
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

POLICY OPTIMIZATION CAN BE MEMORY-EFFICIENT:
LLM ALIGNMENT THROUGH SUCCESSIVE POLICY
RE-WEIGHTING (SPR)

Anonymous authors
Paper under double-blind review

ABSTRACT

Reinforcement learning (RL) is serving as the cornerstone of aligning large
language models (LLMs) to human behavior, by providing an appealing
formulation and a suite of effective algorithms for learning behavior strategies
through interacting with the underlying environment. Current paradigm of
RL-based methods for LLM alignment, such as reinforcement learning with human
feedback (RLHF) involves utilizing a reward function learned from extensive offline
datasets to expediate the online training of reinforcement learning. The reward
function learned is then used for policy optimization to obtain an improved policy
(i.e. the LLM). Despite the success of RL approaches in aligning LLM with offline
datasets, there are significant computational/limit of resources concern on applying
RL-based methods for LLMs. For example, standard RLHF requires simultaneous
loading of four models to the computing unit. In this paper, we develop a novel
policy optimization algorithm named Successive Policy Re-weighting (SPR),
matching the peak memory consumption of standard supervised fine-tune (SFT).
Further, SPR can leverage both offline and online datasets to expediate online
training and improve the sample efficiency. Specifically, SPR leverages a supervised
learning subroutine to achieve policy improvement through re-weighting the policy
according to the importance/performance of executed actions. Such simple and
effective method is computationally inexpensive, requiring loading only one model
at each update step, matching the computational cost of standard supervised
fine-tuning procedure. Experimental results show that the proposed method can
significantly outperform benchmark algorithms and accelerate the online training
with available offline dataset.

1 INTRODUCTION

0 10 20 30 40 50 60
Memory cost (GB)

SFT

DPO

PPO

SPR

A100 40GB
Weight
Activation
Optimization State
Weight Gradient
Others

Figure 1: Estimated memory consumption of running
the Pythia-1B model on TL;DR dataset with
batch-size 2 on a single device, without checkpointing,
memory offloading and distributed training such as
Deepspeed. Here “SPR” is the implementation of our
Algorithm 2.

Aligning LLM to follow human instructions
is of the central focus for artificial general
intelligence (AGI). Recently, RL-based
algorithms for LLM alignment, such as
reinforcement learning with human feedback
(RLHF, see Ouyang et al. (2022); Christiano
et al. (2017)) are serving as the backbone
of the recent success on the emergence of
intelligence for LLMs such as GPT-4 (Achiam
et al., 2023), Claude-3 (Anthropic, 2024)
and Gemini-1.0 (Team et al., 2023). Among
these methods, the most iconic RLHF utilizes
large-scale preference datasets which consists
of input prompt and two continuations, where
one is preferred over the other, to train a reward
model and use this reward model for policy
optimization to iteratively improve LLMs. Therefore online policy optimization methods such as
proximal policy optimization (PPO, see Schulman et al. (2017)) are the most prevalent in industry
and the SOTA alignment approaches. On the other hand, Direct Preference Optimization (DPO,

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

see Rafailov et al. (2024)) simplifies RLHF by training the policy/LLM directly while implicitly
learns the reward model via log of the ratio of likelihood between the learned model and a reference
model. Both RLHF and DPO are successful in terms of improving the instruction-following and
reasoning ability of LLMs (see, for example Ouyang et al. (2022); Tunstall et al. (2023); Dubey et al.
(2024)) over the most straightforward supervised fine-tune (SFT) approach, which is analogous to the
plain behavior cloning approach in RL literature (Pomerleau, 1988; Osa et al., 2018). LLMs aligned
using RLHF are thus believed to open the current AI boom toward AGI (Bubeck et al., 2023).

There are several important distinctions between RL-based methods (such as RLHF) and DPO: First,
RL-based methods require an explicit reward model for policy improvement, while DPO learns the
policy directly; Second, RL-based method in general can effectively utilize an online pipeline using
the explicit reward model, while the standard DPO is designed for offline data. Specifically for
RL-based methods, a reward model could be trained by online and offline collected preference data
using the standard Bradley-Terry model (Bradley & Terry, 1952). Given a reward model, RLHF
utilizes standard policy optimization algorithm such as PPO at the policy optimization step, whose
naive implementation requires loading four models at the same time, namely the reward, the policy,
and two value function models. In contrast, DPO only requires loading two models (a policy and a
reference model) simultaneously, but is arguably more sensitive to the distribution shift between the
base model outputs and preference data, and it is not quite effective on challenging tasks (Xu et al.,
2024; Lin et al., 2024; Ivison et al., 2024). Witnessing the success of RLHF, the memory efficiency
issue of both RL-based method and DPO, as well as the limitation of offline nature of algorithms
such as DPO, we pose the following question:

Can we reduce the compute and memory requirement of policy optimization to SFT level,
while still leveraging an explicit reward function for effective online training?

In this paper, we provide an affirmative answer to above question by proposing a novel algorithmic
framework named Successive Policy Re-weighting (SPR), which is a RL-based method, whose
(peak) computational cost matches that of supervised fine-tuning (SFT). The proposed framework
is developed from carefully examining the objective of TRPO/PPO and considers a constrained
optimization reformulation from the original problem. A successive minimization algorithm is then
proposed to iteratively optimize for the value function and the policy. When online data collection is
available, we can collect online data from the current policy and add them to update the data buffer.
This simple supervised learning update scheme makes off-policy online reinforcement learning more
practical for real implementations. Specifically, our contributions are summarized as follows:
•We revisit the constrained policy optimization problem proposed in TRPO and a partial Lagrangian
reformulation of such problem inspired by the advantage-weighted regression (AWR, see Peng et al.
(2019)) method. We provide closed-form policy solution of the partial Lagrangian (see Theorem 1),
and such a solution is exact and takes the normalization factor of the optimal policy into account
(which is a departure from Peng et al. (2019), see Remark 2.2);
•We propose a novel iterative Successive Policy Re-weighting method (SPR, Algorithm 1). SPR
utilizes an explicit reward to learn the Q-value function and the log-sum-exp value function, then
learns the policy through re-weighting the policy probability based on the Q-value function. SPR
only loads one (value or policy) model at every step, achieving policy optimization with the same
memory consumption as standard supervised fine-tuning (SFT) (see Figure 1). We thus believe
that the proposed SPR can serve as a powerful alternative to the memory-costly PPO for the RLHF
pipeline when aligning LLMs.
• We conduct extensive numerical experiments to verify the effectiveness of the proposed
method. Specifically, we compare the SPR with standard PPO and DPO, as well as a Best-of-N
algorithm (Dong et al., 2023) on both 1b and 8b models. We compare both the reward value and
win-rate of 1b model trained by different methods on a text-summarization dataset, and evaluate the
8b model trained by different methods on OpenLLM leaderboard. All our results show the superior
performance of the proposed method over standard baselines.

2 METHODOLOGY

Our main objective is to efficiently conduct policy optimization with comparable level of memory
consumption as SFT, while leveraging both offline dataset and online data generated by intermediate
models to further fine-tune the policy. Towards this end, let us first review the state-of-the-art
alignment methods1 and the policy optimization problem formulations.

1Due to the page limit, we refer to Appendix A for a more comprehensive literature review.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

2.1 PRELIMINARIES ON LLM ALIGNMENTS

We model the LLM as a policy π in a Markov decision process (MDP). A MDP is defined by the tuple
(S,A, P, µ, r, γ), which consists of the state space S, the action space A, the transition dynamics
P : S ×A×S → [0, 1], the initial state distribution µ(·), the reward function r : S ×A → R and the
discounted factor γ ∈ (0, 1). Under a transition dynamics model P and a policy π : S → ∆A where
∆A is the probability simplex on the action space, further define the corresponding state visitation
measure as dπ(s) := (1 − γ)

∑T
t=0 γ

tPπ(st = s|s0 ∼ η) for any state s ∈ S. Here T is horizon
size, which can be any positive integer or∞.

In the LLM context, S and A correspond to the space of input prompts and the space of output
continuations, respectively. If we consider the entire input sentences as state space and the entire
output continuations as action space, then there is no transition dynamics, i.e. horizon = 1. On
the other hand, if we consider the token-level state/action space2, i.e. the action is modeled as the
next token in the sentence, the transition dynamics is deterministic and P (s′|s, a) is always 1 if
s′ = (s, a) and 0 otherwise. In all the experiments, we stick to the sentence-level state/action, where
T = 1. The reward model r is usually another LLM trained specifically to evaluate the score of given
prompt/continuation tuples, and the policy model π is the LLM to be optimized.

Now consider an LLM parameterized by θ. Denote πθ(a|s) as the probability of outputting a given
input prompt s, and we assume the horizon T = 1 for the rest of this section. The following
discussions review three common procedures for fine-tuning LLM: (1) supervised fine-tuning (SFT)
over demonstration dataset, (2) reinforcement learning with human feedback (RLHF) over preference
dataset, and (3) direct preference optimization (DPO).

SFT. Given a demonstration dataset D := {(s, a)} collected from an expert policy πE (i.e. a ∼
πE(·|s)), the SFT optimizes the following problem:

max
θ

ℓSFT(θ) := E(s,a)∼D [log πθ (a|s)] . (1)

The above problem shares the same optimal solutions with minθ Es∼µ[DKL(π
E (·|s) ∥πθ (·|s))] (see

(17)), and the latter shows that SFT aims at imitating the demonstration dataset via minimizing the
KL divergence. It is worth noting that the SFT stage described here is closely related to the imitation
learning approach used in the RL literature for learning from demonstration (Osa et al., 2018), whose
goal is to mimic the policy of an expert.

RLHF. Let rϕ(s, a) denote a reward model parameterized by ϕ, which evaluates a given input and
output pair (s, a). Then the LLM can be fine-tuned by the following RL problem:

max
θ

ℓRL(θ) := Es∼µ,a∼πθ(·|s) [rϕ(s, a)]− βEs∼µ[DKL(πθ (·|s) ∥πref (·|s))], (2)

where πref is a fixed reference model and DKL is the KL-divergence to regulate the policy around the
reference policy πref . In practice, (2) is usually solved by standard policy optimization techniques
such as PPO (Schulman et al., 2017).

To find an appropriate reward model rϕ(s, a), RLHF (see e.g., Christiano et al. (2017)) leverages a
set of preference dataset P := {(s, aw, al)}, where each data contains a pair of output aw, al, and
aw is preferred over al by human labeler (denoted as aw ≻ al). The Bradley-Terry model (Bradley &
Terry, 1952) assumes that the probability of choosing aw over al is

P (aw ≻ al | s) =
exp(r(s, aw))

exp(r(s, aw)) + exp (r (s, al))
= σ (r(s, aw)− r (s, al))

where σ is the Sigmoid function. One can formulate the following problem to find the reward model:

max
ϕ

ℓRM(ϕ) := Es∼µ,(al≺aw)∼πP (·|s)

[
log

(
σ
(
rϕ(s, aw)− rϕ(s, al)

))]
. (3)

It is widely observed in the literature that, models trained via episodically learning the policy (2) and
learning the reward (3) typically outperform those that are only trained using SFT (Ouyang et al.,
2022). The reward model guides the performance of the LLM and allows a better generalization
ability via the consistent input of the preference data from human labeler.

2Similar modeling can be considered if we model a dialogue as a sequence of state (questions) and actions
(answers).

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

DPO. DPO (Rafailov et al., 2024) proposes to incorporate reward learning implicitly by utilizing
the structure of the optimal solution of the RL problem (2). Specifically, (2) implies that the optimal
policy should satisfy:

r(s, a) = β log

(
πθ(a|s)
πref(a|s)

)
+ β logZθ(s), (4)

where Zθ(s) is the partition function. Plugging this equation back to (3) we get the DPO loss:

max
θ

Es∼µ,(al≺aw)∼πP (·|s)

[
log

(
σ
(
β log

(
πθ(aw|s)
πref(aw|s)

)
− β log

(
πθ(al|s)
πref(al|s)

)))]
. (5)

The difference between DPO and RLHF. Let us have a brief discussion about the above DPO
reformulation. First, it is important to note that the fact that optimal policy of (2) takes the form of (4)
implicitly says that there must exist a reward model r such that

π(a|s) =
πref(a|s) exp

(
1
β rϕ(s, a)

)
∑

ã∈A πref(ã|s) exp
(

1
β rϕ(s, ã)

) . (6)

However, in the DPO formulation, after directly plugging (4) into (3), problem (5) directly optimizes
the policy parameter θ, it remains unclear whether the optimized policy continues to satisfy (6) during
the entire optimization process. Therefore, a more rigorous way to recover the solution of (2) is to
solve the following problem (by introducing the explicit optimal policy constraint):

max
ϕ

Es∼µ,(al≺aw)∼πP (·|s)

[
log

(
σ
(
β log

(
π(aw|s)
πref(aw|s)

)
− β log

(
π(al|s)
πref(al|s)

)))]
s.t. π := argmax

π
Es∼µ,a∼π(·|s) [rϕ(s, a)]− βEs∼µ[DKL(π (·|s) ∥πref (·|s))].

(7)

The difference between (7) and (5) indicates that DPO in (5) is not exactly an RLHF scheme, but
a supervised preference data-fitting scheme. In other words, the constrained optimization problem
of RLHF is simplified and the solution space of DPO is actually larger than that of RLHF. Related
discussion about limitation of DPO from different angles can also be found in Xu et al. (2024); Lin
et al. (2024); Ivison et al. (2024).

2.2 CONSTRAINT POLICY OPTIMIZATION FORMULATION

We develop our problem formulation that substitutes the most memory-intensive RL step in (2)
with the constrained optimization formulation in (14) , which leads to the new policy optimization
algorithm in the next section. Let us start from the most general case where the horizon T is∞,
then the setting in our experiments (T = 1) will naturally follow. We inspect the original policy
optimization by dropping the KL-divergence constraint in (2) and obtain:

J(π) := Eτ∼π

[∞∑
t=0

γtr(st, at)
]
, (8)

where τ := (s0, a0, s1, a1, · · ·) denotes one trajectory, corresponding to one data point with prompt(s)
and continuation(s). Under a policy/LLM π, we can define the corresponding value function V π and
the Q-function Qπ as below:

V π(s) := Eτ∼π

[∞∑
t=0

γtr(st, at) | s0 = s
]
, (9a)

Qπ(s, a) := r(s, a) + γEs′∼P (·|s,a)
[
V π(s′)

]
. (9b)

We can further define the advantage function for each state action pair (s, a) as follows:
Aπ(s, a) := Qπ(s, a)− V π(s). (10)

The fundamental idea of policy improvement is that, suppose there is a reference policy π′, we can
maximize the performance gap over the reference policy to achieve policy improvement:

ηπ′(π) := J(π)− J(π′). (11)

It turns out that the performance improvement of the policy π over the reference policy π′ can be
expressed by the advantage function Aπ′

(s, a).

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Lemma 1 (Lemma 1.16 in (Agarwal et al., 2019)). For any policy π and π′, the performance
difference can be expressed as below:

ηπ′(π) =
1

1− γ
Es∼dπ(·),a∼π(·|s)

[
Aπ′

(s, a)
]

(12)

where dπ(s) := (1− γ)
∑∞

t=0 γ
tPπ(st = s|s0 ∼ µ) denotes the state visitation measure.

In the LLM context, this performance difference lemma indicates that to align the LLM with the
reward model, i.e. to maximize the policy improvement objective in (11), one just need to seek for
a policy π which induces positive expected advantage Es∼dπ(·),a∼π(·|s)

[
Aπ′

(s, a)
]
> 0 over the

reference policy π′. Therefore, we focus on maximizing (12).

However, from a practical point of view, the dependency on sampling data from the visitation measure
dπ(·) makes it difficult to optimize the performance difference defined in (12). Following the trust
region policy optimization (TRPO, see Schulman et al. (2015)) framework, we instead consider an
approximation to ηπ′(π) by η̃π′(π):

η̃π′(π) =
1

1− γ
Es∼dπ′ (·),a∼π(·|s)

[
Aπ′

(s, a)
]

(13)

where dπ′(·) denotes the state visitation measure under the reference policy π′. According to Theorem
1 in (Schulman et al., 2015), η̃π′(π) serves as a good approximation to ηπ′(π) when the two policies
π and π′ are close in terms of the KL-divergence. Thus, when maximizing the surrogate objective
η̃π′(π) defined in (13) while penalizing the KL divergence between π and π′, we are able to guarantee
monotonic performance improvement at each policy iteration step.

Above discussions lead to the following optimization objective, which is also used in the TRPO: at
each policy iteration step and given the previous policy πold, one solves for the constrained policy
optimization problem:

max
π

η̃πold
(π) (14a)

s.t. Es∼dπold
(·)
[
DKL

(
π(·|s)||πold(·|s)

)]
≤ ϵ, (14b)∑

a∈A
π(a|s) = 1,∀s ∈ S, (14c)

π(a|s) ≥ 0,∀s ∈ S, a ∈ A. (14d)

In the following theorem, whose proof is provided in the Appendix B, we show the closed-form
expression of the optimal policy.
Theorem 1. The optimal policy π∗ from (14a)-(14d) is

π∗(a|s) = πold(a|s) exp
(1

β

(
Qπold(s, a)−Wπold(s)

))
(15)

where β := 1
(1−γ)α and Wπold(s) := β log

(
Ea∼πold(·|s)

[
exp

(
1
βQ

πold(s, a)
)])

is defined as a
reference function dependent on the state s, also known as the log-sum-exp value function.

Remark 1. Note that if we replace Wπold(s) by the value function V πold(s) :=
Ea∼πold(·|s)Q

πold(s, a), we arrive at Peng et al. (2019, equation (8)):

π∗(a|s) = 1

Z(s)
πold(a|s) exp

(1

β

(
Qπold(s, a)− V πold(s)

))
where Z(s) is the partition function to normalize the policy. Z(s) is not negligible when estimating
the optimal policy, which motivates us to use the log-sum-exp function Wπold(s) instead. Similar
trick can be observed in maximum entropy RL literature such as Garg et al. (2022). Theorem 1 frees
us from estimating the impractical partition function Z(s) and opens the gate for efficient algorithm
for solving for the optimal policy, by solving the Q and W functions in (15) respectively.

With the closed-form optimal policy in Theorem 1, the remaining question is how to develop a simple
and efficient algorithm to approximate the optimal policy at each policy iteration. In the next section,
we develop a practical algorithm to approximate the optimal policy π∗ defined in (15), which also
optimizes the original objective (8).

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

3 ALGORITHM DESIGN

In this section, we design a memory-efficient algorithm to approximate the optimal policy π∗ defined
in (15). Despite the fact that it has a closed-form solution, it remains unclear how to efficiently
estimate the the Q and W functions on the right hand side of (15).

Algorithm Derivation. Now suppose we parameterize our policy by parameter θ in practice.
Since the optimal policy for the constrained optimization problem defined in (14a)-(14d) enjoys
a closed-form solution in (15), we directly approximate the optimal policy π∗ corresponding to a
reference policy πold through solving the following KL divergence minimization problem:

min
θ

Es∼dπold
(·)

[
DKL

(
π∗(·|s)||πθ(·|s)

)]
. (16)

Based on the definition of the KL divergence DKL

(
π∗(·|s)||πθ(·|s)

)
= Ea∼π∗(·|s)

[
log π∗(a|s)

πθ(a|s)
]
, we

can obtain the following relations:

Es∼dπold
(·)

[
DKL

(
π∗(·|s)||πθ(·|s)

)]
= Es∼dπold

(·),a∼π∗(·|s)

[
log π∗(a|s)− log πθ(a|s)

]
. (17)

Eq. (17) implies that minimizing the KL divergence between π∗ and πθ is equivalent to solving the
following maximum likelihood estimation (MLE) problem:

max
θ

LMLE(θ) := Es∼dπold
(·),a∼π∗(·|s)

[
log πθ(a|s)

]
. (18)

This implies that solving (18) is equivalent to solving (16), and the resulting policy πθ approximates
π∗. However, one critical issue in solving the MLE problem is that we are not able to sample actions
from the optimal policy π∗ even though the closed-form expression of π∗ is available in (15).

In order to resolve this issue, we leverage the technique from importance sampling where we sample
actions from the existing policy πold and then weigh each sample (s, a) by its importance weight
π∗(a|s)
πold(a|s) . Towards this end, we write:

LMLE(θ) = Es∼dπold
(·),a∼π∗(·|s)

[
log πθ(a|s)

]
= Es∼dπold

(·),a∼πold(·|s)

[π∗(a|s)
πold(a|s)

log πθ(a|s)
]
. (19)

Leveraging the relation between π∗ and πold as shown in (15), LMLE(·) can be rewritten as:

LMLE(θ) = Es∼dπold
(·),a∼πold(·|s)

[π∗(a|s)
πold(a|s)

log πθ(a|s)
]

= Es∼dπold
(·),a∼πold(·|s)

[
exp

(1

β

(
Qπold(s, a)−Wπold(s)

))
log πθ(a|s)

]
. (20)

With the state-action pairs (s, a) sampled from the policy πold, we approximate the corresponding
optimal policy through optimizing the objective in (20). In the LLM context, (20) can be viewed as a
re-weighting process, where we increase or decrease the log likelihood of the previous policy πold

according to the approximate advantage function Qπold −Wπold , i.e. we increase the likelihood of
actions/continuations with higher rewards than the baseline and decrease the ones with lower rewards.

In order to train a parameterized policy πθ through optimizing the supervised learning objective
in (20), it remains to estimate the Q-function Qπold(s, a) and the reference function Wπold(s). To
estimate the Q-function Qπold(s, a) under a policy πold, we solve the fixed point of the following
Bellman operator B:

BπoldQ(s, a) = r(s, a) + γEs′∼P (·|s,a),a′∼πold(·|s′)
[
Q(s′, a′)

]
. (21)

Following Fujimoto et al. (2018); Haarnoja et al. (2018), we use the temporal difference learning to
minimize Bellman error to approximate Qπold(s, a) by a parameterized Q-function Qϕ(s, a).

Next, let us estimate the reference function Wπold(s) under the policy πold. Based on the definition
of Wπold(s) in (15), a naive way is to construct empirical estimations to approximate the reference
function. For each state s, one can sample a small batch of N actions from policy πold(·|s) and then
construct the empirical estimate Ŵπold(s) defined as below:

Ŵπold(s) := β log
(N∑

i=1

exp
(1
β
Qπold(s, ai)

))
. (22)

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

To obtain an accurate estimate of the reference function Wπold(s), it is necessary to make the
batch-size N large enough, which is computationally expensive. The estimation error between
Ŵπold(s) and Wπold(s) are not negligible when the batch-size N is small, see Nair et al. (2020).

The drawback of the empirical estimator in (22) motivates us to estimate the reference function
Wπold(s) through parameterized approximations. Towards this end we have the following claim:

Claim. Wπold(s) satisfies

Wπold(s) = argmin
w

Ea∼πold(·|s)

[
exp

(Qπold(s, a)− w

β

)
− Qπold(s, a)− w

β
− 1

]
. (23)

Derivation of the claim. We observe that the reference function Wπold(s) shares the same expression
to the fitted parameter of Gumbel distribution by maximum likelihood estimation. According to
Coles et al. (2001); Forbes et al. (2011); Garg et al. (2022), when we model a random variable x
by Gumbel distribution x = h− ϵ where ϵ ∼ G(0, β) is a Gumbel noise, the log-likelihood has the
following expression:

Ex

[
log p(x;h, β)

]
= Ex

[
log

(1

β
exp

(x− h

β
− exp(

x− h

β
)
))]

. (24)

To fit the location parameter h through maximum likelihood estimation, we can minimize the
following loss function:

min
h

f(h) := Ex

[
exp

(x− h

β

)
− x− h

β
− 1

]
(25)

where the loss function f(h) shares similar form to the Linex loss in the literature of econometrics
(Parsian & Kirmani, 2002; Chang & Hung, 2007). Through solving the loss function f(h)

defined in (25), we obtain the maximum likelihood estimator of the location parameter as ĥ =

β logEx

[
exp

(
x
β

)]
. Here, we observe that the estimate ĥ shares the same expression to the reference

function Wπold(s) defined in (15). This shows that for a fixed state s, the value of Wπold(s) solves
the following optimization problem in (23).

Now given a parameterized Q-function Qϕ(s, a) which approximates the exact Q-function
Qπold(s, a), we can train a parameterized reference function Wφ(s) to approximate Wπold(s) for all
states s ∈ S through optimizing the following loss function:

min
φ

L(φ) := Ea∼πold(·|s)

[
exp

(Qϕ(s, a)−Wφ(s)

β

)
− Qϕ(s, a)−Wφ(s)

β
− 1

]
. (26)

This completes our derivation of the algorithm. Now, we are ready to summarize our proposed
Successive Policy Re-weighting (SPR) algorithm in Alg. 1. We solve the value function Q
(parameterized by ϕ) and reference function W (parameterized by φ) by solving (21) and (26),
respectively. Then we can solve for the policy/LLM πθ by minimizing the re-weighting loss (20).

Algorithm Simplification. Note that if we model the entire input prompt and output continuation as
the state and action respectively, the horizon will be automatically reduced to one. In this case, the Q
value function reduces to the reward function r and line 4 of Algorithm 1 is discarded immediately,
also W in (22) becomes the log-sum-exp of the reward function r. The resulting simplified algorithm
is presented in Algorithm 2, which can be implemented for LLM alignment. Notably, both Algorithm
1 and 2 only require a single model to be loaded in the memory for each of it update step.

Discussion. SPR significantly decreases the memory consumption of PPO by reducing the number
of models loaded in the memory from four to one, matching the memory requirement of standard
SFT. The proposed method saves more memory comparing to the DPO since DPO requires loading
a froze reference model during the training step, while SPR only loads one model throughout its
algorithm process; On the other hand, SPR still allows online data and explicit reward feedback
through iterative sampling-and-fitting process, greatly increase its potential in alignment comparing to
offline-data-only method such as SFT or DPO. The memory and time consumption of SPR comparing
with related methods are summarized in Figure 1.

4 EXPERIMENTAL RESULTS

In this section, we demonstrate the effectiveness of our proposed method numerically.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Algorithm 1 Successive Policy Re-weighting (SPR)
1: Input: Collect an demonstration dataset D = {(s, a, s′)} and a given reward function r(·, ·).
2: Initialize the parameterized policy (LLM), Q-function and reference function as πθ, Qϕ and Wφ

3: for k = 0, 1, . . . ,K − 1 do
4: ϕk+1 = argminϕ E(s,a,s′)∼D,a′∼πθk

(·|s′)
[(
Qϕ(s, a)− r(s, a)− γQϕ̄k

(s′, a′)
)2]

5: φk+1 = argminφ Es∼D,a∼πθk
(·|s)

[
exp

(
Qϕk+1

(s,a)−Wφ(s)

β

)
− Qϕk+1

(s,a)−Wφ(s)

β − 1
]

6: θk+1 = argminθ Es∼D,a∼πθk
(·|s)

[
exp

(
1
β

(
Qϕk+1

(s, a)−Wφk+1
(s)

))
log πθ(a|s)

]
7: ϕ̄k+1 = αϕk+1 + (1− α)ϕ̄k

8: if k > sampling threshold then
9: sample trajectories τ1, · · · , τN from the current policy πθk+1

10: add trajectories to the data buffer: D ← D ∪ {τ1, · · · , τN}
11: end if
12: end for

Algorithm 2 Successive Policy Re-weighting (SPR) for LLM alignment
1: Input: Collect an demonstration dataset D = {(s, a)} and a given reward function r(·, ·).
2: Initialize the parameterized policy (LLM), Q-function and reference function as πθ, Qϕ and Wφ

3: for k = 0, 1, . . . ,K − 1 do
4: φk+1 = argminφ Es∼D,a∼πθk

(·|s)

[
exp

(
r(s,a)−Wφ(s)

β

)
− r(s,a)−Wφ(s)

β − 1
]

5: θk+1 = argminθ Es∼D,a∼πθk
(·|s)

[
exp

(
1
β

(
r(s, a)−Wφk+1

(s)
))

log πθ(a|s)
]

6: if k > sampling threshold then
7: sample prompt-continuation pairs (s1, a1), · · · , (sN , aN) from the current policy πθk+1

8: add prompt-continuation pairs to the data buffer: D ← D ∪ {(s1, a1), · · · , (sN , aN)}
9: end if

10: end for

4.1 EXPERIMENT SETUP

Model and Datasets. We conduct our experiment in two settings: First, we test with
EleutherAI/pythia-1b-deduped model over TL;DR text-summarization dataset and
evaluate using a reward model and the win rate over the reference summary; Second, we train
with LLaMA3-SFT model over a mixture of various prompt datasets, including UltraFeedback Cui
et al. (2023), HelpSteer Wang et al. (2023) and so on (see Dong et al. (2024) for the details of the
training data). We test the performance of the 8b model trained by SPR over various downstream
tasks.

Evaluation. For the first experiment setting, we use a model trained from Pythia-6.9b with
TL;DR dataset3 as the reward evaluator. Note that the experiment is conducted on 1b model and
we believe that this 6.9b model is capable of serving as the ground truth for this text summarizing
task. We also record the win rate of the model generated summary against the ground truth summary,
evaluated by GPT-3.5-turbo-0125.

For the second experiment setting, we evaluated the aligned model trained from LLaMA3-SFT
over the Open LLM Leaderboard (Beeching et al., 2023). Open LLM Leaderboard involves various
downstream tasks to test the performance of LLM through different dimensions, where we (following
Chen et al. (2024); Li et al. (2024)) evaluate an LLM based on six tasks: commonsense reasoning (Arc
Clark et al. (2018), HellaSwag Zellers et al. (2019), Winogrande Sakaguchi et al. (2021)), multi-task
language understanding (MMLU Hendrycks et al. (2020)), human falsehood mimic (TruthfulQA Lin
et al. (2021)) and math problem solving (GSM8K, Cobbe et al. (2021)).

Implementation detail. Instead of training a reference function as in step 4 of Algorithm 2, we
use the empirical estimate Ŵπold(s) in (22) by generating N responses based on the current policy,

3see this link for the detail of how to obtain this reward model from the base model of
EleutherAI/pythia-6.9b-deduped.

8

https://huggingface.co/vwxyzjn/EleutherAI_pythia-6.9b-deduped__reward__tldr

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

due to its efficiency in practice. In our experiment, considering the time efficiency and performance
limitations due to the scaling law Kaplan et al. (2020), we split the whole training TL;DR dataset of
evenly into 10 pieces, so 11.7K prompts are used to generate N independent responses for training in
each iteration, and iterate the training dataset for 3 epochs on each data pieces. For the 8b model, we
used 20K prompts per iteration and trained for 2 epochs on each data pieces. When we exhaust all
the data, we restart from the first split of the dataset4. We refer to Appendix C for more details.

4.2 RESULTS ON 1B MODELS

We present the performance of EleutherAI/pythia-1b-deduped model on four different
algorithms, including SPR (Algorithm 2), Best-of-N (Dong et al. (2023)), DPO5 and PPO6. We use
the SFT pythia-1b model7 as the initial model. Here Best-of-N refers to selecting the sample with
highest score, as evaluated by the 6.9b reward model, to train the policy model, which serves as a
strong baseline.

In Fig. 2, it can be seen that both SPR and Best-of-N algorithm outperform DPO in terms of reward
score. However, while the Best-of-N algorithm struggles to consistently surpass DPO in win rate,
SPR still demonstrates strong performance in win rate against reference summaries. Furthermore,
as N increases, both Best-of-N and SPR achieve better performance, attributed to a more accurate
estimation of the reference function and improved sample quality. Although the reward score of all
four algorithms continue to increase, the win rate essentially converges to a stationary level.

SFT 1 2 3 4 5 6 7 8 9 10
Iteration

1.0

0.5

0.0

0.5

1.0

1.5

Re
w

ar
d

Sc
or

e
 (

ev
al

ua
te

d
by

 P
yt

hi
a-

6.
9B

 r
ew

ar
d

m
od

el
)

SPR N8
Best-of-8
SPR N16
Best-of-16
DPO
PPO

(a) Reward score

SFT 1 2 3 4 5 6 7 8 9 10Full-Test
Iteration

35

40

45

50

55

60

W
in

 r
at

e
ag

ai
ns

t
re

fe
re

nc
e

su
m

m
ar

ie
s

(a
cc

or
di

ng
 t

o
gp

t-
3.

5-
tu

rb
o-

01
25

)

SPR N8
Best-of-8
SPR N16
Best-of-16
DPO
PPO

(b) Win rate against reference summaries

Figure 2: Left: The reward scores evaluated by Pythia-6.9b reward model trained on the TL;DR
dataset on win rate of SPR algorithm on Pythia-1b model through the entire train split of the TL;DR
dataset; Right: The win rate of our models’ summaries over the human-generated reference summaries
on the first 1000 test split of the TL;DR dataset, judged by GPT 3.5, “Full-Test” means evaluated on
the whole test dataset. The x-axis represents the iteration number, each iteration uses 1/10 training
data. To ensure fairness in testing, responses are generated using greedy search.

4.3 RESULTS ON 8B MODELS

SFT iter-1 iter-2 iter-3 iter-4 iter-5 iter-6 iter-7

68.5

69.0

69.5

70.0

70.5

71.0

Av
er

ag
e

Ac
cu

ra
cy

 (
%

)

68.66

69.44

69.88 69.86

70.23
70.43

70.57 70.65

SPR
DPO

Figure 3: The average score of SPR with N = 32
and DPO baseline at different iterations on the
Open LLM leaderboard datasets.

In Figure 4 and Table 1, we compare the
performance of our fine-tuned model by SPR
with the base model LLaMA3-SFT on each task
included in the leaderboard. SPR demonstrates
superior performance compared to the Best-of-N
approach and DPO after several iterations.
Specifically, the average accuracy of SPR
outperforms DPO by 0.22% when N = 16 and
by 0.77% when N = 32, respectively.

Notably, our algorithm shows strong potential
on the improving the LLM’s ability of solving

4For example, in Fig. 2, we exhaust all the training data when the “Iteration” on x-axis equals to 10.
5We use this pythia-1b DPO checkpoint.
6We use this pythia-1b PPO checkpoint.
7We use this pyhia-1b SFT checkpoint.

9

https://huggingface.co/trl-lib/pythia-1b-deduped-tldr-offline-dpo
https://huggingface.co/vwxyzjn/EleutherAI_pythia-1b-deduped__ppo_left_padding_new_nowhiten_reward__tldr/tree/ppo_left_padding_new_nowhiten_reward__77713__1709671965
https://huggingface.co/vwxyzjn/EleutherAI_pythia-1b-deduped__sft__tldr/tree/sft__44413__1708611267

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

mathematical problem, with an almost 6% improvement on the GSM8K task. In Figure 3, we show
the average score of SPR algorithm with N = 32 compared to the DPO baseline over a total of 7
iterations. The results demonstrate a progressive increase in the average score, ranging from 68.66%
to 70.65%, indicating the effectiveness of our algorithm.

Tasks Arc Challenge TruthfulQA MC2 Winogrande GSM8k HellaSwag MMLU Average
Metrics acc_norm acc acc strict-match acc_norm

LLaMA3-SFT 62.29% 53.49% 78.14% 72.55% 81.03% 64.49% 68.66%
LLaMA3-DPO 65.36% 60.02% 77.43% 70.96% 81.56% 63.95% 69.88%
Best-of-16 63.32% 56.03% 78.13% 75.97% 81.36% 65.22% 70.01%
SPR-16 63.57% 56.14% 77.74% 76.12% 81.68% 65.34% 70.10%

Table 1: Performance of Policy in Open LLm Leaderboard for four different algorithms. SPR and
Best-of-N algorithm with N = 16 are run over five iterations.

Arc TruthfulQA Winogrande GSM8k Hellaswag MMLU Average
50

55

60

65

70

75

80

85

Sc
or

es

LLaMA3-SFT
LLaMA3-DPO
SPR iter-1
SPR iter-2
SPR iter-3
SPR iter-4
SPR iter-5
SPR iter-6
SPR iter-7

Figure 4: Performance comparison between DPO training and SPR with N = 32 across the six
benchmark datasets.

5 CONCLUSIONS AND LIMITATIONS

In this paper we proposed a memory-efficient policy optimization approach named successive policy
re-weighting (SPR), matching the peak memory consumption of standard supervised fine-tune (SFT).
SPR is flexible for offline and online policy training and achieves state-of-the-art performance on
our experiment for aligning 1b and 8b models. The computational time of the proposed method is
in general higher than SFT or DPO, and the performance is largely dependent on the number of
samples N to estimate the reference function in (22). Future works include tuning SPR pipeline to
make it work for very large LLMs (>50b) and exploring alignment methods that are both time- and
memory-efficient.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REPRODUCIBILITY STATEMENT

The base models and datasets in this paper are publicly available. However, our current
implementation codes are experimental and not ready for releasing. We will release all our codes
upon acceptance of this paper.

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. GPT-4 technical report.
arXiv preprint arXiv:2303.08774, 2023.

Alekh Agarwal, Nan Jiang, Sham M Kakade, and Wen Sun. Reinforcement learning: Theory and
algorithms. CS Dept., UW Seattle, Seattle, WA, USA, Tech. Rep, 32, 2019.

Arash Ahmadian, Chris Cremer, Matthias Gallé, Marzieh Fadaee, Julia Kreutzer, Ahmet Üstün, and
Sara Hooker. Back to basics: Revisiting reinforce style optimization for learning from human
feedback in llms. arXiv preprint arXiv:2402.14740, 2024.

Anthropic. Claude 3 haiku: our fastest model yet. https://www.anthropic.com/news/
claude-3-haiku, 2024.

Mohammad Gheshlaghi Azar, Zhaohan Daniel Guo, Bilal Piot, Remi Munos, Mark Rowland, Michal
Valko, and Daniele Calandriello. A general theoretical paradigm to understand learning from
human preferences. In International Conference on Artificial Intelligence and Statistics, pp.
4447–4455. PMLR, 2024.

Philip J Ball, Laura Smith, Ilya Kostrikov, and Sergey Levine. Efficient online reinforcement learning
with offline data. arXiv preprint arXiv:2302.02948, 2023.

Edward Beeching, Clémentine Fourrier, Nathan Habib, Sheon Han, Nathan Lambert, Nazneen
Rajani, Omar Sanseviero, Lewis Tunstall, and Thomas Wolf. Open llm leaderboard. https:
//huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard, 2023.

Ralph Allan Bradley and Milton E Terry. Rank analysis of incomplete block designs: I. the method
of paired comparisons. Biometrika, 39(3/4):324–345, 1952.

Ronen I Brafman and Moshe Tennenholtz. R-max - a general polynomial time algorithm for
near-optimal reinforcement learning. Journal of Machine Learning Research, 3(Oct):213–231,
2002.

Sébastien Bubeck, Varun Chandrasekaran, Ronen Eldan, Johannes Gehrke, Eric Horvitz, Ece Kamar,
Peter Lee, Yin Tat Lee, Yuanzhi Li, Scott Lundberg, et al. Sparks of artificial general intelligence:
Early experiments with gpt-4. arXiv preprint arXiv:2303.12712, 2023.

Yen-Chang Chang and Wen-Liang Hung. Linex loss functions with applications to determining the
optimum process parameters. Quality & Quantity, 41:291–301, 2007.

Zixiang Chen, Yihe Deng, Huizhuo Yuan, Kaixuan Ji, and Quanquan Gu. Self-play fine-tuning
converts weak language models to strong language models. In Ruslan Salakhutdinov, Zico
Kolter, Katherine Heller, Adrian Weller, Nuria Oliver, Jonathan Scarlett, and Felix Berkenkamp
(eds.), Proceedings of the 41st International Conference on Machine Learning, volume 235 of
Proceedings of Machine Learning Research, pp. 6621–6642. PMLR, 21–27 Jul 2024. URL
https://proceedings.mlr.press/v235/chen24j.html.

Ching-An Cheng, Tengyang Xie, Nan Jiang, and Alekh Agarwal. Adversarially trained actor critic for
offline reinforcement learning. In International Conference on Machine Learning, pp. 3852–3878.
PMLR, 2022.

Paul F Christiano, Jan Leike, Tom Brown, Miljan Martic, Shane Legg, and Dario Amodei. Deep
reinforcement learning from human preferences. Advances in neural information processing
systems, 30, 2017.

11

https://www.anthropic. com/news/claude-3-haiku
https://www.anthropic. com/news/claude-3-haiku
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard
https://proceedings.mlr.press/v235/chen24j.html

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
arXiv preprint arXiv:1803.05457, 2018.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to solve
math word problems. arXiv preprint arXiv:2110.14168, 2021.

Stuart Coles, Joanna Bawa, Lesley Trenner, and Pat Dorazio. An introduction to statistical modeling
of extreme values, volume 208. Springer, 2001.

Ganqu Cui, Lifan Yuan, Ning Ding, Guanming Yao, Wei Zhu, Yuan Ni, Guotong Xie, Zhiyuan Liu,
and Maosong Sun. Ultrafeedback: Boosting language models with high-quality feedback. arXiv
preprint arXiv:2310.01377, 2023.

Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. Flashattention: Fast and
memory-efficient exact attention with io-awareness. Advances in Neural Information Processing
Systems, 35:16344–16359, 2022.

Hanze Dong, Wei Xiong, Deepanshu Goyal, Yihan Zhang, Winnie Chow, Rui Pan, Shizhe Diao,
Jipeng Zhang, KaShun SHUM, and Tong Zhang. RAFT: Reward rAnked FineTuning for Generative
Foundation Model Alignment. Transactions on Machine Learning Research, 2023. ISSN
2835-8856. URL https://openreview.net/forum?id=m7p5O7zblY.

Hanze Dong, Wei Xiong, Bo Pang, Haoxiang Wang, Han Zhao, Yingbo Zhou, Nan Jiang, Doyen
Sahoo, Caiming Xiong, and Tong Zhang. RLHF workflow: From reward modeling to online
RLHF. Transactions on Machine Learning Research, 2024. ISSN 2835-8856. URL https:
//openreview.net/forum?id=a13aYUU9eU.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

Kawin Ethayarajh, Winnie Xu, Niklas Muennighoff, Dan Jurafsky, and Douwe Kiela. Model
alignment as prospect theoretic optimization. In Forty-first International Conference on Machine
Learning, 2024.

Catherine Forbes, Merran Evans, Nicholas Hastings, and Brian Peacock. Statistical distributions.
John Wiley & Sons, 2011.

Scott Fujimoto, Herke Hoof, and David Meger. Addressing function approximation error in
actor-critic methods. In International conference on machine learning, pp. 1587–1596. PMLR,
2018.

Divyansh Garg, Joey Hejna, Matthieu Geist, and Stefano Ermon. Extreme q-learning: Maxent rl
without entropy. In The Eleventh International Conference on Learning Representations, 2022.

Caglar Gulcehre, Tom Le Paine, Srivatsan Srinivasan, Ksenia Konyushkova, Lotte Weerts, Abhishek
Sharma, Aditya Siddhant, Alex Ahern, Miaosen Wang, Chenjie Gu, et al. Reinforced Self-training
(ReST) for Language Modeling. arXiv preprint arXiv:2308.08998, 2023.

Tuomas Haarnoja, Aurick Zhou, Kristian Hartikainen, George Tucker, Sehoon Ha, Jie Tan, Vikash
Kumar, Henry Zhu, Abhishek Gupta, Pieter Abbeel, et al. Soft actor-critic algorithms and
applications. arXiv preprint arXiv:1812.05905, 2018.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and
Jacob Steinhardt. Measuring massive multitask language understanding. arXiv preprint
arXiv:2009.03300, 2020.

Shengyi Huang, Michael Noukhovitch, Arian Hosseini, Kashif Rasul, Weixun Wang, and Lewis
Tunstall. The n+ implementation details of rlhf with ppo: A case study on tl; dr summarization.
arXiv preprint arXiv:2403.17031, 2024.

12

https://openreview.net/forum?id=m7p5O7zblY
https://openreview.net/forum?id=a13aYUU9eU
https://openreview.net/forum?id=a13aYUU9eU

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Hamish Ivison, Yizhong Wang, Jiacheng Liu, Zeqiu Wu, Valentina Pyatkin, Nathan Lambert, Noah A
Smith, Yejin Choi, and Hannaneh Hajishirzi. Unpacking dpo and ppo: Disentangling best practices
for learning from preference feedback. arXiv preprint arXiv:2406.09279, 2024.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child, Scott
Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language models.
arXiv preprint arXiv:2001.08361, 2020.

Rahul Kidambi, Aravind Rajeswaran, Praneeth Netrapalli, and Thorsten Joachims. Morel:
Model-based offline reinforcement learning. Advances in neural information processing systems,
33:21810–21823, 2020.

Ilya Kostrikov, Ashvin Nair, and Sergey Levine. Offline reinforcement learning with implicit
q-learning. In International Conference on Learning Representations, 2021.

Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative q-learning for offline
reinforcement learning. Advances in Neural Information Processing Systems, 33:1179–1191, 2020.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with pagedattention. In Proceedings of the 29th Symposium on Operating Systems
Principles, pp. 611–626, 2023.

Jiaxiang Li, Siliang Zeng, Hoi-To Wai, Chenliang Li, Alfredo Garcia, and Mingyi Hong. Getting
more juice out of the sft data: Reward learning from human demonstration improves sft for llm
alignment. arXiv preprint arXiv:2405.17888, 2024.

Ziniu Li, Tian Xu, and Yang Yu. Policy optimization in RLHF: The impact of out-of-preference data.
arXiv preprint arXiv:2312.10584, 2023a.

Ziniu Li, Tian Xu, Yushun Zhang, Zhihang Lin, Yang Yu, Ruoyu Sun, and Zhi-Quan Luo. Remax: A
simple, effective, and efficient reinforcement learning method for aligning large language models.
In Forty-first International Conference on Machine Learning, 2023b.

Stephanie Lin, Jacob Hilton, and Owain Evans. Truthfulqa: Measuring how models mimic human
falsehoods. arXiv preprint arXiv:2109.07958, 2021.

Yong Lin, Skyler Seto, Maartje ter Hoeve, Katherine Metcalf, Barry-John Theobald, Xuan Wang,
Yizhe Zhang, Chen Huang, and Tong Zhang. On the limited generalization capability of the implicit
reward model induced by direct preference optimization. arXiv preprint arXiv:2409.03650, 2024.

Fei Liu et al. Learning to summarize from human feedback. In Proceedings of the 58th Annual
Meeting of the Association for Computational Linguistics, 2020.

Yao Liu, Adith Swaminathan, Alekh Agarwal, and Emma Brunskill. Off-policy policy gradient with
state distribution correction. arXiv preprint arXiv:1904.08473, 2019.

Cong Lu, Philip Ball, Jack Parker-Holder, Michael Osborne, and Stephen J Roberts. Revisiting
design choices in offline model based reinforcement learning. In International Conference on
Learning Representations, 2021.

Ofir Nachum, Bo Dai, Ilya Kostrikov, Yinlam Chow, Lihong Li, and Dale Schuurmans. Algaedice:
Policy gradient from arbitrary experience. arXiv preprint arXiv:1912.02074, 2019.

Ashvin Nair, Abhishek Gupta, Murtaza Dalal, and Sergey Levine. Awac: Accelerating online
reinforcement learning with offline datasets. arXiv preprint arXiv:2006.09359, 2020.

Takayuki Osa, Joni Pajarinen, Gerhard Neumann, J Andrew Bagnell, Pieter Abbeel, Jan Peters, et al.
An algorithmic perspective on imitation learning. Foundations and Trends® in Robotics, 7(1-2):
1–179, 2018.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow
instructions with human feedback. Advances in Neural Information Processing Systems, 35:
27730–27744, 2022.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Ahmad Parsian and SNUA Kirmani. Estimation under linex loss function. In Handbook of applied
econometrics and statistical inference, pp. 75–98. CRC Press, 2002.

Xue Bin Peng, Aviral Kumar, Grace Zhang, and Sergey Levine. Advantage-weighted regression:
Simple and scalable off-policy reinforcement learning. arXiv preprint arXiv:1910.00177, 2019.

Dean A Pomerleau. Alvinn: An autonomous land vehicle in a neural network. Advances in neural
information processing systems, 1, 1988.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
Finn. Direct preference optimization: Your language model is secretly a reward model. Advances
in Neural Information Processing Systems, 36, 2024.

Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase, and Yuxiong He. Zero: Memory optimizations
toward training trillion parameter models. In SC20: International Conference for High Performance
Computing, Networking, Storage and Analysis, pp. 1–16, 2020. doi: 10.1109/SC41405.2020.00024.

Rajkumar Ramamurthy, Prithviraj Ammanabrolu, Kianté Brantley, Jack Hessel, Rafet Sifa, Christian
Bauckhage, Hannaneh Hajishirzi, and Yejin Choi. Is reinforcement learning (not) for natural
language processing: Benchmarks, baselines, and building blocks for natural language policy
optimization. arXiv preprint arXiv:2210.01241, 2022.

Marc Rigter, Bruno Lacerda, and Nick Hawes. Rambo-rl: Robust adversarial model-based offline
reinforcement learning. arXiv preprint arXiv:2204.12581, 2022.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An
adversarial winograd schema challenge at scale. Communications of the ACM, 64(9):99–106,
2021.

John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust region
policy optimization. In International conference on machine learning, pp. 1889–1897. PMLR,
2015.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Mingchuan Zhang, YK Li, Yu Wu,
and Daya Guo. Deepseekmath: Pushing the limits of mathematical reasoning in open language
models. arXiv preprint arXiv:2402.03300, 2024.

Gemini Team, Rohan Anil, Sebastian Borgeaud, Yonghui Wu, Jean-Baptiste Alayrac, Jiahui Yu, Radu
Soricut, Johan Schalkwyk, Andrew M Dai, Anja Hauth, et al. Gemini: a family of highly capable
multimodal models. arXiv preprint arXiv:2312.11805, 2023.

Trieu H Trinh, Yuhuai Wu, Quoc V Le, He He, and Thang Luong. Solving olympiad geometry
without human demonstrations. Nature, 625(7995):476–482, 2024.

Lewis Tunstall, Edward Beeching, Nathan Lambert, Nazneen Rajani, Kashif Rasul, Younes Belkada,
Shengyi Huang, Leandro von Werra, Clémentine Fourrier, Nathan Habib, et al. Zephyr: Direct
distillation of lm alignment. arXiv preprint arXiv:2310.16944, 2023.

Masatoshi Uehara and Wen Sun. Pessimistic model-based offline reinforcement learning under partial
coverage. In International Conference on Learning Representations, 2021.

Zhilin Wang, Yi Dong, Jiaqi Zeng, Virginia Adams, Makesh Narsimhan Sreedhar, Daniel Egert,
Olivier Delalleau, Jane Polak Scowcroft, Neel Kant, Aidan Swope, et al. Helpsteer: Multi-attribute
helpfulness dataset for steerlm. arXiv preprint arXiv:2311.09528, 2023.

Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Machine learning, 8:229–256, 1992.

Shusheng Xu, Wei Fu, Jiaxuan Gao, Wenjie Ye, Weilin Liu, Zhiyu Mei, Guangju Wang, Chao Yu,
and Yi Wu. Is DPO superior to PPO for LLM alignment? a comprehensive study. In Forty-first
International Conference on Machine Learning, 2024. URL https://openreview.net/
forum?id=6XH8R7YrSk.

14

https://openreview.net/forum?id=6XH8R7YrSk
https://openreview.net/forum?id=6XH8R7YrSk

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Tianhe Yu, Garrett Thomas, Lantao Yu, Stefano Ermon, James Y Zou, Sergey Levine, Chelsea Finn,
and Tengyu Ma. Mopo: Model-based offline policy optimization. Advances in Neural Information
Processing Systems, 33:14129–14142, 2020.

Tianhe Yu, Aviral Kumar, Rafael Rafailov, Aravind Rajeswaran, Sergey Levine, and Chelsea Finn.
Combo: Conservative offline model-based policy optimization. Advances in neural information
processing systems, 34:28954–28967, 2021.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a machine
really finish your sentence? arXiv preprint arXiv:1905.07830, 2019.

Yao Zhao, Rishabh Joshi, Tianqi Liu, Misha Khalman, Mohammad Saleh, and Peter J Liu. Slic-hf:
Sequence likelihood calibration with human feedback. arXiv preprint arXiv:2305.10425, 2023.

Daniel M Ziegler, Nisan Stiennon, Jeffrey Wu, Tom B Brown, Alec Radford, Dario Amodei, Paul
Christiano, and Geoffrey Irving. Fine-tuning language models from human preferences. arXiv
preprint arXiv:1909.08593, 2019.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

APPENDIX

A RELATED WORK

In this section, we discuss related work on both the LLMs and reinforcement learning with offline
datasets.

RL for LLMs alignment. RL-based methods have show great success in improving the abilities of
LLMs, including text-summarizing (Liu et al., 2020; Ziegler et al., 2019), story-telling (Ziegler et al.,
2019), instruction-following (Ouyang et al., 2022; Ramamurthy et al., 2022), problem-solving (Trinh
et al., 2024), etc. The most popular RL pipeline for LLM alignment is RLHF (Ouyang et al., 2022;
Christiano et al., 2017), which models the reward using the popular Bradley-Terry model (Bradley &
Terry, 1952) and optimize the policy by policy optimization methods, such as REINFORCE (Williams,
1992; Ahmadian et al., 2024; Li et al., 2023b), PPO (Schulman et al., 2017), GRPO (Shao et al.,
2024) and R-max (Brafman & Tennenholtz, 2002). On the other hand, the extra computational cost
introduced by RL-based method is not negligible. DPO (Rafailov et al., 2024) serves as a powerful
substitute for RL-based method by directly optimizing for the LLM/policy (and the reward is implicitly
represented by the policy), making the memory consumption as low as the standard SFT. However
the absence of reward model in DPO pipeline is drawing discussions on its limited generalization
ability in the LLM alignment community (Li et al., 2023a; Xu et al., 2024). Standard DPO utilizes an
offline pre-collected preference dataset. Several other methods, such as KTO (Ethayarajh et al., 2024),
sequence likelihood calibration (SLiC, see Zhao et al. (2023)) and identity preference optimization
(IPO, see Azar et al. (2024)), also lie in the scope of offline preference data alignment. On the
other hand, methods like online DPO (Dong et al., 2024) and Reinforced Self-Training (ReST,
see Gulcehre et al. (2023)) utilize new samples with higher rewards from current model for further
policy improvements.

Offline RL. Offline RL considers the problem of learning a policy from a fixed datasets where the
reward value is provided for each collected transition samples. In (Liu et al., 2019; Nachum et al.,
2019), model-free offline RL algorithms are proposed to solve the importance sampling problem. In
(Kumar et al., 2020; Cheng et al., 2022), conservatism is incorporated into the value function to avoid
overestimation in the offline RL setting. In (Kostrikov et al., 2021), a general algorithm for offline
RL is proposed which can avoid any queries to values of out-of-sample actions during training while
still enabling multi-step dynamic programming. For the model-based offline RL algorithms, Kidambi
et al. (2020) first constructs the estimated world model by utilizing diverse and large transition dataset
and then sets hard threshold on the model uncertainty for constructing terminating states to avoid
dangerous explorations. In (Yu et al., 2020), the authors proposes a model-based offline policy
optimization algorithm (MOPO) which utilizes uncertainty estimation techniques to construct a
penalty function to regularize the reward function. Therefore, MOPO can learn a conservative policy
which stays in the low-uncertainty region to avoid the distribution shift issue. As a follow-up work,
Lu et al. (2021) revisits the design choices of several key hyperparameters in MOPO and fine-tune
the corresponding hyperparameters in MOPO to guarantee strong performance. In Yu et al. (2021),
the authors propose a model-based offline RL algorithm called COMBO which does not rely on
explicit uncertainty estimation. By regularizing the value function on out-of-distribution state-action
pairs generated in the estimated world model, COMBO can benefit from the conservatism without
requiring explicit uncertainty estimation techniques. As a remark, the algorithms proposed in (Yu
et al., 2020; Kidambi et al., 2020; Lu et al., 2021; Yu et al., 2021) all perform conservative policy
optimization in a well-constructed dynamics model and the estimated dynamics model keeps fixed
during the training of the RL agent. Different from those algorithms mentioned above, (Uehara
& Sun, 2021; Rigter et al., 2022) incorporate conservatism into the constructed dynamics model.
By adversarially modifying the estimated dynamics model to minimize the value function under
the current policy, the proposed methods can learn a robust policy with respect to the environment
dynamics and can obtain probably approximately correct (PAC) performance guarantee.

Hybrid RL. In Nair et al. (2020), the authors provide a simple framework which can first leverage
large offline dataset for pre-training and then quickly perform online fine-tuning of RL policies. In
the proposed algorithm, sample-efficient dynamic programming method is used for policy evaluation
and a maximum likelihood estimation problem is further designed for solving the optimal policy. In
Garg et al. (2022), the authors develop a new framework to solve maximum entropy reinforcement
learning, which directly estimates the optimal Bellman operator without replying on explicit access

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

to the underlying policy. The proposed framework can be used to develop simple but effective
reinforcement learning algorithms, which have the flexibility to well in both fully offline or hybrid RL
settings. In Ball et al. (2023), the authors first revisit the design choices in existing off-policy methods.
Moreover, with a set of minimal but important changes to the existing off-policy RL algorithms, the
authors further show that the existing off-policy RL algorithms can achieve reliable performance by
leveraging offline data when learning online.

B PROOF OF THEOREM 1

In this section, we show the solution to the constrained policy optimization problem defined in
(14a)-(14d).

Proof of Theorem 1. In this proof, we will first write down the partial Lagrangian function, which
only considers the constraints (14b)-(14c). After solving the partial Lagrangian function, we will
show that the constraint (14d) is satisfied.

Let α and ζ := {ζs|s ∈ S} denote the dual variables of the constraints (14b) and (14c), respectively.
Then the partial Lagrangian function can be expressed as below:

L(π, α, ζ) := 1

1− γ
Es∼dπold

(·),a∼π(·|s)
[
Aπold(s, a)

]
+ α

(
ϵ− Es∼dπold

(·)
[
DKL

(
π(·|s)||πold(·|s)

)])
+

∑
s∈S

ζs
(
1−

∑
a∈A

π(a|s)
)
.

Through taking partial derivative of L(π, α, ζ) w.r.t. π(a|s), we can obtain the following equation:
∂

∂π(a|s)
L(π, α, ζ) = 1

1− γ
dπold

(s)Aπold(s, a)− αdπold
(s)

(
− log πold(a|s) + log π(a|s) + 1

)
− ζs.

Through setting the partial derivative ∂
∂π(a|s)L(π, α, ζ) to 0, we obtain

1

1− γ
dπold

(s)Aπold(s, a)− αdπold
(s)

(
− log πold(a|s) + log π(a|s) + 1

)
− ζs = 0.

Then we obtain the closed-form expression of the optimal policy π∗ as below:

log π∗(a|s) = Aπold(s, a)

(1− γ)α
+ log πold(a|s)− 1− ζs

αdπold
(s)

, (27a)

π∗(a|s) = πold(a|s) exp
(Aπold(s, a)

(1− γ)α

)
exp

(
− 1− ζs

αdπold
(s)

)
. (27b)

Here we can denote β := (1− γ)α. Then according to the expression of π(a|s) in (27b), we obtain
the following relation:

π(a|s) ∝ πold(a|s) exp
(1

β
Aπold(s, a)

)
. (28)

Based on the constraint (14c), we know that π(·|s) is a distribution so that
∑

a∈A π(a|s) = 1.
Therefore, according to the expressions in (27b) and (28), we can obtain the following expression of
the optimal policy π∗ as below:

π∗(a|s) =
πold(a|s) exp

(
1
βA

πold(s, a)
)

∑
a′∈A πold(a′|s) exp

(
1
βA

πold(s, a′)
) .

Recall that Aπold(s, a) := Qπold(s, a)− V πold(s) has been defined in (10), then we can rewrite the
expression of π∗(a|s):

π∗(a|s) =
πold(a|s) exp

(
1
β

(
Qπold(s, a)− V πold(s)

))
∑

a′∈A πold(a′|s) exp
(

1
β

(
Qπold(s, a′)− V πold(s)

))
=

πold(a|s) exp
(

1
βQ

πold(s, a)
)

∑
a′∈A πold(a′|s) exp

(
1
βQ

πold(s, a′)
) . (29)

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Then we can define a reference function Wπold(s) as below (a trick that was also employed in Garg
et al. (2022)):

Wπold(s) := β log
(
Ea∼πold(·|s)

[
exp

(1

β
Qπold(s, a)

)])
. (30)

By plugging the definition of Wπold(s) into (9b), we can express the optimal policy π∗(a|s) as below:

π∗(a|s) = πold(a|s) exp
(1

β

(
Qπold(s, a)−Wπold(s)

))
. (31)

According to the closed-form expression of the optimal policy π∗ in (31), we obtain that π∗(a|s) is
non-negative for any state-action pair (s, a) and thus the constraint (14d) is satisfied.

C DETAILS OF THE EXPERIMENT SETTING

We follow the 1b experiment as in (Huang et al. (2024)) and 8b experiment as in (Dong et al. (2024)),
where we utilize DeepSpeed ZeRO-3 (Rajbhandari et al. (2020)) and FlashAttention-2 (Dao et al.
(2022)) to reduce the memory cost. To accelerate data generation, we use VLLM (Kwon et al., 2023)
for inference. We use eight NVIDIA A100-40G to do the training with per device batch size of 64 for
1b model and per device batch size of 16 for 8b model. We train all models with bfloat16 precision.
We set the learning rate to be 3e-6 for 1b model and 5e-7 for 8b model with the cosine learning rate
scheduler. We consider the max sequence length to be 565 for 1b models and 4096 for 8b models.

We also list the metric and number of shots used for LLM evaluation on each dataset.

Dataset Arc Challenge TruthfulQA MC2 Winogrande GSM-8K HellaSwag MMLU

Metric acc_norm acc acc strict-match acc_norm acc
Num. of Shots 25 0 5 5 10 5

Table 2: A summarization of the benchmarks we use in this work. We list the metric and number of
shots used for LLM evaluation on each dataset.

D MORE EXPERIMENT RESULTS

In this section, we provide more experiment results. we include Tables 3 and 4, which correspond to
Table 1 in the main body, as well as Table 5, which corresponds to Figure 4 in the main body.

Tasks Arc Challenge TruthfulQA MC2 Winogrande GSM8k HellaSwag MMLU Average
Metrics acc_norm acc acc strict-match acc_norm

LLaMA3-SFT 62.29% 53.49% 78.14% 72.55% 81.03% 64.49% 68.66%
SPR-round1 62.54% 54.09% 77.51% 73.77% 81.14% 65.08% 69.02%
SPR-round2 62.80% 54.51% 77.82% 75.13% 81.31% 65.17% 69.46%
SPR-round3 63.14% 55.01% 78.06% 75.36% 81.34% 65.08% 69.66%
SPR-round4 63.48% 55.54% 78.37% 75.81% 81.49% 65.25% 69.99%
SPR-round5 63.32% 56.03% 78.14% 75.97% 81.36% 65.22% 70.01%

Table 3: Performance of Policy in Open LLm Leaderboard for for Best-of-16 algorithm.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Tasks Arc Challenge TruthfulQA MC2 Winogrande GSM8k HellaSwag MMLU Average
Metrics acc_norm acc acc strict-match acc_norm

LLaMA3-SFT 62.29% 53.49% 78.14% 72.55% 81.03% 64.49% 68.66%
SPR-round1 62.46% 54.27% 77.66% 74.30% 81.21% 64.94% 69.14%
SPR-round2 62.97% 54.81% 77.58% 75.06% 81.29% 65.13% 69.47%
SPR-round3 63.57% 55.51% 78.06% 75.97% 81.43% 65.19% 69.96%
SPR-round4 63.91% 55.86% 77.82% 76.04% 81.54% 65.35% 70.09%
SPR-round5 63.57% 56.14% 77.74% 76.12% 81.68% 65.34% 70.10%

Table 4: Performance of Policy in Open LLm Leaderboard for Best-of-16 Re-weighting algorithm.

Tasks Arc Challenge TruthfulQA MC2 Winogrande GSM8k HellaSwag MMLU Average
Metrics acc_norm acc acc strict-match acc_norm

LLaMA3-SFT 62.29% 53.49% 78.14% 72.55% 81.03% 64.49% 68.66%
SPR-round1 62.37% 53.89% 77.90% 74.45% 81.03% 65.00% 69.44%
SPR-round2 63.14% 54.74% 77.82% 75.21% 81.20% 65.17% 69.88%
SPR-round3 63.31% 55.15% 77.35% 75.89% 81.27% 65.20% 69.86%
SPR-round4 63.91% 55.62% 78.22% 77.03% 81.36% 65.23% 70.23%
SPR-round5 63.82% 56.07% 77.82% 78.01% 81.51% 65.33% 70.43%
SPR-round6 63.74% 56.41% 78.45% 77.94% 81.50% 65.38% 70.57%
SPR-round7 63.99% 56.74% 78.22% 77.94% 81.57% 65.41% 70.65%

LLaMA3-DPO-iter1 63.31% 57.19% 78.14% 74.30% 80.00% 64.65% 69.60%
LLaMA3-DPO-iter2 65.36% 60.02% 77.43% 70.96% 81.56% 63.95% 69.88%

Table 5: Performance of Policy in Open LLm Leaderboard for Best-of-32 SPR algorithm.

19

	Introduction
	Methodology
	Preliminaries on LLM alignments
	Constraint Policy Optimization Formulation

	Algorithm Design
	Experimental Results
	Experiment Setup
	Results on 1b models
	Results on 8b models

	Conclusions and Limitations
	Related Work
	Proof of Theorem 1
	Details of the experiment setting
	More Experiment Results

