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Abstract
LLMs have shown remarkable capabilities in processing various data structures,
including graphs. While previous research has focused on developing textual
encoding methods for graph representation, the emergence of multimodal LLMs
presents a new frontier for graph comprehension. These advanced models,
capable of processing both text and images, offer potential improvements in
graph understanding by incorporating visual representations alongside traditional
textual data. This study investigates the impact of graph visualisations on LLM
performance across a range of benchmark tasks at node, edge, and graph levels.
Our experiments compare the effectiveness of multimodal (textual & visual)
approaches against purely textual graph representations. The results provide
valuable insights into both the potential and limitations of leveraging visual graph
modalities to enhance LLMs’ graph structure comprehension abilities. 1

1 Introduction

Graph Structure 
Comprehension Task

Graph Text 
Encoder

Prompt 
question: Q

Prompt
There is an undirected graph in this image.
In an undirected graph, (i,j) means that 
node i and node j are connected with an 
undirected edge. 
G describes a graph among nodes 0, 1, 2, 
3, 4, 5, 6, and 7.
The edges in G are: (0,1) (0,2) (1,2) (2,3) 
(2,4) (2,5) …

Q: What is the degree of node 4? 

Multimodal 
LLM Answer: A

Graph Image 
Encoder

Figure 1: Overview of our framework (GAI+) for graph structure comprehension using multimodal
LLMs. The newly added components, compared to [1], are highlighted in green for clarity.

Recently, Large Language Models (LLMs) have revolutionised natural language processing and have
been increasingly applied to diverse tasks beyond text generation and comprehension [2, 3]. One
area of growing interest is the application of LLMs to graph-structured data, which is prevalent in
numerous domains, e.g., social network analysis and bioinformatics [4–6].

Conventionally, researchers have focused on developing textual encoding functions to represent
graphs in a format digestible by LLMs [1, 5, 7]. These methods have shown promise, enabling LLMs
to perform various graph-related tasks with increasing accuracy. While this approach has shown
promise, it faces inherent limitations in capturing the full complexity of graph structures, particularly
in preserving spatial relationships and global structural properties [1].

The recent emergence of multimodal LLMs marks a significant milestone in AI development [2, 3].
These advanced models, capable of processing both textual and visual information, open new avenues
for enhancing machine comprehension of complex data structures. In the context of graph structure
comprehension, this multimodal capability presents an exciting opportunity: the potential to leverage
visual representations of graphs alongside their textual descriptions.

1The dataset and code are available at https://github.com/zhiqiangzhongddu/GaI-LoG-2024.
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This research aims to explore the potential of multimodal LLMs in graph comprehension tasks. We
hypothesise that by leveraging both textual and visual representations of graphs, these models can
achieve superior performance compared to their text-only representations. Our study focuses on a
comprehensive set of benchmark tasks at the node, edge, and graph levels, providing a multifaceted
evaluation of multimodal approaches in graph analysis. Particularly, based on the designed framework
as shown in Figure 1, we seek to address two research questions: (i) How does incorporating visual
graph representations affect LLM performance on various graph-related tasks compared to purely
textual representations? (ii) What are the limitations of current multimodal LLMs in processing graph
visualisations, and how might these be addressed in future research?

2 Exploring Graph Structure Comprehension Ability of Multimodal LLMs

Our empirical studies follow the GraphQA benchmark settings [1]. Figure 1 provides an overview of
our framework, comprehending Graph as Image (GAI+). Its simplified version, GAI, indicates the
only graph vision modality is included. We detail each component of our methodology below.

Graph Generation. To systematically evaluate the graph comprehension capabilities of multimodal
LLMs, we generated a diverse set of graphs using the Erdős–Rényi (ER) model [8]. Our dataset
comprises 500 graphs, each containing between 5 and 20 nodes. This range allows us to assess the
models’ performance across varying graph complexities. Figure 2 illustrates two example graphs.

Graph Text Encoder. While Fatemi et al. [1] propose several text encoding functions to represent
graphs, we focused on two specific methods: adjacency and incident encoding. This choice was
motivated by the need to visualise graphs as images, where complicated textual representations might
be challenging to depict within a constrained visual space. These encoding methods provide a balance
between informational content and visual clarity. Examples see Appendix B.

Graph Visualiser. The graph visualiser component generates visual representations of the structural
graphs. While there can be numerous variations in visual aspects such as background colours, layouts,
and node shapes, we opted for a standardised approach using Matplotlib [9] with default settings.
This decision ensures consistency across our visual graph representations. All graphs are plotted to
a fixed size to maintain uniformity. We acknowledge that different visualisation techniques could
influence results, and we identify this as an area for future investigation.

Prompt Construction. We adopted prompt designs from [1], which include: Zero-shot prompting
(ZERO-SHOT), Few-shot in-context learning (FEW-SHOT), Chain-of-thought (COT), Zero-shot
CoT prompting (ZERO-COT) and Bag prompting (COT-BAG). For scenarios where a visual graph
representation is available, we augmented the prompts by prepending the sentence: "There is an
undirected graph in this image." (as illustrated in Appendix B). This modification ensures that the
LLM is aware of the presence of visual information. Our study encompasses a comprehensive set
of graph structure comprehension tasks, including Node tasks: node degree, connected nodes; Edge
tasks: edge existence, shortest path; and Graph tasks: node count, edge count, cycle check, and
triangle counting. This diverse set of tasks allows us to evaluate the models’ performance across
various aspects of graph comprehension.

LLMs. Our study focuses on LLMs in a black-box setup, where the model parameters are fixed, and
the system only consumes and produces text. This setting reflects the most common scenario for
practical LLM usage. We selected two state-of-the-art multimodal LLMs for our main experiments:
GPT-4 [3], GPT-4o [3]. To extend the vision of this study, another open-source multimodal LLM,
LLaVA-NeXT-7B [10], is also included in the additional experiments Appendix C. These models
represent the current pinnacle of multimodal language models, capable of processing both text and
image inputs.

3 Results and Discussions

Our main results are summarised in Tables 1 and 2. We discuss our findings in detail below:

Superior performance of multimodal LLMs. An impressive observation from our results is the
markedly superior performance of GPT-4o and GPT-4 compared to the PaLM model. In several tasks,
these newer models demonstrate near-perfect accuracy, correctly answering questions about graph
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Prompt Encoding Edge
Existence
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degree

Node
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count
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nodes
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check
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GraphQA [1] 49.0* 25.0* 24.2* 15.0* 53.8* 82.0* 1.5* 11.5*
Adjacency 96.2 75.8 100.0 67.4 76.8 96.2 33.0 69.0

GAIADJ 74.6 55.8 93.4 21.2 35.8 97.0 26.4 53.0
GAI+ADJ 96.4 70.8 100.0 65.8 76.4 98.8 30.6 63.2
Incident 97.0 84.4 100.0 54.2 89.4 93.8 26.2 68.6
GAIINC 77.2 50.8 92.2 22.2 36.6 96.6 25.2 56.8
GAI+INC 99.2 78.6 100.0 55.4 88.0 98.4 26.6 69.2

Z
E

R
O

-C
O

T

GraphQA [1] 41.4* 26.6* 19.4* 12.2* 35.2* 46.2* 12.7* 33.6*
Adjacency 92.2 76.6 95.4 73.4 82.6 96.6 33.8 71.6

GAIADJ 60.2 46.4 94.8 24.2 35.4 97.2 25.4 52.4
GAI+ADJ 90.8 69.0 99.6 66.8 79.2 98.4 31.4 70.8
Incident 97.2 72.6 97.6 54.6 89.2 90.6 28.6 73.6
GAIINC 62.2 47.6 93.8 24.8 35.0 96.2 24.6 52.8
GAI+INC 98.2 72.6 100.0 62.0 86.6 97.0 26.0 74.2

F
E

W
-S

H
O

T

GraphQA [1] 42.8* 33.6* 51.2* 18.6* 36.6* 47.8* 3.0* 22.7*
Adjacency 93.0 69.6 100.0 67.8 82.4 93.2 29.2 67.8

GAIADJ 84.0 49.4 94.0 19.6 32.0 96.8 24.8 62.4
GAI+ADJ 96.4 70.0 99.4 64.4 80.6 94.6 27.0 68.6
Incident 99.4 94.0 100.0 30.2 90.4 94.2 24.0 75.2
GAIINC 83.4 49.6 92.8 20.2 34.2 96.4 24.4 60.0
GAI+INC 98.6 90.8 98.2 48.0 89.4 96.6 27.0 75.6

C
O

T

GraphQA [1] 46.6* 75.0* 57.6* 25.2* 30.2* 62.6* 8.1* 38.6*
Adjacency 92.2 70.2 100.0 67.8 84.8 93.4 28.6 70.0

GAIADJ 84.2 47.4 92.6 16.2 30.8 96.6 24.6 61.4
GAI+ADJ 95.0 71.8 99.8 63.8 80.4 95.8 27.4 69.0
Incident 98.4 92.2 99.8 27.0 90.2 95.4 24.4 76.4
GAIINC 84.4 48.4 94.0 18.8 31.8 97.0 24.2 60.6
GAI+INC 98.4 89.8 98.8 36.0 89.2 97.2 25.6 74.8

C
O

T-
B

A
G

GraphQA [1] 45.8* 75.2* 51.2* 25.0* 41.0* 63.0* 8.1* 40.4*
Adjacency 94.0 71.2 100.0 70.4 83.6 92.6 27.0 68.2

GAIADJ 86.6 48.8 93.4 17.6 31.0 96.6 25.4 60.6
GAI+ADJ 96.0 66.0 99.8 65.6 79.6 93.6 27.0 67.6
Incident 98.8 90.6 99.8 22.0 90.2 93.4 24.2 74.2
GAIINC 83.8 49.6 93.4 17.0 31.8 97.0 24.2 60.4
GAI+INC 99.0 90.2 98.8 23.0 89.0 95.6 23.6 75.4

Table 1: Comparison of various graph encoder functions based on their accuracy on different graph
tasks using GPT-4o. * indicates the results reported in [1] based on PaLM [2]. The results where GAI+

makes improvements are highlighted in blue . The results where GAI outperforms the corresponding
baseline are highlighted in gray .

structures for almost all test cases. This substantial improvement indicates that recent advancements
in multimodal LLMs have significantly enhanced their graph structure comprehension abilities.

Impact of graph visualisation. Our results show that incorporating graph visualisations can enhance
LLMs’ graph comprehension, though this effect is not uniform across all tasks. The impact of visual
input varies depending on: (i) The complexity of the graph structure. (ii) The specific nature of the
task (e.g., local vs. global graph properties). For instance, tasks involving global properties (e.g.,
cycle detection) seem to benefit more from visual input compared to local tasks (e.g., node degree).

Limitations of visual-only input. Interestingly, we found that providing only graph visualisations,
without accompanying textual descriptions (similar to the settings of [11]), is insufficient for LLMs
to fully comprehend graph structures. This observation highlights the complementary nature of visual
and textual information in graph comprehending tasks.

Comparison with specialised graph encoding models. Our comparison with the work of [7], which
uses neural networks to encode graph information for LLMs, reveals that our multimodal LLM
approach outperforms these carefully trained models in graph structure comprehension tasks. This
finding is significant because it suggests that: (i) General-purpose multimodal LLMs can compete
with, and even surpass, specialised graph encoding models. (ii) The versatility of multimodal LLMs
allows them to adapt effectively to graph comprehending tasks without task-specific training.

Challenges in graph visualisation. Figure 2 illustrates two contrasting examples of graph visual-
isation: a simple graph with clear visual representation and a complex graph where GAI provides
incorrect responses. This comparison highlights a critical challenge in our approach: the effective
visualisation of graphs for multimodal LLMs. The disparity in performance between simple and
complex graphs raises several important questions: (i) How does graph complexity affect the model’s
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GraphQA [1] 49.0* 25.0* 24.2* 15.0* 53.8* 82.0* 1.5* 11.5*
Adjacency 94.2 44.2 99.4 63.2 74.8 96.0 23.6 74.4

GAIADJ 72.4 43.2 82.2 20.4 27.6 95.2 23.6 50.0
GAI+ADJ 92.0 70.0 100.0 61.4 74.4 98.6 27.8 55.6
Incident 97.6 64.8 99.2 42.6 89.2 88.4 26.4 76.8
GAIINC 74.8 43.8 81.6 20.4 28.0 95.4 22.8 50.0
GAI+INC 95.6 66.4 99.8 48.2 89.6 97.6 27.0 62.0

Z
E

R
O

-C
O

T

GraphQA [1] 41.4* 26.6* 19.4* 12.2* 35.2* 46.2* 12.7* 33.6*
Adjacency 95.0 61.6 99.4 63.8 77.0 96.0 31.0 71.4

GAIADJ 73.4 40.8 79.0 19.8 26.8 95.6 23.4 50.8
GAI+ADJ 83.6 67.6 100.0 59.2 73.6 97.8 31.2 58.8
Incident 98.0 76.2 99.6 39.6 88.8 88.4 26.8 76.8
GAIINC 74.4 42.6 76.4 19.0 24.8 96.0 21.8 49.8
GAI+INC 93.0 71.4 100.0 50.2 88.6 97.4 27.8 63.2

F
E

W
-S

H
O

T

GraphQA [1] 42.8* 33.6* 51.2* 18.6* 36.6* 47.8* 3.0* 22.7*
Adjacency 95.6 63.2 100.0 60.6 75.0 94.6 25.6 69.0

GAIADJ 80.4 45.6 85.0 20.0 25.2 93.0 22.6 61.8
GAI+ADJ 94.4 65.4 99.6 61.8 76.8 95.0 29.0 65.4
Incident 98.2 92.6 100.0 24.4 90.6 90.4 27.6 74.4
GAIINC 80.2 45.0 82.4 21.6 26.2 92.6 23.2 61.0
GAI+INC 97.0 91.2 98.6 30.0 90.4 94.6 27.6 69.8

C
O

T

GraphQA [1] 46.6* 75.0* 57.6* 25.2* 30.2* 62.6* 8.1* 38.6*
Adjacency 95.4 64.2 99.6 63.6 80.2 95.2 28.8 69.0

GAIADJ 79.6 43.4 91.8 19.2 24.6 93.6 22.4 60.2
GAI+ADJ 94.6 66.6 99.8 63.2 79.8 95.0 29.2 68.2
Incident 98.8 93.8 99.8 26.2 90.0 90.6 26.2 74.4
GAIINC 80.8 44.4 91.2 18.2 25.8 93.0 24.2 61.2
GAI+INC 97.0 93.6 97.8 28.6 90.4 95.6 26.2 71.0

C
O

T-
B

A
G

GraphQA [1] 45.8* 75.2* 51.2* 25.0* 41.0* 63.0* 8.1* 40.4*
Adjacency 95.8 63.0 100.0 63.8 81.8 96.0 27.6 69.0

GAIADJ 78.8 42.4 90.8 18.8 25.2 92.6 24.2 59.6
GAI+ADJ 96.0 66.0 99.4 64.0 80.8 96.6 29.2 68.2
Incident 98.0 93.2 100.0 24.4 90.8 89.8 25.6 76.2
GAIINC 81.0 42.8 91.4 19.6 23.4 92.8 23.6 61.6
GAI+INC 97.4 92.0 98.8 27.2 90.0 95.6 25.6 69.4

Table 2: Comparison of various graph encoder functions based on their accuracy on different graph
tasks using GPT-4-turbo. * indicates the results reported in [1] based on PaLM [2]. The results
where GAI+ makes improvements are highlighted in blue . The results where GAI outperforms the
corresponding baseline are highlighted in gray .

Method Edge
Existence

Node
degree

Node
count

Edge
count

Connected
nodes

Cycle
check

Triangle
counting

Shortest
path

GraphQA [1] 49.0* 75.2* 57.6* 25.2* 53.8* 82.0* 12.7* 40.4*
GCN [12] 68.0§ 26.4§ 74.6§ 5.6§ 26.4§ 96.4§ 20.8§ 60.4§

GraphToken [7] 73.8§ 96.2§ 99.6§ 42.6§ 26.4§ 95.6§ 34.8§ 63.8§
GAI 99.4 94.0 100.0 70.4 90.8 98.8 33.8 76.4

Table 3: Comparison of various graph encoder functions based on their accuracy on different graph
tasks. * indicates the best results reported in [1] based on PaLM [2]. § indicates the results reported
in [7]. The best performances are highlighted in Bold.

ability to extract relevant information from visualisations? (ii) What are the optimal ways to visually
represent different types of graph structures? (iii) How can we balance information density and
visual clarity in graph representations? These observations underscore the need for further research
into graph visualisation techniques that are optimised for LLM comprehension. Future work should
explore various visualisation strategies, potentially incorporating: (i) Sampling-based interactive
or dynamic graph representations. (ii) Hierarchical visualisations for complex graphs. (iii) Novel
encoding techniques that highlight relevant graph properties. More discussion see Appendix D.

4 Conclusion
This study explored the graph structure comprehension abilities of multimodal LLMs through a
series of empirical evaluations. We highlight the potential of multimodal LLMs for advancing graph
structure comprehension tasks and suggests promising directions for future work in improving graph
visualisations and multimodal integration. Limitations and future work see Appendix D.
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A Illustration of example graphs

Figure 2: Illustrations of input images and the correctness of different models.

Figure 2 illustrates two example graphs from our generated datasets. Two contrasting examples of
graph visualisation are a simple graph with clear visual representation and a complex graph where
GAI provides incorrect responses.

B Prompts

In this work, we design the prompt as follows. Precisely, the prompt consists of two components:
Instruction: Provides general guidance to the LLM, clarifying its role in the conversation. Message:
Tasks the LLM to comprehend graph structure considering the given textual and visual information.

Instruction: You are an AI designed to analyse graphs and answer specific questions about
the graphs. You will receive an image containing a graph and a textual description of the
graph’s structure. Based on the visual and textual information, you should provide accurate
answers to the provided questions.

Message (Adjacency): There is an undirected graph in this image (URL to the image). In
an undirected graph, (i,j) means that node i and node j are connected with an undirected edge.
G describes a graph among nodes 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10. The edges in G are: (0, 8)
(1, 7) (2, 3) (2, 8) (2, 9) (3, 7) (3, 9) (4, 5) (4, 7) (4, 9) (4, 10) (5, 6) (6, 7) (8, 9) (9, 10).
Q: How many nodes are in this graph?
A: Let’s think step by step. Answer the question using this format: The number of nodes in
the graph is [].

Message (Incident): There is an undirected graph in this image (URL to the image). G
describes a graph among nodes 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10. In this graph: Node 0 is
connected to nodes 8. Node 1 is connected to nodes 7. Node 2 is connected to nodes 3, 8, 9.
Node 3 is connected to nodes 2, 7, 9. Node 4 is connected to nodes 5, 7, 9, 10. Node 5 is
connected to nodes 4, 6. Node 6 is connected to nodes 5, 7. Node 7 is connected to nodes 1,
3, 4, 6, 10. Node 8 is connected to nodes 0, 2, 9. Node 9 is connected to nodes 2, 3, 4, 8, 10.
Node 10 is connected to nodes 4, 7, 9.
Q: How many nodes are in this graph?
A: Let’s think step by step. Answer the question using this format: The number of nodes in
the graph is [].
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Prompt Encoding Edge
Existence

Node
degree

Node
count

Edge
count

Connected
nodes

Cycle
check

Triangle
counting

Shortest
path

Z
E

R
O

-S
H

O
T

GraphQA [1] 49.0* 25.0* 24.2* 15.0* 53.8* 82.0* 1.5* 11.5*
Adjacency 66.4 32.2 95.0 17.0 16.2 93.6 7.4 22.2

GAIADJ 65.6 11.4 1.4 3.6 0.6 89.8 5.8 3.8
GAI+ADJ 69.2 11.6 90.0 12.8 13.0 95.6 3.8 12.0
Incident 76.0 49.0 65.4 8.4 32.8 91.0 5.2 22.8
GAIINC 65.6 11.4 1.4 3.6 0.6 89.8 5.8 3.8
GAI+INC 73.6 47.6 68.6 6.4 33.4 90.4 5.4 2.6

Z
E

R
O

-C
O

T

GraphQA [1] 41.4* 26.6* 19.4* 12.2* 35.2* 46.2* 12.7* 33.6*
Adjacency 66.6 23.4 94.6 19.8 16.0 93.2 2.0 0.6

GAIADJ 61.0 9.8 1.0 2.4 0.8 92.6 0.4 5.8
GAI+ADJ 70.0 22.8 91.4 14.6 14.4 93.4 0.6 7.0
Incident 75.4 50.6 67.6 8.2 30.8 90.0 1.0 0.4
GAIINC 61.0 9.8 1.0 2.4 0.8 92.6 0.4 5.8
GAI+INC 71.2 60.4 78.4 5.4 32.4 86.8 1.8 0.4

F
E

W
-S

H
O

T

GraphQA [1] 42.8* 33.6* 51.2* 18.6* 36.6* 47.8* 3.0* 22.7*
Adjacency 0.0 7.8 0.0 0.0 0.0 69.4 0.0 1.0

GAIADJ 0.0 3.0 0.0 0.0 0.0 0.0 0.0 1.6
GAI+ADJ 0.0 7.4 0.0 0.0 0.0 76.0 0.0 4.8
Incident 0.0 5.8 0.0 0.0 0.0 69.4 0.0 0.4
GAIINC 0.0 3.0 0.0 0.0 0.0 0.0 0.0 2.2
GAI+INC 0.0 6.0 0.0 0.0 0.0 78.8 0.0 0.2

C
O

T

GraphQA [1] 46.6* 75.0* 57.6* 25.2* 30.2* 62.6* 8.1* 38.6*
Adjacency 0.0 5.4 0.0 0.0 0.0 72.0 0.0 0.4

GAIADJ 0.0 2.6 0.0 0.0 0.0 0.0 0.0 2.4
GAI+ADJ 0.0 4.6 0.0 0.0 0.0 77.0 0.0 3.0
Incident 0.0 6.8 0.0 0.0 0.0 69.8 0.0 0.6
GAIINC 0.0 3.2 0.0 0.0 0.0 0.0 0.0 4.0
GAI+INC 0.0 6.4 0.0 0.0 0.0 77.8 0.0 0.4

C
O

T-
B

A
G

GraphQA [1] 45.8* 75.2* 51.2* 25.0* 41.0* 63.0* 8.1* 40.4*
Adjacency 0.0 9.2 0.0 0.0 0.0 65.2 0.0 0.6

GAIADJ 0.0 1.2 0.0 0.0 0.0 0.0 0.0 3.4
GAI+ADJ 0.0 8.6 0.0 0.0 0.0 67.4 0.0 0.8
Incident 0.0 4.4 0.0 0.0 0.0 1.6 0.0 1.6
GAIINC 0.0 2.2 0.0 0.0 0.0 0.0 0.0 3.6
GAI+INC 0.0 5.4 0.0 0.0 0.0 66.2 0.0 0.2

Table 4: Comparison of various graph encoder functions based on their accuracy on different graph
tasks using LLaVA-NeXT-7B. * indicates the results reported in [1] based on PaLM [2]. The results
where GAI+ makes improvements are highlighted in blue . The results where GAI outperforms the
corresponding baseline are highlighted in gray .

C Results on open-source LLMs
Our additional experimental results on open-source LLMs are summarised in Table 4. Similar to the
results of Tables 1-2, it illustrates that incorporating graph visualisations can enhance LLMs’ graph
comprehension, though this effect is not uniform across all tasks. For instance, visual representations
do not bring helpful information for tasks with higher complicity (e.g., shortest path)

D Limitation and Future Work
Larger open-source multimodal LLMs. This study explored the graph structure comprehension
abilities of state-of-the-art LLMs in a black-box setup. However, only small-size open-source
multimodal LLMs are not included. In many practical situations, user data are too sensitive to upload
to an online LLM server. In this case, adopting open-source LLMs will be an alternative solution.
Therefore, we intend to explore the capabilities of large-size open-source multimodal LLMs like
LLaVA-Next [13] and Intern-VL [14] in understanding graph structure.

In-depth understanding of the impact of visualisation quality. In Section 3, we have highlighted
the challenges in graph visualisation, where Figure 2 illustrates two contrasting examples: a simple
graph with clear visual representation and a complex graph where GAI provides incorrect responses.
This performance disparity between simple and complex graphs raises future work that systemati-
cally investigates how different aspects of visualisation (e.g., layout algorithms, node/edge styles,
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information density) affect comprehension. This includes developing methods to automatically adapt
visualisations based on graph complexity and task requirements. For instance, (i) Sampling-based
interactive or dynamic graph representations, (ii) Hierarchical visualisations for complex graphs, and
(iii) Novel encoding techniques that highlight relevant graph properties.

Integration with Graph Neural Networks. Our current approach uses multimodal LLMs directly
for graph comprehension. However, message-passing neural networks (MPNNs) [12] have estab-
lished strengths in handling graph-structured data, particularly in preserving permutation invariance
properties that are lost in image representations. This suggests an opportunity to combine the com-
plementary strengths of both approaches through lightweight solutions. For example, developing
adapters to align MPNN embeddings with multimodal LLM representations in a common space
could enable more efficient and theoretically grounded graph processing while maintaining the
flexibility and general capabilities of LLMs. However, deploying such multimodal systems in practice
introduces significant challenges. These models are typically resource-intensive, requiring substantial
computational power, both for training and inference, as well as increased memory to handle the
alignment between modalities. Furthermore, the integration of MPNNs with multimodal LLMs
involves managing synchronization between distinct data modalities and ensuring compatibility in
embedding spaces, which can be technically complex and prone to inconsistencies. Such systems
often demand specialised hardware and careful engineering to achieve real-time performance, which
might not be feasible in many practical applications where computational resources are limited or
latency requirements are stringent.
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