
Published as a conference paper at ICLR 2025

MAMBAEXTEND: A TRAINING-FREE APPROACH TO
IMPROVE LONG-CONTEXT EXTENSION OF MAMBA

Seyedarmin Aziziu†, Souvik Kundui†, Mohammad Erfan Sadeghiu, and Massoud Pedramu

uUniversity of Southern California, Los Angeles, USA
iIntel Labs, USA
† Equal contribution authors
{seyedarm, sadeghim, pedram}@usc.edu, souvikk.kundu@intel.com

ABSTRACT

The inherent quadratic complexity of the attention mechanism in transformer
models has driven the research community to explore alternative architectures
with sub-quadratic complexity, such as state-space models. Mamba has estab-
lished itself as a leading model within this emerging paradigm, achieving state-
of-the-art results in various language modeling benchmarks. However, despite
its impressive performance, Mamba’s effectiveness is limited by its pre-training
context length, resulting in a pronounced degradation when the model is tasked
with handling longer contexts. Our investigation reveals that Mamba’s inability to
generalize effectively to long contexts is primarily due to the out-of-distribution
(OOD) discretization steps. To address this critical limitation, we introduce Mam-
baExtend, a novel framework designed to significantly enhance the context exten-
sion capabilities of Mamba. Specifically, MambaExtend leverages a training-free
approach to calibrate only the scaling factors of discretization modules for dif-
ferent layers. We demonstrate both gradient-based and gradient-free zeroth-order
optimization to learn the optimal scaling factors for each Mamba layer, requiring
orders of magnitude fewer updates as opposed to the parameter fine-tuning-based
alternatives. Using this approach, we achieve a training-free context extension
of up to 32×, expanding the context from 2k to 64k tokens with minimal in-
creases in perplexity. In contrast to existing fine-tuning methods, MambaExtend
selectively calibrates the scaling factors, requiring up to ∼5.42 ∗ 106× fewer pa-
rameter updates and incurring up to 3.87× lower peak memory usage, while de-
livering comparable or superior long-context performance across multiple tasks.
Codes and checkpoints are available here1.

1 INTRODUCTION

Figure 1: Long-context understanding on Pile.
Compared to the pre-trained alternatives, Mam-
baExtend provides up to∼8145× improvement in
perplexity score, via a training-free calibration.

Despite the widespread applications of trans-
former (Vaswani, 2017) based large language
models (LLMs) (Touvron et al., 2023), their
quadratic compute and memory demand with
sequence length has enforced research for
emerging alternative architectures. For exam-
ple, works including Linformer (Wang et al.,
2020) and Longformer (Beltagy et al., 2020)
presented different approaches to approximate
attention to reduce the quadratic memory cost.
Other works (Kitaev et al., 2020) leveraged
locality-based hashing to avoid attention com-
putation. Recently, state-space models (SSMs)
(Gu et al., 2022; 2020) have emerged as an al-
ternative to attention-based models, offering a

1https://github.com/ArminAzizi98/LongContextMamba

1

https://github.com/ArminAzizi98/LongContextMamba


Published as a conference paper at ICLR 2025

different approach to handling long sequences at sub-quadratic complexity. Unlike transformers,
SSMs are grounded in continuous-time dynamics and offer the potential to handle much longer se-
quences without blowing out the memory and compute demand. Mamba (Gu & Dao, 2023; Dao &
Gu, 2024), a popular SSM variant built leveraging the selective state-space layers (S6), has shown
impressive performance on various NLP, image, and medical genomics benchmarks (Schiff et al.,
2024). The key advantage of Mamba stems from the sub-quadratic compute complexity of theoreti-
cally grounded linear RNN layers.

LLMs for long-context understanding have recently found many useful applications, including sum-
marizing long documents and answering long questions (Chen et al., 2023c). However, transformer-
based LLMs that are pre-trained on fixed-length contexts yield lower generative performance when
used on longer sequences during inference time (Chen et al., 2024; 2023b). This shortcoming of
the transformers is tied to the inability of the positional embedding to generalize well on longer
sequences, causing such sequences to appear as out-of-distribution (OOD) sequences (Chen et al.,
2023c; Jin et al., 2024). Interestingly, Mamba models, despite their theoretical ability to capture
global interactions, also fail to generalize to long sequence or context lengths (Ben-Kish et al.,
2024). This phenomenon has been tied to the Mamba model’s implicit bias to a limited effective
receptive field (ERF) governed by the training data sequence length (Ben-Kish et al., 2024).

For transformer-based LLMs, the OOD sequence length generalization has been explored exten-
sively, including fine-tuning to longer sequences (Chen et al., 2023c) and allowing sophisticated
modification to the transformer’s positional embedding (Jin et al., 2024; Ding et al., 2024; Golovneva
et al., 2024). Unfortunately, such solutions are not directly applicable to Mamba models. This is
primarily due to the absence of an explicit positional embedding for Mamba models to generalize.
Moreover, unlike transformers, the potential root cause of Mamba’s performance deterioration for
long sequence processing is yet to be discovered.

A contemporary work, namely DeciMamba (Ben-Kish et al., 2024), has presented a selective token
decimation strategy to reduce the number of tokens to be processed per layer. This approach poten-
tially increases the model’s ERF, enabling better long-context information flow and understanding.
However, DeciMamba requires a memory- and compute-intensive fine-tuning of the model, result-
ing in significant time and effort to perform parameter updates of the pre-trained model. Thus, such
an approach does not scale to larger models, especially for limited memory or computing resources.

Our Contributions. To mitigate the aforesaid issues, we first investigate the impact of OOD long-
context extension on the discretization steps of Mamba (∆t values).2 We have empirically observed
two key findings: (1) minimizing the sum of ∆t’s across all tokens can enhance generalization when
increasing context length during inference, and (2) applying a fixed down-scaling to ∆t’s gener-
ally does not yield optimal generalization. Building on this insight, we introduce MambaExtend,
a framework designed to extend Mamba’s context length without any re-training of the model
weights. MambaExtend utilizes a calibration function (CF) to optimize sizes of the discretization
steps (∆t) across various Mamba layers by incorporating a learnable scaling factor for each layer’s
∆t. This CF enables the proposed scaling parameters for ∆t to be learned while keeping the model
weights fixed at their pre-trained values, significantly reducing both memory requirements and the
number of updatable parameters. Moreover, we introduce a zeroth-order (ZO) optimization-based
CF to calibrate using only forward passes, potentially yielding further savings in memory and com-
putation. Specifically, we used ZO methods based on the simultaneous perturbation stochastic ap-
proximation (SPSA) (Spall, 1992) to update the scaling factors. As shown in Fig. PPL by up to
∼8145×, as evaluated on context lengths of up to 64k.

To show the efficacy of MambaExtend, we performed extensive experiments on perplexity eval-
uation, LongBench, and long-context retrieval tasks with both Mamba and Mamba2 variants. For
example, on PG19, only via ZO-based scaling factor update, MambaExtend can improve the context
length extension ability of a pre-trained model from 2k to 64k, while not incurring any significant
perplexity (PPL) increase. Compared to DeciMamba, we yield up to 40.6% reduced PPL while
requiring up to ∼5.42 ∗ 106× fewer parameter update with up to 3.87× lower peak-memory de-
mand.

2∆t represents the step size that transforms continuous-time parameters into the corresponding discrete
state-space variables.

2



Published as a conference paper at ICLR 2025

2 PRELIMINARIES

2.1 THE S6 LAYER AND MAMBA

At its core, each Mamba block utilizes the selective SSM (S6) layer (Gu & Dao, 2023), which is
specifically designed to handle sequential data by preserving structured state dynamics across the
input sequence.

The S6 layer: Using a linear recurrent system with the hidden state ht, input zt, and output ot at
discrete time instant t, the S6 layer’s sequence generation and state update can be simplified as:

ht = Āht−1 + B̄zt, ot = Cht (1)

The P-length sequence of a representative channel is given as Z = {z1, z2, · · · , zP }, Ā ∈ RN×N ,
B̄ ∈ RN×1, and C ∈ R1×N are discrete time-variant system, input, and output matrices, respec-
tively, governing the discrete state transitions and output sequence generation. The S6 layer pro-
duces the ‘per-time’ (t) discrete time-variant matrices from input and “continuous parameters” as:

Āt = exp(∆tA), B̄t = ∆tBt where ∆t = SFT(∆tproj (zt)), Bt = WB(zt), Ct = (WC(zt))
T

(2)
Here, zt ∈ RD with D being channel dimension and ∆t be the discretization step used at time t.
∆tproj , WB , and WC are linear projection layers. SFT and exp represent the softplus and point-
wise exponential operation, respectively. After the discretization step, the S6 layer’s input-output
behavior via time-unrolling can be described as:

O = αZ with αi,j = Ci

 i∏
k=j+1

Āk

 B̄j (3)

Thus, for a context length of P , the entire output O = {o1, o2, .., oP } is computed as follows:
o1
o2
...
oP

 =


C1B̄1 0 · · · 0

C2Ā2B̄1 C2B̄2 · · · 0
...

...
. . .

...
CP

∏P
k=2 ĀkB̄1 CP

∏P
k=3 ĀkB̄2 · · · CP B̄P



z1
z2
...
zP

 (4)

This matrix formulation shows that each output oi is a weighted sum of the inputs z1, z2, . . . , zP ,
with the weights determined by the state-space matrices Ā, B̄, and C. The model can thus integrate
information across different time steps while maintaining computational efficiency. This matrix
resembles the attention score map in transformer-based models (Ali et al., 2024). In other words, S6
layers may be interpreted as data-controlled linear operators.

Notably, as these matrices are dynamically adjusted based on the input sequence, they enable the
model to efficiently capture temporal dependencies across various time steps. This approach allows
Mamba to maintain computational complexity that scales linearly with the context length.

Mamba block. One of the critical aspects of Mamba’s architecture is how a Mamba block relates
its input sequence X = (x1, x2, . . . , xP ) to its output sequence Y = (y1, y2, . . . , yP ) with P
corresponding to the sequence or context length. The relationship between the input and output of
the Mamba block is expressed through a time-varying SSM described below:

G = σ(Wgate projX), Z = Conv1D(Win projX) (5)

O = S6(Z), Y = O ⊙G (6)

Here, G is a gating function derived from a linear transformation of the input sequence X followed
by a SILU function, σ. The element-wise multiplication ⊙ between G and O allows the model to
selectively emphasize or attenuate parts of the input to focus on relevant input information. The input
Z to the S6 is a linearly transformed version of the original input X followed by a 1D convolution.

As demonstrated in these equations, the relationship between the last token oP and the first token
is governed by the term αP,1 = CP

∏P
k=2 ĀkB̄1 = CPexp(A

∑P
k=2 ∆k)B̄1. This means that the

exponent of summed ∆t determines the impact of the first token in the generation of the P th token.

3



Published as a conference paper at ICLR 2025

0 10 20 30 40 50
Layer index

20
21
22
23
24
25
26
27
28
29

210
211
212
213

 (
t)

2 
(lo

g2
 sc

al
e)

4k
8k
12k
16k
24k
32k
48k
64k

Figure 2: Layer-wise behavior of
∑

(∆t) for different context length during test-time. We used the
Pile dataset on Mamba 1.4B for the evaluation.

3 MOTIVATIONAL CASE STUDIES

The behavioral change of ∆t. We first investigate the behavior of the accumulated discretization
matrix ∆t in the pre-trained Mamba-1.4B model when exposed to inputs of different context lengths.
Using 100 samples from Pile, for each Mamba layer, we compute the ∥(

∑P ′

t=1 ∆t)∥2 for different
evaluation context lengths P ′, where ||.||2 represents the l2-norm of a tensor. We plot this analysis in
Fig. 2, which reveals how the accumulation of ∆t scales with increasing context length. Specifically,
Fig. 2 discloses that for each layer of the model, the magnitude of

∑
∆t increases with the increase

in context lengths P ′. According to Equations 3 and 4, and given that all entries of A are always
negative (Gu & Dao, 2023), we observe that the negative sum of ∆t appears as the exponent in
the exp function. Consequently, the term exp(−

∑
∆t) effectively governs the decay of influence

from any previous token. A larger value of ∆t results in greater forgetfulness, decreasing the model’s
reliance on earlier tokens. In contrast, smaller ∆t values enable the model to retain information from
more distant tokens. Therefore, exp(−

∑P ′

t=n ∆t) can be interpreted as a parameter that potentially
regulates the retention level for the n-th input to compute the token at P ′.

Figure 3: Impact of different values of uni-
form ∆t scaling on the perplexity (PPL)
evaluation metric.

Influence of scaled ∆t. For transformer-based
LLMs, a popular method for addressing the out-of-
distribution (OOD) context length P ′ > P (where
P represents the training context length) is posi-
tional interpolation (PI) (Chen et al., 2023a). The
PI method accomplishes this by multiplying the to-
ken index value in RoPE by P

P ′ . This rescaling en-
sures that the positional indices remain within a valid
range, effectively mitigating the OOD problem asso-
ciated with longer contexts without retraining.

Inspired by this, we propose a straightforward ap-
proach for Mamba to address the accumulated out-
of-distribution (OOD) discretization steps by scaling
the discretization matrix ∆t by a fixed scalar value
s ≤ 1 across all model layers. This method aims
to mitigate the OOD effects associated with longer
context sizes. We utilized a pre-trained Mamba 1.4B to validate this approach, conducting a grid
search over various values of s. We then evaluated the model’s performance on the test set of the
Pile dataset (Gao et al., 2020) for an evaluation context length of 32k tokens, reporting the average
perplexity. The results, presented in Fig. 3, demonstrate that scaling ∆t can significantly reduce
the model’s PPL from approximately 268 to around 23.5. However, the findings also indicate that
the relationship between the choice of scaling value and performance improvement is not straight-
forward. As shown in Fig. 3, while increased scaling helps reduce the perplexity at lower values
of (s), the PPL rises after reaching a certain threshold. This complex interplay encourages us to
investigate the model’s capacity to learn the optimal scaling. Additionally, this uniform scaling
factor cannot restore the model’s performance for longer contexts to the level observed at its

4



Published as a conference paper at ICLR 2025

pre-trained context length. For instance, the model achieves a PPL of 3.7 for a 2k context length,
which remains significantly lower than the best PPL obtainable through uniform scaling.

Variable impact of ∆t on different layers. Another important observation in Fig. 2 is that for a
given test-time context length P ′, different layers of the model produce significantly different

∑
∆t

values (even when viewed on a logarithmic scale). This underscores the point that each layer should
not employ the same scaling factor to reduce the impact of ∆t. This observation motivates us
to implement a heterogeneous (layer-specific) scaling mechanism across the various layers of the
model to effectively address the OOD

∑
∆t.

4 MAMBAEXTEND METHODOLOGY

Motivated by the need to mitigate the OOD effects, we introduce MambaExtend, a training-free
method for scaling the discretization steps of each layer. For an L-layer Mamba model, our primary
objective is to determine the optimal scaling factors for each layer, denoted as s1, s2, . . . , sL, which
will be used to adjust the discretization matrix ∆t. Note that for a layer i, si ∈ Rm, where m = 1
indicates that si is a scalar, and m > 1 indicates that si is a vector. Without loss of generality, for
m = 1, the discretization adjustment can be expressed as ∆′

t
i
= si∆t

i
, with ∆′

t
i

applied during
inference. The goal is to calibrate the newly introduced learnable parameters si for all i ∈ 1, . . . , L
in a way that is both memory- and compute-efficient, and does not involve any additional training
or fine-tuning of the model parameters. These constraints will enable such calibration to be feasible
on resource-limited edge devices.

Algorithm 1 MambaExtend Algorithm

1: Input: An L-layer Mamba model parameterized byM, set of calibration samples C, calibration
function CF

2: Output: Scaling factors S = [s1, s2, ..., sL],where si ∈ Rm

3: for i ≤ L do
4: si ← init(U(0, 1))
5: end for
6: freeze(M)
7: S← CF(S, C,M)
8: return S

Algorithm 1 outlines the MambaExtend framework, which takes a pre-trained Mamba model as
input, along with a small set of calibration samples from the target task and a specialized function
known as the calibration function (CF). As its name implies, CF calibrates the learnable scaling fac-
tors. Importantly, unlike DeciMamba, which allows fine-tuning of the weights, MambaExtend keeps
the model weights fixed to their pre-trained values (as indicated in Line 6 of Algorithm 1) through-
out the calibration process. This approach makes MambaExtend significantly more compute- and
memory-efficient compared to DeciMamba.

Calibration via back-propagation (CFBP ). Gradient-based backpropagation is a widely used op-
timization method for updating the free (unfrozen) parameters on a calibration set. However, to
minimize computational and memory overhead, we ensure parameter efficiency by restricting up-
dates to the scaling factors S only. Algorithm 2 summarizes the CFBP algorithm for finding the
optimal scaling factors. We utilize Adam as the optimizer for backpropagation (as noted in Line
4 of Algorithm 2). The Evaluate() function in Line 6 computes the loss of the model, which is
parameterized by frozen weights and the learnable scaling factors S.

Calibration via zeroth-order optimization (CFZO). Zeroth-order optimization (Spall, 1992; Mal-
ladi et al., 2023b) offers an efficient yet noisier method for calibration, as it relies solely on forward
passes to approximate gradients. Algorithm 3 outlines the process for optimizing the scaling factors
S in CFZO. Specifically, this is a multi-iteration process in which, at each iteration, the scaling
factors are randomly perturbed using a random variable δ sampled from a Rademacher distribution.
The magnitude of the perturbation and the learning rate for the updates are controlled by the hyper-
parameters c and η, respectively. We employ the two-sided variant of the simultaneous perturbation
stochastic approximation method (SPSA) (Spall, 1992), which obtains gradient approximations by

5



Published as a conference paper at ICLR 2025

Algorithm 2 CFBP Algorithm

1: Input: An L-layer Mamba model parameterized by frozen weightsM, set of calibration sam-
ples C, the initialized scaling factors S

2: Input: Learning rate η, number of iterations K
3: Output: Learned Scaling factors S = [s1, s2, ..., sL],where si ∈ Rm

+
4: optimizer = Adam(S, η)
5: for k ≤ K do
6: L = Evaluate(M∆t×S, C)
7: L.backward()
8: optimizer.step()
9: S← S.clamp(min = 0.001) # make sure scaling factors remain positive

10: end for
11: return S

Algorithm 3 CFZO Algorithm

1: Input: An L-layer Mamba model parameterized byM, set of calibration samples C, the initial-
ized scaling factors S

2: Output: Learned scaling factors S = [s1, s2, ..., sL],where si ∈ Rm
+

3: Specify learning rate η, perturbation magnitude c, number of iterations K
4: for k ≤ K do
5: δ ∈ RL×m ∼ Rademacher()
6: S+ = S+ c× δ, S− = S− c× δ
7: L+ = Evaluate(M∆t×S+ , C), L− = Evaluate(M∆t×S− , C)
8: ∇̂S =(L+ - L−)/(2cδ)
9: S← S− η∇̂S

10: S← S.clamp(min = 0.001) # make sure scaling factors remain positive
11: end for
12: return S

applying both positive and negative perturbations to the parameters simultaneously. The two-sided
SPSA approach yields gradient estimates with lower variance than the one-sided version, thus en-
hancing accuracy, especially in noisy environments (Spall, 2005).

The convergence of the zeroth-order calibration method, CFZO, is affected by the number of pa-
rameters being optimized, specifically the size of S. Classical lower bounds indicate that conver-
gence slows linearly as the number of parameters increases (Nemirovskij & Yudin, 1983; Duchi
et al., 2015). Consequently, a natural strategy in our context is to employ the backpropagation-based
method, CFBP , when optimizing a larger set of parameters in (S), while reserving CFZO for smaller
parameter sets.

Our experiments show that long-context evaluation tasks, based on the perplexity measure, and the
LongBench tasks require relatively fewer scaling factors. Specifically, for each layer si ∈ R+m,
a setting of m = 1 is sufficient to improve PPL on long-context inputs. Here, R+ represents the
set of positive real numbers, as scaling factors cannot take negative values in our case. Any si that
updates to a negative value is clamped to a very small positive number to ensure this condition in
our algorithm. We set m = D for the passkey retrieval task, thereby increasing the number of
parameters to be calibrated or updated. We empirically find that for the long-context tasks, CFZO

performs nearly as well as CFBP . However, for the passkey retrieval task, we prefer CFBP due
to its faster convergence trend compared to the zeroth-order method. In future work, we plan to
address the tuning of the zeroth-order approach to achieve a better convergence rate for relatively
high parameter counts.

5 EXPERIMENTS

This section evaluates the performance and efficiency of our proposed MambaExtend. Specifically,
we first describe the models and datasets used for our experiments. We then present extensive

6



Published as a conference paper at ICLR 2025

empirical results to outline our findings regarding the long-context performance of the Mamba model
variants. We finally discuss the compute, time, and memory requirements for MambaExtend.

5.1 EXPERIMENTAL SETUP

Models and datasets. To evaluate the performance of MambaExtend, we use both long-context
understanding and long-context retrieval ability tasks. For long-context understanding, we use the
Pile (Gao et al., 2020) and PG-19 (Rae et al., 2019) datasets and assess the performance of the Mam-
baExtend in terms of perplexity scores at various context lengths. We use Mamba-130M, Mamba-
1.4B (Gu & Dao, 2023), and Mamba2-780M (Dao & Gu, 2024) for these evaluations. Additionally,
we use the LongBench benchmark (Bai et al., 2023) to evaluate the performance accuracy of the
Mamba-1.4B and Mamba2-780M models. In specific, we use seven tasks, namely Qasper (single-
document QA), HotpotQA, 2WikiMultihopQA (multi-document QA), TREC, TriviaQA (few-shot
learning), LCC, and RepoBench-P (code completion). For the passkey retrieval task, we follow the
setup described in (Ben-Kish et al., 2024) and evaluate the performance of the Mamba-130M and
Mamba-1.4B models in retrieving a 5-digit code embedded at a random sequence depth within sam-
ples from the WikiText-103 dataset (Merity et al., 2016). In our retrieval setup, the input sequence
lengths range from 1K to 64K tokens.

Baseline and SoTA comparison. We use the pre-trained Mamba (Gu & Dao, 2023) and Mamba2
(Dao & Gu, 2024) models to evaluate the baseline performance as we increase the evaluation context
length P ′. We use DeciMamba (Ben-Kish et al., 2024), a contemporary work that uses memory-
intensive fine-tuning to update all the parameters while improving the effective receptive field.

5.2 EXPERIMENTAL RESULTS

Perplexity evaluations on PG-19 and Pile. To evaluate perplexity (PPL) on the Pile and PG-19, we
use twenty calibration samples from the corresponding training set for a given context length. We

Figure 4: Perplexity comparison on PG-19.
The ✓ and ✗ identify the fine-tuning re-
quirements to be false and true, respectively.

use these samples to learn the scaling factors in Mam-
baExtend, then evaluate perplexity on the test set for
a given context length. As stated earlier for the per-
plexity evaluation, for each layer i, we use a single
scaling factor si ∈ R+ per layer3, which scales the
∆t tensor uniformly for that layer. Therefore, in an
L-layer Mamba model, we optimize L scaling fac-
tors for these datasets. Given the small number of pa-
rameters to optimize, we use CFZO as the calibration
function.

Fig. 4 depicts the performance of MambaExtend
compared to the pre-trained Mamba variants and
DeciMamba. Specifically, at 70k context length,
MambaExtend-130M yields a PPL of 30.62, a
∼32506× improvement over the baseline counter-
part that fails to provide a very high PPL of 995328. Compared to the DeciMamba, it shows consis-
tent improvement with reduced PPL of up to ∼40.6%.

Table 1 reports the PPL values of MambaExtend models and compares them to those of the pre-
trained models on Pile. As shown in the table, MambaExtend, through only minimal calibration,
allows the models to maintain their performance even with increasing context lengths. Specifically,
MambaExtend can improve the PPL by up to ∼8145×, showing higher improvement trends at
longer contexts.

LongBench. LongBench Bai et al. (2023) is a benchmark for bilingual, multitask, and compre-
hensive assessment of long-context understanding. For MambaExtend, we use seven popular tasks
from LongBench. Due to the lack of training data, we used 10 samples from the 4K-8K split of each
dataset as calibration data and the remaining samples from the same split to evaluate. We apply the

3This may be attributed to the relatively more straightforward nature of long-context understanding as op-
posed to long-context retrieval, since for the latter we need more fine-grain scaling, increasing the number of
calibration parameters.

7



Published as a conference paper at ICLR 2025

Table 1: Perplexity for Mamba models over different evaluation context lengths on Pile dataset.

Mamba-130M Mamba-1.4B Mamba2-780M
Context Length 2k 4k 8k 16k 32k 64k 2k 4k 8k 16k 32k 64k 2k 4k 8k 16k 32k 64k

Pre-trained Model 7.06 6.18 6.22 7.38 444 46592 4.34 3.78 4.19 14.4 260 6304 4.78 4.62 22.4 79 185 378
MambaExtend 7.06 6.18 5.03 4.84 5.16 5.72 4.31 3.78 3.48 3.62 4.81 6.93 4.59 3.95 3.89 4.25 5.56 5.00

Table 2: Mamba vs MambaExtend performance on representative LongBench tasks.

Model Qasper HotpotQA 2WikiMultihopQA TREC TriviaQA LCC RepoBench-P Average
Mamba-1.4B 7.0 11.00 9.75 29.00 1.67 20.12 11.67 12.88
MambaExtend-1.4B 16.67 14.29 13.82 35.0 7.67 26.12 18.84 18.91
Mamba2-780M 7.50 6.06 9.48 17.0 0.1 22.1 14.01 10.89
MambaExtend2-780M 7.96 10.95 18.33 28.00 6.83 28.27 17.71 16.86

1K 2K 4K 8K 16K 32K 64K
Context Length

0%

25%

50%

75%

100%

Pa
ss

ke
y 

D
ep

th
 [%

]

Mamba-130M Full FT, Retrieval Score = 71.4%

1K 2K 4K 8K 16K 32K 64K
Context Length

0%

25%

50%

75%

100%

Pa
ss

ke
y 

D
ep

th
 [%

]

DeciMamba-130M, Retrieval Score = 85.7%

1K 2K 4K 8K 16K 32K 64K
Context Length

0%

25%

50%

75%

100%

Pa
ss

ke
y 

D
ep

th
 [%

]

MambaExtend-130M, Retrieval Score = 91.4%

1K 2K 4K 8K 16K 32K 64K
Context Length

0%

25%

50%

75%

100%

Pa
ss

ke
y 

D
ep

th
 [%

]

Mamba-1.4B Full FT, Retrieval Score = 82.8%

1K 2K 4K 8K 16K 32K 64K
Context Length

0%

25%

50%

75%

100%

Pa
ss

ke
y 

D
ep

th
 [%

]

DeciMamba-1.4B, Retrieval Score = 74.2%

1K 2K 4K 8K 16K 32K 64K
Context Length

0%

25%

50%

75%

100%

Pa
ss

ke
y 

D
ep

th
 [%

]

MambaExtend-1.4B, Retrieval Score = 80.0%

Figure 5: Passkey retrieval performance after fine-tuning (FT) (for Mamba and DeciMamba) or
calibrating (for MambaExtend) on samples of 4k context length.

CFZO calibration function to learn the scaling factors. Similar to the calibration setup for perplexity
evaluation, we calibrate one scaling factor per layer shared over the whole ∆t tensor for that layer.
As demonstrated in the Table 2, MambaExtend can improve the average LongBench accuracy
by up to 6.03%.

Passkey Retrieval. Previous works have demonstrated that tasks requiring exact retrieval are more
challenging than achieving low perplexity in longer context (Liu et al., 2024), so we use more fine-
grained sharing of scaling factors to optimize. For ∆t tensor of a layer i, we use one scaling factor
per channel yielding total D scaling factors per layer (si ∈ RD

+ ). Unless otherwise stated, we use
CFBP for one epoch to calibrate on a dataset with 4k context length. For the baseline, we performed
standard fine-tuning with the same context length for one epoch as we get significant failure in the
retrieval. For DeciMamba to have a fair comparison, we fine-tune for the same epochs as ours4.

The evaluation is conducted across context lengths of 1K, 2K, 4K, 8K, 16K, 32K, and 64K, with
the target digit hidden at depths of 0%, 25%, 50%, 75%, and 100% of each of these sequence.
Assuming that each correct retrieval receives a score of 1 and each incorrect retrieval receives a score
of 0, we compute the retrieval score in percentage (%) as Total correct retrievals

Total (correct + incorrect) retrievals ∗ 100, across all
the depths overall context lengths. The result is demonstrated in Fig. 5. Although MambaExtend
calibrates approximately 3500× and 7100× fewer parameters for Mamba-130M and Mamba-
1.4B, receptively, it performs better or very similarly to the other two alternatives.

5.3 COMPUTE, TIME, AND MEMORY COST ANALYSIS

Fig. 6 demonstrates a comparison of full finetuning of baseline Mamba, DeciMamba, and calibra-
tion tuning with MambaExtend for the passkey retrieval task. Note here that to have a fair compar-
ison and to demonstrate efficacy at extreme lost cost tuning, we set the epoch to one for all. For

4In the original paper (Ben-Kish et al., 2024) the model was fine-tuned for longer duration, however we
focus on limited resource calibration and thus keep our experiments limited to fine-tuning for one epoch. Please
see Appendix for fine-tuning results with longer epochs.

8



Published as a conference paper at ICLR 2025

Figure 6: Comparison of normalized {peak memory, calibration time, and number of parameter
updates} between Mamba, DeciMamba, and MambaExtend for passkey retrieval task. We use
Mamba-130M model and for each method, we train for one epoch either with 4k or with 8k context
length. For these three measurement types, we normalize each value by the corresponding value of
MambaExtend-130M-4k.

MambaExtend, we show results for fine-tuning with both 4k and 8k contexts, while for others, we
only perform experiments with tuning with 4k contexts. Notably, MambaExtend requires up to
2.12× fewer memory for tuning with similar context; in other words, it can support calibra-
tion with higher context of up to 2×. Regarding per epoch calibration time, MambaExtend can
be faster by up to 1.69× while requiring up to 3532.6× fewer parameters to update. To measure
the retrieval success, we compute the Interestingly, despite having significant calibration efficiency,
4k tuned MambaExtend provides up to 20% improved accuracy. We yield even better efficiency
for CFZO based calibration. In specific, compared to DeciMamba, MambaExtend requires up to
∼5.42 ∗ 106× fewer parameter updates and costs up to 3.87× lower peak-memory (details pro-
vided in Appendix A.3).

5.4 DISCUSSION AND ABLATION STUDY

Understanding the impact of learned scaling on ∆t. To understand the benefits of the learned

2000

4000

6000

8000To
ke

n 
In

de
x

Mamba

0 10 20 30 40
Layer Index

2000

4000

6000

8000To
ke

n 
In

de
x

MambaExtend

1000

2000

3000

4000

5000

t
2

Figure 7: Impact of the calibrated scaling factors on
∆t. (Top) layer-wise normalized sum of ∆t for a pre-
trained Mamba. (Bottom) layer-wise Normalized sum
of ∆t layer-wise for a MambaExtend calibrated model.
We used Mamba-1.4B on Pile with 32K context.

scaling on the ∆t discretization tensor,
we compute the normalized sum of ∆t

∥(
∑P ′

t=n ∆t)∥2. Here, n refers to the to-
ken index whose impact we want to study
on the output context length P ′. P ′ is set
to 32k for this analysis. The Fig. 7 demon-
strates the heatmap of the ∥(

∑P ′

t=n ∆t)∥2
for different token index (n) at different
layers of the model. Notably, as discussed
earlier, high ∥(

∑P ′

t=n ∆t)∥2 value may be
associated with a stronger decaying effect
on the output token P ′. As we can see,
the original Mamba, particularly for later
layers, induces a significant decaying ef-
fect for the earlier tokens (see the value for
token index 2000 for layer index > 40).
This finding aligns with that of Ben-Kish
et al. (2024). MambaExtend, on the con-
trary, reduces this effect significantly, both
overall and for later layers.

Ablation on the granularity of scaling factor sharing. Table 3 presents the re-
sults with various levels of sharing of the scaling factor a layer’s ∆t. Specifically,

Table 3: Passkey retrieval on Mamba-130M with a dif-
ferent granularity of the scaling factor sharing.
Sharing granularity # Params. ↓ Retrieval Score (%) ↑

Per-channel 36.8K 91.4
Per-token 98.3K 62.8
Per-tensor 24 22.8

we allow per-channel, per-token, and per-
tensor sharing where a scaling factor is
shared over a channel, a token, and the
whole tensor for a layer’s ∆t, respec-
tively. We calibrate for one epoch for
three scenarios. As we can see from the
table, per-channel sharing can improve the retrieval score significantly. While per-tensor sharing re-
quires considerably fewer calibration parameters, it fails to yield a good score, making per-channel
sharing an optimal choice.

9



Published as a conference paper at ICLR 2025

Table 4: Perplexity result with CFZO

v.s. CFBP on Pile dataset.

CF\Context Length 4K 8K 16K
CFBP 6.10 5.11 4.79
CFZO 6.18 5.03 4.84

Ablation on CFBP vs. CFZO. For simpler long-context
understanding tasks we demonstrated CFZO to yield signif-
icantly improved PPL. In Table 4, we now demonstrate a
direct comparison of the two calibration functions, namely,
CFZO and CFBP for Pile dataset with Mamba-130M. As
we can see, the perplexities for the three evaluation context
lengths are similar for both of these methods. This experiment demonstrates the efficacy of CFZO

along with its efficiency over BP -based alternative.

6 RELATED WORK

Long-context understanding for LLMs. (Chen et al., 2023a) introduced positional interpolation
to mitigate the issue of OOD positions for contexts exceeding the pre-training length in RoPE-based
transformers. In parallel, works such as (Han et al., 2024; Jin et al., 2024) proposed zero-shot tech-
niques that constrain positional indices to discrete integer values when handling extended contexts
in transformers. Additionally, (Chen et al., 2024) employs evolutionary search to design a non-
uniform position interpolation and initialization strategy for fine-tuning on longer contexts. The
YaRN method (Peng et al., 2024) further advances this line of work by combining positional in-
terpolation with dynamic NTK-aware scaling, which dynamically adjusts the scaling of high- and
low-frequency components of positional embeddings based on sequence length. Despite signifi-
cant progress in transformer-based LLMs, long-context understanding for SSMs it yet to be fully
unveiled. Only recently, inspired by the success of LongLoRA Chen et al. (2023c), DeciMamba
(Ben-Kish et al., 2024) has proposed a fine-tuning-based context-extension for pre-trained models.

Zeroth-order optimization. Zeroth-order (ZO) optimization refers to a class of optimization al-
gorithms that do not have backpropagation-based gradient computation. Instead, the ZO methods
estimate gradients indirectly by querying function values through only forward passes. Over the past
years, several techniques have been developed for ZO gradient estimation. Randomized Gradient
Estimation (RGE) (Nesterov & Spokoiny, 2017) approximates gradient by randomly perturbing the
input in multiple directions and examining the function value change. The perturbation is typically
drawn from a random distribution, such as Gaussian or Rademacher. It potentially requires fewer
function evaluations than alternative methods like finite differences (FD) (Shi et al., 2021). Simulta-
neous perturbation stochastic approximation (SPSA) (Spall, 1992) is a highly efficient ZO method
for minimizing multivariate loss functions. Unlike the RGE and FD method, which requires multi-
ple evaluations per iteration, SPSA perturbs all input dimensions simultaneously, requiring only two
function evaluations per iteration, regardless of the problem’s dimensionality. This makes SPSA es-
pecially attractive for large-scale optimization tasks. Recently, various algorithms, including MeZO
(Malladi et al., 2023a), further improved the memory efficiency of SPSA. In the MambaExtend, we
gain efficiency benefits by optimizing a small number of parameters.

7 CONCLUSIONS

We addressed the limitations of Mamba in handling long-context tasks by introducing MambaEx-
tend, a framework to extend the context length of Mamba models without model training. Through
non-uniform calibration of the discretization matrix (∆t) scaling factors across different model lay-
ers, we enabled context extension by up to 32× while maintaining similar perplexity levels. We
believe this work opens up new possibilities for efficient, training-free adaptation of state-space
models to long context applications, potentially allowing the true potential of sub-quadratic models
to be unveiled. We hope our findings will inspire the community to delve further into the global-
local ERF (Xiao et al., 2024) aware tuning, as well as the theoretical underpinning of the relation
between discretization steps and OOD generalization.

8 ACKNOWLEDGMENTS

We would like to acknowledge the constructive discussions and feedback from the anonymous re-
viewers of the International Conference of Learning Representation 2025. This research was sup-
ported in part by a grant from the National Science Foundation.

10



Published as a conference paper at ICLR 2025

REFERENCES

Ameen Ali, Itamar Zimerman, and Lior Wolf. The hidden attention of mamba models. arXiv
preprint arXiv:2403.01590, 2024.

LongMamba Authors LongMamba. Longmamba: Enhancing mamba’s long-context capabilities via
training-free receptive field enlargement. Openreview ICLR 2025 submission, 2024.

Yushi Bai, Xin Lv, Jiajie Zhang, Hongchang Lyu, Jiankai Tang, Zhidian Huang, Zhengxiao Du,
Xiao Liu, Aohan Zeng, Lei Hou, et al. Longbench: A bilingual, multitask benchmark for long
context understanding. arXiv preprint arXiv:2308.14508, 2023.

Iz Beltagy, Matthew E. Peters, and Arman Cohan. Longformer: The long-document transformer,
2020. URL https://arxiv.org/abs/2004.05150.

Assaf Ben-Kish, Itamar Zimerman, Shady Abu-Hussein, Nadav Cohen, Amir Globerson, Lior Wolf,
and Raja Giryes. Decimamba: Exploring the length extrapolation potential of mamba. CoRR,
abs/2406.14528, 2024. doi: 10.48550/ARXIV.2406.14528. URL https://doi.org/10.
48550/arXiv.2406.14528.

Assaf Ben-Kish, Itamar Zimerman, Shady Abu-Hussein, Nadav Cohen, Amir Globerson, Lior Wolf,
and Raja Giryes. Decimamba: Exploring the length extrapolation potential of mamba. arXiv
preprint arXiv:2406.14528, 2024.

Shouyuan Chen, Sherman Wong, Liangjian Chen, and Yuandong Tian. Extending context window
of large language models via positional interpolation. CoRR, abs/2306.15595, 2023a. doi: 10.
48550/ARXIV.2306.15595. URL https://doi.org/10.48550/arXiv.2306.15595.

Shouyuan Chen, Sherman Wong, Liangjian Chen, and Yuandong Tian. Extending context window
of large language models via positional interpolation. arXiv preprint arXiv:2306.15595, 2023b.

Yukang Chen, Shengju Qian, Haotian Tang, Xin Lai, Zhijian Liu, Song Han, and Jiaya Jia. Longlora:
Efficient fine-tuning of long-context large language models. arXiv preprint arXiv:2309.12307,
2023c.

Yukang Chen, Shengju Qian, Haotian Tang, Xin Lai, Zhijian Liu, Song Han, and Jiaya Jia. Lon-
glora: Efficient fine-tuning of long-context large language models. In The Twelfth International
Conference on Learning Representations, ICLR 2024, Vienna, Austria, May 7-11, 2024. OpenRe-
view.net, 2024. URL https://openreview.net/forum?id=6PmJoRfdaK.

Tri Dao and Albert Gu. Transformers are ssms: Generalized models and efficient algorithms through
structured state space duality. International Conference on Machine Learning, 2024.

Yiran Ding, Li Lyna Zhang, Chengruidong Zhang, Yuanyuan Xu, Ning Shang, Jiahang Xu, Fan
Yang, and Mao Yang. Longrope: Extending llm context window beyond 2 million tokens. arXiv
preprint arXiv:2402.13753, 2024.

John C Duchi, Michael I Jordan, Martin J Wainwright, and Andre Wibisono. Optimal rates for
zero-order convex optimization: The power of two function evaluations. IEEE Transactions on
Information Theory, 61(5):2788–2806, 2015.

Leo Gao, Stella Biderman, Sid Black, Laurence Golding, Travis Hoppe, Charles Foster, Jason
Phang, Horace He, Anish Thite, Noa Nabeshima, et al. The pile: An 800gb dataset of diverse text
for language modeling. arXiv preprint arXiv:2101.00027, 2020.

Olga Golovneva, Tianlu Wang, Jason Weston, and Sainbayar Sukhbaatar. Contextual position en-
coding: Learning to count what’s important. arXiv preprint arXiv:2405.18719, 2024.

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. CoRR,
abs/2312.00752, 2023. doi: 10.48550/ARXIV.2312.00752. URL https://doi.org/10.
48550/arXiv.2312.00752.

11

https://arxiv.org/abs/2004.05150
https://doi.org/10.48550/arXiv.2406.14528
https://doi.org/10.48550/arXiv.2406.14528
https://doi.org/10.48550/arXiv.2306.15595
https://openreview.net/forum?id=6PmJoRfdaK
https://doi.org/10.48550/arXiv.2312.00752
https://doi.org/10.48550/arXiv.2312.00752


Published as a conference paper at ICLR 2025

Albert Gu, Tri Dao, Stefano Ermon, Atri Rudra, and Christopher Ré. Hippo: Recurrent memory
with optimal polynomial projections. In Hugo Larochelle, Marc’Aurelio Ranzato, Raia Had-
sell, Maria-Florina Balcan, and Hsuan-Tien Lin (eds.), Advances in Neural Information Process-
ing Systems 33: Annual Conference on Neural Information Processing Systems 2020, NeurIPS
2020, December 6-12, 2020, virtual, 2020. URL https://proceedings.neurips.cc/
paper/2020/hash/102f0bb6efb3a6128a3c750dd16729be-Abstract.html.

Albert Gu, Karan Goel, and Christopher Ré. Efficiently modeling long sequences with structured
state spaces. In The Tenth International Conference on Learning Representations, ICLR 2022,
Virtual Event, April 25-29, 2022. OpenReview.net, 2022. URL https://openreview.net/
forum?id=uYLFoz1vlAC.

Chi Han, Qifan Wang, Hao Peng, Wenhan Xiong, Yu Chen, Heng Ji, and Sinong Wang. Lm-infinite:
Zero-shot extreme length generalization for large language models. In Kevin Duh, Helena Gómez-
Adorno, and Steven Bethard (eds.), Proceedings of the 2024 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Technologies (Vol-
ume 1: Long Papers), NAACL 2024, Mexico City, Mexico, June 16-21, 2024, pp. 3991–4008.
Association for Computational Linguistics, 2024. doi: 10.18653/V1/2024.NAACL-LONG.222.
URL https://doi.org/10.18653/v1/2024.naacl-long.222.

Hongye Jin, Xiaotian Han, Jingfeng Yang, Zhimeng Jiang, Zirui Liu, Chia-Yuan Chang, Huiyuan
Chen, and Xia Hu. Llm maybe longlm: Self-extend llm context window without tuning. arXiv
preprint arXiv:2401.01325, 2024.

Nikita Kitaev, Lukasz Kaiser, and Anselm Levskaya. Reformer: The efficient transformer. In
8th International Conference on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia,
April 26-30, 2020. OpenReview.net, 2020. URL https://openreview.net/forum?id=
rkgNKkHtvB.

Nelson F Liu, Kevin Lin, John Hewitt, Ashwin Paranjape, Michele Bevilacqua, Fabio Petroni, and
Percy Liang. Lost in the middle: How language models use long contexts. Transactions of the
Association for Computational Linguistics, 12:157–173, 2024.

Sadhika Malladi, Tianyu Gao, Eshaan Nichani, Alex Damian, Jason D. Lee, Danqi Chen, and
Sanjeev Arora. Fine-tuning language models with just forward passes. In Alice Oh, Tris-
tan Naumann, Amir Globerson, Kate Saenko, Moritz Hardt, and Sergey Levine (eds.), Ad-
vances in Neural Information Processing Systems 36: Annual Conference on Neural Infor-
mation Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16,
2023, 2023a. URL http://papers.nips.cc/paper_files/paper/2023/hash/
a627810151be4d13f907ac898ff7e948-Abstract-Conference.html.

Sadhika Malladi, Tianyu Gao, Eshaan Nichani, Alex Damian, Jason D Lee, Danqi Chen, and Sanjeev
Arora. Fine-tuning language models with just forward passes. Advances in Neural Information
Processing Systems, 36:53038–53075, 2023b.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
models. arXiv preprint arXiv:1609.07843, 2016.

Arkadij Semenovič Nemirovskij and David Borisovich Yudin. Problem complexity and method
efficiency in optimization. 1983.

Yurii Nesterov and Vladimir Spokoiny. Random gradient-free minimization of convex functions.
Foundations of Computational Mathematics, 17(2):527–566, 2017.

Bowen Peng, Jeffrey Quesnelle, Honglu Fan, and Enrico Shippole. Yarn: Efficient context win-
dow extension of large language models. In The Twelfth International Conference on Learning
Representations, ICLR 2024, Vienna, Austria, May 7-11, 2024. OpenReview.net, 2024. URL
https://openreview.net/forum?id=wHBfxhZu1u.

Jack W Rae, Anna Potapenko, Siddhant M Jayakumar, and Timothy P Lillicrap. Compressive
transformers for long-range sequence modelling. arXiv preprint arXiv:1911.05507, 2019.

12

https://proceedings.neurips.cc/paper/2020/hash/102f0bb6efb3a6128a3c750dd16729be-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/102f0bb6efb3a6128a3c750dd16729be-Abstract.html
https://openreview.net/forum?id=uYLFoz1vlAC
https://openreview.net/forum?id=uYLFoz1vlAC
https://doi.org/10.18653/v1/2024.naacl-long.222
https://openreview.net/forum?id=rkgNKkHtvB
https://openreview.net/forum?id=rkgNKkHtvB
http://papers.nips.cc/paper_files/paper/2023/hash/a627810151be4d13f907ac898ff7e948-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/a627810151be4d13f907ac898ff7e948-Abstract-Conference.html
https://openreview.net/forum?id=wHBfxhZu1u


Published as a conference paper at ICLR 2025

Yair Schiff, Chia-Hsiang Kao, Aaron Gokaslan, Tri Dao, Albert Gu, and Volodymyr Kuleshov.
Caduceus: Bi-directional equivariant long-range dna sequence modeling. arXiv preprint
arXiv:2403.03234, 2024.

Hao-Jun Michael Shi, Melody Qiming Xuan, Figen Oztoprak, and Jorge Nocedal. On the numerical
performance of derivative-free optimization methods based on finite-difference approximations.
arXiv preprint arXiv:2102.09762, 2021.

James C Spall. Multivariate stochastic approximation using a simultaneous perturbation gradient
approximation. IEEE transactions on automatic control, 37(3):332–341, 1992.

James C Spall. Introduction to stochastic search and optimization: estimation, simulation, and
control. John Wiley & Sons, 2005.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

A Vaswani. Attention is all you need. Advances in Neural Information Processing Systems, 2017.

Shida Wang. Longssm: On the length extension of state-space models in language modelling. arXiv
preprint arXiv:2406.02080, 2024.

Sinong Wang, Belinda Z. Li, Madian Khabsa, Han Fang, and Hao Ma. Linformer: Self-attention
with linear complexity, 2020. URL https://arxiv.org/abs/2006.04768.

Guangxuan Xiao, Jiaming Tang, Jingwei Zuo, Junxian Guo, Shang Yang, Haotian Tang, Yao Fu,
and Song Han. Duoattention: Efficient long-context llm inference with retrieval and streaming
heads. arXiv preprint arXiv:2410.10819, 2024.

A APPENDIX

A.1 DETAILED HYPERPARAMETERS

CFZO hyperparameters. For Pile, PG-19, and LongBench dataset calibration, we set the ZO opti-
mization hyperparameters to η = 0.001, c = 0.1, and K = 50.

CFBP hyperparameters. For the passkey retrieval task, we train the models for one epoch using
Adam optimizer with a learning rate of 0.1 for MambaExtend. For DeciMamba, and full fine-tuning,
we use the learning rate to be 1e − 4, as suggested by the authors Ben-Kish et al. (2024). For all
three cases, we use a batch size of 32, a gradient clipping of 1.0, a weight decay of 0.1, and train on
a sequence length of 6144.

A.2 PRE-TRAINED MODEL CHECKPOINTS USED

The pre-trained model checkpoints of Mamba are taken from the Hugging Face model Hub5:

• state-spaces/mamba-130m

• state-spaces/mamba-1.4b

• state-spaces/mamba2-780m

A.3 MORE RESULTS

Fig. 8 shows the performance comparison of DeciMamba and MambaExtend in terms of compute,
memory, and time. For DeciMamba, we use the total training time of 5 epochs, to evaluate the
normalized FT time. For MambaExtend, as we use ZO for the calibration, we report the time as-
sociated with the 50 iterations of calibrations. Notably, for MambaExtend, we calibrate separately
for each evaluation context length, while DeciMamba does one fine-tuning for 5 epochs with 2k

5https://github.com/state-spaces/mamba

13

https://arxiv.org/abs/2006.04768


Published as a conference paper at ICLR 2025

Figure 8: Comparison of normalized {peak memory, number of parameter updates, and
calibration/fine-tuning (FT) time (total)} between DeciMamba, and MambaExtend for PG-19. We
use Mamba-130M model for this evaluation.

Table 5: PPL comparison with transformer-based LLM for long-context understanding on Pile.

Model 2K 4K 8K 16K 32K 64K
TinyLLaMA1.1B (2K) 4.6 62.6 426.6 1243.7 2684.6 3372.04
TinyLLaMA1.1B-PI 4.6 9.56 50.34 116.47 168.84 229.46
MambaExtend-130M 7.06 6.18 5.03 4.84 5.16 5.72

context length. This causes the peak memory and fine-tuning time to increase for MambaExtend
while keeping them constant for DeciMamba. For each evaluation metric, we normalize the cor-
responding value for MambaExtend at the context length under consideration. As Fig. 8 shows,
MambaExtend requires ∼5.42 ∗ 106× fewer parameter updates and costs up to 3.87× lower peak
memory. Additionally, MambaExtend provides up to 20.9× faster calibration as opposed to the
fine-tuning duration of DeciMamba.

A.4 COMPARISON WITH TRANSFORMER-BASED LLMS

Table 6: PPL comparison with transformer-based
LLM for long-context understanding on PG19.

Model 16K 32K 64K
TinyLLaMA1.1B (2K) 2236.98 4205.64 8664.11
TinyLLaMA1.1B-PI 226.69 300.46 375.49
MambaExtend-130M 19.25 20.3 25
MambaExtend-1.4B 14 14.34 16.12

Supporting longer contexts during inference is
a critical challenge for both transformer-based
and Mamba-based LLMs. In this section, we
compare our performance with transformer-
based models to provide a broader perspective
on the long-context extension results achieved
with Mamba models. Specifically, we use the
TinyLLaMA-1.1B model, which is trained on a
2K context length, as our baseline transformer
model. We also consider a positionally interpolated version of the same model. It is important to
note that positional interpolation (PI) is a widely used training-free method for extending the con-
text of transformer models. As shown in Table 5, the MambaExtend model, despite being smaller,
consistently outperforms TinyLLaMA-1.1B at longer context lengths, both with and without PI.
Furthermore, we compare the performance of TinyLLaMA-1.1B (with and without PI) and Mam-
baExtend on PG19, another popular benchmark for perplexity (PPL) evaluation on long contexts.
The results, presented in Table 6, clearly demonstrate the significant performance advantages of
MambaExtend compared to transformer-based alternatives. It is noteworthy that MambaExtend sig-
nificantly surpasses the TinyLLaMA model variants, whether they are smaller or of similar size,
highlighting its efficacy.

A.5 MORE COMPARISON WITH DECIMAMBA

While in the main manuscript, we demonstrate the benefits of MambaExtend over the baseline
Mamba on Pile dataset, we now show a comparison with DeciMamba (Ben-Kish et al., 2024) on the
same. In specific, Table 7 demonstrates the efficacy of MambaExtend in maintaining the PPL better
than DeciMamba, particularly at longer contexts with context length ≥ 8K. Additionally, we show

Table 7: PPL comparison between DeciMamba and MambaExtend on Pile.

Model 2K 4K 8K 16K 32K 64K
DeciMamba-130M 4.93 5.36 5.21 6.99 8.19 10.62

MambaExtend-130M 7.06 6.18 5.03 4.84 5.16 5.72

results on LongBench to compare with that generated by DeciMamba in a zero-shot fashion. In

14



Published as a conference paper at ICLR 2025

Table 8: F1 scores on HotpotQA and Qasper from LongBench on DeciMamba and MambaExtend,
respectively. Italicized numbers identify the results taken from (Authors LongMamba, 2024) paper.

Model HotpotQA Qasper
DeciMamba-1.4B 13.88 14.24

MambaExtend-1.4B 14.29 16.67

Figure 9: Impact of the calibrated scaling factors on ∆t (a) Mamba vs. MambaExtend, and (b)
Mamba vs. DeciMamba as evaluated on Pile 32K context length. (Top) of both (a) and (b) shows
layer-wise Normalized sum of ∆t for a pre-trained Mamba-1.4B. (Bottom) layer-wise Normalized
sum of ∆t for (a) MambaExtend-1.4B calibrated model, and (b) DeciMamba-1.4B fine-tuned model.
To fine-tune DeciMamba 1.4B model we adhered to the setup described in (Ben-Kish et al., 2024).

specific, Table 8 shows that MambaExtend can yield reasonably improved performance as evaluated
on HotpotQA and Qasper, respectively.

Comparing the impact of learned scaling and full fine-tuning on ∆t. MambaExtend employs
a learned scaling policy to adjust the discretization steps, ∆t. In contrast, DeciMamba (Ben-Kish
et al., 2024) performs full model fine-tuning to enhance performance on longer contexts. We now
visualize the impact of these two approaches on the normalized sum of ∆t per layer. Specifically, in
Fig. 9, we present a direct comparison of MambaExtend (9(a)) and DeciMamba (9(b)). Interestingly,
both approaches exhibit a similar influence on the normalized sum of ∆t’s, significantly reducing
its values in the later layers. This experiment demonstrates that both methods effectively recalibrate
the ∆t’s. However, our approach achieves similar benefits with greater computational and memory
efficiency and reduced latency.

0.0 0.2 0.4 0.6 0.8 1.0
Scaling Factor of t

3.0

3.5

4.0

4.5

5.0

5.5

Lo
ss

Figure 10: : Impact of different values of uniform ∆t scaling on the loss landscape of the model.

A.6 THE LOSS LANDSCAPE FOR GRID-SEARCHED SCALING FACTORS

Fig. 3 in the main manuscript demonstrates the impact of uniform ∆t scaling per layer in terms of
PPL value. We now plot the loss landscape of the model with uniform scaling factor values in the
same range as that of Fig. 3. In specific, 10 shows the loss landscape to have a convex nature as we
sweep over the scale factors (s) in 0 < s ≤ 1.

15



Published as a conference paper at ICLR 2025

Table 9: PPL comparison with TBTT (Wang, 2024) fine-tuned model on Pile.

Model TBTT fine-tuned 4K 8K 16K 32K 64K
Mamba2-780M (baseline) No 4.62 22.4 79 185 378

Mamba2-780M Yes 4.62 4.34 3.89 4.92 5.16
Mamba2Extend-780M No 3.95 3.89 4.25 5.56 5

Table 10: Comparison with TBTT (Wang, 2024) fine-tuned model on Passkey retrieval task.

Model TBTT fine-tuned Avg. Accuracy (%)
Mamba2-780M (baseline) No 0

Mamba2-780M Yes 5.7
Mamba2Extend-780M No 91.34

Table 11: Comparison between fine-tuning and calibration for longer epochs on Passkey retrieval.

Model Passkey retrieval acc. (%)
DeciMamba-130M 93.1

MambaExtend-130M 94.3

A.7 COMPARISON WITH MODELS FINE-TUNED VIA TRUNCATED BACKPROPAGATION
THROUGH TIME

Contemporary research on Mamba2 models trained using truncated backpropagation through time
(TBTT) has demonstrated promising generalization capabilities on longer contexts (Wang, 2024).
To compare MambaExtend with the TBTT fine-tuned model, we apply fine-tuning for three epochs
based on the TBTT approach on a pre-trained Mamba2-780M using 0.8B tokens from the PG19
train split. We then evaluate performance on the Pile and Passkey retrieval tasks and present our
comparisons with MambaExtend in Tables 9 and 10, respectively. Interestingly, we observe a no-
table performance improvement for the Pile dataset for longer contexts, nearing the performance of
MambaExtend. However, in the critical benchmark of long-context retrieval (Table 10), the TBTT
fine-tuned model exhibits negligible retrieval accuracy. In contrast, MambaExtend achieves a sig-
nificant accuracy boost solely by calibrating the scaling factors.

Important Notes on TBTT Training. The TBTT-based fine-tuning method shares similarities with
the DeciMamba approach (Ben-Kish et al., 2024), which also proposes full fine-tuning to enhance
long-context understanding (albeit without TBTT). However, we emphasize that the key advantage
of scaling-based calibration in MambaExtend is that it is an orthogonal method compared to such
full fine-tuning approaches. This not only leads to improved accuracy but also offers significant
computational and memory benefits, potentially enabling calibration in resource-constrained envi-
ronments. Furthermore, as illustrated in Figure 7 of the original LongSSM paper (Wang, 2024),
training relatively large models, such as the 140M S5, with a previously initialized state (under the
TBTT policy) can lead to severe stability issues. This raises concerns about the scalability of such
approaches, as identified by the authors.

A.8 FINE-TUNING VS. CALIBRATION FOR LONGER EPOCHS

Table 11 shows results of fine-tuning with DeciMamba for five epochs on passkey retrieval. For
a fair comparison, we show the results of MambaExtend with scaling factors calibrated for the
same epochs. As we can see, MambaExtend can still retain improved performance over the other.
However, please note, in this work we aim to achieve long context generalization with minimal
compute and calibration overhead, thus we aim to focus on fine-tuning for only one epoch.

A.9 HARDWARE AND API RESOURCES USED

We used an Nvidia A6000 GPU with 48 GB memory for all the experiments. To perform calibration
and fine-tuning, we used Pytorch API to write the corresponding code.

16


	Introduction
	Preliminaries
	The S6 Layer and Mamba

	Motivational Case Studies
	MambaExtend Methodology
	Experiments
	Experimental Setup
	Experimental Results
	Compute, Time, and Memory Cost Analysis
	Discussion and Ablation Study

	Related Work
	Conclusions
	Acknowledgments
	Appendix
	Detailed Hyperparameters
	Pre-trained Model Checkpoints Used
	More Results
	Comparison with Transformer-Based LLMs
	More Comparison with DeciMamba
	The Loss Landscape for Grid-Searched Scaling Factors
	Comparison with Models Fine-Tuned via Truncated Backpropagation Through Time
	Fine-Tuning vs. Calibration for Longer Epochs
	Hardware and API Resources Used


