
Under review as a conference paper at ICLR 2022

SALT : SHARING ATTENTION BETWEEN LINEAR
LAYER AND TRANSFORMER FOR TABULAR DATASET

Anonymous authors
Paper under double-blind review

ABSTRACT

Handling tabular data with deep learning models is a challenging problem despite
their remarkable success in vision and language processing applications. There-
fore, many practitioners still rely on classical models such as gradient boosting
decision trees (GBDTs) rather than deep networks due to their superior perfor-
mance with tabular data. In this paper, we propose a novel hybrid deep network
architecture for tabular data, dubbed SALT (Sharing Attention between Linear
layer and Transformer). The proposed SALT consists of two blocks: Transform-
ers and linear layer blocks that take advantage of shared attention matrices. The
shared attention matrices enable transformers and linear layers to closely coop-
erate with each other, and it leads to improved performance and robustness. Our
algorithm outperforms tree-based ensemble models and previous deep learning
methods in multiple benchmark datasets. We further demonstrate the robustness
of the proposed SALT with semi-supervised learning and pre-training with small
dataset scenarios.

1 INTRODUCTION

In the fields of vision and natural language processing, deep networks such as CNN, RNN, LSTM
and Transformer have gained great popularity with its impressive performance. In particular, Trans-
former(Vaswani et al., 2017) designed as language model, improves the performance of lots of deep
learning models in various domains, so that there are many powerful models based on Transformer
(e.g. Devlin et al. (2019), Brown et al. (2020) and Dosovitskiy et al. (2021)).

Although the deep networks are powerful and used in natural language processing and vision, they
are sub-optimal for other types of real-world problems that require to use tabular data, such as
fraud detection(Luo et al., 2019), product recommendation(Guo et al., 2017) and disease predic-
tion(Koppu et al., 2020). Tabular data has different characteristics from other data. Unlike text
data that include vocabularies and words, and image data that include RGB values, the tabular data
are usually mixed with different types of complex variables. For example, the tabular data contain
continuous variables such as such as age, height,and weight have different ranges of values, and
categorical variables which are independent from one another like gender and nationality.

For these reasons, deep learning models were not quite successful with tabular data despite its
strength in natural language processing and vision fields. Instead of deep learning models, clas-
sical models such as tree-based ensemble models are mainly used for tabular data. However, these
classical approaches have some limitations. Continuous learning with real-time data is quite difficult
using these classical methods. When the tabular data is high-dimensional sparse, the performance
of tree-based methods is degraded. Also, the tree-based ensemble methods do not perform well for
multi-modality learning and end-to-end systems.

Therefore, it is an interesting to study a deep learning models for tabular data. Many studies have
been attempted not only to overcome the shortcomings of the classical model with a deep learning
model but also to overcome its performance. (Arik & Pfister, 2020), (Huang et al., 2020) and
(Somepalli et al., 2021).
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In this paper, we propose a new hybrid deep learning model architecture, named as SALT (Sharing
Attention between Linear layer and Transformer). We summarize the contributions of our paper as
follows :

• SALT shares the attention matrices between two blocks. Sharing the attention matrix allows
to learn two blocks strongly and effectively. We demonstrate that sharing attention matrices
improves the performance better.

• SALT introduce the improved embedding method for continuous variables. We demon-
strate that this method performs better than others.

• SALT has four types of variants depending on which block is used and in what direction
the attention matrix is shared. Each variant shows strength in different data.

• SALT outperforms the other models on average over a variety of benchmark datasets. It
also performs well even in small data environments via semi-supervised and self-supervised
learning

2 RELATED WORK

2.1 TREE-BASED MODELS

Decision trees (Quinlan, 1986) are well-known for their high predictive performance compared to
computational complexity. In addition, it has the strength of having explanatory power in units of
variables with most statistical information gain. However, decision trees are likely to work well only
on specific data because their decision boundaries are perpendicular to the data axis. To improve
this drawback and performance, there are many ensemble models of decision trees such as Random
forest (Breiman, 2001) and GBDTs(Gradient Boosting Decision Trees). Especially, GBDTs meth-
ods such as XGBoost(Chen & Guestrin, 2016), LightGBM(Ke et al., 2017) and CatBoost(Dorogush
et al., 2018) are commonly used with powerful performance in lots of machine learning competitions
and industrial sites.

2.2 DEEP LEARNING MODELS FOR TABULAR DATA

There are several studies on deep networks to overcome the limitations of tree-based models and
outperform the performance of GBDTs. Especially there are deep learning models based on at-
tention mechanism. TabNet(Arik & Pfister, 2020), for example, is designed to learn similarly to
a decision trees, and it has interpretability with the attentive layer. It shows better performance
than GBDTs in some dataset. TabTransformer(Huang et al., 2020) is designed based on Trans-
former and has contextual embedding values. However, it embeds only categorical variables, so that
there is a limitation for continuous variables. There are some models that improve the limitation of
TabTransformer(Song et al., 2018),(Somepalli et al., 2021). They have the contextual embedding
values of not only categorical variables but also continuous variables. Especially a model called
SAINT(Somepalli et al., 2021) introduces inter-sample self-attention method and shows powerful
performance. But it has a fatal disadvantage that training costs are high.

2.3 TRANSFORMER

Self-attention is the core module of Transformer(Vaswani et al., 2017). The self-attention consists of
three parameter matrices : K(keys), Q(queries), and V (values). Formally, input embedding values
X ∈ Rn×d of n features of dimensions d, are projected using WQ ∈ Rd×dq , WQ ∈ Rd×dq , and
WQ ∈ Rd×dq to extract feature representations Q, K, and V . With Q, K, and V , self-attention can
be written as,

Q = XWQ,K = XWK , V = XWV (1)

Attention(Q,K, V ) = Softmax(
QKT

√
dk

)V (2)

MHA(Multi Head Attention) is having multiple attention heads. Multi head allows the attention
matrix to have the abundant representations(Michel et al., 2019),(Voita et al., 2019). Each head
attention has different Q, K, and V weight matrices and calculates the attention values with the

2



Under review as a conference paper at ICLR 2022

equation 2. All heads are then concatenated and multiplied by the weight matrix to generate the
final output of the layer.

MHA(Q,K, V ) = Concat(head1, ..., headh)WO (3)
where headi = Attention(Q,K, V ) and WO is weighted matrix for final output. The dimension dh
of each head is typically given as d/Nh.

2.4 GATING MECHANISM

The gating mechanism is an effective method of learning by controlling the information flow path
of the LSTM (Hochreiter & Schmidhuber, 1997). However, the more layers of these mechanisms
are stacked, the more likely the gradient is vanishing. As an improved mechanism, gate linear
units(GLU) is introduced by (Dauphin et al., 2017). GLU has been used in many deep learning
models and shows the better performance (Arik & Pfister, 2020),(Shazeer, 2020). To briefly explain
the GLUs, they divide the input in half, take an activation function on one side, and multiply by
element with the other. Therefore, the output dimension is half the input dimension.

h(x) = (W1X + b1)⊗ σ(W2X + b2) (4)
The gating mechanism is used to control the information flow slightly similar to the self-attention
mechanism. The main difference between gating mechanism and self-attention is that gating mech-
anism controls only the bandwidth of a single element, while self-attention considers information of
two different elements.

3 SALT : SHARING ATTENTION BETWEEN LINEAR LAYER AND
TRANSFORMER

3.1 SALT ARCHITECTURE

Figure 1: The Architecture of SALT that has two blocks, Transformers and Linear layers. SALT
train with [CLS] token for fine-tuning and with contextual embedding values for Semi-supervised
learning and Pre-training.

In this section, we introduce our model, SALT (Sharing Attention between Linear layer and Trans-
former) shown in Figure 1. SALT uses the input embedding values obtained from the embedding
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layer. The embedding values have the shape of ’features(n)× embedding dimensions(d)’. The main
body of SALT has two blocks: Transformers block inspired by (Vaswani et al., 2017) and Linear
layer block inspired by (Liu et al., 2021). Each block has subblocks by feature-wise and dimension-
wise. These two subblocks allow communications between different features and different embed-
ding elements and makes the model robust(Tolstikhin et al., 2021). The output values from two
blocks become the contextual embedding values. SALT performs fin-tuning and pre-training with
contextual embedding values.

3.2 SALT FOR LEARNING

The learning process of SALT is as follows. Let D = {xi, yi}mi=1 be tabular dataset of m samples.
The feature(n) variables xfeatures ∈ Rn include categorical xcat and continuous variables xcont.
SALT adds the special token [cls] to the feature variables and takes them as an input values like
BERT (Devlin et al., 2019). So, xi = [[cls], xcat, xcont] is the input values consisting of the
feature variables and a special token [cls]. The embedding layer E(·) converts the input values
xi ∈ R(n+1) into d-dimensional values E(xi) ∈ R(n+1)×d. Let Transformer be Transformer(·)
and Linear layer block be Linearlayer(·). SALT consists of an L stack of these two blocks. Each
block returns the output value z and the sharing attention matrices, sf and sd by feature-wise and
dimension-wise as the following equations :

z
(1)
t , s

(1)
tf
, s

(1)
td

= Transformer1(E(xi)) (5)

z
(1)
l , s

(1)
lf
, s

(1)
ld

= Linearlayer1(E(xi)) (6)

z
(1)
t and z(1)l are the output values of Transformer block and Linear layer block from the first stack,

respectively. s(1)ft
and s(1)dt

are the feature-wise attention matrix and dimension-wise attention matrix

from Transformer block. s(1)fl
and s(1)dl

are from Linear layer block. The matrices from blocks are
calculated in the head direction by function S(·) and the calculated matrix becomes the sharing
attention matrix for the next blocks.

Sf (sft , sfl) = concat(sft , sfl)Wf (7)

Sd(sdt
, sdl

) = concat(sdt
, sdl

)Wd (8)

Wf ,Wd ∈ Rh×2h are weight for projection in the head direction. The two attention matrices
obtained from the above equation are sent to the blocks of the next stack. This procedure is repeated
until the last stack as the following equations.

z
(i)
t , s

(i)
ft
, s

(i)
dt

= Transformeri(z
(i−1)
t , s̃

(i−1)
f , s̃

(i−1)
d ) (9)

z
(i)
l , s

(i)
fl
, s

(i)
dl

= Linearlayeri(z
(i−1)
l , s̃

(i−1)
f , s̃

(i−1)
d ) (10)

s̃
(i)
f = Sf (s

(i)
ft
, s

(i)
fl
) s̃

(i)
d = Sd(s

(i)
dt
, s

(i)
dl
) (11)

Finally, the output values of the last stack, zLl and zLt are added as the output of SALT. This value
also becomes the contextual embedding valuesẼ(xi) = [ẽ([cls]), ẽ(x1), · · · , ẽ(xn)]. The cls
token, ẽ([cls]) is used for fine-tuning, and the other values, ẽ(xi) are used for pre-training using
MLM(Masked Language Model)(Devlin et al., 2019).

3.3 SHARING ATTENTION

The main idea of SALT is the sharing attention matrices between two blocks. The sharing attention
matrices, s̃f and s̃d are obtained from the function S(·) defined as Equation 7 and 8. The blocks add
these matrices to the attention matrix QKT

√
dk

of the self-attention module. This flows similar with (He

et al., 2020). The self-attention module returns a new sharing attention matrix QKT

√
dk

+ s̃ obtained by
adding the attention matrix and the sharing attention matrix s̃. The self attention module works the
remaining operations with this new matrix.

Attention(Q,K, V, s̃) = softmax(
QKT

√
dk

+ s̃)V (12)
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while Transformer has a multi head self-attention module, Linear layer has a single head self-
attention module. For calculating the sharing attention matrix, Linear layer repeats the single head
attention matrix QKT

√
dk

with the number of heads of the sharing attention matrix.

3.4 LINEAR LAYER BLOCK

Figure 2: The blocks of SALT. The left (a) is a sub block of Linear layer block. The right (b) is a
sub block of Transformer block.

Linear layer block has two sub blocks. The one sub block is forward by feature-wise, the other sub
block is by dimension-wise of embedding values. The sub blocks are defined as :

attn, s = Attention(x, s̃) (13)

z = σ(wx+ b) z̃ = g(z, attn) y = wz̃ + b (14)
where σ is an activation function, g(·) is gating function and attn is the attention value from self-
attention module(Liu et al., 2021). The gating function g(·) has two arguments, z and attn. To
compute with attn which has multi-head form, z ∈ Rn×d needs to be converted shape same as
attn ∈ Rh×n×d. Gating function is defined as :

u, v = split(z) (15)

vnorm = LayerNorm(v) (16)
vout = wvvnorm (17)

z̃ = (vout + attn)� u (18)
The one of the divisions of z, v becomes vout through a normalization and multiplication weights
wv . Then, vout is added with the attention value attn. Lastly, it calculates element-wise multipli-
cation with u, the other of divisions. Linear layer block can capture representations of relationships
using the gating function with attention values. Because gating mechanism controls the flow of
information and works similar with self-attention. It is expected that the attention value will help
capture more representations by adding it to v, one of the divided values before element-wise mul-
tiplication.

3.5 EMBEDDING LAYER OF SALT

SALT introduces the improved embedding layer of continuous variables of tabular data. In our
knowledge, there are two methods of embedding for continuous variables. The one is using the
embedding matrix m ∈ Rh×d, projection layers f(xconti) ∈ R1×h and softmax function (Guo
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Figure 3: The improved embedding layer introduced by SALT.

et al., 2021b). The other method is the embedding layer that converts f(xconti) ∈ R1×d into
Econti(xconti) ∈ R1×d using only the projection layer used in Somepalli et al. (2021). The first
method uses different embedding matrices for each variable to obtain an embedding value. SALT
improves this method to use the same embedding matrix between categorical variables and continu-
ous variables. As shown in 3 (a), this embedding layer E(·) works as follows.

E(xconti) = softmax(fi(xconti))⊗ e (19)

E(xcati) = e[x̃cati ] (20)
where e ∈ Rhd is embedding matrix, fi(·) is projection into the h-dimensional space R1×h and x̃cat
is the value for the index of embedding matrix e. Figure 3 (b) shows the tendency to increase of
transformed the embedding value as the original input value increases. The value is the age variables
of income dataset which we evaluate in our experiments. We demonstrate that our embedding layer
of continuous variables works well and perform better than other methods. See Table 2.

4 EXPERIMENTS

4.1 BASELINE MODELS

We compare the proposed SALT architecture to the tree-based models such as Decision tree, Ran-
dom Forests, XGBoost and LightGBM. We also evaluate the deep networks, simple MLP, TabNet
and SAINT for comparing. TabNet and SAINT are the deep learning models studied for tabular data
learning. SAINT has three variants SAINT, SAINT-i and SAINT-s. Therefore we evaluate the nine
models for comparing with our model SALT.

4.2 VARIANTS OF SALT

Figure 4: The variants of SALT. (a) SALT (b) SALT-linear (c) SALT-former (d) SALT-oneway

As shown in Figure 4, there are four variants of SALT. The first is two-way sharing between two
blocks. The second and third variants are designed only with Transformer and Linear layer blocks,
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SALT variants
share mode SALT SALT-oneway SALT-former SALT-Linear

share 0.9094 0.9075 0.9069 0.9066
Non share 0.9089 0.9071 0.9065 0.9055

Table 3: The results of the comparison between share mode and Non share mode with SALT variants.

respectively. The last is one way sharing from Transformer block to Linear layer block. We evaluate
all of them in the various experiments.

4.3 DATASETS AND METRIC

We evaluate the models including SALT on six binary classification datasets which are the various
size of samples and features. The size of data samples varies from 1,055 to 45,211 samples. The
number of features ranges from 11 to 57. The datasets are divided into 65%, 15% and 25% for
training, validation and test sets. The datasets are publicly available in UCI(Dua & Graff, 2017),
AutoML(Guyon et al., 2019) and Kaggle. We use the auroc as metric to measure the performance
of binary classification. With the six datasets, we evaluate a variety of experiments, including su-
pervised learning, unsupervised learning, and semi-supervised learning as well as the embedding
method experiment.

4.4 PARAMETERS

Model Batch L h Param × 1e6
SAINT 256 1 8 196.16

SAINT-i 256 1 8 195.87
SAINT-s 256 6 8 53.48

SALT 256 6 8 77.65
SALT-oneway 256 6 8 77.64
SALT-former 256 6 8 77.49
SALT-linear 256 6 8 77.32

Table 1: The parameters comparing to SAINT on
six datasets

We set default values for hyper-parameters as
follows. Embedding size is 32, attention di-
mension is 16, the number of heads is 8 and
the depth of stacks is 6. We also set the
hyper-parameters of SAINT-s with these val-
ues. However, for SAINT and SAINT-i, we set
the values following (Somepalli et al., 2021).
Because the inter-sample attention of SAINT
requires heavy resources for learning, as shown
in 1 As optimizer, we use AdamW(Loshchilov
& Hutter, 2019) with β1 = 0.9, β2 = 0.999,
decay = 0.01 and learning rate = 1e−4. We
set the 100 epochs, 30 early stopping count and
256 size of batch. For training, we use one GPU
of Nvidia GeForce RTX 2080Ti.

5 RESULTS

5.1 EMBEDDING LAYERS

Methods Mean AUROC
Guo et al. (2021a) 0.9066

Simple MLP 0.9079
Ours 0.9094

Table 2: The Mean AUROC for the
embedding methods with SALT on
six datasets.

We evaluate the three types of embedding layer on six
datasets. As mentioned in Section 3.5, the first method is
using the multiplication with embedding matrices and values
projected by layers. The second is using simple mlp for pro-
jection. Our proposed embedding method improves the first
method and outperforms the others. See Table 2.

5.2 SHARING ATTENTION MATRIX

We visualize the attention matrices in Figure 5. It shows the
effect of sharing attention matrices. (a) shows the attention
matrices, the matrix of the Transformer block on the left, the
matrix of the Linear layer block in the middle, and the matrix of the sharing function S(·) on the
right. On the other hand, (b), (c) and (d) are models without the sharing attention matrices. They are
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Figure 5: Visualization of the (feature-wise) attention matrices. For each stack in the model we plot
the row. (a) and (b) show the effect of share mode and non-share mode, respectively. (c) is from
SALT-foremr and (d) is from SALT-linear.

non-share mode of SALT, SALT-former, and SALT-linear, respectively. They show that each block
learns certain parts more intensively. However, (a) shows that the sharing attention matrix helps
each block learn more diversely. The matrices are from the experiments of online shopper datasets.
The model of (a) has the best performance with an AUROC score of 0.927. (b), (c) and (d) perform
0.925, 0.924, and 0.925 with AUROC scores, respectively.

5.3 SEMI-SUPERVISED LEARNING & PRE-TRAINING

# Labeled
Model name 50 100 300 ALL

SAINT 0.7935 0.8235 0.8549 0.9065
SALT 0.7983 0.8251 0.8647 0.9094

SALT-oneway 0.7934 0.8225 0.861 0.9075
SALT-former 0.7909 0.8219 0.8582 0.9069
SALT-linear 0.7934 0.8168 0.8587 0.9066
SAINT+pt 0.8025 0.827 0.8591 0.9056
SALT+pt 0.8068 0.8284 0.8656 0.9084

SALT-oneway+pt 0.8036 0.8288 0.866 0.9079
SALT-former+pt 0.8012 0.8225 0.8588 0.9066
SALT-linear+pt 0.7981 0.817 0.8589 0.9059

Table 4: The results under semi-supervised learn-
ing, varying by the number of labeled training
samples. The pt means pre-training.

We evaluate SALT, SALT-variants and SAINT
under the semi-supervised learning scenario
where small-labeled samples are available. We
compare five models under four conditions ac-
cording to the number of labeled samples. The
five models are four variants of SALT and
SAINT. See Table 4 for results of the AUROC
score. In the condition of using all samples,
SALT performs the best. Pre-trained SALT
and pre-trained SALT-oneway perform best un-
der different conditions with few datasets of
50, 100, and 300 labeled samples. Other vari-
ants also show the better performance with pre-
training in small data scenarios. We demon-
strate that SALT performs well on small data
environments with semi-supervised learning.

5.4 SUPERVISED LEARNING

In Table 5, we report the results on the six binary classification datasets. The models perform with
five trials of different seeds. The one of SALT variants outperforms the most models on a variety
of datasets. SALT has the best score in four of the six datasets, a majority, compared to other
models including GBDTs. It also showed the best performance in the datasets except for one dataset
compared to the deep learning models. SALT showe the best performance with an average score in
all six datasets.
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Sample size 4,601 10,000 7,043 1,055 32,561 45,211
Feature size 57 11 20 41 14 16 Mean

Model \dataset Spambase Shrutime Blastchar Qsar bio Income Bank marketing
Decision Tree 0.9643 0.6698 0.8277 0.92 0.7204 0.8051 0.8179

Random Forest 0.9851 0.8527 0.8196 0.9269 0.9028 0.9254 0.9021
XGBoost 0.987 0.8479 0.8119 0.9216 0.9198 0.928 0.9027

LightGBM 0.9882 0.8611 0.8252 0.9224 0.9236 0.9307 0.9085
MLP 0.9758 0.4846 0.792 0.9238 0.6226 0.7347 0.7556

TabNet 0.9777 0.8274 0.7923 0.8251 0.9066 0.9196 0.8748
SAINT 0.9835 0.8638 0.8339 0.9198 0.9113 0.9264 0.9065

SAINT-i 0.9833 0.8617 0.8327 0.9260 0.9098 0.9259 0.9066
SAINT-s 0.9821 0.8584 0.8335 0.9121 0.9124* 0.9302 0.9048

SALT 0.985* 0.8675* 0.8341 0.9272* 0.9113 0.9311* 0.9094*
SALT-oneway 0.9829 0.866 0.8347* 0.9221 0.9109 0.9286 0.9075
SALT-former 0.9835 0.8634 0.8329 0.9221 0.9104 0.9288 0.9069
SALT-linear 0.9832 0.8643 0.8333 0.9199 0.9104 0.9287 0.9066

Table 5: The Mean AUROC of evaluating models with six datasets. Bold means the best perfor-
mance in the entire models. * means the best performance in the deep learning models.

6 LIMITATIONS AND CONCLUSIONS

We propose SALT, a novel and hybrid deep learning architecture for tabular learning. SALT intro-
duces the improved embedding method and the sharing attention matrix between two blocks. Fur-
thermore, SALT can be improved for training resource with efficient transformers (Tay et al., 2020).
In addition, variants of SALT showed superior performance in four out of six datasets compared to
other models including GBDTs. SALT also shows benefits of unsupervised pre-training. With good
performance and various benefits of attention matrix, SALT shows the attention mechanism works
on tabular datasets too. However, our model still shows lower performance than GBDTs in some
data. Therefore, continuous research on tabular data modeling is needed. The code is available at
https://github.com/Juseong03/SALT.
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