
Published in Transactions on Machine Learning Research (09/2022)

FedShuffle: Recipes for Better Use of Local Work
in Federated Learning

Samuel Horváth samuel.horvath@mbzuai.ac.ae
MBZUAI∗

Maziar Sanjabi maziars@fb.com
Meta AI

Lin Xiao linx@fb.com
Meta AI

Peter Richtárik richtarik@gmail.com
KAUST

Michael Rabbat mikerabbat@fb.com
META AI

Reviewed on OpenReview: https: // openreview .net/ forum? id= Lgs5pQ1v30

Abstract

The practice of applying several local updates before aggregation across clients has been
empirically shown to be a successful approach to overcoming the communication bottleneck
in Federated Learning (FL). Such methods are usually implemented by having clients
perform one or more epochs of local training per round, while randomly reshuffling their
finite dataset in each epoch. Data imbalance, where clients have different numbers of local
training samples, is ubiquitous in FL applications, resulting in different clients performing
different numbers of local updates in each round. In this work, we propose a general
recipe, FedShuffle, that better utilizes the local updates in FL, especially in this regime
encompassing random reshuffling and heterogeneity. FedShuffle is the first local update
method with theoretical convergence guarantees that incorporates random reshuffling, data
imbalance, and client sampling — features that are essential in large-scale cross-device
FL. We present a comprehensive theoretical analysis of FedShuffle and show, both
theoretically and empirically, that it does not suffer from the objective function mismatch
that is present in FL methods that assume homogeneous updates in heterogeneous FL
setups, such as FedAvg (McMahan et al., 2017). In addition, by combining the ingredients
above, FedShuffle improves upon FedNova (Wang et al., 2020), which was previously
proposed to solve this mismatch. Similar to Mime (Karimireddy et al., 2020), we show that
FedShuffle with momentum variance reduction (Cutkosky & Orabona, 2019) improves
upon non-local methods under a Hessian similarity assumption.

1 Introduction

Federated learning (FL) aims to train models in a decentralized manner, preserving the privacy of client data
by leveraging edge-device computational capabilities. Clients’ data never leaves their devices; instead, the
clients coordinate with a server to train a global model. Due to such advantages and promises, FL is now
deployed in a variety of applications (Hard et al., 2018; Apple, 2019).
∗Majority of work completed during an internship at Meta.

1

https://openreview.net/forum?id=Lgs5pQ1v30

Published in Transactions on Machine Learning Research (09/2022)

In this paper, we consider the standard FL problem formulation of solving an empirical risk minimization
problem over the data available from all devices; i.e.,

min
x∈Rd

[
f(x) def=

n∑
i=1

wifi(x)
]
, where ∀i ∈ {1, . . . , n} : fi

def= 1
|Di|

|Di|∑
j=1

fij(x). (1)

Here fij corresponds to the loss of a model with parameters x evaluated on the j-th data point of the i-th
client. The weight wi assigned to device i’s empirical risk is wi = |Di|/|D| where |Di| is the size of the training
dataset at device i and |D| =

∑n
i=1 |Di|. This choice of weights wi places equal weight on all training data.1

To solve (1), optimization methods must contend with several challenges that are unique to FL: heterogeneity
with respect to data and compute capabilities of each device, data imbalance across devices, and limited
device availability. Moreover, in cross-device FL, the number of participating devices n can be on the order of
millions. At this scale, client sampling (using a subset of clients for each update) is a necessity since it is
impractical for all devices to participate in every round. Furthermore, each device may only participate once
or a few times during the entire training process, so stateless methods (those which do not rely on each client
maintaining and updating local state throughout training) are of particular interest.

The most widely studied and used methods in this challenging setting have devices perform multiple steps
on their data locally, before communicating updates to the server (i.e., local update methods a la local
SGD/ FedAvg) (Kairouz et al., 2019). Most existing analyses of local update methods assume that all
participating clients perform the same number of local steps in each round, and that clients sample new,
independent gradients at every local step. In contrast, most practical implementations, going back to the
original description of FedAvg (McMahan et al., 2017), have devices perform one or more local epochs over
their finite training dataset, while randomly reshuffling the data at each epoch. The number of training
samples per device may vary by many orders of magnitude (Kairouz et al., 2019). Thus, performing local
epochs results in different clients performing differing numbers of local steps per round.

Although it is now well-understood that random reshuffling has a variance-reducing effect in centralized
training, provably obtaining this benefit in federated training has been challenging because of the dependence
induced by random reshuffling. In the next section, we provide a detailed discussion on random reshuffling as
a part of related work. Mishchenko et al. (2021), Yun et al. (2021) and Malinovsky et al. (2021) analyze
random reshuffling in the context of FL, while assuming that all devices have the same number of training
samples and all devices participate in every round (i.e., no client sampling). Previous work of Wang et al.
(2020) identified that performing different numbers of local steps per device per round in FedAvg leads
to the objective inconsistency problem — effectively minimizing a different objective than (1), where terms
are reweighted by the number of samples per device. Wang et al. (2020) propose the FedNova method
to address this by rescaling updates during aggregation. FedLin (Mitra et al., 2021) addresses objective
inconsistency by scaling local learning rates, while assuming full participation (all devices participate in every
round) which is not practical for cross-device FL. Neither FedNova nor FedLin incorporate reshuffling of
device data. Improved convergence rates for FL optimization have been achieved by Karimireddy et al. (2020)
by combining a Hessian similarity assumption with momentum variance reduction (Cutkosky & Orabona,
2019), but without accounting for random reshuffling or data imbalance.

In this paper we aim to provide a unified view of local update methods while accounting for random reshuffling,
data imbalance (through non-identical numbers of local steps), and client subsampling. Furthermore, we
obtain faster convergence by incorporating momentum variance reduction. Table 1 summarizes the key
differences mentioned above.

Contributions. We make the following contributions in this paper:

• New algorithm: FedShuffle, an improved way to remove objective inconsistency. In
Section 4 we introduce and analyze FedShuffle to account for random reshuffling, client sampling,

1Although we focus on the setting with weights wi = |Di|/|D| so that the overall objective is equivalent to a standard,
centralized empirical risk minimization problem using the data from all devices, this is not essential to our analysis, which could
accommodate any choice of wi. Of course, using a different choice of wi will change the solution.

2

Published in Transactions on Machine Learning Research (09/2022)

Table 1: Comparison of characteristics considered in previous work and the methods analyzed in this paper.
Notation: HD = Heterogeneous Data, CS = Client Sampling, RR = Random Reshuffling, NL = Non-identical
Local Steps, VR = Variance Reduction, GM = Global Momentum, SS = Server Step Size. The bottom four
methods are proposed and/or analyzed in this paper.

HD CS RR NL VR GM SS

FedNova (Wang et al., 2020) 3 3 7 3 7 7 3
FedLin (Mitra et al., 2021) 3 7 7 3 3 7 7
Mime (Karimireddy et al., 2020) 3 3 7 7 3 3 7
FedRR (Mishchenko et al., 2021) / LocalRR (Yun et al., 2021) 3 7 3 7 7 7 7

(Contributions in this work)
FedAvgRR 3 3 3 7∗ 7 7 3
FedNovaRR 3 3 3 3 7 7 3
FedShuffle 3 3 3 3 7 7 3
FedShuffleMVR 3 3 3 3 3 3 3

∗With NL, FedAvgRR optimizes the wrong objective.

and address the objective inconsistency problem. FedShuffle fixes the objective inconsistency
problem by adjusting the local step size for each client and redesigning the aggregation step, enabling
a larger theoretical step size than either FedAvg or FedNova, while also benefiting from lower
variance from random reshuffling.

• New algorithm: FedShuffleMVR, beating non-local methods. In Section 5.1 we extend
the results of (Karimireddy et al., 2020) by accounting for random reshuffling and data imbalance.
Under a Hessian similarity assumption, we show that incorporating momentum variance reduction
(MVR) with FedShuffle leads to better convergence rates than the lower bounds for methods that
do not use local updates.

• General framework: FedShuffleGen. The above results are obtained by first considering a
general framework (see Algorithm 4 in Appendix E.4) that accounts for data heterogeneity, different
numbers of local updates per device, arbitrary client sampling, different local learning rates, and
heterogeneity in the aggregation weights. To the best of our knowledge, this work is the first to
tackle the challenge of random reshuffling in FL at this level of generality. Similar to Wang et al.
(2020), our analysis reveals how heterogeneity in the number of local updates can lead to objective
inconsistency. Within this framework, we obtain the first analysis of FedAvg2 and FedNova with
random reshuffling (FedAvgRR and FedNovaRR respectively in Table 1).

• Theoretical analysis. To our knowledge, we are the first to analyze a very general setup, where
we consider all the standard components that are commonly used in practical implementations of FL.
Furthermore, our results are tight compared to the best-known guarantees for components analyzed
in isolation. The main challenge of our analysis comes especially from combining biased random
reshuffling (RR) with other techniques. On top of that, our analysis is simpler when compared
to the state-of-the-art analysis of FedAvg (Karimireddy et al., 2019a) as it does not require to
upper bound local client drift using recursive estimates. Finally, our general variance bound (see
Appendix E.4) is the first result that allows the incorporation of non-deterministic aggregation rules
based on client sampling. To our knowledge, such results are impossible to obtain with any previously
known analysis, despite this being standard practice for FedAvg, where the update of each client
is scaled by wi/(

∑
j∈S wj), e.g., the default way to aggregate in Tensorflow Federated3 and other

frameworks.
• Experiments. Finally, our theoretical results and insights are corroborated by experiments, both

in a controlled setting with synthetic data, and using commonly-used real datasets for benchmarking
and comparison with other methods from the literature.

2We acknowledge the earlier work of Malinovsky et al. (2021), which analyzes random reshuffling of local data in the context
of federated learning, with a specific focus on the role of client and server stepsizes. Our main results were obtained independently
in early Fall 2021, and at that time we also learned about the results of Malinovsky et al. (2021) through personal communication,
which were obtained somewhat earlier, but were not available online at that time.

3https://www.tensorflow.org/federated

3

https://www.tensorflow.org/federated

Published in Transactions on Machine Learning Research (09/2022)

2 Related Work

Federated optimization and local update methods. As we mentioned earlier local update methods
are at the heart of FL. As a result, many prior works have analyzed various aspects of local update methods,
e.g. (Wang & Joshi, 2021; Stich, 2018; Zhou & Cong, 2017; Yu et al., 2019; Li et al., 2019; Haddadpour
& Mahdavi, 2019; Haddadpour et al., 2019a;b; Khaled et al., 2020; Stich & Karimireddy, 2020; Wang &
Joshi, 2019; Woodworth et al., 2020; Koloskova et al., 2020; Khaled et al., 2019; Woodworth et al., 2018; Xie
et al., 2019; Lin et al., 2018). These analyses are done under the assumption that every client performs the
same number of local updates in each round. However this is usually not the case in practice, due to the
heterogeneity of the data and system in FL; note that practical FL algorithms run a fixed number of epochs
(not steps) per device. Moreover, forcing the fast and slow devices to run the same number of iterations
would slow-down the training. This problem was also noted by (Wang et al., 2020), where it is shown that
having a heterogeneous number of updates, which is inevitable in FL, leads to an inconsistency between the
target loss (1) and the loss that the methods optimize. Moreover, as shown in (Wang et al., 2020), other
approaches such as FedProx (Li et al., 2020), VRLSGD (Liang et al., 2019) and SCAFFOLD (Karimireddy
et al., 2019a) that are designed for heterogeneous data can partially alleviate the problem but not completely
eliminate it.

In this work, we propose FedShuffle, a method that combines update weighting and learning rate
adjustments to deal with this issue. Our approach is more general than FedNova (Wang et al., 2020),
which only uses update weighting,4 and we show both analytically and experimentally that it outperforms
FedNova and does not slow down the convergence of FedAvg.

Random reshuffling. A particularly successful technique to optimize the empirical risk minimization
objective is randomly permute (i.e., reshuffle) the training data at the beginning of every epoch (Bottou, 2012)
instead of randomly sampling a data point (or a subset of data points) with replacement at each step, as in the
standard analysis of SGD. This process is repeated several times and the resulting method is usually referred
to as Random Reshuffling (RR). RR is often observed to exhibit faster convergence than sampling with
replacement, which can be intuitively attributed to the fact that RR is guaranteed to process each training
sample exactly once every epoch, while with-replacement sampling needs more steps than the equivalent of
one epoch to see every sample with high probability. Properly understanding the random reshuffling trick,
and why it works, has been a challenging open problem (Bottou, 2009; Ahn & Sra, 2020; Gürbüzbalaban
et al., 2021) until recent advances in Mishchenko et al. (2020) introduced a significant simplification of the
convergence analysis technique.

The difficulty of analysing RR stems from the fact that step-to-step dependence results in biased gradient
estimates, unlike in with-replacement sampling. Apart from this, RR in FL involves an additional challenge:
imbalance in number of samples that leads to the heterogeneity in number of local updates. To the best of
our knowledge, analyzing RR in FL and local update methods remains largely unexplored in the literature
despite RR being the default implementation used in simulations and practical deployments of FL; e.g., it is
a default option in TensorFlow Federated.

We are only aware of two previous papers analyzing RR for FL (Mishchenko et al., 2021; Yun et al., 2021)
and both of these works rely on two assumptions that are usually violated in cross-device FL: (i) that all
clients participate in every round, and (ii) that all clients have the same number of training samples. In
addition, Mishchenko et al. (2021) only analyze the (strongly) convex setting and Yun et al. (2021) require
the Polyak-Łoyasiewicz condition to hold for the global function. In this work, building on shoulders of the
recent advances (Mishchenko et al., 2020), we address all the challenges that come from applying RR for FL.

3 Notation and Assumptions

Firstly, recall that the portion of the loss function that belongs to client i is composed of single losses fij(x),
where j corresponds to j-th data point, and x is a parameter we aim to optimize. We assume that client i

4We note that the analysis of Wang et al. (2020) could potentially accommodate clients using different learning rates (in their
notation, balancing {‖ai‖1} instead of aggregation weights). Still, this is not an obvious extension of the FedNova analysis and
it has been neither considered nor analyzed in theory or practice in previous work.

4

Published in Transactions on Machine Learning Research (09/2022)

has access to an oracle that takes (j, x) as an input and returns the gradient ∇fij(x) as an output. In order
to provide convergence guarantees, we make the following standard assumptions and will discuss how they
relate to other commonly used assumptions in the literature. We provide convergence guarantees for three
common classes of smooth objectives: strongly-convex, general convex, and non-convex.
Assumption 3.1. The functions {fij} are µ-convex for µ ≥ 0; i.e., for any i, x, y

〈∇fij(x), y − x〉 ≤ −
(
fij(x)− fij(y) + µ

2 ‖x− y‖
2
)
. (2)

We say that fij is µ-strongly convex if µ > 0, and otherwise fij is (general) convex.
Assumption 3.2. The functions {fij} are L-smooth; i.e., there is an L > 0 such that for any i, j, x, y

‖∇fij(x)−∇fij(y)‖ ≤ L‖x− y‖ . (3)

Next, we state two standard assumptions which quantify heterogeneity. The first bounds the gradient
dissimilarity among local functions {fi} at different clients, and the second controls the variance of local
gradients at each client. The same or more restrictive versions of these assumptions appeared in (Karimireddy
et al., 2019b; 2020; Wang et al., 2020; Mitra et al., 2021).
Assumption 3.3 (Gradient Similarity). The local gradients {∇fi} are (G,B)-bounded, i.e., for all x ∈ Rd,

n∑
i=1

wi‖∇fi(x)‖2 ≤ G2 +B2‖∇f(x)‖2 . (4)

If {fi} are convex, then we can relax the assumption to
n∑
i=1

wi‖∇fi(x)‖2 ≤ G2 + 2LB2(f(x)− f?) . (5)

Assumption 3.4 (Bounded Variance). The local stochastic gradients {∇fij} have (σi, Pi)-bounded vari-
ance, i.e., for all x ∈ Rd,

1
|Di|

|Di|∑
j=1
‖∇fij(x)−∇fi(x)‖2 ≤ σ2

i + P 2
i ‖∇fi(x)‖2 . (6)

Note that we do not require gradient norms to be bounded by constant. Moreover, we do not require the global
or local variance to be bounded by constants either, but we allow them to be proportional to the gradient
norms. In stochastic optimization, these assumptions are referred to as relaxed growth condition (Bottou
et al., 2018). Furthermore, one can show that for smooth and convex {fij}, these are not actually assumptions,
but rather properties (Stich, 2019). While for non-convex functions, these are critical assumptions to show
convergence under partial participation.

Following (Karimireddy et al., 2020), we also characterize the variance in the Hessian. This is an important
assumption that helps us to understand and showcase the benefits of local steps.
Assumption 3.5 (Hessian Similarity). The local gradients {∇fi} have δ-Hessian similarity, i.e., for all
x ∈ Rd and i ∈ [n], (‖·‖ represents spectral norm for matrices)

‖∇2fi(x)−∇2f(x)‖2 ≤ δ2 . (7)

Note that if {fi} are L-smooth then it must hold that ‖∇2fi(x)‖ ≤ L for all for all x ∈ Rd and i ∈ [n] and,
therefore, Assumption 3.5 is satisfied with δ ≤ 2L. In realistic examples, one might expect the clients to be
similar and hence it could happen that δ � L.

We work with a fixed arbitrary participation framework (Horváth & Richtárik, 2020), where one assumes that
the subset of participating clients is determined by an arbitrary random set-valued mapping S (a “sampling”)

5

Published in Transactions on Machine Learning Research (09/2022)

Algorithm 1 FedShuffle
1: Input: initial global model x0, global and local step sizes ηrg , ηrl , proper distribution S
2: for each round r = 0, . . . , R− 1 do
3: server broadcasts x to all clients i ∈ Sr ∼ S
4: for each client i ∈ Sr (in parallel) do
5: initialize local model yi ← x
6: for e = 1, . . . , E do
7: Sample permutation {Π0, . . . ,Π|Di|−1} of {1, . . . , |Di|}
8: for j = 1, . . . , |Di| do
9: update yi ← yi − ηr

l

|Di|∇fiΠj−1(yi)
10: end for
11: end for
12: send ∆i = yi − x to server
13: end for
14: server computes ∆ =

∑
i∈Sr

wi

pi
∆i

15: server updates global model x← x− ηrg∆
16: end for

with values in 2[n]. A sampling S is uniquely defined by assigning probabilities to all 2n subsets of [n]. With
each sampling S we associate a probability matrix P ∈ Rn×n defined by Pij

def= Pr [{i, j} ⊆ S]. The probability
vector associated with S is the vector composed of the diagonal entries of P: p = (p1, . . . , pn) ∈ Rn, where
pi

def= Pr [i ∈ S]. We say that S is proper if pi > 0 for all i. It is easy to show that b def= E [|S|] = Trace (P) =∑n
i=1 pi, and hence b can be seen as the expected number of clients participating in each communication

round. We associate every proper sampling with a vector s = [s1, . . . , sn]> for which it holds

P− pp> � Diag(p1s1, p2s2, . . . , pnsn), (8)

which is a quantity that appears in the convergence rate. For instance, one can show that uniform sampling
with b participating clients admits si = (n−b)/(n−1) and full participation allows to set si = 0 as P is all ones
matrix, see (Horváth & Richtárik, 2019) for details. Finally, we note that a fixed arbitrary participation
framework is only for an ease of exposition and our framework can handle non-fixed distributions with
minimal adjustments in the analysis.

4 The FedShuffle Algorithm

We now formally introduce our FedShuffle method. Its pseudocode is provided in Algorithm 1 (simple)
and Algorithm 3 (precise). The main inspiration for FedShuffle is the default optimization strategy used
in Federated Learning: FedAvg. As described in McMahan et al. (2017), in FedAvg one starts each
communication round by sampling b clients uniformly at random to participate. These clients then receive
the global model from the server and update it by training the model for E epochs on their local data. The
model updates are communicated back to the server, which aggregates them and updates the global model
before proceeding to the next round. We provide the pseudocode for this procedure in Algorithm 2 in the
Appendix.

Unfortunately, we show that FedAvg (as implemented in practice) does not converge to the exact solution
due to inconsistency caused by unbalanced local steps and biased aggregation. We discuss each of these issues
in details in Sections 4.1 and 4.2, respectively. Therefore, we propose a new algorithm–FedShuffle, to
address these limitations of local methods. It involves two modifications compared to FedAvg: we scale the
local step size by 1

|Di| , and we also adjust the aggregation step. In addition, our analysis allows each client to
run different number of epochs {Ei}, in that case, the local step size is scaled proportionally to 1

Ei|Di| ; see
Section E in the Appendix.

6

Published in Transactions on Machine Learning Research (09/2022)

4.1 Heterogeneity in the Number of Local Updates

We introduce the first adjustment: step size scaling. We consider the same example as Wang et al. (2020),
the quadratic minimization problem

min
x∈Rd

1
|D|

|D|∑
i=1
‖x− ei‖2, (9)

where {ei}|D|i=1 are given vectors. Clearly, this is a strongly convex objective with the unique minimizer
x? = 1

|D|
∑|D|
i=1 ei. For simplicity, let us assume that we solve this objective using standard FedAvg with

local shuffling and full client participation, i.e., b = |D|. Since each local function has only one element, this
is equivalent to running Gradient Descent (GD), and therefore for small enough step size this algorithm
converges linearly to the optimal solution x?. Now, suppose instead that only {ei}ni=1 are unique and each
client i has |Di| copies of ei locally. Then, we can write the objective as

min
x∈Rd

n∑
i=1

|Di|
|D|

fi(x), where fi(x) def= 1
|Di|

|Di|∑
j=1
‖x− ei‖2. (10)

Applying FedAvg with local shuffling is equivalent to running FedAvg with E|Di| local steps since all
the local data are the same. Similarly to Wang et al. (2020), we show that FedAvg with unbalanced
E|Di| local steps introduces bias/inconsistency is the optimized objective and converges linearly to the
sub-optimal solution x̃ = (1/

∑n

i=1
|Di|2)

∑n
i=1 |Di|2ei for sufficiently small step size ηl (this statement is a

direct consequence of Theorem E.1 that can be found in Appendix E). We note that one can choose {|Di|}
and {ei} arbitrarily; thus, the difference between x̃ and x? can be arbitrary large. To tackle this first issue
that causes the objective inconsistency, we propose to scale the step size proportionally to 1/|Di|, which
removes the aforementioned inconsistency.

In fact, Appendix E contains more general results. We introduce and analyze a general shuffling algorithm—
FedShuffleGen, that encapsulates FedAvg, FedNova and our FedShuffle as special cases due to its
general parametrization by local and global step sizes, step size normalization, aggregation weights and the
aggregation normalization constants; see Algorithm 4 in the appendix. As a byproduct, we obtain a detailed
theoretical comparison of FedNova and FedShuffle. In a nutshell, we show that FedShuffle balances
the progress made by each client and keeps the aggregation weights unaffected while FedNova diminishes the
weights for the client that makes the most progress. As a consequence, FedShuffle allows larger theoretical
local step sizes than both FedAvg and FedNova while preserving the worst-case convergence rate. We refer
the reader to Appendix E, particularly Section E.2, for the extended discussion and a detailed comparison of
all three methods.

Lastly, one might fix the inconsistencies in the FedAvg by running the same number of local steps K at
each client. Note that universally choosing a fixed number of steps for all clients is not straightforward. We
will compare heuristics based on a fixed number K of steps with our proposed approaches in the experiments.
To be comparable to other baselines, we use two heuristics to select K : (1) Set K based on the client with
minimum number of data points in the round (FedAvgMin), which ensures that such a round will not result
in any additional stragglers compared to other baselines. As we will see, FedAvgMin does not result in
great performance as it does not utilize all the data on most of the clients. (2) Set K to be the average
number of steps that the selected clients would have taken in that round if they were running other baselines
(FedAvgMean). This makes sure that the total number of local steps for all clients is the same across
all baselines. Note that FedAvgMin and FedAvgMean are not practical since they require additional
coordination among the selected clients to determine the number of local steps to take; we consider them
as a heuristic to show the difficulty of choosing a fixed number of local steps for all clients. As we will see,
FedAvgMean under-performs FedShuffle and even in some cases FedAvg, especially in terms of test
accuracy in heterogeneous settings.

4.2 Removing Bias in Aggregation

The second algorithmic change compared to FedAvg has been, to the best of our knowledge, overlooked and
it is related to the aggregation step. The original aggregation that is widely used in practice, see Algorithm 2

7

Published in Transactions on Machine Learning Research (09/2022)

for FedAvg practical implementation, contains the step (line 15) where the local weights from the client
i ∈ S are normalized to sum to one by wi/

∑
j∈S

wj; we refer to this as the Sum One (SO) aggregation. Such
aggregation can lead to a biased contribution from workers and therefore to an inconsistent solution that
optimizes a different objective as we show in the following example.

Suppose that there are three clients and they hold, respectively, 1, 2 and 3 data points. In each round, we
sample two clients uniformly at random. Then, the expected contribution from client i is Ei [wi/∆i], where
∆i =

∑
j∈S s.t. i∈S wj . It is easy to verify that this is equal to 7/36, 16/45 and 9/20, respectively. One can note

that this is not proportional to the weights {wi} of the objective (1). Furthermore, this proposed aggregation
cannot be simply fixed by changing the client sampling scheme, e.g., by sampling clients with probability
proportional to the number of examples they hold, since one can always find a simple counterexample. The
problem of the aggregation scheme is the sample dependent normalization

∑
i∈S wi that makes sampling

biased in the presence of non-uniformity with respect to the number of data samples per client. To solve
this issue, we use wi/pi in the scaling step, where pi is the probability that client i is selected. This a very
standard aggregation scheme (Wang et al., 2018; Wangni et al., 2018; Horváth & Richtárik, 2019) that results
in unbiased aggregation with respect to the worker contribution since Ei [wi/pi] = wi. It is easy to see that if
{pi} are proportional to {wi} then the aggregation step would be simply taking a sum. This can be achieved
by each client being sampled independently using a probability proportional to its weight wi, i.e., its dataset
size if the central server has access to this information.5 If not all clients are available at all times, one can
use Approximate Independent Sampling (Horváth & Richtárik, 2019) that leads to the same effect.

4.3 Extensions

As mentioned previously, we introduce FedShuffleGen (Algorithm 4) in Appendix E which encapsulates
FedAvg, FedNova and FedShuffle as special cases and unifies the convergence analysis of these three
methods. As an advantage, we use this unified framework to show that it is better to handle objective
inconsistency by scaling the step sizes rather than scaling the updates, i.e., it is better to run FedShuffle
rather than FedNova as FedShuffle allows for larger theoretical step sizes, see Remark E.2 for details.

In addition, our general analysis allows for different extensions such as each client running different arbitrary
number of local epochs. FedShuffleGen also allows us to run and analyze hybrid approaches of mixing step
size scaling with update scaling to overcome the objective inconsistency. These hybrid approaches would be
efficient when applying step size scaling only, i.e. FedShuffle, might not overcome objective inconsistency
due to system challenges. For example, such a scenario could happen when some clients cannot finish their
predefined number of epochs due to a time-out, e.g., large variance in computing time, random drop-off,
or interruption during local training. In such scenarios, FedShuffleGen allows additional adjustments
through update scaling.

5 Convergence guarantees

In the theorem below, we establish the convergence guarantees for Algorithm 1. Before proceeding with the
theorem, we define several quantities derived from the constants that appear in Assumptions 3.3 and 3.4

M
def= max

i∈[n]

{
si

pi
wi

}
, P 2 def= max

i∈[n]

P 2
i

|Di|
, σ2 def= 1

|D|

∑
i∈[n]

σ2
i , β

def= 1 + (1 + P)B +MB2,

and the ones that reflect the quality of the initial solution D def= ‖x0 − x?‖2 and F def= f(x0)− f?.
Theorem 5.1. Suppose that the Assumptions 3.2-3.4 hold. Then, in each of the following cases, there exist
weights {vr}, local step sizes ηrl

def= ηl and effective step sizes η̃r def= η̃ = Eηgηl such that for any ηrg
def= ηg ≥ 1

the output of FedShuffle (Algorithm 1)

x̄R = xr with probability vr∑
τ vτ

for r ∈ {0, . . . , R− 1} (11)

5It may not be possible for the server to know the number of samples per client because of privacy constraints, in which case
one can always default a uniform sampling scheme with pi = 1/n.

8

Published in Transactions on Machine Learning Research (09/2022)

satisfies

• Strongly convex: {fij} satisfy (2) for µ > 0, η̃ ≤ 1
4βL , R ≥

4βL
µ then

E
[
f(x̄R)− f(x?)

]
≤ Õ

(
MG2

µR
+ (E2 + P 2)G2 + σ2

µ2R2η2
gE

2 + µD2 exp
(
− µ

8βLR
))

,

• General convex: {fij} satisfy (2) for µ = 0,

E
[
f(x̄R)− f(x?)

]
≤ O

(√
DMG√
R

+ D2/3((E2 + P 2)G2 + σ2)1/3

R2/3η
2/3
g E2/3

+ LDβ

R

)
,

• Non-convex: η̃ ≤ 1
4βL , then

E
[
‖∇f(x̄R)‖2

]
≤ O

(√
FMLG√
R

+ F 2/3L1/3((E2 + P 2)G2 + σ2)1/3

R2/3η
2/3
g E2/3

+ LFβ

R

)
.

Let us discuss the obtained rates. First, note that for a sufficiently large number of communication rounds,
the first term is the leading term. This term together with the last term correspond to the rate of Distributed
GD with partial participation, where each sampled client returns its gradient as the update. If each client
participates then M = 0 and the first term vanishes. The second term comes from local steps using random
reshuffling. Note here that the dependency of the noise term σ2 on the number of communication rounds is
R2 and R2/3, respectively, while for local steps with unbiased stochastic gradients, this would be R and R1/3.
This shows that the variance is decreased when one employs random reshuffling instead of with-replacement
sampling. We further note that the middle term can be completely removed in the limit where ηg →∞, and
the local variance σ2 vanishes when E →∞. We note that such property was not observed for FedNova.
The limit ηg →∞ implies ηl → 0 and thus FedShuffle reduces to GD with partial participation. To analyze
the effect of the cohort size b (number of sampled clients) on the convergence rate, we look at the special
case where each client is sampled independently with probability pi = bwi (assume bwi ≤ 1 for simplicity)
for all i ∈ [n]. We refer to this sampling as importance sampling as it is easy to see that the M term is
minimized for this sampling (Horváth & Richtárik, 2019). In this particular case, M = (1−min{wi})/b and,
thus, we obtain theoretical linear speed with respect to the expected cohort size b.

Lastly, we note that the obtained rates do not asymptotically improve upon distributed GD with partial
participation, but this is the case for every local method with local steps based only on the local dataset, i.e.,
no global information is exploited.

5.1 Improving upon Non-Local Methods

Contrary to the relatively negative worst-case results presented in the previous section, local methods have
been observed to perform significantly better in practice (McMahan et al., 2017) when compared to non-local
(i.e., one local step) methods. To overcome this issue, Karimireddy et al. (2019b) proposed to use a Hessian
similarity assumption (Arjevani & Shamir, 2015), and they showed that local steps bring improvement when
the objective is quadratic, all clients participate in each round and the local steps are corrected using SAGA-like
variance reduction (Defazio et al., 2014). Later, Karimireddy et al. (2020) proposed MimeMVR that uses
the Momentum Variance Reduction (MVR) technique (Cutkosky & Orabona, 2019; Tran-Dinh et al., 2019)
and extended the prior results to smooth non-convex functions with uniform partial participation. In our
work, we build upon these results and show that FedShuffle can also improve in terms of communication
rounds complexity. To achieve this, we introduce FedShuffleMVR, a FedShuffle type algorithm that
is extended with MimeMVR’s momentum technique. Each local update of FedShuffleMVR has the
following form

yri,e,j = yri,e,j−1 −
ηrl
|Di|

di,e,j−1, (12)

9

Published in Transactions on Machine Learning Research (09/2022)

where

di,e,j = a∇fiΠr
i,e,j

(yri,e,j) + (1− a)mr + (1− a)
(
∇fiΠr

i,e,j
(yri,e,j)−∇fiΠr

i,e,j
(xr)

)
(13)

where the momentum term mr is updated at the beginning of each communication round as

mr = a
∑
i∈Sr

wi
pi
∇fi(xr) + (1− a)mr−1 + (1− a)

(∑
i∈Sr

wi
pi

(∇fi(xr)−∇fi(xr−1))
)
. (14)

For the notation details, we refer the reader to Algorithm 3 in the Appendix. The above equations can
be seen as the standard momentum (first two terms) with an extra correction term (the last term). For a
detailed explanation about the motivation behind this momentum technique, we refer the reader to Cutkosky
& Orabona (2019). Note that the momentum term is only updated once in each communication round,
this is to reduce the local drift as proposed by Karimireddy et al. (2020). A convergence guarantee of
FedShuffleMVR in the non-convex regime follows.

Theorem 5.2. Let us run FedShuffleMVR with step sizes ηl = 1
40E min

{
1
δ ,
(

f(x0)−f?

Rδ2(G2+σ2)

)1/3
}
, ηg = 1,

momentum parameter a = max
(
1152E2δ2η2

l ,
1
R

)
, and local epochs E ≥ L

δ . Then, given that Assumptions 3.2-
3.5 hold with Pi = 0 for all i ∈ [n], B = 1, δ > 0 and one client is sampled with probabilities {wi}, we
have

1
RE

R−1∑
r=0

E−1∑
e=0

E
[∥∥∇f(yrir,e)

∥∥2
]
≤ O

(
δ2/3F 2/3(G2 + σ2)1/3

R2/3 + δF +G2

R

)
.

Note that our rate is independent of L and only depends on the Hessian similarity constant δ. Because δ ≤ L,
this rate improves upon the rate of the centralized MVR O(L2/3

/R2/3). We note that the improvement is only
for the number of communication rounds, and the number of gradient calls is at least the same as for the
non-local centralized MVR since Eδ ≤ L, but our main concern here is the communication efficiency. It is
worth noting that our results are qualitatively similar to those provided by MimeMVR Karimireddy et al.
(2020), but in our work, we consider a more challenging and practical setting. Namely, FedShuffleMVR
does not require that all clients perform the same number of local updates, and each client runs local
epochs using random reshuffling. Therefore, we work with biased gradients, and, in addition, we allow for
heterogeneity in the number of samples per client, which brings another challenge that needs to be adequately
addressed in the analysis to avoid objective inconsistency. Lastly, we note that our step size scaling is
essential in the provided FedShuffleMVR convergence theory as it requires balancing the progress made
by each client. Therefore, it is not clear whether a combination of FedNova and MVR can lead to a similar
improvement.

6 Experimental Evaluation

For the experimental evaluation, we compare three methods — FedAvg, FedNova, and our FedShuffle—
with different extensions such as random reshuffling or momentum. We run two sets of experiments. In the
first, we perform an ablation study on a simple distributed quadratic problem to verify the improvements
predicted by our theory. In the second part, we compare all of the methods for training deep neural networks
on the CIFAR100 and Shakespeare datasets. Details of the experimental setup can be found in Appendix F.
As expected, our findings are that FedShuffle consistently outperforms other baselines. Moreover, global
momentum leads to an improved performance of all methods as predicted by our theory.

6.1 Results on quadratic functions

In this section, we verify our theoretical findings on a convex quadratic objective; see (36) in the appendix for
details. Figure 1 summarizes the results. The left-most plot showcases the comparison of FedAvg, FedAvg
with reshuffling (FedAvgRR), FedNova as analyzed in (Wang et al., 2020) (with sampling), FedNova

10

Published in Transactions on Machine Learning Research (09/2022)

0 200 400 600 800 1000
communication rounds

10−6

10−5

10−4

10−3

10−2

10−1

||x
−
x

⋆
||2

FedAvgRR
FedAvgMin
FedAvgMean
FedNova
FedNovaRR
FedShuffle

0 200 400 600 800 1000
communication rounds

10−7

10−5

10−3

10−1

||x
−
x

⋆
||2

FedAvgRR
FedAvgMin
FedAvgMean
FedNova
FedNovaRR
FedShuffle

0 200 400 600 800 1000
communication rounds

10−5

10−4

10−3

10−2

10−1

||x
−
x

⋆
||2

FedShuffle
FedShuffle w/ SO

0 200 400 600 800 1000
communication rounds

10−3

10−2

10−1

||x
−
x

⋆
||2

FedShuffle
FedShuffle w/ IS

Figure 1: Quadratic objective as defined in (36). Each client runs one local epoch. Left: A comparison of
FedAvg, FedAvg with reshuffling (FedAvgRR), FedNova and FedNova with reshuffling (FedNova
RR) and FedShuffle with full participation. Middle Left: the same baselines with the global momentum
0.9. Middle Right: FedShuffle w/ Sum One and plain FedShuffle with partial participation (two clients
sampled uniformly at random). Right: FedShuffle with uniform sampling and importance sampling (IS)
with partial participation (one client per round).

Table 2: Shakespeare dataset.
Accuracy No Momentum With Momentum

FedAvgMin 35.79± 0.28 51.13± 0.27
FedAvgMean 36.95± 0.55 55.38± 0.27

FedAvg 48.61± 0.56 64.64± 0.10
FedNova 43.29± 0.40 61.65± 0.06

FedShuffle 59.57± 0.14 67.63± 0.35

Table 3: CIFAR100 dataset.
Accuracy No Momentum With Momentum

FedAvgMin 48.49± 0.28 63.62± 0.20
FedAvgMean 49.24± 0.92 64.75± 0.20

FedAvg 50.29± 0.31 63.04± 0.51
FedNova 50.63± 0.66 62.83± 0.19

FedShuffle 51.97± 0.20 64.52± 0.48

with reshuffling (FedNovaRR) as we analyze it in Appendix E, and FedShuffle. All clients participate in
each round and run one local epoch with batch size 1.

As expected, FedAvgRR saturates at a higher loss, since it optimizes the wrong objective, see Appendix E.
FedAvgMin fixes the objective inconsistency of the FedAvg, but it is still dominated by other baselines
due to decreased amount of local work per client. FedNova provides a better performance since it does
not contain any inconsistency by construction, but its performance is later dominated by noise coming from
stochastic gradients. The same holds for FedAvgMean. As predicted by our theory, random reshuffling
decreases the stochastic noise and FedNovaRR improves upon the performance of FedNova. FedShuffle
dominates all the baselines since it does not have any objective inconsistency, it uses a superior method
to remove inconsistencies compared to FedNova, and it also incorporates random reshuffling which itself
provides some variance reduction.

In the second plot, we use the same baselines but include global momentum as defined in (13) and (14).
We can see that this technique helps FedAvg to reduce its objective inconsistency since the momentum in
(14) is unbiased. For other methods, we can see that momentum has a beneficial variance reduction effect
as expected, and we observe convergence to a solution with higher precision. Note that FedShuffle still
performs the best as predicted by our theory.

In the third plot, we analyse the difference between the default implementation of the aggregation step, that
is denoted as “sum one” (FedShuffle w/ SO) since the sum of weights during aggregation is normalized
to be one, and our unbiased version, where the weights are scaled by the probability of sampling the given
client. We sample two clients in each step uniformly at random and each client runs one local epoch. As was
discussed in Section 4, we observe that FedShuffle w/ SO converges to a worse solution due to objective
inconsistency resulting from the biased aggregation.

Finally, we compare FedShuffle with uniform and importance sampling, where we sample one client per
round and the sampled client runs one local epoch. For importance sampling (IS), each client is sampled
proportionally to its dataset size. To better showcase the effect of importance sampling, we use a slightly
different objective, where d = 10, the first client holds 8 data points, and other two clients hold one. As
predicted by our theory (decrease of the M term in Theorem 5.1), importance sampling leads to a substantial
improvement.

11

Published in Transactions on Machine Learning Research (09/2022)

0 200 400 600 800 1000
communication rounds

20

30

40

50

60

ac
cu

ra
cy

FedAvgMin
FedAvgMean
FedAvg
FedNova
FedShuffle

0 200 400 600 800 1000
communication rounds

20

30

40

50

60

70

ac
cu

ra
cy

FedAvgMin
FedAvgMean
FedAvg
FedNova
FedShuffle

(a) Shakespeare w/ LSTM

0 200 400 600 800 1000
communication rounds

0

10

20

30

40

50

ac
cu

ra
cy

800 1000
47.5
50.0
52.5

FedAvgMin
FedAvgMean
FedAvg
FedNova
FedShuffle

0 200 400 600 800 1000
communication rounds

0

10

20

30

40

50

60

ac
cu

ra
cy

800 1000
62
64
66

FedAvgMin
FedAvgMean
FedAvg
FedNova
FedShuffle

(b) CIFAR100 (TFF Split) w/ ResNet18

Figure 2: Comparison of FedAvgMin, FedAvg, FedNova, FedShuffle on real-world datasets. Partial
participation: in each round 16 client is sampled uniformly at random. All methods use random reshuffling.
For Shakespeare, number of local epochs is 2 and for CIFAR100, it is 2 to 5 sampled uniformly at random
at each communication round for each client. Left: Plain methods, without momentum. Right: Global
momentum 0.9.
6.2 Training Deep Neural Networks
In the next experiments, we evaluate the same methods on the CIFAR100 Krizhevsky et al. (2009) and
Shakespeare McMahan et al. (2017) datasets. The results already showcased theoretically (see Sections 4 and
Appendix E) and empirically in the previous experiments that reshuffling leads to a substantial improvement
over random sampling with replacement. Therefore, in these experiments we focus on other aspects of
FedShuffle and show its superiority over other methods that use random reshuffling. To do that, we
only consider random reshuffling methods in this section; thus FedNova, FedAvg, FedAvgMin and
FedAvgMean refer to FedAvgRR, FedNovaRR, FedAvgMin and FedAvgMean with (partial) random
reshuffling, respectively. For each task, we run 1000 rounds and we sample 16 clients in each round. For
Shakespeare, each client runs two local epochs. For CIFAR100, all clients have the same number of data
points. Thus, we follow (Wang et al., 2020) to create heterogeneity and test our FedShuffleGen framework
we assume each client runs 2 to 5 epochs uniformly at random. We investigate which method performs
the best and, furthermore, we look at the effects of the momentum. and importance sampling, where the
description of the used importance sampling strategy can be found in (Horváth & Richtárik, 2019, Section 2.3).
We report the test accuracies in Figure 2 and Tables 2 and 3. We observe that FedShuffle outperforms all
the baselines, for the Shakespeare dataset with a large margin. With respect to the global fixed momentum,
we can see that this technique helps all the methods and substantially improves their performance. We note
that FedAvgMean and FedAvgMin perform exceptionally well for CIFAR100 (w/ momentum) but not
for the Shakespeare dataset. We conjecture this is due to the significant heterogeneity of the Shakespeare
dataset in terms of samples per client. In this setting, FedAvgMin does not utilize most of the data on
clients with larger data-sets, while FedAvgMean over-uses the data on clients with smaller data-size. Note
that for CIFAR100, this is not the case as we use an equal-sized split. For completeness, we include the train
loss corresponding to Figure 2 in Section F in the appendix.

7 Conclusion
This paper introduces and analyzes FedShuffle, which incorporates the practice of running local epochs
with reshuffling in common FL implementations while also accounting for data imbalance across clients,
and correcting for the resulting objective inconsistency problem that arises in FedAvg-type methods.
FedShuffle involves adjusting local learning rates based on the amount of local data, in addition to
modified aggregation weights compared to prior work like FedAvg or FedNova. Under an additional Hessian
smoothness assumption, incorporating momentum variance reduction leads to order-optimal rates, in the
sense of matching the lower bounds achieved by non-local-update methods. The theoretical contributions of
this work are verified in controlled experiments using quadratic functions, and the superiority of FedShuffle
is also demonstrated in experiments training deep neural networks on standard FL benchmark problems.

Promising directions for future work include generalizing the analysis of FedShuffle to cover asynchronous
execution (Huba et al., 2022; Nguyen et al., 2022), incorporating compression mechanisms to reduce commu-
nication overhead (Karimireddy et al., 2019c; Mishchenko et al., 2019), and to account for computational and
communication heterogeneity across clients (Caldas et al., 2018b; Diao et al., 2020; Horváth et al., 2021).

12

Published in Transactions on Machine Learning Research (09/2022)

References
Kwangjun Ahn and Suvrit Sra. On tight convergence rates of without-replacement SGD. arXiv preprint
arXiv:2004.08657, 2020.

Apple. Designing for privacy (video and slide deck). Apple WWDC, https://developer.apple.com/videos/
play/wwdc2019/708, 2019.

Yossi Arjevani and Ohad Shamir. Communication complexity of distributed convex learning and optimization.
arXiv preprint arXiv:1506.01900, 2015.

Léon Bottou. Curiously fast convergence of some stochastic gradient descent algorithms. In Proceedings of
the symposium on learning and data science, Paris, volume 8, pp. 2624–2633, 2009.

Leon Bottou. Stochastic gradient descent tricks, volume 7700 of lecture notes in computer science (lncs),
2012.

Léon Bottou, Frank E Curtis, and Jorge Nocedal. Optimization methods for large-scale machine learning.
Siam Review, 60(2):223–311, 2018.

Sebastian Caldas, Sai Meher Karthik Duddu, Peter Wu, Tian Li, Jakub Konečnỳ, H Brendan McMa-
han, Virginia Smith, and Ameet Talwalkar. Leaf: A benchmark for federated settings. arXiv preprint
arXiv:1812.01097, 2018a.

Sebastian Caldas, Jakub Konečny, H Brendan McMahan, and Ameet Talwalkar. Expanding the reach of
federated learning by reducing client resource requirements. arXiv preprint arXiv:1812.07210, 2018b.

Wenlin Chen, Samuel Horváth, and Peter Richtárik. Optimal client sampling for federated learning. arXiv
preprint arXiv:2010.13723, 2020.

Ashok Cutkosky and Francesco Orabona. Momentum-based variance reduction in non-convex SGD. arXiv
preprint arXiv:1905.10018, 2019.

Aaron Defazio, Francis Bach, and Simon Lacoste-Julien. SAGA: A fast incremental gradient method with
support for non-strongly convex composite objectives. Advances in neural information processing systems,
27, 2014.

Enmao Diao, Jie Ding, and Vahid Tarokh. Heterofl: Computation and communication efficient federated
learning for heterogeneous clients. arXiv preprint arXiv:2010.01264, 2020.

Mert Gürbüzbalaban, Asu Ozdaglar, and Pablo A Parrilo. Why random reshuffling beats stochastic gradient
descent. Mathematical Programming, 186(1):49–84, 2021.

Farzin Haddadpour and Mehrdad Mahdavi. On the convergence of local descent methods in federated learning.
arXiv preprint arXiv:1910.14425, 2019.

Farzin Haddadpour, Mohammad Mahdi Kamani, Mehrdad Mahdavi, and Viveck Cadambe. Trading redun-
dancy for communication: Speeding up distributed SGD for non-convex optimization. In International
Conference on Machine Learning, pp. 2545–2554. PMLR, 2019a.

Farzin Haddadpour, Mohammad Mahdi Kamani, Mehrdad Mahdavi, and Viveck R Cadambe. Local SGD
with periodic averaging: Tighter analysis and adaptive synchronization. arXiv preprint arXiv:1910.13598,
2019b.

Andrew Hard, Kanishka Rao, Rajiv Mathews, Swaroop Ramaswamy, Françoise Beaufays, Sean Augenstein,
Hubert Eichner, Chloé Kiddon, and Daniel Ramage. Federated learning for mobile keyboard prediction.
arXiv preprint arXiv:1811.03604, 2018.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 770–778, 2016.

13

https://developer.apple.com/videos/play/wwdc2019/708
https://developer.apple.com/videos/play/wwdc2019/708

Published in Transactions on Machine Learning Research (09/2022)

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9(8):1735–1780,
1997.

Samuel Horváth and Peter Richtárik. Nonconvex variance reduced optimization with arbitrary sampling. In
International Conference on Machine Learning, pp. 2781–2789. PMLR, 2019.

Samuel Horváth and Peter Richtárik. A better alternative to error feedback for communication-efficient
distributed learning. arXiv preprint arXiv:2006.11077, 2020.

Samuel Horváth, Stefanos Laskaridis, Mario Almeida, Ilias Leontiadis, Stylianos Venieris, and Nicholas Donald
Lane. FjORD: Fair and accurate federated learning under heterogeneous targets with ordered dropout. In
A. Beygelzimer, Y. Dauphin, P. Liang, and J. Wortman Vaughan (eds.), Advances in Neural Information
Processing Systems, 2021. URL https://openreview.net/forum?id=4fLr7H5D_eT.

Kevin Hsieh, Amar Phanishayee, Onur Mutlu, and Phillip B. Gibbons. The Non-IID Data Quagmire of
Decentralized Machine Learning. In Proc. of ICML, volume 119, pp. 4387–4398. PMLR, 2020.

Dzmitry Huba, John Nguyen, Kshitiz Malik, Ruiyu Zhu, Mike Rabbat, Ashkan Yousefpour, Carole-Jean Wu,
Hongyuan Zhan, Pavel Ustinov, Harish Srinivas, et al. Papaya: Practical, private, and scalable federated
learning. Proceedings of Machine Learning and Systems, 4:814–832, 2022.

Peter Kairouz, H Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Bennis, Arjun Nitin Bhagoji,
Keith Bonawitz, Zachary Charles, Graham Cormode, Rachel Cummings, et al. Advances and open problems
in federated learning. arXiv preprint arXiv:1912.04977, 2019.

Praneeth Karimireddy, Martin Jaggi, Satyen Kale, Mehryar Mohri, Sashank J Reddi, Sebastian U Stich, and
Ananda Theertha Suresh. Mime: Mimicking centralized stochastic algorithms in federated learning. arXiv
preprint arXiv:2008.03606, 2020.

Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri, Sashank J Reddi, Sebastian U Stich, and
Ananda Theertha Suresh. Scaffold: Stochastic controlled averaging for on-device federated learning.
2019a.

Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri, Sashank J Reddi, Sebastian U Stich, and Ananda
Theertha Suresh. SCAFFOLD: Stochastic controlled averaging for federated learning. arXiv e-prints, pp.
arXiv–1910, 2019b.

Sai Praneeth Karimireddy, Quentin Rebjock, Sebastian Stich, and Martin Jaggi. Error feedback fixes SignSGD
and other gradient compression schemes. In International Conference on Machine Learning, pp. 3252–3261.
PMLR, 2019c.

Ahmed Khaled, Konstantin Mishchenko, and Peter Richtárik. First analysis of local GD on heterogeneous
data. arXiv preprint arXiv:1909.04715, 2019.

Ahmed Khaled, Konstantin Mishchenko, and Peter Richtárik. Tighter theory for local SGD on identical and
heterogeneous data. In International Conference on Artificial Intelligence and Statistics, pp. 4519–4529.
PMLR, 2020.

Anastasia Koloskova, Nicolas Loizou, Sadra Boreiri, Martin Jaggi, and Sebastian Stich. A unified theory of
decentralized SGD with changing topology and local updates. In International Conference on Machine
Learning, pp. 5381–5393. PMLR, 2020.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.

Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Talwalkar, and Virginia Smith. Federated
optimization in heterogeneous networks. Proceedings of Machine Learning and Systems, 2:429–450, 2020.

Wei Li and Andrew McCallum. Pachinko allocation: Dag-structured mixture models of topic correlations. In
Proceedings of the 23rd international conference on Machine learning, pp. 577–584, 2006.

14

https://openreview.net/forum?id=4fLr7H5D_eT

Published in Transactions on Machine Learning Research (09/2022)

Xiang Li, Kaixuan Huang, Wenhao Yang, Shusen Wang, and Zhihua Zhang. On the convergence of fedavg on
non-iid data. arXiv preprint arXiv:1907.02189, 2019.

Xianfeng Liang, Shuheng Shen, Jingchang Liu, Zhen Pan, Enhong Chen, and Yifei Cheng. Variance reduced
local SGD with lower communication complexity. arXiv preprint arXiv:1912.12844, 2019.

Tao Lin, Sebastian U Stich, Kumar Kshitij Patel, and Martin Jaggi. Don’t use large mini-batches, use local
SGD. arXiv preprint arXiv:1808.07217, 2018.

Grigory Malinovsky, Konstantin Mishchenko, and Peter Richtárik. Server-side stepsizes and sampling without
replacement provably help in federated optimization. arXiv preprint arXiv:2201.11066, 2021.

Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas. Communication-
efficient learning of deep networks from decentralized data. In International Conference on Artificial
Intelligence and Statistics, pp. 1273–1282. PMLR, 2017.

Konstantin Mishchenko, Eduard Gorbunov, Martin Takáč, and Peter Richtárik. Distributed learning with
compressed gradient differences. arXiv preprint arXiv:1901.09269, 2019.

Konstantin Mishchenko, Ahmed Khaled Ragab Bayoumi, and Peter Richtárik. Random reshuffling: Simple
analysis with vast improvements. Advances in Neural Information Processing Systems, 33, 2020.

Konstantin Mishchenko, Ahmed Khaled, and Peter Richtárik. Proximal and federated random reshuffling.
arXiv preprint arXiv:2102.06704, 2021.

Aritra Mitra, Rayana Jaafar, George J Pappas, and Hamed Hassani. Achieving linear convergence in federated
learning under objective and systems heterogeneity. arXiv preprint arXiv:2102.07053, 2021.

Yurii Nesterov et al. Lectures on convex optimization, volume 137. Springer, 2018.

John Nguyen, Kshitiz Malik, Hongyuan Zhan, Ashkan Yousefpour, Mike Rabbat, Mani Malek, and Dzmitry
Huba. Federated learning with buffered asynchronous aggregation. In International Conference on Artificial
Intelligence and Statistics, pp. 3581–3607. PMLR, 2022.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen,
Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward Yang, Zachary
DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and
Soumith Chintala. Pytorch: An imperative style, high-performance deep learning library. In H. Wallach,
H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett (eds.), Advances in Neural Informa-
tion Processing Systems 32, pp. 8024–8035. Curran Associates, Inc., 2019. URL http://papers.neurips.cc/
paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf.

Sashank Reddi, Zachary Charles, Manzil Zaheer, Zachary Garrett, Keith Rush, Jakub Konečnỳ, Sanjiv
Kumar, and H Brendan McMahan. Adaptive federated optimization. arXiv preprint arXiv:2003.00295,
2020.

Sebastian U Stich. Local SGD converges fast and communicates little. arXiv preprint arXiv:1805.09767,
2018.

Sebastian U Stich. Unified optimal analysis of the (stochastic) gradient method. arXiv preprint
arXiv:1907.04232, 2019.

Sebastian U Stich and Sai Praneeth Karimireddy. The error-feedback framework: Better rates for SGD with
delayed gradients and compressed updates. Journal of Machine Learning Research, 21:1–36, 2020.

TFF. Tensorflow federated datasets. 2021. URL https://www.tensorflow.org/federated/api_docs/
python/tff/simulation/datasets.

Quoc Tran-Dinh, Nhan H Pham, Dzung T Phan, and Lam M Nguyen. Hybrid stochastic gradient descent
algorithms for stochastic nonconvex optimization. arXiv preprint arXiv:1905.05920, 2019.

15

http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://www.tensorflow.org/federated/ api_ docs/ python/ tff/ simulation/ datasets
https://www.tensorflow.org/federated/ api_ docs/ python/ tff/ simulation/ datasets

Published in Transactions on Machine Learning Research (09/2022)

Hongyi Wang, Scott Sievert, Zachary Charles, Shengchao Liu, Stephen Wright, and Dimitris Papailiopoulos.
Atomo: Communication-efficient learning via atomic sparsification. arXiv preprint arXiv:1806.04090, 2018.

Jianyu Wang and Gauri Joshi. Adaptive communication strategies to achieve the best error-runtime trade-off
in local-update SGD. Proceedings of Machine Learning and Systems, 1:212–229, 2019.

Jianyu Wang and Gauri Joshi. Cooperative SGD: A unified framework for the design and analysis of
local-update SGD algorithms. Journal of Machine Learning Research, 22(213):1–50, 2021.

Jianyu Wang, Qinghua Liu, Hao Liang, Gauri Joshi, and H Vincent Poor. Tackling the objective inconsistency
problem in heterogeneous federated optimization. arXiv preprint arXiv:2007.07481, 2020.

Jianqiao Wangni, Jialei Wang, Ji Liu, and Tong Zhang. Gradient sparsification for communication-efficient
distributed optimization. In Advances in Neural Information Processing Systems, pp. 1299–1309, 2018.

Blake Woodworth, Jialei Wang, Adam Smith, Brendan McMahan, and Nathan Srebro. Graph oracle models,
lower bounds, and gaps for parallel stochastic optimization. arXiv preprint arXiv:1805.10222, 2018.

Blake Woodworth, Kumar Kshitij Patel, Sebastian Stich, Zhen Dai, Brian Bullins, Brendan Mcmahan, Ohad
Shamir, and Nathan Srebro. Is local SGD better than minibatch SGD? In International Conference on
Machine Learning, pp. 10334–10343. PMLR, 2020.

Cong Xie, Oluwasanmi Koyejo, Indranil Gupta, and Haibin Lin. Local AdaAlter: Communication-efficient
stochastic gradient descent with adaptive learning rates. arXiv preprint arXiv:1911.09030, 2019.

Hao Yu, Sen Yang, and Shenghuo Zhu. Parallel restarted SGD with faster convergence and less communication:
Demystifying why model averaging works for deep learning. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 33, pp. 5693–5700, 2019.

Chulhee Yun, Shashank Rajput, and Suvrit Sra. Minibatch vs local SGD with shuffling: Tight convergence
bounds and beyond. arXiv preprint arXiv:2110.10342, 2021.

Fan Zhou and Guojing Cong. On the convergence properties of a k-step averaging stochastic gradient descent
algorithm for nonconvex optimization. arXiv preprint arXiv:1708.01012, 2017.

16

Published in Transactions on Machine Learning Research (09/2022)

Appendix
A FedAvg with Random Reshuffling

Algorithm 2 FedAvg with RR
1: Input: initial global model x0, global and local step sizes ηrg , ηrl
2: for each round r = 0, . . . , R− 1 do
3: server broadcasts xr to all clients i ∈ Sr ⊂ [n] sampled uniformly at random with |Sr| = b
4: for each client i ∈ Sr (in parallel) do
5: initialize local model yri,0,0 ← xr

6: for e = 1, . . . , E do
7: Sample permutation {Πr

i,e,0, . . . ,Πk
i,e,|Di|−1} of {1, . . . , |Di|}

8: for j = 1, . . . , |Di| do
9: update yri,e,j = yri,e,j−1 − ηrl∇fiΠr

i,e,j−1
(yri,e,j−1)

10: end for
11: yri,e+1,0 = yri,e,|Di|
12: end for
13: send ∆r

i = yri,E,|Di| − x
r to server

14: end for
15: server computes ∆r = n

b
1∑

i∈Sr wi

∑
i∈Sr wi∆r

i

16: server updates global model xr+1 = xr − ηrg∆r

17: end for

B Technicalities

B.1 Convex Smooth Functions

We first state some implications of Assumption 3.2. It implies the following quadratic upper bound on fij

fij(y) ≤ fij(x) + 〈∇fij(x), y − x〉+ L

2 ‖y − x‖
2 . (15)

In addition, if the functions {fij} are convex and x? is an optimum of f , then

1
2L|D|

∑
i,j

‖∇fij(x)−∇fij(x?)‖2 ≤ f(x)− f? . (16)

Further, if fij is twice-differentiable, then Assumption 3.2 implies that ‖∇2fij(x)‖ ≤ L for all x ; see, e.g.,
(Nesterov et al., 2018, Theorem 2.1.5), where ‖·‖ refers here to the spectral norm.

Next, we include lemma that is useful to provide bounds for any smooth and strongly-convex functions. It
can be seen as a generalization of the standard strong convexity inequality (2), but this bound can handle
gradients computed at slightly perturbed points using smoothness assumption. This lemma turns out to be
especially useful for local methods and was also used in the analysis of FedAVG in (Karimireddy et al., 2019b).
Lemma B.1 (perturbed strong convexity). The following holds for any L-smooth and µ-strongly convex
function h, and any x, y, z in the domain of h:

〈∇h(x), z − y〉 ≥ h(z)− h(y) + µ

4 ‖y − z‖
2 − L‖z − x‖2 .

17

Published in Transactions on Machine Learning Research (09/2022)

Proof. Given any x, y, and z, one gets the following two inequalities using smoothness and strong convexity
of the function h:

〈∇h(x), z − x〉 ≥ h(z)− h(x)− L

2 ‖z − x‖
2

〈∇h(x), x− y〉 ≥ h(x)− h(y) + µ

2 ‖y − x‖
2 .

Further, applying the relaxed triangle inequality gives

µ

2 ‖y − x‖
2 ≥ µ

4 ‖y − z‖
2 − µ

2 ‖x− z‖
2 .

Combining all the inequalities together we have

〈∇h(x), z − y〉 ≥ h(z)− h(y) + µ

4 ‖y − z‖
2 − L+ µ

2 ‖z − x‖2 .

The lemma follows since it has to hold L ≥ µ.

B.2 Convergence Derivations

In this section, we cover some technical lemmas which are useful to unroll recursions and derive convergence
rates. computations later on. The provided Lemmas correspond to Lemma 1 and 2 in (Karimireddy et al.,
2019b).
Lemma B.2 (linear convergence rate). For every non-negative sequence {dr−1}r≥1 and any parameters µ > 0,
ηmax ∈ (0, 1/µ], c ≥ 0, R ≥ 1

2ηmaxµ
, there exists a constant step size η ≤ ηmax and weights vr

def= (1− µη)1−r

such that for VR
def=
∑R+1
r=1 vr,

ΨR
def= 1

VR

R+1∑
r=1

(
vr
η

(1− µη) dr−1 −
vr
η
dr + cηvr

)
= Õ

(
µd0 exp(−µηmaxR) + c

µR

)
.

Proof. By substituting the value of vr, we observe that we end up with a telescoping sum and estimate

ΨR = 1
ηVR

R+1∑
r=1

(vr−1dr−1 − vrdr) + cη

VR

R+1∑
r=1

vr ≤
d0

ηVR
+ cη .

When R ≥ 1
2µη , (1− µη)R ≤ exp(−µηR) ≤ 2

3 . For such an R, we can lower bound ηVR using

ηVR = η(1− µη)−R
R∑
r=0

(1− µη)r = η(1− µη)−R 1− (1− µη)R
µη

≥ (1− µη)−R 1
3µ .

This proves that for all R ≥ 1
2µη ,

ΨR ≤ 3µd0(1− µη)R + cη ≤ 3µdo exp(−µηR) + cη .

The lemma now follows by carefully tuning η. Consider the following two cases depending on the magnitude
of R and ηmax:

• Suppose 1
2µR ≤ ηmax ≤ log(max(1,µ2Rd0/c))

µR . Then we can choose η = ηmax,

ΨR ≤ 3µd0 exp [−µηmaxR] + cηmax ≤ 3µd0 exp [−µηmaxR] + Õ
(

c

µR

)
.

18

Published in Transactions on Machine Learning Research (09/2022)

• Instead if ηmax >
log(max(1,µ2Rd0/c))

µR , we pick η = log(max(1,µ2Rd0/c))
µR to claim that

ΨR ≤ 3µd0 exp
[
− log(max(1, µ2Rd0/c))

]
+ Õ

(
c

µR

)
≤ Õ

(
c

µR

)
.

Lemma B.3 (sub-linear convergence rate). For every non-negative sequence {dr−1}r≥1 and any parameters
ηmax ≥ 0, c ≥ 0, R ≥ 0, there exists a constant step size η ≤ ηmax and weights vr = 1 such that,

ΨR
def= 1

R+ 1

R+1∑
r=1

(
dr−1

η
− dr

η
+ c1η + c2η

2
)
≤ d0

ηmax(R+ 1) + 2
√
c1d0√
R+ 1

+ 2
(

d0

R+ 1

) 2
3

c
1
3
2 .

Proof. Unrolling the sum, we can simplify

ΨR ≤
d0

η(R+ 1) + c1η + c2η
2 .

Similar to the strongly convex case (Lemma B.2), we distinguish the following cases:

• When R+ 1 ≤ d0
c1η2

max
, and R+ 1 ≤ d0

c2η3
max

we pick η = ηmax to claim

ΨR ≤
d0

ηmax(R+ 1) + c1ηmax + c2η
2
max ≤

d0

ηmax(R+ 1) +
√
c1d0√
R+ 1

+
(

d0

R+ 1

) 2
3

c
1
3
2 .

• In the other case, we have η2
max ≥ d0

c1(R+1) or η3
max ≥ d0

c2(R+1) . We choose η =

min
{√

d0
c1(R+1) ,

3
√

d0
c2(R+1)

}
to prove

ΨR ≤
d0

η(R+ 1) + cη = 2
√
c1d0√
R+ 1

+ 2 3

√
d2

0c2
(R+ 1)2 .

B.3 Variance bounds

In this section, we provide bounds that are useful to bound the variance of the gradient estimators used in
this work. We first introduce standard variance decomposition and then state two lemmas.

For random variable X and any y ∈ Rd, the variance can be decomposed as

E
[
‖X −E [X]‖2

]
= E

[
‖X − y‖2

]
− ‖E [X]− y‖2. (17)

The first lemma captures bounds for the variance of unbiased estimator with arbitrary proper sampling. This
lemma is adapted from (Chen et al., 2020) originally introduced in (Horváth & Richtárik, 2019).
Lemma B.4. Let ζ1, ζ2, . . . , ζn be vectors in Rd and w1, w2, . . . , wn be non-negative real numbers such that∑n
i=1 wi = 1. Define ζ̃ def=

∑n
i=1 wiζi. Let S be a proper sampling. If s ∈ Rn is such that

P− pp> � Diag(p1s1, p2s2, . . . , pnsn), (18)

then

E

∥∥∥∥∥∑
i∈S

wiζi
pi
− ζ̃

∥∥∥∥∥
2
 ≤ n∑

i=1
w2
i

si
pi
‖ζi‖2, (19)

where the expectation is taken over S.

19

Published in Transactions on Machine Learning Research (09/2022)

Proof. Let 1i∈S = 1 if i ∈ S and 1i∈S = 0 otherwise. Likewise, let 1i,j∈S = 1 if i, j ∈ S and 1i,j∈S = 0
otherwise. Note that E [1i∈S] = pi and E [1i,j∈S] = pij . Next, let us compute the mean of X def=

∑
i∈S

wiζi

pi
:

E [X] = E
[∑
i∈S

wiζi
pi

]
= E

[
n∑
i=1

wiζi
pi

1i∈S

]
=

n∑
i=1

wiζi
pi

E [1i∈S] =
n∑
i=1

wiζi = ζ̃.

Let A = [a1, . . . , an] ∈ Rd×n, where ai = wiζi

pi
, and let e be the vector of all ones in Rn. We now write the

variance of X in a form which will be convenient to establish a bound:

E
[
‖X −E [X]‖2

]
= E

[
‖X‖2

]
− ‖E [X]‖2

= E
[
‖
∑
i∈S

wiζi
pi
‖2
]
− ‖ζ̃‖2

= E

∑
i,j

wiζ
>
i

pi

wjζj
pj

1i,j∈S

− ‖ζ̃‖2
=
∑
i,j

pij
wiζ
>
i

pi

wjζj
pj
−
∑
i,j

wiwjζ
>
i ζj

=
∑
i,j

(pij − pipj)a>i aj

= e>((P − pp>) ◦A>A)e.

(20)

Since, by assumption, we have P − pp> � Diag(p ◦ s), we can further bound

e>((P − pp>) ◦A>A)e ≤ e>(Diag(p ◦ s) ◦A>A)e =
n∑
i=1

pisi‖ai‖2.

The second lemma bounds the variance of the estimator obtained using the sampling without replacement.
The provided lemma is adopted from (Mishchenko et al., 2020).
Lemma B.5. Let ζ1, . . . , ζn ∈ Rd be fixed vectors,

ζ̃
def= 1

n

n∑
i=1

ζi

be their average and

σ2 def= 1
n

n∑
i=1
‖ζi − ζ̃‖2

be the population variance. Fix any k ∈ {1, . . . , n}, let ζπ1 , . . . ζπk
be sampled uniformly without replacement

from {ζ1, . . . , ζn} and ζ̃kπ be their average. Then, the sample average and variance are given by

E
[
ζ̃kπ
]

= ζ̃

E
[
‖ζ̃kπ − ζ̃‖2

]
= n− k
k(n− 1)σ

2.
(21)

Proof. The first claim follows by linearity of expectation and uniformity of sampling:

E
[
ζ̃kπ
]

= 1
k

k∑
i=1

E [ζπi
] = 1

k

k∑
i=1

ζ̃ = ζ̃.

20

Published in Transactions on Machine Learning Research (09/2022)

To prove the second claim, let us first establish that the identity cov(ζπi , ζπj) = − σ2

n−1 holds for any i 6= j.
Indeed,

cov(ζπi
, ζπj

) = E
[
〈ζπi
− ζ̃, ζπj

− ζ̃〉
]

= 1
n(n− 1)

n∑
l=1

n∑
m=1,m 6=l

〈ζl − ζ̃, ζm − ζ̃〉

= 1
n(n− 1)

n∑
l=1

n∑
m=1
〈ζl − ζ̃, ζm − ζ̃〉 −

1
n(n− 1)

n∑
l=1
‖ζl − ζ̃‖2

= 1
n(n− 1)

n∑
l=1
〈ζl − ζ̃,

n∑
m=1

(ζm − ζ̃)〉 − σ2

n− 1

= − σ2

n− 1 .

This identity helps us to establish the formula for sample variance:

E
[
‖ζ̃kπ − ζ̃‖2

]
= 1
k2

k∑
i=1

k∑
j=1

cov(ζπi
, ζπj

)

= 1
k2 E

[
k∑
i=1
‖ζπi − ζ̃‖2

]
+

k∑
i=1

k∑
j=1,j 6=i

cov(ζπi , ζπj)

= 1
k2

(
kσ2 − k(k − 1) σ2

n− 1

)
= n− k
k(n− 1)σ

2.

B.4 Technical Lemmas

Next, we state a relaxed triangle inequality for the squared `2 norm.
Lemma B.6 (relaxed triangle inequality). Let {v1, . . . , vτ} be τ vectors in Rd. Then the following are true

‖vi + vj‖2 ≤ (1 + a)‖vi‖2 +
(

1 + 1
a

)
‖vj‖2 for any a > 0 (22)

and ∥∥∥∥∥
τ∑
i=1

vi

∥∥∥∥∥
2

≤ τ
τ∑
i=1
‖vi‖2. (23)

Proof. The proof of the first statement for any a > 0 follows from the identity:

‖vi + vj‖2 = (1 + a)‖vi‖2 +
(

1 + 1
a

)
‖vj‖2 −

∥∥∥∥√avi + 1√
a
vj

∥∥∥∥2
.

For the second inequality, we use the convexity of x→ ‖x‖2 and Jensen’s inequality∥∥∥∥∥1
τ

τ∑
i=1

vi

∥∥∥∥∥
2

≤ 1
τ

τ∑
i=1

∥∥vi∥∥2
.

21

Published in Transactions on Machine Learning Research (09/2022)

Algorithm 3 FedShuffle
1: Input: initial global model x0, global and local step sizes ηrg , ηrl , proper distribution S
2: for each round r = 0, . . . , R− 1 do
3: server broadcasts xr to all clients i ∈ Sr ∼ S
4: for each client i ∈ Sr (in parallel) do
5: initialize local model yri,0,0 ← xr

6: for e = 1, . . . , E do
7: Sample permutation {Πr

i,e,0, . . . ,Πk
i,e,|Di|−1} of {1, . . . , |Di|}

8: for j = 1, . . . , |Di| do
9: update yri,e,j = yri,e,j−1 − ηr

l/|Di|∇fiΠr
i,e,j−1

(yri,e,j−1)
10: end for
11: yri,e+1,0 = yri,e,|Di|
12: end for
13: send ∆r

i = yri,E,|Di| − x
r to server

14: end for
15: server computes ∆r =

∑
i∈Sr

wi

pi
∆r
i

16: server updates global model xr+1 = xr − ηrg∆r

17: end for

C Algorithm 3: Convergence Analysis (Proof of Theorem 5.1)

The style of our proof technique is related to the analysis of FedAvg of (Karimireddy et al., 2019b). We start
with proof for convex functions. By Er [·], we denote the expectation conditioned on the all history prior to
communication round r. We first establish the bound on the progress in a single communication round.
Lemma C.1. (one round progress) Suppose Assumptions 3.1 – 3.4 hold. For any constant step sizes
ηrl

def= ηl and ηrl
def= ηl satisfying ηl ≤ 1

(1+MB2)4LEηg
and effective step size η̃ def= Eηgηl, the updates of

FedShuffle satisfy

E
[
‖xr − x?‖2

]
≤
(

1− µη̃

2

)
E
[
‖xr−1 − x?‖2

]
− η̃Er−1

[
f(xr−1)− f?

]
+ 3Lη̃ξr + 2η̃2MG2 ,

where ξr is the drift caused by the local updates on the clients defined to be

ξr
def= 1
|D|E

E∑
e=1

n∑
i=1

|Di|∑
j=1

Er−1
[
‖yri,e,j−1 − xr−1‖2

]

and M def= maxi∈[n]

{
si

pi
wi

}
.

Proof. For a better readability of the proofs in one round progress, we drop the superscript that represents
the current completed communication round r − 1.

By the definition in Algorithm 3, the update ∆ can be written as

∆ = −ηg
∑
i∈S

wi
pi

∆i = − η̃

E|D|
∑
i∈S

E∑
e=1

|Di|∑
j=1

1
pi
∇fiΠi,e,j−1(yi,e,j−1) .

We adopt the convention that summation
∑
i∈M,e,j (M is either [n] or S) refers to the summations∑

i∈M
∑E
e=1

∑|Di|
j=1 unless otherwise stated. Furthermore, we denote gi,e,j

def= ∇fiΠi,e,j−1(yi,e,j−1). Using

22

Published in Transactions on Machine Learning Research (09/2022)

above, we proceed as

Er−1
[
‖x+ ∆− x?‖2

]
= ‖x− x?‖2−2Er−1

 η̃

E|D|
∑

i∈S,e,j

1
pi
〈gi,e,j , x− x?〉

︸ ︷︷ ︸

A1

+ η̃2Er−1

∥∥∥∥∥∥ 1
E|D|

∑
i∈S,e,j

1
pi
gi,e,j

∥∥∥∥∥∥
2

︸ ︷︷ ︸
A2

.

To bound the term A1, we apply Lemma B.1 to each term of the summation with h = fij , x = yi,e,j−1,
y = x?, and z = x. Therefore,

A1 = −Er−1

 2η̃
E|D|

∑
i∈S,e,j

1
pi
〈gi,e,j , x− x?〉

≤ Er−1

 2η̃
E|D|

∑
i∈S,e,j

1
pi

(
fiΠi,e,j−1(x?)− fiΠi,e,j−1(x) + L‖yi,e,j−1 − x‖2 −

µ

4 ‖x− x
?‖2
)

= −2η̃
(
f(x)− f? + µ

4 ‖x− x
?‖2
)

+ 2Lη̃ξ .

For the second term A2, we have

A2 = η̃2Er−1

∥∥∥∥∥∥ 1
E|D|

∑
i∈S,e,j

1
pi
gi,e,j

∥∥∥∥∥∥
2

(17)
≤ η̃2

E2|D|2
Er−1

∥∥∥∥∥∥
∑

i∈S,e,j

1
pi
gi,e,j −

∑
i∈[n],e,j

gi,e,j

∥∥∥∥∥∥
2

+

∥∥∥∥∥∥
∑

i∈[n],e,j

gi,e,j

∥∥∥∥∥∥
2

(19)
≤ η̃2

E2|D|2
Er−1

∑
i∈[n]

si
pi

∥∥∥∥∥∥
∑
e,j

gi,e,j

∥∥∥∥∥∥
2

+

∥∥∥∥∥∥
∑

i∈[n],e,j

gi,e,j

∥∥∥∥∥∥
2

(23)
≤ 2η̃2

E2|D|2
Er−1

∑
i∈[n]

si
pi

∥∥∥∥∥∥
∑
e,j

gi,e,j −∇fiΠi,e,j−1(x)

∥∥∥∥∥∥
2
+ 2η̃2

∑
i∈[n]

si
pi
w2
i ‖∇fi(x)‖2

+ 2η̃2

E2|D|2
Er−1

∥∥∥∥∥∥
∑

i∈[n],e,j

gi,e,j −∇fiΠi,e,j−1(x)

∥∥∥∥∥∥
2
+ 2η̃2‖∇f(x)‖2

(23)
≤ 2η̃2

E|D|
Er−1

 ∑
i∈[n],e,i

si
pi
wi
∥∥gi,e,j −∇fiΠi,e,j−1(x)

∥∥2

+ 2η̃2
∑
i∈[n]

si
pi
w2
i ‖∇fi(x)‖2

+ 2η̃2

E|D|
∑

i∈[n],e,j

Er−1

[∥∥gi,e,j −∇fiΠi,e,j−1(x)
∥∥2
]

+ 2η̃2‖∇f(x)‖2

(3)
≤ 2 max

i∈[n]

{
si
pi
wi

}
η̃2L2ξ + 2η̃2 max

i∈[n]

{
si
pi
wi

}∑
i∈[n]

wi‖∇fi(x)‖2

+ 2η̃2L2ξ + 2η̃2‖∇f(x)‖2

(4)
≤ 2

(
1 + max

i∈[n]

{
si
pi
wi

})
η̃2L2ξ + 2η̃2 max

i∈[n]

{
si
pi
wi

}
G2 + 2η̃2

(
1 + max

i∈[n]

{
si
pi
wi

}
B2
)
‖∇f(x)‖2

(16)
≤ 2

(
1 + max

i∈[n]

{
si
pi
wi

})
η̃2L2ξ + 2η̃2 max

i∈[n]

{
si
pi
wi

}
G2 + 4Lη̃2

(
1 + max

i∈[n]

{
si
pi
wi

}
B2
)

(f(x)− f?).

23

Published in Transactions on Machine Learning Research (09/2022)

Recall M def= maxi∈[n]

{
si

pi
wi

}
, therefore by plugging back the bounds on A1 and A2,

Er−1
[
‖x+ ∆− x?‖2

]
≤
(

1− µη̃

2

)
‖x− x?‖2 − (2η̃ − 4Lη̃2(MB2 + 1))(f(x)− f?)

+ (1 + (1 +M)η̃L)2Lη̃ξ + 2η̃2MG2 .

The lemma now follows by observing that 4Lη̃(MB2 + 1) ≤ 1 and that B ≥ 1.

The next step is to bound client drift caused by the heterogeneity of clients’ data. Unlike (Karimireddy et al.,
2019b), we do not upper bound local client drift using recursive estimates, but we directly exploit smoothness
combined with the relaxed triangle inequality.

Lemma C.2. (bounded drift) Suppose Assumptions 3.2 – 3.4 hold. Then the updates of FedShuffle for
any step size satisfying ηl ≤ 1

(1+(P+1)B+MB2))4LEηg
have bounded drift:

3Lη̃ξr ≤
9
10 η̃(f(xr)− f?) + 9 η̃3

η2
gE

2

((
E2 + P 2)G2 + σ2) ,

where P 2 def= maxi∈[n]
P 2

i

3|Di| , σ
2 def= 1

3|D|
∑
i∈[n] σ

2
i and M def= maxi∈[n]

{
si

pi
wi

}
.

Proof. We adopt the same convention as for the previous proof, i.e., dropping superscripts, simplifying sum
notation and having gi,e,j

def= ∇fiΠi,e,j−1(yi,e,j−1). Therefore,

ξ = 1
|D|E

∑
i∈[n],i,j

Er−1
[
‖yri,e,j−1 − xr−1‖2

]

= η2
l

|D|E
∑

i∈[n],e,j

1
|Di|2

Er−1

∥∥∥∥∥
e−1∑
l=0

Di∑
c=1

gi,l,c +
j∑
c=1

gi,e,c

∥∥∥∥∥
2

(22)
≤ 2η2

l

|D|E
∑

i∈[n],e,j

1
|Di|2

Er−1

∥∥∥∥∥
e−1∑
l=0

Di∑
c=1

gi,l,c − (e− 1)|Di|∇fi(x) +
j∑
c=1

gi,e,c −∇fiΠi,e,c−1(x)
∥∥∥∥∥

2
+ 2η2

l

|D|E
∑

i∈[n],e,j

1
|Di|2

Er−1

∥∥∥∥∥(e− 1)|Di|∇fi(x) +
j∑
c=1
∇fiΠi,e,c−1(x)

∥∥∥∥∥
2

Next, we upper bound each term separately. For the first term, we have

2η2
l

|D|E
∑

i∈[n],e,j

1
|Di|2

Er−1

∥∥∥∥∥
e−1∑
l=0

Di∑
c=1

gi,l,c − (e− 1)|Di|∇fi(x) +
j∑
c=1

gi,e,c −∇fiΠi,e,c−1(x)
∥∥∥∥∥

2
(23)
≤ 2η2

l

|D|E
∑

i∈[n],e,j

((e− 1)|Di|+ j)
|Di|2

Er−1

[(
e−1∑
l=0

Di∑
c=1

∥∥gi,l,c −∇fiΠi,e,j−1(x)
∥∥2 +

j∑
c=1

∥∥gi,e,c −∇fiΠi,e,c−1(x)
∥∥2
)]

(3)
≤ 2η2

l L
2E2ξ .

24

Published in Transactions on Machine Learning Research (09/2022)

For the second term we obtain

2η2
l

|D|E
∑

i∈[n],e,j

1
|Di|2

Er−1

∥∥∥∥∥(e− 1)|Di|∇fi(x) +
j∑
c=1
∇fiΠi,e,c−1(x)

∥∥∥∥∥
2

(17)
≤ 2η2

l

|D|E
∑

i∈[n],e,j

1
|Di|2

Er−1

‖((e− 1)|Di|+ j)∇fi(x)‖2 +
∥∥∥∥∥

j∑
c=1
∇fiΠi,e,c−1(x)− j∇fi(x)

∥∥∥∥∥
2

(21)
≤ 2η2

l

|D|E
∑

i∈[n],e,j

1
|Di|2

(
((e− 1)|Di|+ j)2‖∇fi(x)‖2 + j(|Di| − j)

(|Di| − 1)
1
|Di|

Di∑
c=1
‖∇fic(x)−∇fi(x)‖2

)
(6)
≤ 2η2

l

|D|E
∑

i∈[n],e,j

1
|Di|2

(
((e− 1)|Di|+ j)2‖∇fi(x)‖2 + j(|Di| − j)

(|Di| − 1) (σ2 + P 2‖∇fi(x)‖2)
)

≤ 2η2
l

|D|E
∑
i∈[n]

|Di|3E3

|Di|2
‖∇fi(x)‖2 + E(|Di + 1|)|Di|

6|Di|2
(σ2
i + P 2

i ‖∇fi(x)‖2)

≤ 2η2
l E

2
∑
i∈[n]

(
1 + P 2

i

3|Di|E2

)
wi‖∇fi(x)‖2 + σ2

i

3|D|E2

(5)
≤ 4LB2η2

l E
2(1 + P 2)(f(x)− f?) + 2η2

l

((
E2 + P 2)G2 + σ2).

Combining the upper bounds

ξ ≤ 2η2
l L

2E2ξ + 4LB2η2
l E

2(1 + P 2)(f(x)− f?) + 2η2
l

((
E2 + P 2)G2 + σ2).

Since 2η2
l L

2E2 ≤ 1
8 and 4LB2η2

l E
2(1 + P 2) ≤ 1

4L , therefore

3Lη̃ξ ≤ 9
10 η̃(f(x)− f?) + 9η̃η2

l

((
E2 + P 2)G2 + σ2) ,

which concludes the proof.

Adding the statements of the above Lemmas C.1 and C.2, we get

E
[
‖xr − x?‖2

]
≤
(

1− µη̃

2

)
E
[
‖xr−1 − x?‖2

]
− η̃

10Er−1
[
f(xr−1)− f?

]
+ 2η̃2MG2 + 9η̃3

η2
gE

2

((
E2 + P 2)G2 + σ2)

=
(

1− µη̃

2

)
E
[
‖xr−1 − x?‖2

]
− η̃

10Er−1
[
f(xr−1)− f?

]
+ 2η̃2

(
MG2 + 9η̃

2η2
gE

2

((
E2 + P 2)G2 + σ2)) ,

Moving the (f(xr−1) − f(x?)) term and dividing both sides by η̃
10 , we get the following bound for any

η̃ ≤ 1
(1+(P+1)B+MB2))4L

Er−1
[
f(xr−1)− f?

]
≤ 10

η̃

(
1− µη̃

2

)
E
[
‖xr−1 − x?‖2

]
+ 20η̃

(
MG2 + 9η̃

2η2
gE

2

((
E2 + P 2)G2 + σ2)) .

If µ = 0 (weakly-convex), we can directly apply Lemma B.3. Otherwise, by averaging using weights
vr = (1− µη̃

2)1−r and using the same weights to pick output x̄R, we can simplify the above recursive bound
(see proof of Lem. B.2) to prove that for any η̃ satisfying 1

µR ≤ η̃ ≤
1

(1+(P+1)B+MB2))4L

E
[
f(x̄R)]− f(x?)

]
≤ 10‖x0 − x?‖2︸ ︷︷ ︸

def= d

µ exp
(
− η̃2µR

)
+ η̃
(
4MG2︸ ︷︷ ︸

def= c1

)
+ η̃2

(
18
η2
gE

2

((
E2 + P 2)G2 + σ2))

︸ ︷︷ ︸
def= c2

.

Now, the choice of η̃ = min
{

log(max(1,µ2Rd/c1))
µR , 1

(1+(P+1)B+MB2))4L

}
yields the desired rate.

25

Published in Transactions on Machine Learning Research (09/2022)

For the non-convex case, one first exploits the smoothness assumption (Assumption 3.2) (extra smoothness
term L in the first term in the convergence guarantee) and the rest of the proof follows essentially in the
same steps as the provided analysis. The only difference is that distance to an optimal solution is replaced by
functional difference, i.e., ‖x0 − x?‖2 → f(x0)− f?. The final convergence bound also relies on Lemma B.3.
For completeness, we provide the proof below.

We adapt the same notation simplification as for the prior cases, see proof of Lemma C.1. Since {fij} are
L-smooth then f is also L smooth. Therefore,

Er−1 [f(x+ ∆)] ≤ f(x) + Er−1 [〈∇f(x),∆〉] + L

2 Er−1

[
‖∆‖2

]
= f(x)−Er−1

〈∇f(x), η̃

E|D|
∑

i∈[n],e,j

gi,e,j

〉+ Lη̃2

2 Er−1

∥∥∥∥∥∥ 1
E|D|

∑
i∈S,e,j

1
pi
gi,e,j

∥∥∥∥∥∥
2

(22)
≤ f(x)− η̃

2‖∇f(x)‖2 + η̃

2Er−1

∥∥∥∥∥∥ 1
E|D|

∑
i∈[n],e,j

gi,e,j −∇fiΠi,e,j−1(x)

∥∥∥∥∥∥
2

+ Lη̃2

2 Er−1

∥∥∥∥∥∥ 1
E|D|

∑
i∈S,e,j

1
pi
gi,e,j

∥∥∥∥∥∥
2

(3)+(23)
≤ f(x)− η̃

2‖∇f(x)‖2 + η̃L2

2 ξ + Lη̃2

2 Er−1

∥∥∥∥∥∥ 1
E|D|

∑
i∈S,e,j

1
pi
gi,e,j

∥∥∥∥∥∥
2
 .

We upper-bound the last term using the bound of A2 in the proof of Lemma C.1 (note that this proof does
not rely on the convexity assumption). Thus, we have

Er−1 [f(x+ ∆)] ≤ f(x)− η̃

2‖∇f(x)‖2 + η̃L2

2 ξ + (1 +M)η̃2L3ξ + η̃2MG2L+ η̃2(1 +MB2)L‖∇f(x)‖2 .

The bound on the step size η̃ ≤ 1
(1+(P+1)B+MB2))4L implies

Er−1 [f(x+ ∆)] ≤ f(x)− η̃

4‖∇f(x)‖2 + 3η̃L2

4 ξ + η̃2MG2L .

Next, we reuse the partial result of Lemma C.2 that does not require convexity, i.e., we replace f(x)− f?
with 1

2L‖∇f(x)‖2. Therefore,

Er−1 [f(x+ ∆)] ≤ f(x)− η̃

8‖∇f(x)‖2 + 9η̃3L

4η2
gE

2

((
E2 + P 2)G2 + σ2)+ η̃2MG2L .

By adding f? to both sides, reordering, dividing by η̃ and taking full expectation, we obtain

E
[
‖∇f(xr)‖2

]
≤ 8
η̃

(
E [f(xr)− f?]−E

[
f(xr+1)− f?

])
+ η̃ 8MG2L︸ ︷︷ ︸

c1

+η̃2 18L
η2
gE

2

((
E2 + P 2)G2 + σ2)

︸ ︷︷ ︸
c2

.

Applying Lemma B.3 concludes the proof.

26

Published in Transactions on Machine Learning Research (09/2022)

D FedShuffleMVR: Convergence Analysis (Proof of Theorem 5.2)

The style of our proof technique is related to the convergence analysis of MimeLiteMVR (Karimireddy et al.,
2020) and non-convex Random Reshuffling (Mishchenko et al., 2020). By Er [·], we denote the expectation
conditioned on the all history prior to communication round r. For the sake of notation, we drop the
superscript that represents the communication round r in the proofs. Furthermore, we use superscripts +

and − to denote r+1 and r−1, respectively.

Firstly, we analyse a single local epoch. For the ease of presentation, we denote yi,e,0
def= yi,e and

gi,e
def= 1
|Di|

|Di|∑
j=1
∇fiΠi,e,j−1(yi,e,j−1) (24)

and
di,e

def= a∇fi(yi,e) + (1− a)m+ (1− a)(∇fi(yi,e)−∇fi(x)). (25)
In the first lemma, we investigate how gi,e update differs from the full local gradient update.
Lemma D.1. Suppose Assumptions 3.2-3.4 hold with Pi = 0 for all i ∈ [n] and B = 1 and only one client is
sampled. Then, for ηl ≤ 1

2L

Ee

[
‖gi,e −∇fi(yi,e)‖2

]
≤ 2η2

l L
2 σ

2
i

|Di|
+ η2

l L
2‖di,e‖2. (26)

Proof. By definition,

Ee

[
‖gi,e −∇fi(yi,e)‖2

]
= Ee

∥∥∥∥∥∥ 1
|Di|

|Di|∑
j=1
∇fiΠi,e,j−1(yi,e,j−1)−∇fiΠi,e,j−1(yi,e)

∥∥∥∥∥∥
2

(16),(23)
≤ L2

|Di|
Ee

|Di|∑
j=1
‖yi,e,j−1 − yi,e‖2

 .
Let us now analyze

∑|Di|
j=1‖yi,e,j−1 − yi,e‖2,

|Di|∑
j=1
‖yi,e,j−1 − yi,e‖2 = η2

l

|Di|2

|Di|∑
j=1

∥∥∥∥∥j(1− a)(m−∇fi(x))−
j−1∑
k=0
∇fiΠi,e,k

(yi,e,k)
∥∥∥∥∥

2

(23)
≤ 2η2

l

|Di|2

|Di|∑
j=1

∥∥∥∥∥
j−1∑
k=0
∇fiΠi,e,k

(yi,e,k)−∇fiΠi,e,k
(yi,e)

∥∥∥∥∥
2

+ 2η2
l

|Di|2

|Di|∑
j=1

∥∥∥∥∥j(1− a)(m−∇fi(x)) +
j−1∑
k=0
∇fiΠi,e,k

(yi,e)
∥∥∥∥∥

2

(16),(23)
≤ 2η2

l L
2

|Di|2

|Di|∑
j=1

j

j−1∑
k=0
‖yi,e,k − yi,e‖2

+ 2η2
l

|Di|2

|Di|∑
j=1

∥∥∥∥∥j(1− a)(m−∇fi(x)) +
j−1∑
k=0
∇fiΠi,e,k

(yi,e)
∥∥∥∥∥

2

≤ η2
l L

2
|Di|∑
j=1
‖yi,e,j−1 − yi,e‖2

+ 2η2
l

|Di|2

|Di|∑
j=1

∥∥∥∥∥j(1− a)(m−∇fi(x)) +
j−1∑
k=0
∇fiΠi,e,k

(yi,e)
∥∥∥∥∥

2

.

27

Published in Transactions on Machine Learning Research (09/2022)

By ηl ≤ 1
2L , we have

Ee

|Di|∑
j=1
‖yi,e,j−1 − yi,e‖2

 ≤ 8η2
l

3|Di|2
|Di|∑
j=1

j2Ee

∥∥∥∥∥(1− a)(m−∇fi(x)) + 1
j

j−1∑
k=0
∇fiΠi,e,k

(yi,e)
∥∥∥∥∥

2
(21),(6)
≤ 8η2

l

3|Di|2
|Di|∑
j=1

(
(|Di| − j)j
(|Di| − 1) σ

2
i + j2‖di,e‖2

)
≤ 2η2

l σ
2
i + η2

l |Di|‖di,e‖
2
.

Combining this bound with the previous results concludes the proof.

Next, we examine the variance of our update in each local epoch di,e.

Lemma D.2. For the client update (13), given Assumption 3.5 and assuming that one client is sampled, the
following holds for any a ∈ [0, 1], where h def= m−∇f(x):

‖di,e −∇f(yi,e)‖2 ≤ 3‖h‖2 + 3δ2‖yi,e − x‖2 + 3a2‖∇fi(x)−∇f(x)‖2 . (27)

Proof. Starting from the client update (13), we can rewrite it as

di,e −∇f(yi,e) = (1− a)h
+ (∇fi(yi,e)−∇fi(x)−∇f(yi,e) +∇f(x))
+ a(∇fi(x)−∇f(x)) .

We can use the relaxed triangle inequality Lemma B.6 to claim

‖di,e −∇f(yi,e)‖ = (1− a)2‖h‖2

+ 3‖∇fi(yi,e)−∇fi(x)−∇f(yi,e) +∇f(x)‖2

+ 3a2‖∇fi(x)−∇f(x)‖2 .
(7)
≤ 3(1− a)2‖h‖2 + 3δ2‖yi,e − x‖2 + 3a2‖∇fi(x)−∇f(x)‖2 .

It remains to use that (1− a)2 ≤ 1 since a ∈ [0, 1].

In the following lemma, we introduce a bound that controls the distance moved by a client in each step
during the client update.

Lemma D.3. For the client update updates (13) with ηl ≤ min
{ 1

4Eδ ,
1

2L
}
and given Assumptions 3.2, 3.4

and 3.5 with Pi = 0 for all i ∈ [n] and one client is sampled, the following holds

E
[
E−1∑
e=0
‖yi,e − x‖2

]
≤ 16E2η2

l

E−1∑
e=0

E
[
‖∇f(yi,e)‖2

]
+ 16E3η2

l

(
3‖h‖2 + 3a2‖∇fi(x)−∇f(x)‖2 + η2

l L
2 σ

2
i

|Di|

)
.

(28)

28

Published in Transactions on Machine Learning Research (09/2022)

Proof. Starting from the FedShuffleMVR update (13),

E−1∑
e=0

E
[
‖yi,e − x‖2

]
= η2

l

E−1∑
e=0

E

∥∥∥∥∥∥
e−1∑
l=0

1
|Di|

|Di|∑
j=1

di,e,j−1

∥∥∥∥∥∥
2

= η2
l

E−1∑
e=0

E

∥∥∥∥∥
e−1∑
l=0

(di,e −∇f(yi,e) +∇f(yi,e)− (gi,e −∇fi(yi,e)))
∥∥∥∥∥

2
(23)
≤ 3η2

l

E−1∑
e=0

e−1∑
l=0

e
(

E
[
‖di,e −∇f(yi,e)‖2

]
+ E

[
‖∇f(yi,e)‖2

]
+ E

[
‖gi,e −∇fi(yi,e)‖2

])
≤ 2E2η2

l

E−1∑
e=0

(
E
[
‖di,e −∇f(yi,e)‖2

]
+ E

[
‖∇f(yi,e)‖2

]
+ E

[
‖gi,e −∇fi(yi,e)‖2

])
(26)
≤ 2E2η2

l

E−1∑
e=0

(
E
[
‖di,e −∇f(yi,e)‖2

]
+ E

[
‖∇f(yi,e)‖2

]
+ 2η2

l L
2 σ

2
i

|Di|
+ η2

l L
2E
[
‖di,e‖2

])
(23)
≤ 4E2η2

l

E−1∑
e=0

(
E
[
‖di,e −∇f(yi,e)‖2

]
+ E

[
‖∇f(yi,e)‖2

]
+ η2

l L
2 σ

2
i

|Di|

)
,

where the last inequality also uses the step size bound ηl ≤ 1
2L . By exploiting (27), we can further bound

E
[
E−1∑
e=0
‖yi,e − x‖2

]
≤ 12E2η2

l δ
2
E−1∑
e=0

E
[
‖yi,e − x‖2

]
+ 4E2η2

l

E−1∑
e=0

E
[
‖∇f(yi,e)‖2

]
+ 12E3η2

l ‖h‖
2 + 12E3η2

l a
2‖∇fi(x)−∇f(x)‖2 + 4E3η4

l L
2 σ

2
i

|Di|
.

ηl ≤ 1
4Eδ implies that 12E2η2

l δ
2 ≤ 3

4 , therefore

E
[
E−1∑
e=0
‖yi,e − x‖2

]
≤ 16E2η2

l

E−1∑
e=0

E
[
‖∇f(yi,e)‖2

]
+ 16E3η2

l

(
3‖h‖2 + 3a2‖∇fi(x)−∇f(x)‖2 + η2

l L
2 σ

2
i

|Di|

)
.

We compute the error of the server momentum m defined as h def= m −∇f(x). Its expected norm can be
bounded as follows.
Lemma D.4. For the momentum update (14), given that Assumptions 3.2-3.5 with Pi = 0 for all i ∈ [n] and
B = 1 hold and one client is sampled, the following holds for any ηl ≤

{ 1
4L

1
40δE

}
and 1 ≥ a ≥ 1152E2δ2η2

l ,

E
[
‖h+‖2

]
≤
(

1− 23a
24

)
‖h‖2 + 3a2E

[
‖∇fi(x)−∇f(x)‖2

]
+ 16η4

l E
2δ2L2 σ

2
i

|Di|
+ 8η2

l δ
2E

E−1∑
e=0

E
[
‖∇f(yi,e)‖2

]
.

(29)

Proof. Starting from the momentum update (14),

h+ = (1− a)h
+ (1− a)

(
∇fi(x+)−∇fj(x))−∇f(x+) +∇f(x)

)
+ a
(
∇fi(x+)−∇f(x)

)
.

29

Published in Transactions on Machine Learning Research (09/2022)

Now, the first term does not have any information from current round and hence is statistically independent
of the rest of the terms. Further, the rest of the terms have mean 0. Hence, we can separate out the zero
mean noise terms from the h and then the relaxed triangle inequality Lemma B.6 to claim

E
[
‖h+‖2

]
= (1− a)2E

[
‖h‖2

]
+ 2(1− a)2E

[∥∥∇fi(+x)−∇fi(x))−∇f(x+) +∇f(x)
∥∥2
]

+ 2a2E
[
‖∇fi(x)−∇f(x)‖2

]
(7)
≤ (1− a)2E

[
‖h‖2

]
+ 2(1− a)2δ2E

[
‖x+ − x‖2

]
+ 2a2E

[
‖∇fi(x)−∇f(x)‖2

]
.

Finally, note that (1− a)2 ≤ (1− a) ≤ 1 for a ∈ [0, 1]. Therefore,

E
[
‖h+‖2

]
≤ (1− a)E

[
‖h‖2

]
+ 2δ2E

[
‖x+ − x‖2

]
+ 2a2E

[
‖∇fi(x)−∇f(x)‖2

]
.

We can continue upper bounding E
[
‖x+ − x‖2

]
.

E
[
‖x+ − x‖2

]
= η2

l E

∥∥∥∥∥∥
E−1∑
e=0

1
|Di|

|Di|∑
j−1

di,e,j−1

∥∥∥∥∥∥
2

= η2
l E

∥∥∥∥∥
E−1∑
e=0

(di,e −∇f(yi,e))− (gi,e −∇fi(yi,e))
∥∥∥∥∥

2
(23)
≤ 2η2

l E

E−1∑
e=0

E
[
‖di,e −∇f(yi,e)‖2 + ‖gi,e −∇fi(yi,e)‖2

]
(26)
≤ 2η2

l E

E−1∑
e=0

E
[
‖di,e −∇f(yi,e)‖2 + 2η2

l L
2 σ

2
i

|Di|
+ η2

l L
2‖di,e‖2

]
(23)
≤ 4η4

l E
2L2 σ

2
i

|Di|
+ 4η2

l E

E−1∑
e=0

E
[
‖di,e −∇f(yi,e)‖2

]
+ 4η4

l L
2E

E−1∑
e=0

E
[
‖∇f(yi,e)‖2

]
(27)
≤ 4η4

l E
2L2 σ

2
i

|Di|
+ 12η2

l E
2‖h‖2 + 12η2

l E
2a2‖∇fi(x)−∇f(x)‖2

+ 12η2
l Eδ

2
E−1∑
e=0

E
[
‖yi,e − x‖2

]
+ 4η4

l L
2E

E−1∑
e=0

E
[
‖∇f(yi,e)‖2

]
(28)
≤ 4η4

l E
2L2(1 + 48η2

l E
2δ2) σ2

i

|Di|
+ 12η2

l E
2(1 + 48η2

l E
2δ2)‖h‖2 + 12η2

l E
2a2(1 + 48η2

l E
2δ2)‖∇fi(x)−∇f(x)‖2

+ 4η4
l E
(
L2 + 48δ2E2)E−1∑

e=0
E
[
‖∇f(yi,e)‖2

]
(28)
≤ 8η4

l E
2L2 σ

2
i

|Di|
+ 24η2

l E
2‖h‖2 + 24η2

l E
2a2‖∇fi(x)−∇f(x)‖2

+ 4η2
l E

E−1∑
e=0

E
[
‖∇f(yi,e)‖2

]
,

30

Published in Transactions on Machine Learning Research (09/2022)

where the last inequality uses the upper bound on the step size ηl. Plugging this back to previous bound
yields

E
[
‖h+‖2

]
≤
(
1− a+ 48η2

l E
2δ2)E [‖h‖2]+ 3a2E

[
‖∇fi(x)−∇f(x)‖2

]
+ 16η4

l E
2δ2L2 σ

2
i

|Di|
+ 8η2

l δ
2E

E−1∑
e=0

E
[
‖∇f(yi,e)‖2

]
.

The last step used the bound on the momentum parameter that 1 ≥ a ≥ 1152η2
l δ

2E2. Note that ηl ≤ 1
40δE

ensures that this set is non-empty.

Now we can compute the overall progress.
Lemma D.5. For any client update step with step size ηl ≤ min

{ 1
4L ,

1
40δE

}
, a ≥ 1152η2

l δ
2E2 and given that

Assumptions 3.2-3.5 hold with Pi = 0 for all i ∈ [n] and B = 1 and one client is sampled with probabilities
{wi}, we have

1
RE

R−1∑
r=0

E−1∑
e=0

E
[∥∥∇f(yrir,e)

∥∥2
]
≤ 5Ψ0

ηlRE
+ 25η2

l L
2σ2 + 255aG2 , (30)

where Ψr def= (f(xr)− f?) + 288ηl

23a E‖m
r −∇f(xr)‖2 and σ2 def= 1

|D|
∑n
i=1 σ

2
i .

Proof. The assumption that f is L-smooth implies a quadratic upper bound (15).

Ee [f(yi,e+1)]− f(yi,e) ≤ −ηlEe

〈∇f(yi,e),
1
|Di|

|Di|∑
j=1

di,e,j−1

〉+ Lη2
l

2 Ee

∥∥∥∥∥∥ 1
|Di|

|Di|∑
j=1

di,e,j−1

∥∥∥∥∥∥
2

= −ηl2 ‖∇f(yi,e)‖2 −
ηl
2 (1− ηlL)Ee

∥∥∥∥∥∥ 1
|Di|

|Di|∑
j=1

di,e,j−1

∥∥∥∥∥∥
2

+ ηl
2 Ee

∥∥∥∥∥∥ 1
|Di|

|Di|∑
j=1

di,e,j−1 −∇f(yi,e)

∥∥∥∥∥∥
2

≤ −ηl2 ‖∇f(yi,e)‖2 + Ee

[ηl
2 ‖(di,e −∇f(yi,e))− (gi,e −∇fi(yi,e))‖2

]
(23)
≤ −ηl2 ‖∇f(yi,e)‖2 + ηl‖di,e −∇f(yi,e)‖2 + ηlEe

[
‖gi,e −∇fi(yi,e)‖2

]
(26)
≤ −ηl2 ‖∇f(yi,e)‖2 + ηl‖di,e −∇f(yi,e)‖2 + 2η3

l L
2 σ

2
i

|Di|
+ η3

l L
2‖di,e‖2

(23)
≤ −ηl2

(
1− 4η2

l L
2)‖∇f(yi,e)‖2 + 2ηl‖di,e −∇f(yi,e)‖2 + 2η3

l L
2 σ

2
i

|Di|
(27)
≤ −ηl2

(
1− 4η2

l L
2)‖∇f(yi,e)‖2 + 2η3

l L
2 σ

2
i

|Di|

+ 6ηl
(
‖h‖2 + δ2‖yi,e − x‖2 + a2‖∇fi(x)−∇f(x)‖2

)
.

The first equality used the fact that for any a, b: 2〈a, b〉 = ‖a− b‖2 − ‖a‖2 − ‖b‖2. The second term in the
first equality can be removed since ηl ≤ 1

L .

31

Published in Transactions on Machine Learning Research (09/2022)

Applying this inequality recursively with full expectation over the current communication round

E
[
f(x+)

]
− f(x) ≤ −ηl2

(
1− 4η2

l L
2)E−1∑

e=0
‖∇f(yi,e)‖2 + 2η3

l L
2E

σ2
i

|Di|
+ 6ηlδ2

E−1∑
e=0
‖yi,e − x‖2

+ 6Eηl
(
‖h‖2 + a2‖∇fi(x)−∇f(x)‖2

)
(28)
≤ −ηl2

(
1− 4η2

l L
2 − 192η2

l δ
2E2)E−1∑

e=0
‖∇f(yi,e)‖2 + 2η3

l L
2E
(
1 + 48η2

l E
2δ2) σ2

i

|Di|

+ 6Eηl
(
1 + 192η2

l E
2δ2)(‖h‖2 + a2‖∇fi(x)−∇f(x)‖2

)
≤ −ηl4

E−1∑
e=0
‖∇f(yi,e)‖2 + 4η3

l L
2E

σ2
i

|Di|
+ 12Eηl

(
‖h‖2 + a2‖∇fi(x)−∇f(x)‖2

)
.

Adding an extra term 12E 24ηl

23a ‖h
+‖2 term results to

E
[
f(x+) + 12E 24ηl

23a ‖h
+‖2

]
− f(x)

(29)
≤ −ηl4

(
1− 104η

2
l E

2δ2

a

)E−1∑
e=0
‖∇f(yi,e)‖2 +

(
4 + 208η

2
l E

2δ2

a

)
Eη3

l L
2 σ

2
i

|Di|

+ 12E 24ηl
23a ‖h‖

2 +
(
12ηla2 + 39ηla

)
E‖∇fi(x)−∇f(x)‖2

≤ −ηl5

E−1∑
e=0
‖∇f(yi,e)‖2 + 5Eη3

l L
2 σ

2
i

|Di|

+ 12E 24ηl
23a ‖h‖

2 + 51ηlaE‖∇fi(x)−∇f(x)‖2 .

Taking the full expectation including the client selection step yields

5
ηlE

E
[
Ψ+ −Ψ

] (4)
≤ − 1

E

E−1∑
e=0

E
[
‖∇f(yi,e)‖2

]
+ 25η2

l L
2σ2 + 255aG2 .

Applying this inequality recursively with the fact Ψ ≥ 0 leads to the desired result.

Equipped with Lemma D.5, we have

1
RE

R−1∑
r=0

E−1∑
e=0

E
[∥∥∇f(yrir,e)

∥∥2
]
≤ 5Ψ0

ηlRE
+ 25η2

l L
2σ2 + 255aG2 ,

where Ψ0 def= (f(x0)− f?) + 288ηl

23a E‖m
0 −∇f(x0)‖2.

Further, we need to control
∥∥m0 −∇f(x0)

∥∥2. Cutkosky & Orabona (2019) show that by using time-varying
step sizes, it is possible to directly control this error. Alternatively, Tran-Dinh et al. (2019) use a large initial
accumulation for the momentum term. For the sake of simplicity, we will follow the latter approach similarly
to the work of Karimireddy et al. (2020). Extension to the time-varying step size case is straightforward.
Suppose that we run the algorithm for 2R communication rounds wherein for the first R rounds, we simply
compute m0 = 1

R

∑R
t=1∇fir (x0) . With this, we have ‖m0 − ∇f(x0)‖2 ≤ G2

R . Thus, we have for the first
round r = 0

Ψ0 = (f(x0)− f?) + 288ηl
23a E‖m0 −∇f(x0)‖2 ≤ (f(x0)− f?) + 288ηlEG2

23aR .

Together, this gives

1
RE

R−1∑
r=0

E−1∑
e=0

E
[∥∥∇f(yrir,e)

∥∥2
]
≤ 5(f(x0)− f?)

ηlER
+ 63G2

aR2 + 25η2
l L

2σ2 + 293760G2 .

32

Published in Transactions on Machine Learning Research (09/2022)

The above equation holds for any choice of η ≤ min
(1

4L ,
1

40δK
)
and momentum parameter a ≥ 1152E2δ2η2

l .
Set the momentum parameter as

a = max
(

1152E2δ2η2
l ,

1
T

)
With this choice, we can simplify the rate of convergence as

5(f(x0)− f?)
ηlER

+ 318G2

R
+ η2

l

(
25L2σ2 + 293760E2δ2G2) .

Now let us pick

ηl = min

 1
4L,

1
40δE ,

(
f(x0)− f?

E3R(58752δ2G2 + 5σ2 L2

E2)

)1/3
 .

For this combination of step size ηl and a, the rate simplifies to

318G2

R
+ 390

 (f(x0)− f?)
(
δ2G2 + σ2 L2

E2

)
R2

1/3

+ 20(L+ 10δE)(f(x0)− f?)
ER

.

Since E ≥ L
δ then L2

E2 ≤ δ2 and L ≤ Eδ, which concludes the proof.

D.1 Discussion on Theoretical Assumptions

Note that in Theorem 5.2, we assume that Pi = 0 for all i ∈ [n] and B = 1. These are not necessary
assumptions, but we rather introduce these more restrictive requirements to match the assumptions that
were used to obtain previous results. Furthermore, note that we require only one client to be sampled in each
round. Unfortunately, our results cannot be simply extended to the case with multiple clients sampled in
each round. The problem is the aggregation step (line 15 in Algorithm 1) which involves averaging. For our
analysis and all the previous works that show the improvement over non-local methods in the non-convex
setting to work, one would need to assume that the average model performs not worse than the average
output of the sampled client. Such a property was empirically observed in (McMahan et al., 2017); thus, is
reasonable to assume. Another possibility is to replace the averaging by randomly selecting model from one
of the sampled clients. We note that while the second option might be preferable in theory as it does not
require an extra assumption, it might affect the client privacy and therefore not applicable in practice.

33

Published in Transactions on Machine Learning Research (09/2022)

Algorithm 4 FedShuffleGen (c, w̃, q)
1: Input: initial global model x0, global and local step sizes ηrg , ηrl , proper distribution S
2: for each round r = 0, . . . , R− 1 do
3: server broadcasts xr to all clients i ∈ Sr ∼ S
4: for each client i ∈ Sr (in parallel) do
5: initialize local model yri,0,0 ← xr

6: for e = 1, . . . , Ei do
7: Sample permutation {Πr

i,e,0, . . . ,Πk
i,e,|Di|−1} of {1, . . . , |Di|}

8: for j = 1, . . . , |Di| do
9: local step size ηrl,i = ηr

l/ci

10: update yri,e,j = yri,e,j−1 − ηrl,i∇fiΠr
i,e,j−1

(yri,e,j−1)
11: end for
12: yri,e+1,0 = yri,e,|Di|
13: end for
14: send ∆r

i = yri,Ei,|Di| − x
r to server

15: end for
16: server computes ∆r =

∑
i∈Sr

w̃i

qS
r

i

∆r
i

17: server updates global model xr+1 = xr − ηrg∆r

18: end for

E FedShuffleGen: General Shuffling Method

In this section, we introduce and analyze FedShuffleGen. FedShuffleGen is a class of algorithms
parametrized by local and global step sizes {ηrl }

R−1
r=0 and

{
ηrg
}R−1
r=0 , step size normalization c = {ci}ni=1,

where each of its element ci is the step size normalization for client i, aggregation weights {w̃i}ni=1 and the

aggregation normalization constants
{{
qS

r

i

}
i∈S,Sr∼S

}R−1

r=0
. Note that we allow the aggregation normalization

constants to be non-deterministic. To our knowledge, such results are impossible to obtain with any known
analysis, despite this being standard practice for FedAvg (where the update of each client is scaled by
wi/(

∑
j∈S wj)), e.g., the default way to aggregate in Tensorflow Federated and other frameworks. We include

the pseudocode in Algorithm 4. Later in this section, we show that FedShuffleGen with its parametrization
covers a wide variety of the FL algorithms in the form as they are implemented in practice.

E.1 Convergence Analysis

We start with the convergence analysis of FedShuffleGen. We first introduce the function f̂(x), which we
show is the true objective optimized by Algorithm 4:

f̂(x) def=
∑
i∈[n]

ŵifi(x), where ŵi
def= w̃i|Di|Ei

Wqici
with 1

qi
= ES

[
1
qSi

1i∈S
]

and W =
∑
i∈[n]

w̃i|Di|Ei
qici

. (31)

We denote x̂? to be an optimal solution of f̂ and f̂? to be its functional value.

Furthermore, FedShuffleGen allows the normalization to depend on the sampled clients (line 16 of
Algorithm 4, which requires more general notion of variance. For this purpose, we introduce a n× n matrix
H, where its elements Hi,j = ES

[
qiqj

qS
i
qS

j

1i,j∈S
]
and h is its diagonal with hi = ES

[
q2

i

(qS
i

)2 1i∈S
]
. We further

define vector s ∈ Rn to be such vector that it holds

H− ee> � Diag(h1s2, h2s2, . . . , hnsn),

34

Published in Transactions on Machine Learning Research (09/2022)

where e ∈ Rn is all ones vector. Note that this is not an assumption as such upper-bound always exists due
to Gershgorin circle theorem, e.g., for si = n for all i ∈ [n] this holds. Equipped with these extra quantities,
we proceed with the convergence guarantees for (strongly-)convex and non-convex functions.
Theorem E.1. Suppose that the Assumptions 3.2-3.4 holds. Then, in each of the following cases, there exist
weights {vr} and local step sizes ηrl

def= ηl such that for any ηrg
def= ηg ≥ 1 the output of FedShuffleGen

(Algorithm 4)
x̄R = xr with probability vr∑

τ vτ
for r ∈ {0, . . . , R− 1} . (32)

satisfies

• Strongly convex: {fij} satisfy (2) for µ > 0, ηl ≤ 1
4βLηg

, R ≥ 4βL
µ and ci ≥ Ei|Di| then

E
[
f̂(x̄R)− f̂(x̂?)

]
≤ Õ

(
M1G

2

µR
+ (1 + P 2)G2 + σ2

µ2R2η2
g

+ µD2 exp(− µ

8βLR)
)
,

• General convex: {fij} satisfy (2) for µ = 0, ηl ≤ 1
4βLηg

, R ≥ 1 and ci ≥ Ei|Di| then

E
[
f̂(x̄R)− f̂(x̂?)

]
≤ O

(√
DM1G√
R

+ D2/3((1 + P 2)G2 + σ2)1/3

R2/3η
2/3
g

+ LDβ

R

)
,

• Non-convex: ηl ≤ 1
4βLηg

, R ≥ 1 and ci ≥ Ei|Di| then

E
[
‖∇f̂(x̄R)‖2

]
≤ O

(√
FM1LG√

R
+ F 2/3L1/3((1 + P 2)G2 + σ2)1/3

R2/3η
2/3
g

+ LFβ

R

)
,

where β
def= 1 + M2 + (1 + P)B + M1B

2, P 2 def= maxi∈[n]
P 2

i

3|Di|E2
i
, σ2 def=

∑
i∈[n] ŵi

σ2
i

3|Di|E2
i
, M1

def=

maxi∈[n]{hisiŵi}, M2
def=
(∑

i∈[n]Ei|Di|
)

maxi∈[n]

{
w̃i

Wqici

}
, D def= ‖x0 − x?‖2, and F def= f(x0)− f?.

The above rate is a generalization of results presented in Section 5 and we refer the reader to this section for
the detailed discussion.

E.2 Special Cases

In this section, we show how FedShuffleGen captures not only our proposed FedShuffle, but also both
FedAvg and FedNova with heterogeneous data, arbitrary client sampling, random reshuffling, non-identical
local steps, stateless clients and server and local step sizes. To the best of our knowledge, our work is the
first to provide such comprehensive analysis.

We start with the FedAvg algorithm. Algorithm 2 contains a detailed pseudocode of how it is usually
implemented in practice. It is easy to verify that FedShuffleGen covers this implementation with the
following selection of parameters

ŵ = w, c = max
i∈[n]
{Ei|Di|}e and qS

r

i = c

n

∑
j∈Sr

wj .

Unfortunately, it is not guaranteed that f̂ = f . For instance, when all clients participate in each round, each
client runs E local epochs and weight of each client is proportional to its dataset size, i.e. wi = |Di|/|D|, then
ŵi = |Di|2/

∑
j∈[n]

|Dj |2, which means that the objective that we end up optimizing favours clients with larger
amount of data. This inconsistency is partially removed when client sampling is introduced, since the clients
with the larger number of data points are in average normalized with larger numbers, i.e. qi grows. The
inconsistency is only fully removed when only one client is sampled uniformly at random, which does not

35

Published in Transactions on Machine Learning Research (09/2022)

reflect standard FL systems where a reasonably large number of clients is selected to participate in each
round.

FedNova tackles the objective inconsistency issue by re-weighting the local updates during the aggregation
step. For the same example as before with the full participation, FedNova uses the same parameters as
FedAvg with a difference that ŵ = e/n that leads to f̂ = f . Apart from full participation, Wang et al. (2020)
analyze a client sampling scheme with one client per communication round sampled with probability |Di|/|D|.

In our work, apart from providing a general theory for shuffling methods in FL, we introduce FedShuffle
that is motivated by insights obtained from our general theory provided in Theorem E.1. FedShuffle
preserves the original objective aggregation weights, i.e., ŵ = w, it uses unbiased normalization weights
during the aggregation step and it sets ci = Ei|Di|. Such parameters choice guarantees that f̂ = f .
Remark E.2 (FedShuffle is better than FedNova). FedShuffle preserves the original objective aggre-
gation weights, i.e., ŵ = w, and it uses unbiased normalization weights during the aggregation step. In
addition, contrary to FedAvg and FedNova, FedShuffle uses ci = Ei|Di| (FedAvg and FedNova
require ci = maxj∈[n]{Ej |Dj |}), which implies that it allows larger local step sizes than both FedAvg and
FedNova, but it does not introduce any inconsistency as it still holds that f̂ = f as for FedNova. Differently
from FedNova, FedShuffle does not degrade the local progress made by clients by diminishing their
contribution via decreased weights in the aggregation step. Still, it achieves the objective consistency by
balancing the clients’ progress at each step while preserving the worst-case convergence rate that can’t be
further improved Woodworth et al. (2020); Arjevani & Shamir (2015).

E.3 Proof of Theorem E.1

By Er [·], we denote the expectation conditioned on the all history prior to communication round r.
Lemma E.3. (one round progress) Suppose Assumptions 3.1 – 3.4 hold. For any constant step sizes
ηrl

def= ηl and ηrl
def= ηl satisfying ηl ≤ 1

(1+M2+M1B2)4Lηg
and effective step size η̃ def= Wηgηl, the updates of

FedShuffleMVR satisfy

E
[
‖xr − x̂?‖2

]
≤
(

1− µη̃

2

)
E
[
‖xr−1 − x̂?‖2

]
− η̃Er−1

[
f̂(xr−1)− f̂?

]
+ 3Lη̃ξr + 2η̃2M1G

2 ,

where ξr is the drift caused by the local updates on the clients defined to be

ξr
def= 1

W

n∑
i=1

Ei∑
e=1

|Di|∑
j=1

w̃i
qici

Er−1
[
‖yri,e,j−1 − xr−1‖2

]
M1

def= maxi∈[n]{hisiŵi} and M2
def=
(∑

i∈[n]Ei|Di|
)

maxi∈[n]

{
w̃i

Wqici

}
.

Proof. For a better readability of the proofs in one round progress, we drop the superscript that represents
the current completed communication round r − 1.

By the definition in Algorithm 4, the update ∆ can be written as

∆ = −ηg
∑
i∈S

wi
qi

∆i = − η̃

W

∑
i∈S

Ei∑
e=1

|Di|∑
j=1

w̃i
qSi ci
∇fiΠi,e,j−1(yi,e,j−1) .

We adopt the convention that summation
∑
i∈M,e,j (M is either [n] or S) refers to the summations∑

i∈M
∑Ei

e=1
∑|Di|
j=1 unless otherwise stated. Furthermore, we denote gi,e,j

def= ∇fiΠi,e,j−1(yi,e,j−1). Using
above, we proceed as

Er−1
[
‖x+ ∆− x̂?‖2

]
= ‖x− x̂?‖2−2Er−1

 η̃

W

∑
i∈S,e,j

w̃i
qSi ci
〈gi,e,j , x− x̂?〉

︸ ︷︷ ︸

A1

+ η̃2Er−1

∥∥∥∥∥∥ 1
W

∑
i∈S,e,j

w̃i
qSi ci

gi,e,j

∥∥∥∥∥∥
2

︸ ︷︷ ︸
A2

.

36

Published in Transactions on Machine Learning Research (09/2022)

To bound the term A1, we apply Lemma B.1 to each term of the summation with h = fij , x = yi,e,j−1,
y = x̂?, and z = x. Therefore,

A1 = −Er−1

2 η̃

W

∑
i∈S,e,j

w̃i
qSi ci
〈gi,e,j , x− x̂?〉

≤ Er−1

2 η̃

W

∑
i∈S,e,j

w̃i
qSi ci

(
fiΠi,e,j−1(x̂?)− fiΠi,e,j−1(x) + L‖yi,e,j−1 − x‖2 −

µ

4 ‖x− x̂
?‖2
)

= −2η̃
(
f̂(x)− f̂? + µ

4 ‖x− x̂
?‖2
)

+ 2Lη̃ξ .

For the second term A2, we have

A2 = η̃2Er−1

∥∥∥∥∥∥ 1
W

∑
i∈S,e,j

w̃i
qSi ci

gi,e,j

∥∥∥∥∥∥
2

(17)
≤ η̃2Er−1

∥∥∥∥∥∥ 1
W

∑
i∈S,e,j

wi
qSi ci

gi,e,j −
1
W

∑
i∈[n],e,j

w̃i
qici

gi,e,j

∥∥∥∥∥∥
2

+

∥∥∥∥∥∥ 1
W

∑
i∈[n],e,j

w̃i
qici

gi,e,j

∥∥∥∥∥∥
2

(34)
≤ η̃2

W 2 Er−1

∑
i∈[n]

hisiw̃
2
i

q2
i c

2
i

∥∥∥∥∥∥
∑
e,j

gi,e,j

∥∥∥∥∥∥
2

+

∥∥∥∥∥∥
∑

i∈[n],e,j

w̃i
qici

gi,e,j

∥∥∥∥∥∥
2

(23)
≤ 2η̃2

W 2 Er−1

∑
i∈[n]

hisiw̃
2
i

q2
i c

2
i

∥∥∥∥∥∥
∑
e,j

gi,e,j −∇fiΠi,e,j−1(x)

∥∥∥∥∥∥
2
+ 2 η̃2

W 2

∑
i∈[n]

hisiw̃
2
iE

2
i |Di|2

q2
i c

2
i

‖∇fi(x)‖2

+ 2η̃2

W 2 Er−1

∥∥∥∥∥∥
∑

i∈[n],e,j

w̃i
qici
{gi,e,j −∇fiΠi,e,j−1(x)}

∥∥∥∥∥∥
2
+ 2η̃2

∥∥∥∇f̂(x)
∥∥∥2

(23)
≤ 2η̃2

W 2 Er−1

 ∑
i∈[n],e,j

hisiw̃
2
iEi|Di|
q2
i c

2
i

∥∥gi,e,j −∇fiΠi,e,j−1(x)
∥∥2

+ 2 η̃2

W 2

∑
i∈[n]

hisiw̃
2
iE

2
i |Di|2

q2
i c

2
i

‖∇fi(x)‖2

+ 2η̃2

W 2

∑
i∈[n],e,j

w̃2
i

(∑
i∈[n]Ei|Di|

)
q2
i c

2
i

Er−1

[∥∥gi,e,j −∇fiΠi,e,j−1(x)
∥∥2
]

+ 2η̃2
∥∥∥∇f̂(x)

∥∥∥2

(3)
≤ 2M1η̃

2L2ξ + 2η̃2M1
∑
i∈[n]

ŵi‖∇fi(x)‖2 + 2η̃2L2ξM2 + 2η̃2
∥∥∥∇f̂(x)

∥∥∥2

(4)
≤ 2(M2 +M1)η̃2L2ξ + 2η̃2M1G

2 + 2η̃2(1 +M1B
2)∥∥∥∇f̂(x)

∥∥∥2

(16)
≤ 2(M2 +M1)η̃2L2ξ + 2η̃2M1G

2 + 4Lη̃2(1 +M1B
2)(f̂(x)− f̂?).

By plugging back the bounds on A1 and A2,

Er−1
[
‖x+ ∆− x̂?‖2

]
≤
(

1− µη̃

2

)
‖x− x̂?‖2 − (2η̃ − 4Lη̃2(M1B

2 + 1))(f̂(x)− f̂?)

+ (1 + (M1 +M2)η̃L)2Lη̃ξ + 2η̃2M1G
2 .

The lemma now follows by observing that 4Lη̃(M1B
2 +M2 + 1) ≤ 1 and that B ≥ 1.

37

Published in Transactions on Machine Learning Research (09/2022)

Lemma E.4. (bounded drift) Suppose Assumptions 3.2 – 3.4 hold. Then the updates of FedShuffleMVR
for any step size satisfying ηl ≤ 1

(1+M2+(P+1)B+M1B2))4Lηg
and ci ≥ Ei|Di| for all i ∈ [n] have bounded drift:

3Lη̃ξr ≤
9
10 η̃(f̂(xr)− f̂?) + 9 η̃

3

η2
g

((
1 + P 2)G2 + σ2) ,

where P 2 def= maxi∈[n]
P 2

i

3|Di|E2
i
, σ2 def=

∑
i∈[n] ŵi

σ2
i

3|Di|E2
i
and M1

def= maxi∈[n]{hisiŵi}.

Proof. We adopt the same convention as for the previous proof, i.e., dropping superscripts, simplifying sum
notation and having gi,e,j

def= ∇fiΠi,e,j−1(yi,e,j−1). Therefore,

ξ = 1
W

∑
i∈[n],i,j

w̃i
qici

Er−1
[
‖yri,e,j−1 − xr−1‖2

]

= η2
l

W

∑
i∈[n],e,j

w̃i
qic2i

Er−1

∥∥∥∥∥
e−1∑
l=0

Di∑
c=1

gi,l,c +
j∑
c=1

gi,e,c

∥∥∥∥∥
2

(22)
≤ 2η2

l

W

∑
i∈[n],e,j

w̃i
qic3i

Er−1

∥∥∥∥∥
e−1∑
l=0

Di∑
c=1

gi,l,c − (e− 1)|Di|∇fi(x) +
j∑
c=1

gi,e,c −∇fiΠi,e,c−1(x)
∥∥∥∥∥

2
+ 2η2

l

W

∑
i∈[n],e,j

w̃i
qic3i

Er−1

∥∥∥∥∥(e− 1)|Di|∇fi(x) +
j∑
c=1
∇fiΠi,e,c−1(x)

∥∥∥∥∥
2

Next, we upper bound each term separately. For the first term, we have

2η2
l

W

∑
i∈[n],e,j

w̃i
qic3i

Er−1

∥∥∥∥∥
e−1∑
l=0

Di∑
c=1

gi,l,c − (e− 1)|Di|∇fi(x) +
j∑
c=1

gi,e,c −∇fiΠi,e,c−1(x)
∥∥∥∥∥

2
(23)
≤ 2η2

l

W

∑
i∈[n],e,j

w̃i((e− 1)|Di|+ j)
qic3i

Er−1

[(
e−1∑
l=0

Di∑
c=1

∥∥gi,l,c −∇fiΠi,e,j−1(x)
∥∥2 +

j∑
c=1

∥∥gi,e,c −∇fiΠi,e,c−1(x)
∥∥2
)]

(3)
≤ 2η2

l L
2ξ

38

Published in Transactions on Machine Learning Research (09/2022)

For the second term,

2η2
l

W

∑
i∈[n],e,j

w̃i
qic3i

Er−1

∥∥∥∥∥(e− 1)|Di|∇fi(x) +
j∑
c=1
∇fiΠi,e,c−1(x)

∥∥∥∥∥
2

(17)
≤ 2η2

l

W

∑
i∈[n],e,j

w̃i
qic3i

Er−1

‖((e− 1)|Di|+ j)∇fi(x)‖2 +
∥∥∥∥∥

j∑
c=1
∇fiΠi,e,c−1(x)− j∇fi(x)

∥∥∥∥∥
2

(21)
≤ 2η2

l

W

∑
i∈[n],e,j

w̃i
qic3i

(
((e− 1)|Di|+ j)2‖∇fi(x)‖2 + j(|Di| − j)

(|Di| − 1)
1
|Di|

Di∑
c=1
‖∇fic(x)−∇fi(x)‖2

)
(6)
≤ 2η2

l

W

∑
i∈[n],e,j

w̃i
qic3i

(
((e− 1)|Di|+ j)2‖∇fi(x)‖2 + j(|Di| − j)

(|Di| − 1) (σ2 + P 2‖∇fi(x)‖2)
)

≤ 2η2
l

∑
i∈[n]

|Di|2E2
i

c2i
ŵi‖∇fi(x)‖2 + |Di + 1|)

6c2i
ŵi(σ2

i + P 2
i ‖∇fi(x)‖2)

≤ 2η2
l

∑
i∈[n]

(
1 + P 2

i

3|Di|E2
i

)
ŵi‖∇fi(x)‖2 + ŵi

σ2
i

3|Di|E2
i

(5)
≤ 4LB2η2

l

(
1 + P 2)(f̂(x)− f̂?) + 2η2

l

((
1 + P 2)G2 + σ2).

Combining the upper bounds

ξ ≤ 2η2
l L

2ξ + 4LB2η2
l (1 + P)(f̂(x)− f̂?) + 2η2

l

((
1 + P 2)G2 + σ2).

Since 2η2
l L

2 ≤ 1
8 and 4LB2η2

l

(
1 + P 2) ≤ 1

4L , therefore

3Lη̃ξ ≤ 9
10 η̃(f̂(x)− f̂?) + 9η̃η2

l

((
1 + P 2)G2 + σ2) ,

which concludes the proof.

Adding the statements of the above Lemmas E.3 and E.4, we get

E
[
‖xr − x̂?‖2

]
≤
(

1− µη̃

2

)
E
[
‖xr−1 − x̂?‖2

]
− η̃

10Er−1

[
f̂(xr−1)− f̂?

]
+ 2η̃2M1G

2 + 9η̃3

η2
g

((
1 + P 2)G2 + σ2)

=
(

1− µη̃

2

)
E
[
‖xr−1 − x̂?‖2

]
− η̃

10Er−1

[
f(xr−1)− f̂?

]
+ 2η̃2

(
M1G

2 + 9η̃
2η2
g

((
1 + P 2)G2 + σ2)) ,

Moving the (f(xr−1) − f(x?)) term and dividing both sides by η̃
10 , we get the following bound for any

η̃ ≤ 1
(1+M2+(P+1)B+M1B2))4L

Er−1
[
f(xr−1)− f?

]
≤ 10

η̃

(
1− µη̃

2

)
E
[
‖xr−1 − x?‖2

]
+ 20η̃

(
M1G

2 + 9η̃
2η2
g

((
1 + P 2)G2 + σ2)) .

If µ = 0 (weakly-convex), we can directly apply Lemma B.3. Otherwise, by averaging using weights
vr = (1− µη̃

2)1−r and using the same weights to pick output x̄R, we can simplify the above recursive bound
(see proof of Lemma B.2) to prove that for any η̃ satisfying 1

µR ≤ η̃ ≤
1

(1+M2+(P+1)B+M1B2))4L

E
[
f(x̄R)]− f(x?)

]
≤ 10‖x0 − x?‖2︸ ︷︷ ︸

def= d

µ exp(− η̃2µR) + η̃
(
4M1G

2︸ ︷︷ ︸
def= c1

)
+ η̃2

18
η2
g

((
1 + P 2)G2 + σ2)

︸ ︷︷ ︸
def= c2

39

Published in Transactions on Machine Learning Research (09/2022)

Now, the choice of η̃ = min
{

log(max(1,µ2Rd/c1))
µR , 1

(1+M2+(P+1)B+M1B2))4L

}
yields the desired rate.

For the non-convex case, one first exploits the smoothness assumption (Assumption 3.2) (extra smoothness
term L in the first term in the convergence guarantee) and the rest of the proof follows essentially in the
same steps as the provided analysis. The only difference is that distance to an optimal solution is replaced by
functional difference, i.e., ‖x0 − x̂?‖2 → f̂(x0)− f̂?. The final convergence bound also relies on Lemma B.3.
For completeness, we provide the proof below.

We adapt the same notation simplification as for the prior cases, see proof of Lemma E.3. Since {fij} are
L-smooth then f is also L smooth. Therefore,

Er−1

[
f̂(x+ ∆)

]
≤ f̂(x) + Er−1

[〈
∇f̂(x),∆

〉]
+ L

2 Er−1

[
‖∆‖2

]
= f̂(x)−Er−1

〈∇f̂(x), η̃
W

∑
i∈[n],e,j

w̃i
qici

gi,e,j

〉+ Lη̃2

2 Er−1

∥∥∥∥∥∥ 1
W

∑
i∈S,e,j

w̃i
qSi ci

gi,e,j

∥∥∥∥∥∥
2

(22)
≤ f̂(x)− η̃

2

∥∥∥∇f̂(x)
∥∥∥2

+ η̃

2Er−1

∥∥∥∥∥∥ 1
W

∑
i∈[n],e,j

w̃i
qici

(
gi,e,j −∇fiΠi,e,j−1(x)

)∥∥∥∥∥∥
2

+ Lη̃2

2 Er−1

∥∥∥∥∥∥ 1
W

∑
i∈S,e,j

w̃i
qSi ci

gi,e,j

∥∥∥∥∥∥
2

(3)+(23)
≤ f̂(x)− η̃

2

∥∥∥∇f̂(x)
∥∥∥2

+ η̃L2

2 M2ξ + Lη̃2

2 Er−1

∥∥∥∥∥∥ 1
W

∑
i∈S,e,j

w̃i
qSi ci

gi,e,j

∥∥∥∥∥∥
2
 .

We upper-bound the last term using the bound of A2 in the proof of Lemma C.1 (note that this proof does
not rely on the convexity assumption). Thus, we have

Er−1

[
f̂(x+ ∆)

]
≤ f̂(x)− η̃

2

∥∥∥∇f̂(x)
∥∥∥2

+ η̃L2

2 M2ξ + (M1 +M2)η̃2L3ξ + η̃2M1G
2L+ η̃2(1 +M1B

2)L∥∥∥∇f̂(x)
∥∥∥2
.

The bound on the step size η̃ ≤ 1
(1+M2+(P+1)B+M1B2))4L implies

Er−1 [f(x+ ∆)] ≤ f(x)− η̃

4‖∇f(x)‖2 + 3η̃L2

4 ξ + η̃2M1G
2L .

Next, we reuse the partial result of Lemma C.2 that does not require convexity, i.e., we replace f̂(x)− f̂?
with 1

2L‖∇f̂(x)‖2. Therefore,

Er−1

[
f̂(x+ ∆)

]
≤ f̂(x)− η̃

8

∥∥∥∇f̂(x)
∥∥∥2

+ 9η̃3L

4η2
g

((
1 + P 2)G2 + σ2)+ η̃2M1G

2L .

By adding f̂? to both sides, reordering, dividing by η̃ and taking full expectation, we obtain

E
[∥∥∥∇f̂(xr)

∥∥∥2
]
≤ 8
η̃

(
E
[
f̂(xr)− f̂?

]
−E

[
f̂(xr+1)− f̂?

])
+ η̃ 8M1G

2L︸ ︷︷ ︸
c1

+η̃2 18L
η2
g

((
1 + P 2)G2 + σ2)

︸ ︷︷ ︸
c2

.

Applying Lemma B.3 concludes the proof.

40

Published in Transactions on Machine Learning Research (09/2022)

E.4 General Variance Bound

In this section, we provide a more general version of Lemma B.4. We recall the definition of the indicator
function used in the proof of the aforementioned lemma, where 1i∈S = 1 if i ∈ S and 1i∈S = 0 otherwise
and, likewise, 1i,j∈S = 1 if i, j ∈ S and 1i,j∈S = 0 otherwise. Further, let H be n × n matrix, where
Hi,j = ES

[
qiqj

qS
i
qS

j

1i,j∈S
]
and h is its diagonal with hi = ES

[
q2

i

(qS
i

)2 1i∈S
]
. We are ready to proceed with the

lemma.
Lemma E.5. Let ζ1, ζ2, . . . , ζn be vectors in Rd and w1, w2, . . . , wn be non-negative real numbers such that∑n
i=1 wi = 1. Define ζ̃ def=

∑n
i=1

wi

qi
ζi. Let S be a proper sampling. If s ∈ Rn is such that

H− ee> � Diag(h1s2, h2s2, . . . , hnsn), (33)

then

E

∥∥∥∥∥∑
i∈S

wiζi
gSi
− ζ̃

∥∥∥∥∥
2
 ≤ n∑

i=1
hisi

∥∥∥∥wiζiqi

∥∥∥∥2
, (34)

where the expectation is taken over S and e is the vector of all ones in Rn.

Proof. Let us first compute the mean of X def=
∑
i∈S

wiζi

qS
i

:

E [X] = E
[∑
i∈S

wiζi
qSi

]
= E

[
n∑
i=1

wiζi
qSi

1i∈S

]
=

n∑
i=1

wiζiE
[

1
qSi

1i∈S
]

=
n∑
i=1

wi
qi
ζi = ζ̃.

Let A = [a1, . . . , an] ∈ Rd×n, where ai = wiζi

qi
. We now write the variance of X in a form which will be

convenient to establish a bound:

E
[
‖X −E [X]‖2

]
= E

[
‖X‖2

]
− ‖E [X]‖2

= E

∥∥∥∥∥∑
i∈S

wiζi
qSi

∥∥∥∥∥
2
− ‖ζ̃‖2

= E

∑
i,j

wiζ
>
i

qSi

wjζj
qSj

1i,j∈S

− ‖ζ̃‖2
=
∑
i,j

Hij
wiζ
>
i

qi

wjζj
qj
−
∑
i,j

wiζ
>
i

qi

wjζj
qj

=
∑
i,j

(Hij − 1)a>i aj

= e>((H− ee>) ◦A>A)e.

(35)

Since, by assumption, we have H− ee> � Diag(h ◦ s), we can further bound

e>((H− ee>) ◦A>A)e ≤ e>(Diag(h ◦ s) ◦A>A)e =
n∑
i=1

hisi‖ai‖2.

41

Published in Transactions on Machine Learning Research (09/2022)

Table 4: Baselines.
Local Steps/ Epochs W/ or W/O Replacement PseudocodeGradient Samplinga

FedAvgRR Epochs W/O Algorithm 2

FedAvgMin Steps W/ Reddi et al. (2020)
Algorithm 1 with K = Kb

min

FedAvgMean Steps W/ Reddi et al. (2020)
Algorithm 1 with K = Kc

mean
FedNova Epochs W/ Wang et al. (2020)

FedNovaRR Epochs W/O Algorithm 4
with FedNova aggregation

FedShuffle Epochs W/O Algorithm 1
a For real-world datasets, as it is commonly implemented in practice, all methods use without replacement sampling, i.e.,
random reshuffling.
b K = Kmin corresponds to the minimal number of steps across clients for FedAvgRR.
c K = Kmean corresponds to the average number of steps across clients for FedAvgRR, i.e., FedAvgMean and FedAvgRR
perform the same total computation.

F Experimental Setup and Extra Experiments

As mentioned in the previous section, we compare three algorithms – FedAvg, FedNova, and our Fed-
Shuffle. For FedAvg, we include an extra baseline that fixes objective inconsistency by running the same
number of local steps per each client. To avoid extra computational burden on clients, i.e., to avoid stragglers,
we select the number of local steps to be the minimal number of steps across clients. We refer to this
baseline as FedAvgMin. Another FedAvg-type baseline that we compare to is FedAvgMean. Similarly to
FedAvgMin, FedAvgMean runs the same number of local steps per each device with a difference that the
number of steps is selected such that the total computation performed by FedAvgMean is equal to FedAvg
with local epochs. We include this theoretical baseline to see the effect of heterogeneity in local steps and
whether it is beneficial to run full epochs. We consider three extensions: (i) random reshuffling for FedAvg,
and FedNova, since these methods were not originally analysed using biased random reshuffling but rather
with unbiased stochastic gradients obtained by sampling with replacement, (ii) global momentum. Our
implementation of FedAvg and FedNova follows (Reddi et al., 2020) and (Wang et al., 2020), respectively.
In all of the experiments, the reported performance is average with one standard deviation over 3 runs with
fixed seeds across methods for a fair comparison.

Hyperparameters. The server learning rate for all methods is kept at its default value of 1. For all
momentum methods, we pick momentum 0.9. The rest of the parameters for the simple quadratic objective
are selected based on the theoretical values for all the methods. For the other experiments (Shakespeare
and CIFAR100), the local learning rate is tuned by searching over a grid {0.1, 0.01, 0.001} and we use a
standard learning schedule, where the step size is decreased by 10 at 50% and 75% of all communication
rounds. We note that FedShuffle uses different local step sizes for each client ηrl,i = ηr

l/|Di|. For a fair
comparison, we take the local learning rate for FedShuffle to be the local learning rate for the client with
the largest number of local steps as this follows directly from the theory. The global momentum as defined in
(13) and (14) is only used in this form for the toy experiment. For the real-word experiments, we ignore the
last term and we approximate ∇fi(xr) ≈ 1

E|Di|ηr
l,i

∆r
i to avoid extra communication and computation. Note

that for both FedNova and FedShuffle, the estimator of ∇f(xr) is proportional to ∆r and, therefore, the
server can directly update the global momentum using only this update. For FedAvg, this is not the case
and it is closely related to the objective inconsistency issue. Despite this fact, we provide FedAvg with the
proper momentum estimator that improves its performance as it reduces the objective inconsistency. Lastly,
for neural network experiments we allow each method to benefit from the weight decay {0, 1e− 4} and the
gradient clipping {5,∞}, i.e., we do a grid search over all the combinations of step sizes, weight decays and
gradient clippings. For the toy experiment, the batch size is 1 and for neural nets, we select batch size to be
32.

42

Published in Transactions on Machine Learning Research (09/2022)

0 200 400 600 800 1000
communication rounds

1.0

1.5

2.0

2.5

3.0

3.5

4.0

tra
in

 d
at

a
lo

ss

FedAvgMin
FedAvgMean
FedAvg
FedNova
FedShuffle

0 200 400 600 800 1000
communication rounds

0.5

1.0

1.5

2.0

2.5

3.0

3.5

tra
in

 d
at

a
lo

ss

FedAvgMin
FedAvgMean
FedAvg
FedNova
FedShuffle

(a) Shakespeare w/ LSTM

0 200 400 600 800 1000
communication rounds

1.0
1.5
2.0
2.5
3.0
3.5
4.0

tra
in

 d
at

a
lo

ss

FedAvgMin
FedAvgMean
FedAvg
FedNova
FedShuffle

0 200 400 600 800 1000
communication rounds

0.5

1.0

1.5

2.0

2.5

3.0

3.5

tra
in

 d
at

a
lo

ss

FedAvgMin
FedAvgMean
FedAvg
FedNova
FedShuffle

(b) CIFAR100 (TFF Split) w/ ResNet18

Figure 3: Comparison of the moving average with slide 20 of the train data loss on FedAvgMin, FedAvg,
FedNova, FedShuffle on real-world datasets. Partial participation: in each round 16 client is sampled
uniformly at random. All methods use random reshuffling. For Shakespeare, number of local epochs is 2 and
for CIFAR100, it is 2 to 5 sampled uniformly at random at each communication round for each client. Left:
Plain methods. Right: Global momentum 0.9. Note that the displayed loss is only for the train data, and it
does not include the l2 penalty; therefore, its informative value is limited.

0 200 400 600 800 1000
communication rounds

10−4

10−3

10−2

10−1

||x
−
x

⋆
||2

FedNovaRR
FedShuffle
FedShuffleGen

Figure 4: Quadratic objective as defined in (36). Each client runs one local epoch. A comparison of FedNova
with reshuffling (FedNova RR) and FedShuffle and FedShuffle with FedNova-like aggregation
weights to remove objective inconsistency caused by unfinished local rounds (FedShuffleGen) with full
participation.

Datasets and models. We run experiments on three datasets with three corresponding models. First, we
consider a simple quadratic objective

min
x∈R6

1
12

6∑
i=1
‖x− ei‖2, (36)

where ei is the canonical basis vector with 1 at i-th coordinate and 0 elsewhere. We partition data into 3
clients, where the first client owns the first data point, the second is assigned e2 and e3 and the rest belongs
to the third client.

For the second task, we evaluate a next character prediction model on the Shakespeare dataset (Caldas
et al., 2018a). This dataset consists of 715 users (characters of Shakespeare plays), where each example
corresponds to a contiguous set of lines spoken by the character in a given play. For the model, an input
character is first transformed into an 8-dimensional vector using an embedding layer, and this is followed by
an LSTM (Hochreiter & Schmidhuber, 1997) with two hidden layers and 512-dimensional hidden state.

Last, we consider an image classification task on the CIFAR100 dataset (Krizhevsky et al., 2009) with a
ResNet18 model (He et al., 2016), where we replace batch normalization layers with group normalization
following (Hsieh et al., 2020). The data is partitioned across 500 clients, where each client owns 100 data
points using a hierarchical Latent Dirichlet Allocation (LDA) process (Li & McCallum, 2006). We use
equivalent splits to those provided in TensorFlow Federated datasets (TFF, 2021).

43

Published in Transactions on Machine Learning Research (09/2022)

Our implementation is in PyTorch (Paszke et al., 2019).

For the first experiment, we only consider performance on the train set (i.e., training loss), while for the
real-world datasets we report performance on the corresponding validation datasets (validation accuracy).

Baselines. For the experimental evaluation, we compare three methods — FedAvg, FedNova, and our
FedShuffle— with different extensions such as random reshuffling or momentum

F.1 Hybrid approach to tackle system challenges

As discussed in Section 4.3, FedShuffleGen allows us to run and analyze hybrid approaches of mixing step
size scaling with update scaling to overcome the objective inconsistency caused by system challenges. In this
example, we assume that each client does not finish the last iteration of the local training. To fix this issue,
we employ FedShuffle and FedNova-like aggregation that fixes objective inconsistency (we refer to this
method as FedShuffleGen since it is its special case); see (31) for the selection of weights. We use the
quadratic objective as introduced above with full participation, and each client runs one local epoch. As it
can be seen from Figure 4, as expected, FedShuffle suffers from objective inconsistency since some clients
do not finish the predefined number of local steps. However, our FedShuffleGen based technique fixes
objective consistency caused by system challenges while providing superior performance when compared to
the plain FedNova method with reshuffling (FedNova RR).

44

	Introduction
	Related Work
	Notation and Assumptions
	The FedShuffle Algorithm
	Heterogeneity in the Number of Local Updates
	Removing Bias in Aggregation
	Extensions

	Convergence guarantees
	Improving upon Non-Local Methods

	Experimental Evaluation
	Results on quadratic functions
	Training Deep Neural Networks

	Conclusion
	FedAvg with Random Reshuffling
	Technicalities
	Convex Smooth Functions
	Convergence Derivations
	Variance bounds
	Technical Lemmas

	Algorithm 3: Convergence Analysis (Proof of Theorem 5.1)
	FedShuffleMVR: Convergence Analysis (Proof of Theorem 5.2)
	Discussion on Theoretical Assumptions

	FedShuffleGen: General Shuffling Method
	Convergence Analysis
	Special Cases
	Proof of Theorem E.1
	General Variance Bound

	Experimental Setup and Extra Experiments
	Hybrid approach to tackle system challenges

