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ABSTRACT

Conflict arises due to the disparity between the substantial resource demands
of pre-trained models and the limited available resources of federated learning
(FL) participants. Split learning presents a viable approach for adapting pre-
trained models to FL, involving the allocation of a small portion of the pre-trained
model to clients while deploying the remaining part on a server. Moreover, the
application of Visual Prompt Tuning (VPT) to pre-trained models has shown state-
of-the-art performances in parameter-efficient fine-tuning methods. However, VPT
exhibits unsatisfactory performance in split federated learning (SFL) compared to
its performance in centralized learning. In this paper, we first identify that VPT
falls short of expectations in SFL due to the insufficient generalization capability
of clients. To address this issue, we propose PromptSFL, which aligns the feature
spaces of prompts between clients and the server to adapt VPT for SFL. PromptSFL
transmits the final prompts in clients, termed skip prompts, to the first prompts
in the server, enabling clients to extract more common features from the server.
Additionally, we introduce a linear layer to map the prompts from clients to the
feature space in the server during this skipping process, preventing the prompts of
clients from overfitting to local datasets. Moreover, to enhance the convergence
speed of SFL, PromptSFL employs an adaptive learning rate for clients. Extensive
experiments demonstrate the effectiveness and efficiency of PromptSFL.

1 INTRODUCTION
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(a) Federated learning.
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(b) Split federated learning.
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(c) Our method, PromptSFL.

Figure 1: Differences between (a) Federated learning (FL), (b) split federated learning (SFL), and
(c) our method, PromptSFL. Instead of transmitting model weights to the server, in SFL, the clients
forward outputs A to the server θs, and the server sends back the gradients G after completing the
training process. Moreover, our method integrates the client prompts P to the server.

The proliferation of large pre-trained models has sparked growing research interest in deploying
and fine-tuning these models within Federated Learning (FL) (Yang et al., 2023; Chen et al., 2024;
Lin et al., 2023; Qiu et al., 2024). This interest is supported by the capability of FL to leverage the
advanced capabilities of pre-trained models while simultaneously protecting user data privacy (Huang
et al., 2021; Li et al., 2022b; Lyu et al., 2022). However, a fundamental conflict arises between pre-
trained models and FL, attributed to the extensive computational resources required for training and
deploying such models, including significant memory and high-performance GPUs, which are beyond
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Figure 2: The motivations of our methods. (a) The performance of VPT and full fine-tuning (FFT) in
SFL. VPT performs worse than FFT as the number of clients increases. (b) The memory usage of FL
and SFL in clients. (c) T-SNE visualizations from 1 client and 100 clients in VPT-SFL. The features
from 100 clients are more biased.

the reach of FL participants (Brown et al., 2020; Touvron et al., 2023). Consequently, substantial
research is devoted to exploring the efficient methods for deploying and fine-tuning pre-trained
models within FL environments (Zhang et al., 2024; Chen et al., 2023a; Deng et al., 2024; Yang et al.,
2023; Zhang et al., 2023).

Split Federated Learning (SFL) (Thapa et al., 2022) is an efficient and effective method for deploying
pre-trained models in FL, as shown in Figure 1b. In SFL, pre-trained models are partitioned into two
parts between clients and a server. The portion on clients is small, while the rest of the models are
handled on the server (Li et al., 2022a). As depicted in Figure 2b, the memory usage on clients in
SFL is significantly lower than in FL, particularly with increasing batch sizes. Moreover, instead
of training entire models on clients and the server, we focus on fine-tuning the pre-trained models.
Fine-tuning in SFL provides two main advantages. Firstly, it tunes only a small subset of weights
rather than the entire model, enhancing training efficiency for both clients and the server (Chen et al.,
2023b; Guo et al., 2023b;a). Secondly, tuning a limited set of weights preserves the generalization
ability of the pre-trained model, thereby reducing the risk of overfitting in most downstream tasks
(Han et al., 2024).

Furthermore, a recent prompt tuning method, Visual Prompt Tuning (VPT) (Jia et al., 2022), has
drawn significant attention among parameter-efficient fine-tuning (PEFT) methods (Sohn et al., 2023;
Liu et al., 2024; Khattak et al., 2023), because of its superior performance while requiring only a
small portion of weights to be updated in the input spaces. VPT fine-tunes the weights in the input
spaces, freezing all pre-trained weights in each transformer block, thus maintaining the generalization
ability of the pre-trained models. Pre-trained models are more adaptable to diverse local datasets
with varying distributions from clients in SFL. Therefore, VPT, which fine-tunes the weights in the
input spaces, is more appropriate for SFL compared to other PEFT methods. Consequently, we select
VPT for SFL to adapt pre-trained models. However, the results indicate that VPT performs worse
than full fine-tuning (FFT) in SFL as the number of clients increases in a dataset called CUB (Wah
et al., 2011), as demonstrated in Figure 2a. These findings are in contrast to the centralized training
(CT), where VPT outperforms FFT (Jia et al., 2022; Han et al., 2024), as illustrated in the gray area
in Figure 2a when the number of clients is sufficiently small.

In this paper, we aim to identify the reasons why VPT performs worse than FFT in SFL with a large
number of clients. As depicted in Figure 2a, the performance of VPT significantly declines with an
increasing number of clients. By understanding why VPT performs worse with more clients in SFL,
we can address this issue to enhance the performance of VPT, thereby surpassing FFT with a large
number of clients in SFL. To this end, we analyze the outputs from the clients trained by VPT-SFL
with 100 clients, and compare them to outputs from a single client trained with VPT-SFL, akin to
centralized training with VPT. The t-SNE results, demonstrated in Figure 2c, indicate that the features
from 100 clients are more biased and fail to form a cohesive cluster. This suggests that with a larger
number of clients, VPT struggles to extract general features, leading to inferior performance.

Therefore, to improve the generalization capability of clients in SFL, we propose a method called
PromptSFL, in which clients send their prompts to a server to extract more public features in SFL,
as shown in Figure 1c. Since PromptSFL is developed from VPT-SFL, we first introduce VPT-SFL.
Specifically, in VPT-SFL, as presented in Figure 3b, the full model is split into two parts. The smaller
part is deployed on clients, while the remaining part of the entire model is set up on the server. Both
clients and the server prepend and fine-tune visual prompts in the input space. For the server, it only
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Figure 3: The illustrations of the system architecture of (a) VPT-FL and (b) VPT-SFL. (a) Clients
fine-tune the head layer and the prepended visual prompt tokens in the input space, then transmit
fine-tuned weights to the server. (b) The full models are split into two parts. Clients send outputs
A = [x,E] to the server, and the server continues training. Both the server and clients fine-tune only
the prepended prompt tokens and the head layer in the server.

fine-tunes visual prompts and the head layers during training. Clients send outputs A to the server,
and the server transmits gradients G back to the clients after completing the training process, as
shown in Figure 1b. Furthermore, in PromptSFL, clients forward the visual prompts from the last
layer to the server, referred to as skip prompts. First, the server aligns these client prompts to the
general feature space in the server using a transfer layer. Next, the server employs a learnable weight
to balance the client skip prompts with the server prompts. After obtaining the mixed prompts from
leveraging the skip prompts and server prompts, the server prepends these mixed prompts in the input
space of the first layer and continues training. The server fine-tunes the prompts and transmits the
gradients back to the clients based on the skip prompts and the client outputs A. Consequently, clients
can extract more public knowledge from the gradients derived from the skip prompts. Moreover,
we introduce a method called adaptive learning rate for clients, enhancing the convergence speed of
PromptSFL. Our extensive experiments demonstrate the effectiveness of PromptSFL.

At last, our main contributions are summarized as follows,

• We first investigate the unsatisfactory performance of deploying VPT in SFL, and figure out that
the client can not obtain sufficient general knowledge from VPT-SFL.

• We propose PromptSFL, which transmits the prompts from the last layer in clients to the server.
The server then aligns these prompts to the general feature space, enabling clients to extract more
valuable knowledge.

• To improve the convergence speed of PromptSFL, we propose a method called adaptive client
learning rate, which enables the scaling of the learning rate for different clients at various phases
of the training process.

• Extensive experiments on Fine-Grained Visual Classification (FGVC) tasks validate the effec-
tiveness of PromptSFL, demonstrating its efficacy in strengthening the extraction of public
information embedded in the server to clients for VPT-SFL.

2 PRELIMINARY

2.1 SPLIT FEDERATED LEARNING

Split Federated Learning (SFL) (Thapa et al., 2022) is a recently proposed approach that balances
client computational resources while accommodating the pre-trained models within Federated Learn-
ing (FL). In SFL, a pivotal component is the "cut-layer" (Li et al., 2022a), which splits the full model
architecture into two parts. Clients possess a part of the model including the cut-layer and preceding
layers, whereas the server keeps the remaining part. Typically, the model part owned by clients is
relatively smaller compared to that held by the server. As shown in Figure 1b, the original full model,
denoted as θ, is partitioned into θ = [θc, θs], where θc is distributed to all clients, while θs is retained
by the server. Assuming the outputs from client i are Ai = f(θi), Ai is transmitted to the server,
which continues the forward process with the θs. Subsequently, upon computing the loss on the
server, gradients Gs = ∂L/∂θs are used to update θs on the server, and Gs, transmitted through Ai,
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facilitate gradient updates on client i, denoted as Gi in Figure 1b. Through the employment of SFL,
pre-trained models can feasibly participate in the FL environment.

2.2 VISUAL PROMPT TUNING

Visual Prompt Tuning (VPT) (Jia et al., 2022) is an efficient fine-tuning method that introduces
prepending training prompts within the input sequence while maintaining the pre-trained model
frozen. The set of prompts is defined as P = {P0, P1, ..., PN−1}, where Pi−1 is prepended to the
input space of layer Li. VPT discusses two variants: VPT-Shallow and VPT-Deep. VPT-Shallow
only adds prompt P0 to layer L1, while VPT-Deep inserts prompts across every layer. Within the
context of split federated learning, we consider VPT-Deep, as prompts on deeper layers are preserved
on the server, as depicted in Figure 3b, enabling the extraction of more features from different clients.
In VPT-Deep, for each layer Li, the forward process is defined as follows:

[xi, _, Ei] = Li([xi−1, Pi−1, Ei−1], θLi), i = 1, ..., N

y = Head(xN , θHead),
(1)

where N is the number of layers, x represents the [CLS] embeddings, and Ei−1 are the image patch
embeddings serving as inputs to the layer Li. In VPT-Deep, the prompts are independently injected
into the input sequences of each layer. Therefore, the outputs of Li are [xi, _, Ei], not [xi, Pi, Ei].
Moreover, we color the frozen and trainable weights in Equation 1 to highlight the training weights
of VPT-Deep.

3 METHOD

In this section, we introduce PromptSFL. Firstly, we present the integration of VPT-Deep with SFL,
enhancing the fine-tuning capability of pre-trained models within the FL environment. Secondly,
based on the observations illustrated in Figure 2c, we introduce the skip prompt mechanism, which
facilitates the transmission of client prompts to the first layer on the server, thereby enabling clients
to receive general knowledge from the server through skip prompts. Lastly, due to the generalized
capability of the server in SFL, we propose an adaptive learning rate scheme to adjust the learning
rates of clients, ensuring that client updates align more closely with the overall convergence process
of the entire model.

3.1 VPT IN SPLIT FEDERATED LEARNING

Firstly, we elaborate on the direct integration of VPT-Deep with FL (VPT-FL), enabling clients to
utilize VPT-Deep for fine-tuning their pre-trained models. As presented in Figure 3a, in FL, assuming
there are Nc clients, each with model weights consisting of N layers denoted as θkfull,i, where
k = 1, ...Nc and i = 1, ...N . Employing VPT-Deep for fine-tuning a pre-trained model for client k
in FL is depicted as follows:

[xk
i , _, Ek

i ] = Lk
i ([x

k
i−1, P

k
i−1, E

k
i−1], θ

k
full,i), i = 1, ..., N

yk = Headk(xk
N , θkfull,H),

(2)

where θkfull,H denotes the trainable weights from the linear layer Head. In FL, the server receives
and averages the trainable prompts P k and weights θkfull,H from each client k.

As illustrated in Figure 3b, to extend the aforementioned method to SFL, the full model θfull is
first partitioned into client models θc and server model θs from θfull = [θc, θs]. If client model k
comprises j layers, the VPT process in SFL (VPT-SFL) can be described as follows,

[xk
i , _, Ek

i ] = Lk
i ([x

k
i−1, P

k
i−1, E

k
i−1], θ

k
c,i), i = 1, ..., j (3)

[xs
j , E

s
j ] = [xk

j , E
k
j ] (4)

[xs
i , _, Es

i ] = Ls
i ([x

s
i−1, P

s
i−1, E

s
i−1], θ

s
i ), i = j + 1, ..., N (5)

ys = Heads(xs
N , θsH), (6)

where Equation 4 signifies the transmission of Ak = [xj , Ej ] between client k and the server s. In
SFL, both clients and the server incorporate trainable prompts Pi in the input sequence, and the
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server includes trainable weights θsH in the Head layer. During the training process, clients forward
[xj , Ej ] to the server. Moreover, the server computes loss based on ys, updates the weights θsH and
prompts P s

i in the server, and backpropagates the gradients to clients according to [xj , Ej ]. Clients
then update the prompts P k

i based on the gradients received from the server.

3.2 SKIP PROMPTS
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Figure 4: Skip prompts between the
server and client k.

However, the performance of VPT in SFL is worse than that
of VPT in centralized training, because the client prompts in
SFL can not extract sufficient public features, as illustrated
in Figure 2. Therefore, it is crucial to provide more public
knowledge to clients in SFL. In SFL, the model deployed on
the server is rich in public information without introducing
external data. To be specific, trainable prompts can extract
public features on the server side with SFL. Thus, the sampled
clients can get more features from the server prompts P s

i , i =
j, ...N − 1 during the federated learning process. Following
this line, we propose a mechanism called skip prompts, where
the prompt from the last layer in the client is transmitted to the
prompt from the first layer of the server, as demonstrated in
Figure 4. Specifically, the skip prompts are demonstrated as
follows,

[xs
j , P

k
j , E

s
j ] = [xk

j , P
k
j , E

k
j ] (7)

P̃ s
j = αP s

j + (1− α)F(P k
j ) (8)

[xs
j+1, _, Es

j+1] = Ls
i ([x

s
j , P̃

s
j , E

s
j ], θ

s
j ), (9)

where the last prompt in the client k is P k
j , and P k

j skips to the
first layer of the server, which is inserting P k

j in the Equation 4.
The final format is shown in Equation 7. Next, to align the
client prompt with the feature space of the server, we introduce a linear layer F to transfer the client
prompt to the feature space of the server prompt. Moreover, the server prompt from the first layer
P s
j mixes with the transferred client prompts according to a trainable weight α, resulting in mixed

prompts as shown in Equation 8. Finally, the server uses mixed prompts instead of the original
prompts P s

j to train the remaining models, as shown in Equation 9. In VPT-SFL, utilizing skip
prompts lets clients extract the public features from the server prompts.

3.3 ADAPTIVE CLIENT LEARNING RATE
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Figure 5: The norm of gradients for
prompts from each layer.

However, in VPT-SFL, the gradients propagated back to
clients are significantly smaller compared to those in VPT-
FL, as shown in Figure 5. This phenomenon arises from
the server being more generalized, as it is trained by all
clients in SFL, resulting in smaller and more stable update
gradients and fluctuations than the server in FL. Addition-
ally, the paper introducing VPT (Jia et al., 2022) indicates
that VPT methods require higher learning rates compared
to other fine-tuning methods. Therefore, we propose a
mechanism called adaptive client learning rate to enhance
convergence speed and mitigate the issue of diminishing
gradients for clients in VPT-SFL. Specifically, if the learn-
ing rate on the server is η, the client learning rate should be
βη, where β is a scaling factor that scales up the learning
rate for clients to avoid gradient diminishing and enhance
the convergence speed.

Additionally, to tailor β to various stages in the training process, we introduce an efficient method,
collecting training losses before round tc and employing the moving average of training loss to
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Table 1: Test accuracy of PromptSFL and baselines with Dirichlet distribution α = 1.0. We bold the
best results among all baselines for each dataset.

Fine-Tuned Params CUB Flowers Cars Dogs NABirds
Base Methods

Client Server 1.0 1.0 1.0 1.0 1.0
V

PT
(2

02
2)

VPT-FL 245.9K 0 86.16±1.62 96.53±1.27 70.1±2.04 85.32±1.94 82.94±1.81

VPT-SFL 23K 222.9K 85.5±1.76 97.32±1.34 74.02±1.58 89.76±1.63 82.65±1.24

PromptFL (2023b) 414.5K 153.8K 85.97±1.98 97.02±1.42 73.76±2.41 87.97±2.15 81.23±1.46

GatedPT (2023) 23K 222.9K 85.10±2.14 96.80±1.55 72.02±2.86 86.24±2.41 80.31±2.18

FedSGPT (2024) 245.9K 0 86.01±1.87 97.34±1.09 74.17±2.35 89.31±1.64 83.33±1.77

PromptSFL 23K 813.5K 87.14±1.56 98.13±1.32 75.22±2.17 90.17±1.60 83.75±1.53

C
om

m
on Linear 0 153.8K 84.58±1.96 96.64±1.41 68.67±1.83 84.11±2.76 80.26±2.42

Adapter (2020) 113K 605.7K 86.36±1.23 97.16±1.04 71.64±1.21 88.58±1.35 82.47±1.67

Full 22008K 63941K 86.69±1.14 97.68±0.42 78.87±1.76 88.11±0.87 83.51±0.58

control the value of β. Specifically, at communication round tc, β for client k at local training epoch
te is represented as βk

te = (
∑tc−1

t=1 losst + losskte)/(tcloss
k
te), where losst denotes the averaged loss

for communication round t from selected clients, and losskte is the training loss for client k at local
training epoch te. Moreover, to alleviate the fluctuation of β due to the instability of loss, we utilize
the moving average of β to derive βk,ma

te for client k. Specifically, with the total local training epochs
denoted as E and the number of selected clients for each round as Ns, the βtc at communication
round tc is formulated as βtc =

∑Ns

k=1

∑E
te=1 β

k
te/(NsE), and the scaling factor βk,ma

te that utilized
to adjust the learning rate is defined as βk,ma

te = (
∑tc−1

t=1 βt + βk
te)/tc. This method facilitates the

adaptation of the learning rate across different phases of the PromptSFL training process. We will
discuss more insights for the adaptive learning rate in the experimental analysis.

3.4 COMPARISON WITH GATED PROMPT TUNING

Our work, PromptSFL, introduces a method for deploying VPT in SFL, and enhances the performance
of VPT-SFL. To enable prompts in clients to extract more knowledge, we propose a method called
skip prompts, as shown in Equation 8. Clients transmit prompts from the last layer to the first layer
of the server, and the server mixes the client’s prompts with the server’s prompts. Furthermore, to
align the feature space between prompts from clients and the server, we introduce a linear layer F to
transfer the prompts of clients to the feature space of the server.

Compared with GatedPT (Yoo et al., 2023), PromptSFL requires only prompt mixing between clients
and the server. GatedPT focuses on mixing prompts between the previous layer and the current
layer within each layer. Moreover, PromptSFL proposes a linear layer F to align the feature space
of prompts between clients and the server, while GatedPT ignores the alignments of prompts from
different layers. At last, GatedPT is not appropriate for FL and SFL, as we demonstrate in the
experimental results section.

4 EXPERIMENTS

In this section, we conduct experiments to demonstrate the performance and robustness of PromptSFL
and perform an ablation study to analyze each component of PromptSFL. Furthermore, we illustrate
how the PromptSFL achieves improvements compared to VPT in SFL. Our source codes will be
released after publishing.

4.1 EXPERIMENT SETUP

Datasets and Data Distribution. We conduct our experiments based on five different Fine-Grained
Visual Classification (FGVC) datasets, which are CUB-200-2011 (Wah et al., 2011), Oxford Flowers
(Nilsback and Zisserman, 2008), Standford Cars (Gebru et al., 2017), Standford Dogs (Khosla et al.,
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Table 2: Test accuracy of PromptSFL and baselines with Dirichlet distribution α = 0.1. We bold the
best results among all baselines for each dataset.

Fine-Tuned Params CUB Flowers Cars Dogs NABirds
Base Methods

Client Server 0.1 0.1 0.1 0.1 0.1
V

PT
(2

02
2)

VPT-FL 245.9K 0 84.37±2.04 96.31±1.59 61.36±2.73 87.22±2.30 81.58±2.09

VPT-SFL 23K 222.9K 84.86±1.87 96.39±1.23 61.89±2.51 87.35±1.78 82.03±1.37

PromptFL (2023b) 414.5K 153.8K 85.27±2.03 96.15±1.28 62.64±2.42 88.42±1.86 79.59±2.73

GatedPT (2023) 23K 222.9K 84.02±2.58 95.21±1.75 60.53±3.59 85.34±2.37 77.36±3.21

FedSGPT (2024) 245.9K 0 85.93±2.64 96.76±1.31 63.64±2.96 87.78±2.50 82.84±2.03

PromptSFL 23K 813.5K 86.61±2.32 97.89±1.16 68.66±2.62 89.45±2.21 83.36±1.98

C
om

m
on Linear 0 153.8K 83.91±1.47 95.94±0.93 <50 85.06±1.34 75.34±1.82

Adapter (2020) 113K 605.7K 86.10±1.21 96.93±1.14 70.63±1.87 88.53±1.42 82.68±1.34

Full 22008K 63941K 84.63±1.37 96.10±0.85 77.46±2.01 87.51±1.03 83.26±1.29

2011), and NABirds (Van Horn et al., 2015). We evaluate our methods under two Non-IID settings,
using a Dirichlet distribution with α = 1.0 and α = 0.1 for all datasets.

Baselines. To highlight the effectiveness of PromptSFL, we compare our methods with VPT applied
in (1) FL (VPT-FL) and (2) SFL (VPT-SFL). Additionally, we consider other commonly used fine-
tuning methods: (3) Full Fine-Tuning (Full), which trains all weights from the backbone and the head
linear layer; (4) Adapter (Pfeiffer et al., 2020; Houlsby et al., 2019), which adds randomly initialized
MLP blocks with residual connection in the transformer blocks. (5) Linear, which fine-tunes only the
head linear layer. Moreover, we compare PromptSFL with three state-of-the-art fine-tuning methods,
(6) PromptFL (Guo et al., 2023b), which utilizes a prompt learner for each client prompt; (7) GatedPT
(Yoo et al., 2023), an improved method for VPT in centralized training; (8) FedSGPT (Deng et al.,
2024), which proposes shared prompts and group prompts to improve VPT in FL. Except for VPT-FL
and FedSGPT, all other baselines are deployed in the SFL. To be fair comparison, we utilize the
same pre-trained model ViT-B/16 for all baselines. We report the average accuracy of three different
random seeds, and all methods are run on an NVIDIA GeForce RTX 3090.

Federated Settings. In our SFL environment, we use ViT-B/16 pre-trained on ImageNet-1K as our
pre-trained model. We split the 12 transformer layers into two parts. The client part comprises the
first three layers, and the server part includes the remaining layers and the head layer. In our FL
environment, we have 100 clients, with a sample ratio of 0.1 for each communication round. All
methods are trained over 200 communication rounds using the SGD optimizer, and we uses the best
results for each baseline. The prompt tokens are set to 10 in our experiments. We use the cosine
scheduler to warm up the learning rate for all baselines.

4.2 EVALUATION ON DIFFERENT DATASETS.

Table 1 and Table 2 demonstrate the test accuracy across five datasets in two data distributions.
PromptSFL achieves the highest performance on four of the five datasets and the second-best
performance on the remaining one in both distributions. Furthermore, PromptSFL outperforms all
other VPT-based baselines and delivers competitive results compared to Full Fine-Tuning. Moreover,
Full requires fine-tuning all model weights (22008K) on the clients, which demands substantial
memory and computational resources during training. However, PromptSFL only fine-tunes a small
number of weights (23K) on the clients, which is 0.1% of the weights needed for Full, making it
significantly more efficient in terms of resource usage while still maintaining high performance.
Although PromptSFL needs to fine-tune more weights on the server compared to other VPT-based
baselines, it does not consume any client resources and still uses far fewer resources than the Full
method, balancing efficiency and performance.

4.3 ROBUSTNESS ANALYSIS AND ABLATION STUDY.

Effect of Layers and Tokens. We investigate the robustness of PromptSFL in two aspects: the
effects of different numbers of client layers, as illustrated in Table 3, and the impacts of varying
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Table 3: Accuracy for different numbers of client layers. We bold the best results for each setting.

Fine-Tuned Params CUB Flowers Cars Dogs NABirds
Layers Methods

Client Server 1.0 1.0 1.0 1.0 1.0
Avg

2 layers
VPT-SFL 15.3K 230.6K 86.20 97.63 73.62 88.26 81.95 85.49

PromptSFL 15.3K 821.2K 87.37 97.82 74.44 89.73 83.01 86.47

3 layers
VPT-SFL 23K 222.9K 85.50 97.32 74.02 89.76 82.65 85.75

PromptSFL 23K 813.5K 87.14 98.13 75.22 90.17 83.75 86.85

4 layers
VPT-SFL 30.7K 215.2K 85.61 97.52 64.76 87.88 81.21 83.40

PromptSFL 30.7K 805.8K 86.71 98.01 72.05 89.28 82.43 85.70

Table 4: Accuracy for different numbers of visual prompt tokens. We bold the best results for each
setting. We compute the average accuracy for 4 datasets, without Cars, in the setting of 50 tokens.

Fine-Tuned Params CUB Flowers Cars Dogs NABirds
Tokens Methods

Client Server 1.0 1.0 1.0 1.0 1.0
Avg

10
VPT-SFL 23K 222.9K 85.50 97.32 74.02 89.76 82.65 85.75

PromptSFL 23K 813.5K 87.14 98.13 75.22 90.17 83.75 86.85

20
VPT-SFL 46K 292K 85.67 97.35 48.40 87.02 81.92 80.07

PromptSFL 46K 882.6K 86.71 97.07 73.29 88.98 83.04 85.82

50
VPT-SFL 115.2K 499.4K 85.53 96.77 <10 85.46 78.42 86.54

PromptSFL 115.2K 1.09M 86.80 97.46 69.27 87.13 81.26 88.16

visual prompt tokens, as shown in Table 4. The hyperparameters are the same as those in Table 1 and
Table 2. Table 3 presents the accuracy of VPT-SFL and PromptSFL for different numbers of client
layers across various datasets in FGVC tasks. The results highlight the performance of PromptSFL as
the number of client layers changes. Table 4 demonstrates the accuracy of VPT-SFL and PromptSFL
for different numbers of visual prompt tokens. PromptSFL consistently outperforms VPT-SFL in
this robustness analysis. Both examinations indicate that PromptSFL provides significant advantages
over VPT-SFL across different configurations, whether varying the number of client layers or visual
prompt tokens. The consistent performance gains suggest that PromptSFL is a robust and flexible
approach that adapts well to different environmental settings.

Ablation Study. Our ablation study includes the following eight variations, the first four variations
are from the adaptive learning rate mechanism (ALR): (1) PromptSFL w/o ALR (VPT-SFL with
skip prompts), which omits the adaptive learning rate for clients, (2) PromptSFL with fixed β, which
β = 5 and indicates a fixed scaling up value for client learning rates, (3) PromptSFL w/o MA β,
which only utilizes the βk

te and without using moving average for β, (4) PromptSFL with smooth
β, which obtains β from the latest three epochs instead of using the moving average. Moreover, the
following four variations are focus on the components from skip prompts: (5) PromptSFL w/o skip
(VPT-SFL with adaptive learning rate), which excludes the skip prompts mechanism, (6) PromptSFL
with fixed α, which α = 0.5 and remains constant during the fine-tuning process in Equation 8,
(7) PromptSFL w/o P s, which is equivalent to α = 0 in Equation 8, (8) PromptSFL w/o F , which
ignores the linear function in the skip prompt method. Table 5 presents the results of the ablation
study. The results highlight the importance of each component in the PromptSFL.

4.4 DEEPER INSIGHTS FOR THE IMPROVEMENTS.

T-SNE Visualizations. The motivation behind PromptSFL is to enhance the generalization ability of
clients in VPT-SFL. To evaluate this, we conduct t-SNE visualizations for PromptSFL to compare the
generalization capability of clients with that of VPT-SFL, as shown in Figure 7. Figure 7a shows
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Table 5: Accuracy for ablation study. ALR indicates the Adaptive Learning Rate mechanism in
clients. Skip is denoted as the skip prompts mechanism. We bold the best results for each dataset.

Fine-Tuned Params CUB Flowers Cars Dogs NABirds
From Methods

Client Server 1.0 1.0 1.0 1.0 1.0
Avg

VPT-SFL 23K 222.9K 85.50 97.32 74.02 89.76 82.65 85.85

ALR

(1) PromptSFL w/o β 23K 813.5K 86.32 97.21 72.47 90.01 82.79 85.76

(2) PromptSFL fixed β 23K 813.5K 84.56 96.39 73.57 88.94 83.21 85.33

(3) PromptSFL w/o MA β 23K 813.5K 86.16 96.43 73.38 89.42 82.60 86.05

(4) PromptSFL smooth β 23K 813.5K 86.08 97.72 74.36 90.13 82.42 86.14

Skip

(5) PromptSFL w/o skip 23K 222.9K 86.01 97.30 73.19 89.54 81.78 85.56

(6) PromptSFL fixed α 23K 813.5K 86.13 98.12 74.86 89.77 83.08 86.40

(7) PromptSFL w/o P s 23K 813.5K 85.49 97.98 73.82 89.60 83.16 86.01

(8) PromptSFL w/o F 23K 222.9K 85.10 97.23 73.76 89.63 82.98 85.74

PromptSFL 23K 813.5K 87.14 98.13 75.22 90.17 83.75 86.85
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Figure 6: The effects from Adaptive Learning Rate, denoted as the scaling factor β. (a) The value
of scaling factor β during training for three variations. (b) The learning rate during training. (c)
Evaluation accuracy from three variations.

that the features from clients of VPT-SFL are more biased, compared to the results from 1 client
with VPT. This figure indicates that VPT-SFL fails to acquire sufficient public knowledge. However,
as illustrated in Figure 7b, the features from PromptSFL (blue dots) are more dispersed, similar to
the features from 1 client with VPT (pink dots). This dispersion indicates that PromptSFL extracts
more generalized features, leading to more generalized client models. Additionally, in Figure 7c,
we evaluate the server features, which are the outputs from the last layer in the server, to deeply
understand the feature space for these three methods. From figure 7c, the features from PromptSFL
and 1 client with VPT are closer to each other than to those from VPT-SFL, indicating that the feature
space from PromptSFL is more like the feature space from 1 client with VPT instead of VPT-SFL.

Adaptive Learning Rates. Figure 6 illustrates the impact of the scaling factor β. In figure 6a, two
variations, with β and w/o β, exhibit fluctuations in β values throughout the training process, whereas
MA β remains more stable, resulting in smoother learning rates as depicted in figure 6b. Unstable
and aggressive adaptive learning rates are unsuitable for PromptSFL, as evidenced in figure 6c. This
is because aggressive adaptive learning rates can cause divergence in the optimized direction for
clients during the training process, leading to suboptimal performance for both clients and the server.

5 RELATED WORK

5.1 SPLIT FEDERATED LEARNING

Split federated learning is first proposed by (Thapa et al., 2022), combining federated and split
learning to enhance data privacy through differential privacy and PixelDP. MoCoSFL (Li et al.,
2022a) is proposed as a collaborative self-supervised learning framework, leveraging split federated
learning and momentum contrast (MoCo) (He et al., 2020) with a feature memory bank. FedVS
(Li et al., 2023) addresses performance degradation in split vertical federated learning through a
secret sharing scheme. RingSFL (Shen et al., 2023) integrates federated learning with a model split

9
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(a) Client features from VPT-SFL
and 1 client with VPT.
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Figure 7: T-SNE visualization of features from different methods. (a) From VPT-SFL and 1 client
with VPT. (b) From PromptSFL and 1 client with VPT. (c) From VPT-SFL, PromptSFL, and 1
client with VPT. These visualizations indicate that PromptSFL can extract more general knowledge
compared to VPT-SFL.

mechanism, enhancing data privacy through a specified training ring topology. FedBERT (Tian
et al., 2022) applies split learning to adapt the large pre-trained model BERT to federated learning.
ResSFL (Li et al., 2022b) proposes a resistant feature extractor via attacker-aware training to mitigate
model inversion attacks (Fredrikson et al., 2015) on split federated learning. Moreover, some papers
focusing on heterogeneity in federated learning consider splitting methods, such as HeteroFL (Diao
et al., 2021), FedRolex (Alam et al., 2022), InCoFL (Chan et al., 2024), and ScaleFL (Ilhan et al.,
2023). These works split models in FL based on different depths and widths to accommodate various
resource requirements for different clients.

5.2 VISUAL PROMPT TUNING

Parameter-Efficient Fine-Tuning (PEFT) (Lester et al., 2021; Brown et al., 2020; Gao et al., 2021;
Jiang et al., 2020) demonstrates its effectiveness in the NLP field, garnering attention in the CV
field as well. CoOp (Zhou et al., 2022a) and CocoOp (Zhou et al., 2022b) introduce soft prompts
in vision-language models. Visual Prompt Tuning (VPT) (Jia et al., 2022) is proposed to adapt the
prompt tuning method into the vision transformers (ViTs) (Dosovitskiy et al., 2020) by pretending
trainable prompts in the input space. GatedPT (Yoo et al., 2023) improves the performance of VPT
in the ViTs pretrained with self-supervised learning through a learnable gate in each input space.
E2VPT (Han et al., 2023) introduces additional learnable prompts in the input space of self-attention
layers. Cheng et al. (Han et al., 2024) discuss why VPT outperforms full fine-tuning in centralized
training. Moreover, some studies (Deng et al., 2024; Yang et al., 2023) explore how to adapt VPT in
FL. SGPT (Deng et al., 2024) introduces shared prompts and group prompts to improve VPT in FL.
pFedPG (Yang et al., 2023) proposes a prompt generator to produce client-specific visual prompts,
adapting VPT for personalized FL.

6 LIMITATIONS AND CONCLUSIONS

Limitations. In PromptSFL, clients need to send the prompts from the last layer to the server, which
increases the communication overhead during the fine-tuning process. Additionally, because this
method focuses on fine-tuning pre-trained models, privacy considerations remain a hidden limitation
when the server receives fine-tuned prompts from clients. The server may potentially recover input
data using methods from dataset distillation (Yu et al., 2023). These limitations require further
discussion and exploration for PromptSFL.

Conclusions. We propose a method called PromptSFL, which aims to enhance the ability of clients
to extract more general features from the server in VPT-SFL. In PromptSFL, clients send the prompts
from the last layer to the server. The server transfers these prompts to the feature space of the server
prompts according to a linear transfer function. Moreover, the adaptive client learning rate enhances
the convergence speed of PromptSFL. Through extensive experimental evaluations, we demonstrate
the effectiveness of PromptSFL and analyze the improvements for PromptSFL.
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Cho, and Iryna Gurevych. Adapterhub: A framework for adapting transformers. In Proceedings of the 2020
Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pages 46–54,
2020.

Chen Qiu, Xingyu Li, Chaithanya Kumar Mummadi, Madan Ravi Ganesh, Zhenzhen Li, Lu Peng, and Wan-
Yi Lin. Federated text-driven prompt generation for vision-language models. In The Twelfth Interna-
tional Conference on Learning Representations, 2024. URL https://openreview.net/forum?id=
NW31gAylIm.

Jinglong Shen, Nan Cheng, Xiucheng Wang, Feng Lyu, Wenchao Xu, Zhi Liu, Khalid Aldubaikhy, and Xuemin
Shen. Ringsfl: An adaptive split federated learning towards taming client heterogeneity. IEEE Transactions
on Mobile Computing, 2023.

Kihyuk Sohn, Huiwen Chang, José Lezama, Luisa Polania, Han Zhang, Yuan Hao, Irfan Essa, and Lu Jiang.
Visual prompt tuning for generative transfer learning. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 19840–19851, 2023.

12

https://openreview.net/forum?id=NW31gAylIm
https://openreview.net/forum?id=NW31gAylIm


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Chandra Thapa, Pathum Chamikara Mahawaga Arachchige, Seyit Camtepe, and Lichao Sun. Splitfed: When
federated learning meets split learning. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 36, pages 8485–8493, 2022.

Yuanyishu Tian, Yao Wan, Lingjuan Lyu, Dezhong Yao, Hai Jin, and Lichao Sun. Fedbert: When federated
learning meets pre-training. ACM Transactions on Intelligent Systems and Technology (TIST), 13(4):1–26,
2022.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and efficient foundation
language models. arXiv preprint arXiv:2302.13971, 2023.

Grant Van Horn, Steve Branson, Ryan Farrell, Scott Haber, Jessie Barry, Panos Ipeirotis, Pietro Perona, and
Serge Belongie. Building a bird recognition app and large scale dataset with citizen scientists: The fine print
in fine-grained dataset collection. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 595–604, 2015.

Catherine Wah, Steve Branson, Peter Welinder, Pietro Perona, and Serge Belongie. The caltech-ucsd birds-200-
2011 dataset. 2011.

Fu-En Yang, Chien-Yi Wang, and Yu-Chiang Frank Wang. Efficient model personalization in federated learning
via client-specific prompt generation. In Proceedings of the IEEE/CVF International Conference on Computer
Vision, pages 19159–19168, 2023.

Seungryong Yoo, Eunji Kim, Dahuin Jung, Jungbeom Lee, and Sungroh Yoon. Improving visual prompt
tuning for self-supervised vision transformers. In International Conference on Machine Learning, pages
40075–40092. PMLR, 2023.

Ruonan Yu, Songhua Liu, and Xinchao Wang. Dataset distillation: A comprehensive review. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 2023.

Jianyi Zhang, Saeed Vahidian, Martin Kuo, Chunyuan Li, Ruiyi Zhang, Tong Yu, Guoyin Wang, and Yiran Chen.
Towards building the federatedgpt: Federated instruction tuning. In ICASSP 2024-2024 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 6915–6919. IEEE, 2024.

Zhuo Zhang, Yuanhang Yang, Yong Dai, Qifan Wang, Yue Yu, Lizhen Qu, and Zenglin Xu. Fedpetuning:
When federated learning meets the parameter-efficient tuning methods of pre-trained language models. In
Annual Meeting of the Association of Computational Linguistics 2023, pages 9963–9977. Association for
Computational Linguistics (ACL), 2023.

Kaiyang Zhou, Jingkang Yang, Chen Change Loy, and Ziwei Liu. Conditional prompt learning for vision-
language models. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition,
pages 16816–16825, 2022a.

Kaiyang Zhou, Jingkang Yang, Chen Change Loy, and Ziwei Liu. Learning to prompt for vision-language
models. International Journal of Computer Vision, 130(9):2337–2348, 2022b.

13


	Introduction
	Preliminary
	Split Federated Learning
	Visual Prompt Tuning

	Method
	VPT in Split Federated Learning
	Skip Prompts
	Adaptive Client Learning Rate
	Comparison with Gated Prompt Tuning

	Experiments
	Experiment Setup
	Evaluation on different datasets.
	Robustness Analysis and Ablation Study. 
	Deeper Insights for the Improvements.

	Related Work
	Split Federated Learning
	Visual Prompt Tuning

	Limitations and Conclusions

