost by a factor of 10. We call this variant FLEXAL 10. The wall-clock time of each baseline
method and FLEXAL is summarized in Table 4. The performance of SBAL with FLEXAL and its
two variants are summarized in Appendix C.4, as well as the wall-clock times on all equations. Note

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 3: Log RMSE with Bernoulli sampling averaged across 10 rounds of acquisition

SBAL +FLEXAL +Ber(1/16) +Ber(1/8) +Ber(1/4) +Ber(1/2)

Heat −5.901±0.017 −6.304±0.015 −6.093±0.018 −6.071±0.020 −6.057±0.026 −6.010±0.035

KdV 0.030±0.029 −0.088±0.040 0.053±0.014 0.049±0.014 0.018±0.024 −0.064±0.031

KS −0.275±0.014 −0.349±0.003 −0.365±0.008 −0.359±0.006 −0.346±0.008 −0.324±0.007

NS −2.052±0.009 −2.092±0.003 −2.088±0.005 −2.081±0.008 −2.079±0.007 −2.075±0.009

Table 4: Wall-clock time of each procedure during batch selection in NS. Measured with a single
NVIDIA GeForce RTX 2080 Ti GPU. Note that these are not the costs of data acquisition, but the
computational cost of batch selection algorithms.

Random QbC LCMD SBAL +FLEXAL +FLEXAL MF +FLEXAL 10

Time taken
(seconds) 0.1±0.1 45.5±0.2 72.2±1.4 45.1±0.2 92.2±2.6 55.9±0.4 10.5±1.2

that FLEXAL 10 incurs only a fraction of computational cost over the baseline methods, while still
achieving a significant boost in performance over its base method. After all, the increased com-
putational cost of the selection process is negligible in practical settings because the cost of data
acquisition usually far exceeds the cost of selection. In fact, without running the numerical solver
in batch mode, obtaining data for a single round in the KdV experiment takes around 20 minutes,
which is far greater than any of the costs incurred by the selection algorithms. Moreover, increasing
the pool size increases the runtime of base methods, but doesn’t incur any additional runtime on
FLEXAL.

6 CONCLUSION

In this paper, we presented a novel framework for active learning in surrogate modeling of par-
tial differential equation (PDE) trajectories, significantly reducing the cost of data acquisition while
maintaining or improving model accuracy. By selectively querying only a subset of time steps in
a PDE trajectory, our method FLEXAL enables the acquisition of informative data at a fraction of
the cost of acquiring entire trajectories. We introduced a new acquisition function that estimates
the utility of a set of time steps based on variance reduction, effectively guiding the selection pro-
cess in an adaptive manner. Through extensive experiments on benchmark PDEs, including the
Heat equation, Korteweg–De Vries equation, Kuramoto–Sivashinsky equation, and incompressible
Navier-Stokes equation, we demonstrated that our approach consistently outperforms existing AL
methods, providing a more cost-efficient and accurate solution for PDE surrogate modeling.

Our results show that FLEXAL can significantly enhance surrogate modeling in PDEs, particularly
in scenarios where the numerical solver is computationally expensive. We further showed that the
success of FLEXAL is driven by its ability to prioritize both diverse and informative time steps.
Moving forward, this framework could be extended to more complex systems and integrated with
other machine learning techniques, providing broader applicability in scientific and engineering
simulations. Future work may also explore alternative acquisition functions and applications to
simulations outside the domain of PDEs.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REPRODUCIBILITY STATEMENT.

We present detailed description of our algorithm in Section 3.3. Details regarding the algorithm’s
hyperparameters, model architecture, training, active learning procedure, and data generation are
provided in Section 5 and Appendix A.

ETHICS STATEMENT.

We propose a new method that improves the cost efficiency of acquiring data for building a surrogate
model of PDE trajectories. Although our approach doesn’t have a direct positive or negative impact
in ethical or societal aspects, it accelerates the process of building a surrogate model for an arbi-
trary PDE. This could be used for good, such as medical simulations, environmental modeling, and
optimizing engineering designs, potentially leading to advancements in healthcare, sustainability,
and technological innovation. However, like many technologies, this method could also be misused
in domains where rapid simulations could have harmful consequences, such as the development of
hazardous materials. Therefore, researchers and practitioners should apply these methods with con-
sideration of their broader societal implications, aiming to ensure that the benefits of the technology
are used responsibly and ethically.

REFERENCES

Christopher J Arthurs and Andrew P King. Active training of physics-informed neural networks to
aggregate and interpolate parametric solutions to the navier-stokes equations. Journal of Compu-
tational Physics, 438:110364, 2021. 6

Jordan T Ash, Chicheng Zhang, Akshay Krishnamurthy, John Langford, and Alekh Agarwal.
Deep batch active learning by diverse, uncertain gradient lower bounds. arXiv preprint
arXiv:1906.03671, 2019. 5

Peter William Atkins, Julio De Paula, and James Keeler. Atkins’ physical chemistry. Oxford univer-
sity press, 2023. 1

Pradeep Bajracharya, Javier Quetzalcóatl Toledo-Marín, Geoffrey Fox, Shantenu Jha, and Linwei
Wang. Feasibility study on active learning of smart surrogates for scientific simulations. arXiv
preprint arXiv:2407.07674, 2024. 1, 6

Yohai Bar-Sinai, Stephan Hoyer, Jason Hickey, and Michael P Brenner. Learning data-driven dis-
cretizations for partial differential equations. Proceedings of the National Academy of Sciences,
116(31):15344–15349, 2019. 1

Johannes Brandstetter, Max Welling, and Daniel E Worrall. Lie point symmetry data augmentation
for neural pde solvers. In International Conference on Machine Learning, pp. 2241–2256. PMLR,
2022a. 15, 16

Johannes Brandstetter, Daniel Worrall, and Max Welling. Message passing neural pde solvers. arXiv
preprint arXiv:2202.03376, 2022b. 1, 20

Eric P Chassignet, Harley E Hurlburt, Ole Martin Smedstad, George R Halliwell, Patrick J Hogan,
Alan J Wallcraft, Remy Baraille, and Rainer Bleck. The hycom (hybrid coordinate ocean model)
data assimilative system. Journal of Marine Systems, 65(1-4):60–83, 2007. 16

Herman Chernoff. Sequential design of experiments. The Annals of Mathematical Statistics, 30(3):
755–770, 1959. 1

Timothy A Cleaver, Alex J Gutman, Christopher L Martin, Mark F Reeder, and Raymond R Hill.
Using design of experiments methods for applied computational fluid dynamics: A case study.
Quality Engineering, 28(3):280–292, 2016. 1

Alex R Cook, Gavin J Gibson, and Christopher A Gilligan. Optimal observation times in experi-
mental epidemic processes. Biometrics, 64(3):860–868, 2008. 6

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Timothy J Cowan, Andrew S Arena Jr, and Kajal K Gupta. Accelerating computational fluid dy-
namics based aeroelastic predictions using system identification. Journal of Aircraft, 38(1):81–87,
2001. 1

WD Evans. Partial differential equations, 1988. 2

Aarshvi Gajjar, Chinmay Hegde, and Christopher P Musco. Provable active learning of neural
networks for parametric pdes. In The Symbiosis of Deep Learning and Differential Equations II,
2022. 6

Wenhan Gao and Chunmei Wang. Active learning based sampling for high-dimensional nonlinear
partial differential equations. Journal of Computational Physics, 475:111848, 2023. 6

Michael A Gelbart, Jasper Snoek, and Ryan P Adams. Bayesian optimization with unknown con-
straints. arXiv preprint arXiv:1403.5607, 2014. 17

Somdatta Goswami, Katiana Kontolati, Michael D Shields, and George Em Karniadakis. Deep
transfer operator learning for partial differential equations under conditional shift. Nature Ma-
chine Intelligence, 4(12):1155–1164, 2022. 17

Samuel Greydanus, Misko Dzamba, and Jason Yosinski. Hamiltonian neural networks. Advances
in neural information processing systems, 32, 2019. 1

Alex Hernandez-Garcia, Nikita Saxena, Moksh Jain, Cheng-Hao Liu, and Yoshua Bengio. Multi-
fidelity active learning with gflownets. arXiv preprint arXiv:2306.11715, 2023. 6

José Miguel Hernández-Lobato, Michael Gelbart, Matthew Hoffman, Ryan Adams, and Zoubin
Ghahramani. Predictive entropy search for bayesian optimization with unknown constraints. In
International conference on machine learning, pp. 1699–1707. PMLR, 2015. 17

James R Holton and Gregory J Hakim. An introduction to dynamic meteorology, volume 88. Aca-
demic press, 2013. 1

David Holzmüller, Viktor Zaverkin, Johannes Kästner, and Ingo Steinwart. A framework and bench-
mark for deep batch active learning for regression. Journal of Machine Learning Research, 24
(164):1–81, 2023. 1, 5, 6, 17, 19

Neil Houlsby, Ferenc Huszár, Zoubin Ghahramani, and Máté Lengyel. Bayesian active learning for
classification and preference learning. arXiv preprint arXiv:1112.5745, 2011. 2

Nicolas Jarrin, Sofiane Benhamadouche, Dominique Laurence, and Robert Prosser. A synthetic-
eddy-method for generating inflow conditions for large-eddy simulations. International Journal
of Heat and Fluid Flow, 27(4):585–593, 2006. 16

John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Olaf Ronneberger,
Kathryn Tunyasuvunakool, Russ Bates, Augustin Žídek, Anna Potapenko, et al. Highly accurate
protein structure prediction with alphafold. nature, 596(7873):583–589, 2021. 16

E Kalnay. Atmospheric Modeling, Data Assimilation and Predictability, volume 341. Cambridge
University Press, 2003. 16

Aly-Khan Kassam and Lloyd N Trefethen. Fourth-order time-stepping for stiff pdes. SIAM Journal
on Scientific Computing, 26(4):1214–1233, 2005. 16

Diederik P Kingma. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980,
2014. 7

Andreas Kirsch, Joost Van Amersfoort, and Yarin Gal. Batchbald: Efficient and diverse batch
acquisition for deep bayesian active learning. Advances in neural information processing systems,
32, 2019. 2, 5

Andreas Kirsch, Sebastian Farquhar, Parmida Atighehchian, Andrew Jesson, Frédéric Branchaud-
Charron, and Yarin Gal. Stochastic batch acquisition: A simple baseline for deep active learning.
Transactions on Machine Learning Research, 2023. ISSN 2835-8856. 5, 6

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Matt J Kusner, Brooks Paige, and José Miguel Hernández-Lobato. Grammar variational autoen-
coder. In International conference on machine learning, pp. 1945–1954. PMLR, 2017. 16

Shibo Li, Jeff M Phillips, Xin Yu, Robert Kirby, and Shandian Zhe. Batch multi-fidelity active
learning with budget constraints. Advances in Neural Information Processing Systems, 35:995–
1007, 2022a. 3

Shibo Li, Zheng Wang, Robert M. Kirby, and Shandian Zhe. Deep multi-fidelity active learning of
high-dimensional outputs. In International Conference on Artificial Intelligence and Statistics,
AISTATS 2022, 28-30 March 2022, Virtual Event, 2022b. 6, 21

Shibo Li, Xin Yu, Wei Xing, Robert Kirby, Akil Narayan, and Shandian Zhe. Multi-resolution
active learning of fourier neural operators. In International Conference on Artificial Intelligence
and Statistics, pp. 2440–2448. PMLR, 2024. 6

Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya, An-
drew Stuart, and Anima Anandkumar. Fourier neural operator for parametric partial differential
equations. arXiv preprint arXiv:2010.08895, 2020. 1, 7, 16

Phillip Lippe, Bas Veeling, Paris Perdikaris, Richard Turner, and Johannes Brandstetter. Pde-refiner:
Achieving accurate long rollouts with neural pde solvers. Advances in Neural Information Pro-
cessing Systems, 36, 2024. 1

Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient descent with warm restarts. arXiv
preprint arXiv:1608.03983, 2016. 7

David JC MacKay. Information-based objective functions for active data selection. Neural compu-
tation, 4(4):590–604, 1992. 1

Zhiping Mao and Xuhui Meng. Physics-informed neural networks with residual/gradient-based
adaptive sampling methods for solving partial differential equations with sharp solutions. Applied
Mathematics and Mechanics, 44(7):1069–1084, 2023. 6

James D Murray. Mathematical biology: I. An introduction, volume 17. Springer Science & Busi-
ness Media, 2007. 1

Daniel Musekamp, Marimuthu Kalimuthu, David Holzmüller, Makoto Takamoto, and Mathias
Niepert. Active learning for neural pde solvers. arXiv preprint arXiv:2408.01536, 2024. 1,
3, 4, 5, 6, 7, 8

Raphaël Pestourie, Youssef Mroueh, Thanh V Nguyen, Payel Das, and Steven G Johnson. Ac-
tive learning of deep surrogates for pdes: application to metasurface design. npj Computational
Materials, 6(1):164, 2020. 1, 6

Ethan Pickering, Stephen Guth, George Em Karniadakis, and Themistoklis P Sapsis. Discovering
and forecasting extreme events via active learning in neural operators. Nature Computational
Science, 2(12):823–833, 2022. 1, 6, 8

Harvey M Salkin and Cornelis A De Kluyver. The knapsack problem: a survey. Naval Research
Logistics Quarterly, 22(1):127–144, 1975. 5

Alvaro Sanchez-Gonzalez, Jonathan Godwin, Tobias Pfaff, Rex Ying, Jure Leskovec, and Peter
Battaglia. Learning to simulate complex physics with graph networks. In International conference
on machine learning, pp. 8459–8468. PMLR, 2020. 1

Ozan Sener and Silvio Savarese. Active learning for convolutional neural networks: A core-set
approach. arXiv preprint arXiv:1708.00489, 2017. 5, 6

Burr Settles. Active learning literature survey. Technical report, University of Wisconsin-Madison
Department of Computer Sciences, 2009. 1

H Sebastian Seung, Manfred Opper, and Haim Sompolinsky. Query by committee. In Proceedings
of the fifth annual workshop on Computational learning theory, pp. 287–294, 1992. 3, 5, 6

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Rohit Singh, Nathan Palmer, David Gifford, Bonnie Berger, and Ziv Bar-Joseph. Active learning for
sampling in time-series experiments with application to gene expression analysis. In Proceedings
of the 22nd international conference on Machine learning, pp. 832–839, 2005. 6

Freddie Bickford Smith, Andreas Kirsch, Sebastian Farquhar, Yarin Gal, Adam Foster, and Tom
Rainforth. Prediction-oriented bayesian active learning. In International Conference on Artificial
Intelligence and Statistics, pp. 7331–7348. PMLR, 2023. 5

Karl E Taylor, Ronald J Stouffer, and Gerald A Meehl. An overview of cmip5 and the experiment
design. Bulletin of the American meteorological Society, 93(4):485–498, 2012. 16

Gabriel Turinici. Optimal time sampling in physics-informed neural networks. arXiv preprint
arXiv:2404.18780, 2024. 6

Paul Wilmott, Sam Howison, and Jeff Dewynne. The mathematics of financial derivatives: a student
introduction. Cambridge university press, 1995. 1

Chenxi Wu, Min Zhu, Qinyang Tan, Yadhu Kartha, and Lu Lu. A comprehensive study of non-
adaptive and residual-based adaptive sampling for physics-informed neural networks. Computer
Methods in Applied Mechanics and Engineering, 403:115671, 2023a. 6

Dongrui Wu. Pool-based sequential active learning for regression. IEEE transactions on neural
networks and learning systems, 30(5):1348–1359, 2018. 1, 5

Dongxia Wu, Ruijia Niu, Matteo Chinazzi, Yian Ma, and Rose Yu. Disentangled multi-fidelity deep
bayesian active learning. In International Conference on Machine Learning, pp. 37624–37634.
PMLR, 2023b. 1, 6

Norman J Zabusky and Martin D Kruskal. Interaction of" solitons" in a collisionless plasma and the
recurrence of initial states. Physical review letters, 15(6):240, 1965. 7, 15

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A EXPERIMENTAL DETAILS

A.1 DETAILS ON PDES

In this section, we describe the PDEs used in our experiments. Each of these equations plays a
critical role in modeling physical phenomena and showcases diverse behaviors, from diffusion and
soliton dynamics to chaotic systems and fluid flow. Examples of PDE trajectories are shown in
Fig. 6.

(a) Heat (b) KdV (c) KS

(d) NS

Figure 6: Example trajectories of PDEs. (a), (b), (c): Horizontal and vertical axes represent the
temporal and spatial domain. (d): Two-dimensional states at six time points are shown.

Heat Equation The one-dimensional (1D) Heat equation is given by:

∂tu = ∂xxu, (7)

where u = u(x, t) represents the temperature distribution as a function of space x and time t. This
equation describes the process of heat conduction and diffusion in a medium. The simplicity of
the Heat equation makes it a fundamental model for understanding diffusion-like processes across
various fields in science and engineering, such as thermal conduction, population dynamics, and
chemical diffusion. For our experiments, we solve this equation using the pseudospectral method
with Dormand–Prince solver as in Brandstetter et al. (2022a).

Korteweg–De Vries (KdV) Equation The second equation we study is the Korteweg–De Vries
(KdV) equation, given by:

∂tu+ u∂xu+ ∂xxxu = 0, (8)

where u = u(x, t) represents a wave profile evolving over space and time. This nonlinear PDE
describes the evolution of shallow water waves, and its most famous characteristic is the presence of
solitons—solitary, stable wave packets that maintain their shape over long distances and weak inter-
actions with other waves (Zabusky & Kruskal, 1965). Solitons have important applications in fluid
dynamics, plasma physics, and optical fiber communications. The KdV equation’s nonlinearity and
third-order spatial derivative (∂xxx) allow it to capture complex wave behavior. The equation is also
known for conserving key quantities like energy. We solve this equation using the pseudospectral
method with Dormand–Prince solver as in Brandstetter et al. (2022a).

Kuramoto–Sivashinsky (KS) Equation The Kuramoto–Sivashinsky (KS) equation is a fourth-
order nonlinear PDE, written as:

∂tu+ ∂xxu+ ∂xxxxu+ u∂xu = 0, (9)

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Table 5: Domain lengths and discretizations for trajectory learning.

PDE Domain Length (T,X) Resolution (L,Nx)

Heat (13.0, 6.28) (13, 256)
KdV (52.0, 128.0) (13, 256)
KS (13.0, 1.0) (26, 256)
NS (13.0, 1.0, 1.0) (13, 32, 32)

where u = u(x, t) is the evolving field in space and time. The KS equation is known for its chaotic
behavior and is used to model phenomena such as flame front propagation, plasma instabilities,
and thin film dynamics. Its chaotic nature arises from the interplay between destabilizing nonlinear
terms and stabilizing higher-order diffusion terms. The equation is particularly challenging to solve
due to its sensitivity to initial conditions and long-term unpredictability. To handle this complexity,
we use the Exponential Time Differencing (ETD) fourth-order Runge-Kutta method, as introduced
by Kassam & Trefethen (2005). This numerical method is well-suited for stiff PDEs like the KS
equation.

Navier-Stokes (NS) Equation The final equation we consider is the vorticity form of the incom-
pressible Navier-Stokes (NS) equation, which governs the motion of viscous fluid flows. In two
spatial dimensions, the vorticity formulation is given by:

∂tu+ v · ∇u = ν∇2u+ f, ∇ · v = 0, (10)

where u(x1, x2, t) is the vorticity, v is the velocity field, ν is the kinematic viscosity, and f(x1, x2)
is an external forcing term. The Navier-Stokes equations describe the behavior of incompressible
fluid flow, playing a central role in understanding turbulence, weather patterns, and aerodynamics.
The external forcing term f(x1, x2) is set to

f(x) = 0.1 (sin(2π(x1 + x2)) + cos(2π(x1 + x2))) , (11)

which injects energy into the system, driving complex fluid dynamics. In our experiments, we adapt
the Crank–Nicolson method implemented by Li et al. (2020).

Initial conditions As per Brandstetter et al. (2022a), states are first sampled from a simple dis-
tribution and then evolved for a certain time to obtain the initial conditions. The evolved initial
conditions are more realistic than the sampled states, in that they are more likely to be observed
under a system governed by the respective PDEs. This procedure hence approximates applications
where the initial conditions of interest are realistic states either from observed data (Jumper et al.,
2021; Kalnay, 2003; Chassignet et al., 2007; Taylor et al., 2012) or carefully crafted synthetic data
(Jarrin et al., 2006; Kusner et al., 2017). For 1D equations, the states are sampled from truncated
Fourier series with random coefficients (Brandstetter et al., 2022a), and for the 2D NS equation,
states are sampled from a Gaussian random field as described in Li et al. (2020). The lengths and
discretizations of trajectories are summarized in Table 5.

A.2 ERROR METRICS

The test set always consists of 1,000 trajectories, on which several error metrics are defined. The
RMSE is defined on a trajectory u as√√√√ 1

LNx

L∑
i=1

Nx∑
j=1

∥ui(xj)− ûi(xj)∥22. (12)

Similarly, the NRMSE is defined as√∑
i,j ∥ui(xj)− ûi(xj)∥22∑

i,j ∥ui(xj)∥22
(13)

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Table 6: Acquired datasize in KdV

Round 0 1 2 3 4 5 6 7 8 9 10

SBAL 416 520 624 728 832 936 1040 1144 1248 1352 1456
SBAL+FLEXAL 416 507 611 715 819 923 1027 1131 1235 1339 1443

and the MAE as

1

LNx

L∑
i=1

Nx∑
j=1

|ui(xj)− ûi(xj)|. (14)

The metrics are averaged across all trajectories in the test set. We also report their logarithmic
values averaged across all AL rounds, following Holzmüller et al. (2023). Note that we do not use
a committee’s mean prediction for computing the metrics, but instead compute the metrics for each
model and report their average.

A.3 SIMULATION INSTABILITY

It was observed that using FLEXAL on the KdV equation, the simulation crashes on a small subset
of synthetic inputs. Analysis reveals that these synthetic inputs have unusually large norms and
particularly appear in later parts of trajectories due to accumulated error. We do not attempt to fix
this problem explicitly due to the risk of over-complicating our method, and simply refrain from
adding these time steps to the training dataset. This means that FLEXAL actually acquires a smaller
number of time steps than the budget B per round of acquisition, which could be problematic when
a large subset of inputs do crash. However, we find that this is not the case, and the number of such
inputs is small enough that FLEXAL can outperform other baselines. We report the comparison of
datasize across rounds in Table 6, for a single experiment. We can see that 13 time steps were left
out in the first round due to instability, and no instability occurred in the rounds after.

Since queries that crash incur a cost, they should be avoided as much as possible. Previous works
in Bayesian optimization (Gelbart et al., 2014; Hernández-Lobato et al., 2015) propose methods
to learn these unknown constraints. Alternatively, one could simply test out large, random inputs.
In fact, we find that the maximum absolute value of an input being above 10 is a robust criterion
for predicting that the solver will crash. Either way, we could simply filter out time steps that fall
outside of these constraints during runtime of the solver, and use the freed up budget on acquiring
other trajectories. Another possible approach is to impose physical constraints on the surrogate
model (Goswami et al., 2022) that reduces the risk of outputting abnormal synthetic inputs. For
instance, the KdV equation is energy-conserving, and when this prior knowledge is encoded into the
surrogate model, the synthetic inputs would never be abnormally large like we experienced with our
naive surrogate models.

A.4 FLEXAL MF

We can also define a simpler acquisition function in the spirit of mean-field approximation. We take
the mean model Ĝ = 1

M

∑
m Ĝm, and define the variance reduction R(Ĝ, b, S) between Ĝ and a

model Ĝb in the same way as before. We then average the variance reduction between the mean
model and all models in the committee:

aMF(u
0, S) =

1

M

∑
b∈[M]

R(Ĝ, b, S), (15)

which reduces the computational cost by a factor of M in the best case. We call this modified version
FLEXAL MF.

B FULL REPORT OF RESULTS ON MAIN EXPERIMENT

We provide a full report of all results from the main experiment. Table 7, Table 8, Table 9, Table 10
show the full results on Heat, KdV, KS, and NS equations, respectively. Fig. 7 shows the plots of
RMSE quantiles on all PDEs. Fig. 8 shows the plots of NRMSE on all PDEs.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

(a) 99% quantile, Heat (b) 95% quantile, Heat (c) 50% quantile, Heat

(d) 99% quantile, KdV (e) 95% quantile, KdV (f) 50% quantile, KdV

(g) 99% quantile, KS (h) 95% quantile, KS (i) 50% quantile, KS

(j) 99% quantile, NS (k) 95% quantile, NS (l) 50% quantile, NS

Figure 7: Mean logarithmic values of RMSE quantiles

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Table 7: Mean log metrics for Heat Equation

RMSE NRMSE MAE 99% 95% 50%

Random −5.688±0.021−6.486±0.018−7.486±0.021−4.211±0.029−4.712±0.022−5.992±0.020

SBAL −5.901±0.017−6.644±0.015−7.699±0.018−4.624±0.049−5.073±0.035−6.111±0.008

LCMD −5.741±0.024−6.494±0.023−7.541±0.024−4.466±0.027−4.945±0.026−5.940±0.023

QbC −5.924±0.025−6.637±0.025−7.724±0.024−4.848±0.027−5.222±0.024−6.068±0.024

SBAL+FLEXAL −6.304±0.015−7.014±0.015−8.114±0.015−5.284±0.020−5.653±0.012−6.433±0.014

Random+FLEXAL−6.193±0.021−6.953±0.017−7.997±0.021−4.862±0.037−5.348±0.032−6.426±0.016

QbC+FLEXAL −6.195±0.015−6.880±0.018−8.008±0.015−5.401±0.010−5.654±0.013−6.273±0.017

LCMD+FLEXAL −6.132±0.024−6.843±0.023−7.944±0.024−5.147±0.033−5.512±0.027−6.247±0.023

Table 8: Mean log metrics for KdV Equation

RMSE NRMSE MAE 99% 95% 50%

Random 0.191±0.058 −1.193±0.050−2.034±0.0452.449±0.0471.395±0.049−1.196±0.043

SBAL 0.030±0.029 −1.282±0.030−2.139±0.0271.875±0.0391.267±0.028−1.267±0.027

QbC 0.266±0.027 −1.019±0.029−1.879±0.0291.859±0.0371.251±0.029−1.019±0.031

LCMD 0.256±0.030 −1.033±0.036−1.879±0.0331.868±0.0341.322±0.034−1.100±0.038

SBAL+FLEXAL −0.088±0.040−1.378±0.040−2.239±0.0431.731±0.0401.280±0.043−1.378±0.040

Random+FLEXAL−0.067±0.054−1.425±0.047−2.228±0.0361.885±0.0331.296±0.038−1.424±0.044

QbC+FLEXAL 0.134±0.035 −1.130±0.037−2.004±0.0351.721±0.0311.120±0.037−1.286±0.035

LCMD+FLEXAL 0.286±0.034 −0.978±0.034−1.824±0.0391.799±0.0361.128±0.034−1.129±0.032

Following Holzmüller et al. (2023), we also report the 99%, 95%, and 50% quantiles of RMSE. This
is useful for analyzing the behavior of AL strategies. AL methods tend to improve performance on
points with extreme errors, thus improving performance significantly in the top quantiles, while not
so much in the middle quantiles. This is why AL methods perform differently depending on the
nature of problem. For instance, problems with more irregularities tend to benefit signficantly more
from AL methods, since the top quantile errors contribute significantly to the average error in those
problems.

As expected, the baseline methods improve performance over random sampling in the 99% quantile,
but not so much in the 95% and 50% quantiles. Suprisingly, FLEXAL robustly outperforms the
baselines in all error quantiles, which is rarely the case for existing AL methods. We can therefore
infer that FLEXAL isn’t simply sacrificing the surrogate model’s performance in some trajectories
to improve its performance in others. FLEXAL both sees a more diverse set of trajectories, and
samples the most informative time steps in each trajectory, effectively accounting for how it can
improve performance in both the high and middle quantiles of error.

C ADDITIONAL EXPERIMENTS

C.1 DIVERSITY OF SPARSELY SELECTED TIME STEPS

We provide a simple analysis to show that time steps sampled in a sparse manner are more diverse
than time steps from entire trajectories. Out of 128 trajectories, we first randomly chose 10 trajecto-
ries, which contains L×10 states. Then, out of all L×128 states, we randomly chose L×10 states.
The first choice represents full trajectory sampling, and the latter represents spare time steps sam-
pling. We probe an FNO surrogate model trained on all the 128 trajectories at its hidden layer, and
observe the hidden layer activation at each of the L×128 states. The result is shown in Fig. 9, where
black points represent states from the fully sampled trajectories and red points represent sparsely se-
lected states. The latter states are visibly more diverse, which partially explains how sampling time
steps in a sparse manner from trajectories can benefit a surrogate model.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Table 9: Mean log metrics for KS Equation

RMSE NRMSE MAE 99% 95% 50%

Random −0.258±0.004−1.683±0.004−2.165±0.0041.097±0.0030.752±0.005−0.575±0.004

SBAL −0.275±0.014−1.700±0.014−2.184±0.0141.086±0.0170.732±0.023−0.594±0.012

QbC −0.268±0.004−1.693±0.004−2.178±0.0041.077±0.0080.739±0.013−0.582±0.006

SBAL+FLEXAL −0.349±0.003−1.774±0.003−2.265±0.0031.042±0.0110.672±0.012−0.674±0.008

Random+FLEXAL−0.335±0.014−1.759±0.014−2.248±0.0141.060±0.0150.691±0.007−0.662±0.015

QbC+FLEXAL −0.331±0.014−1.756±0.014−2.246±0.0141.050±0.0130.681±0.020−0.650±0.013

LCMD 0.046±0.015 −1.378±0.015−1.829±0.0151.204±0.0090.954±0.011−0.203±0.016

LCMD+FLEXAL −0.138±0.017−1.561±0.016−2.033±0.0171.139±0.0060.841±0.014−0.431±0.016

Table 10: Mean log metrics for NS Equation

RMSE NRMSE MAE 99% 95% 50%

SBAL −2.052±0.009−4.253±0.009−4.592±0.008−0.970±0.011−1.260±0.019−2.217±0.010

Random −2.050±0.011−4.249±0.011−4.590±0.010−0.959±0.029−1.266±0.011−2.208±0.016

QbC −2.057±0.009−4.258±0.009−4.597±0.009−0.962±0.006−1.261±0.019−2.217±0.011

LCMD −2.018±0.017−4.219±0.017−4.560±0.016−0.967±0.017−1.248±0.022−2.168±0.019

SBAL+FLEXAL −2.092±0.003−4.293±0.003−4.632±0.003−0.988±0.005−1.309±0.004−2.249±0.011

Random+FLEXAL−2.080±0.003−4.280±0.003−4.621±0.003−0.980±0.008−1.303±0.005−2.235±0.007

QbC+FLEXAL −2.079±0.008−4.280±0.008−4.619±0.008−0.979±0.003−1.293±0.017−2.238±0.005

LCMD+FLEXAL −2.051±0.007−4.253±0.007−4.593±0.007−0.984±0.011−1.258±0.009−2.211±0.013

C.2 REGULARIZATION FOR TRAJECTORY LEARNING

Brandstetter et al. (2022b) identifies a potential problem with training an autoregressive surrogate
model with teacher-forcing. The model experiences a distribution shift during inference, because
errors accumulate during rollout unlike during training. They propose a simple fix, called the push-
forward trick, which supervises the model Ĝ not with pairs of ui−1 and ui, but with pairs of Ĝ[ui−2]

and ui, where Ĝ is constantly changing throughout training. An even simpler fix that they experi-
ment with is augmenting the inputs with a Gaussian noise.

One might hypothesize that the advantage of FLEXAL comes from its regularizing effect, since the
synthetic inputs in the training set are outputs from the surrogate model Ĝ. We therefore apply the
pushforward trick and Gaussian noise augmentation on the best performing baseline method, SBAL.
The results in Table 11 shows that the effect of such regularization methods is minimal compared
to the effect of FLEXAL. This shows that the advantage of FLEXAL lies not just in its regularizing
effect.

C.3 RANDOM BERNOULLI SAMPLING OF TIME STEPS

We provide the whole list of results with Bernoulli sampling described in Section 5.6. Also, we can
enforce consecutive initial time steps sampling by bringing all the true entries in S to the beginning.
We call this method Initial Bernoulli sampling, or Initial Ber(p). We report the results with SBAL
in Table 12 and Table 13. Initial Bernoulli sampling always performs the worst, possibly because
they rarely see the time steps at the end.

C.4 EFFICIENT VARIANTS OF FLEXAL

We provide results with two efficient variants of FLEXAL, namely FLEXAL MF and FLEXAL 10.
The results are summarized in Table 14. We provide the wall-clock times of selection algorithms in
all equations, in Table 15.

We haven’t done extensive experiments with different values of T and ϵ. Increasing T improves
performance until it plateaus. Increasing ϵ values higher than a certain point deteriorates the perfor-
mance slightly. On the other hand, decreasing ϵ too much also deteriorates the performance, but can
be recovered with a higher value of T , leading to higher computational cost.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

(a) Heat (b) KdV

(c) KS (d) NS

Figure 8: NRMSE of AL strategies, measured across 10 rounds of acquisition. Each round incurs
constant cost of data acquisition, namely the budget B. These are simply scaled versions of the
RMSE plots.

D FURTHER EXPLANATION OF ACQUISITION WITH FLEXAL

D.1 MOTIVATION BEHIND THE ACQUISITION FUNCTION

Here we detail the motivation behind our acquisition function defined in Section 3.2. First, one can
imagine several alternative acquisition functions.

The most straightforward alternative is to simply use the sum of the variances at time points for
which bi = true. The variances are larger for the later time steps since they accumulate, and in our
preliminary experiments, we found that this is catastrophic as undersampling the earlier time steps
leads to the sampled trajectory being very out-of-distribution, and hence the trained surrogate model
underperforming on the test distribution.

It quickly became clear to us that we need some kind of measure of "how much total uncertainty
will be reduced by sampling these time steps", instead of "how uncertain is our model on these time
steps?" This would help select sampling patterns that reduce the out-of-distribution-ness introduced
by Ĝ. One way to approximate this is to use mutual information, as used by Li et al. (2022b). In
other words, we would rollout M trajectories with M surrogate models, and compute the mutual
information between time steps for which bi = true and all time steps. However, in preliminary
experiments, we found that this method underperforms, which we hypothesize is because relying
simply on the covariance matrix of the committee between time steps is not a good enough method
for computing the posterior uncertainty.

We identified two "pathways" through which sampling a time step reduces uncertainty in the remain-
ing time steps. First, there is the "indirect" pathway: sampling a time step will reduce the model’s
uncertainty on similar inputs, hence reducing uncertainty on the remaining time steps. This is what
is approximated by mutual information. Then, there is the "direct" pathway: sampling a time step

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

(a) Heat

(b) KdV

(c) KS

(d) NS

Figure 9: PCA of FNO hidden layer’s activation pattern for both entire trajectories (black) and
sparsely sampled time steps (red)

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Table 11: Effect of regularization

SBAL +FLEXAL +Pushforward +Gaussian

Heat
RMSE −5.901±0.017 −6.304±0.015 −3.086±1.584 −5.844±0.011

NRMSE −6.644±0.015 −7.014±0.015 −3.755±1.627 −6.558±0.013

MAE −7.699±0.018 −8.114±0.015 −4.884±1.583 −7.630±0.012

KdV
RMSE 0.030±0.029 −0.088±0.040 0.924±0.613 0.017±0.042

NRMSE −1.282±0.030 −1.378±0.040 −0.245±0.689 −1.292±0.042

MAE −2.139±0.027 −2.239±0.043 −1.077±0.690 −2.162±0.041

KS
RMSE −0.275±0.014 −0.349±0.003 1.148±0.795 −0.259±0.012

NRMSE −1.700±0.014 −1.774±0.003 −0.283±0.792 −1.684±0.012

MAE −2.184±0.014 −2.265±0.003 −0.473±0.956 −2.167±0.012

NS
RMSE −2.052±0.009 −2.092±0.003 −0.060±1.118 −2.067±0.012

NRMSE −4.253±0.009 −4.293±0.003 −2.258±1.119 −4.267±0.012

MAE −4.592±0.008 −4.632±0.003 −2.619±1.107 −4.606±0.012

Table 12: Bernoulli sampling

SBAL +FLEXAL +Ber(1/16) +Ber(1/8) +Ber(1/4) +Ber(1/2)

Heat

RMSE −5.901±0.017 −6.304±0.015 −6.093±0.018 −6.071±0.020 −6.057±0.026 −6.010±0.035

NRMSE −6.644±0.015 −7.014±0.015 −6.823±0.019 −6.801±0.020 −6.791±0.027 −6.748±0.033

MAE −7.699±0.018 −8.114±0.015 −7.893±0.019 −7.872±0.019 −7.858±0.027 −7.810±0.034

KdV

RMSE 0.030±0.029 −0.088±0.040 0.053±0.014 0.049±0.014 0.018±0.024 −0.064±0.031

NRMSE −1.282±0.030 −1.378±0.040 −1.254±0.017 −1.257±0.014 −1.288±0.020 −1.370±0.033

MAE −2.139±0.027 −2.239±0.043 −2.082±0.016 −2.083±0.018 −2.120±0.025 −2.207±0.034

KS

RMSE −0.275±0.014 −0.349±0.003 −0.365±0.008 −0.359±0.006 −0.346±0.008 −0.324±0.007

NRMSE −1.700±0.014 −1.774±0.003 −1.790±0.008 −1.784±0.006 −1.771±0.008 −1.749±0.007

MAE −2.184±0.014 −2.265±0.003 −2.282±0.007 −2.276±0.006 −2.262±0.009 −2.237±0.009

NS

RMSE −2.052±0.009 −2.092±0.003 −2.088±0.005 −2.081±0.008 −2.079±0.007 −2.075±0.009

NRMSE −4.253±0.009 −4.293±0.003 −4.288±0.005 −4.282±0.008 −4.279±0.007 −4.276±0.009

MAE −4.592±0.008 −4.632±0.003 −4.626±0.004 −4.620±0.008 −4.617±0.007 −4.614±0.009

i gives out the i + 1 th state, which starts a chain reaction of reducing model uncertainty on all
successive states. Note that these two pathways are not distinct from a strictly theoretical view, but
are rather two ways of approximating uncertainty reduction.

The direct pathway motivated our acquisition function based on variance reduction. In variance
reduction, we calculate the posterior uncertainty by rolling out the trajectories with N surrogate
models, but collapse into one surrogate model at time steps for which bi = true. This effectively
computes the reduced uncertainty due to the effect of the direct pathway. With experiments, we
confirmed that this acquisition function behaves just like we wanted: it is slightly biased towards
sampling the earlier time steps, and it chooses an appropriate frequency of time steps to sample that
leads to good performance.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Table 13: Initial Bernoulli sampling

Initial Ber(1/16) Initial Ber(1/8) Initial Ber(1/4) Initial Ber(1/2)

Heat
RMSE −6.278±0.016 −6.254±0.015 −6.182±0.019 −6.080±0.017

NRMSE −6.989±0.014 −6.966±0.014 −6.902±0.018 −6.811±0.017

MAE −8.088±0.016 −8.062±0.014 −7.987±0.019 −7.881±0.017

KdV
RMSE 0.032±0.016 −0.015±0.014 −0.001±0.018 0.011±0.014

NRMSE −1.278±0.014 −1.321±0.017 −1.303±0.018 −1.294±0.014

MAE −2.150±0.016 −2.197±0.014 −2.181±0.018 −2.168±0.014

KS
RMSE −0.302±0.009 −0.293±0.008 −0.287±0.005 −0.283±0.009

NRMSE −1.728±0.009 −1.719±0.008 −1.713±0.005 −1.708±0.009

MAE −2.216±0.008 −2.206±0.008 −2.199±0.007 −2.194±0.010

NS
RMSE −2.045±0.016 −2.044±0.014 −2.051±0.019 −2.058±0.014

NRMSE −4.246±0.014 −4.244±0.014 −4.251±0.019 −4.258±0.014

MAE −4.596±0.016 −4.594±0.014 −4.598±0.019 −4.602±0.014

Table 14: Log RMSE of more efficient FLEXAL variants averaged across 10 rounds.

SBAL +FLEXAL +FLEXAL MF +FLEXAL 10

Heat −5.901±0.017 −6.304±0.015 −6.303±0.009 −6.058±0.020

KdV 0.030±0.029 −0.088±0.040 −0.065±0.034 −0.118±0.024

KS −0.275±0.014 −0.349±0.003 −0.326±0.004 −0.316±0.009

NS −2.052±0.009 −2.092±0.003 −2.093±0.004 −2.078±0.010

D.2 BATCH ACQUISITION ALGORITHM

Algorithm 2 summarizes the batch selection algorithm of FLEXAL. Starting with an empty batch
B, the algorithm repeatedly selects initial conditions and their sampling patterns until reaching the
budget limit. It first uses the base active learning method A to choose an initial condition u0.
Then, it optimizes which time steps to sample through a greedy procedure: starting with a pattern
S that samples all time steps (all true values), it performs T iterations of random mutations. In
each iteration, it generates a candidate pattern S′ by randomly flipping entries in S with probability
ϵ (using a binary mask C where each entry is drawn from a Bernoulli distribution and the XOR
operation ⊕). If this new pattern achieves a better value according to the cost-weighted acquisition
function a∗, it becomes the current pattern. To ensure the budget isn’t exceeded, if adding the
current pattern would go over budget, the algorithm truncates it by keeping only enough true values
to exactly meet the budget. The pair of initial condition and its optimized sampling pattern (u0, S)
is then added to the batch B.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Equation QbC +FlexAL +FlexAL 10

Heat 10.3 43.0 4.3
KdV 10.6 40.1 4.5
KS 18.1 78.4 8.6
NS 45.5 92.2 10.5

Table 15: Wall-clock times of selection algorithms for all equations

Algorithm 2 Batch Acquisition Algorithm

Require: Budget B, base active learning algorithm A, probability ϵ, number of iterations T for
greedy optimization, pool P of initial conditions, cost function cost(·) for batches.

Ensure: A batch B of initial conditions and sampling patterns.
1: B ← ∅
2: while cost(B) < B do
3: Acquire an initial condition u0 with A.
4: Initialize S ← (true, . . . , true).
5: for i = 1 to T do
6: C = (C1, . . . , CL) where C1, . . . , CL

i.i.d.∼ Ber(ε).
7: S′ = S ⊕ C
8: if a∗(u0, S′) ≥ a∗(u0, S) then
9: S ← S′.

10: end if
11: end for
12: if ∥S∥+ cost(B) > B then
13: Keep only the first (B − cost(B)) trues from S and flip the remaining trues.
14: end if
15: B ← B ∪ {(u0, S)}.
16: end while

25

