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ABSTRACT

Sparse training is often adopted in cross-device federated learning (FL) environ-
ments where constrained devices collaboratively train a machine learning model
on private data by exchanging pseudo-gradients across heterogeneous networks.
Although sparse training methods can reduce communication overhead and com-
putational burden in FL, they are often not used in practice for the following
key reasons: (1) data heterogeneity impacts more clients’ consensus on sparse,
compared to dense, models, requiring training for longer; (2) a lack of sufficient
plasticity to adapt to never-seen data distributions, crucial in cross-device FL; (3)
requiring additional hyperparameters, which are notably challenging to tune in
FL. This paper presents SparsyFed, a practical federated sparse training method
that critically addresses the aforementioned problems. Previous works have only
managed to solve one, or perhaps two of these challenges, and at the expense of
introducing new trade-offs, such as clients’ consensus on masks versus sparsity
pattern plasticity. We show that SparsyFed simultaneously (1) can produce 95%
sparse models, with negligible degradation in accuracy, while only needing a sin-
gle hyperparameter, (2) achieves a per-round weight regrowth 200 times smaller
than previous methods, and (3) still offers plasticity under this sparse design, by
outperforming all the baselines at adapting to never-seen data distributions.

1 INTRODUCTION

Federated Learning (McMabhan et al., [2017)) has become a standard technique for distributed train-
ing on private data (Yang et al.| |2018; Ramaswamy et al., 2019; |Pat1 et al.| |2022; Wang et al.,
2023} |[Huba et al., [2022; Bonawitz et al., [2019), particularly on edge devices. Given its applica-
tion to constrained hardware, mitigating communication and computational overheads—significant
in standard FL infrastructures (Kairouz et al., 2021} Bellavista et al., |2021)—remains a key focus
of the field. Practical cross-device FL methods typically assume stateless clients with imbalanced,
heterogeneous datasets and constrained, diverse hardware (Wang et al. [2021)). Restricted client
hardware and low communication bandwidth significantly increase training time compared to cen-
tralized methods, elongating hyperparameter tuning (Khodak et al., 2021)). Additionally, unknown
data distributions and dynamic client availability demand robust optimization methods that can han-
dle these variations. Importantly, when device availability is constrained, the federated orchestrator
may struggles to sample a representative client subset (Eichner et al.| |2019; |Cho et al.| [2020; [Li
et al.,[2020b), inducing trade-offs between sampling ratio and efficiency (Charles et al., [2021b).

Sparse training methods improve computational and communication efficiency by reducing (a)
memory usage and FLOPs during local training (Rathan & Aamodt, |2020), and (b) the payload
size of communication messages (Bibikar et al., | 2022)). However, applying these methods in cross-
device FL is challenging due to client availability and data heterogeneity, which can disrupt sparsity
patterns (i.e., the binary mask structure) across clients (Qiu et al.| 2021). Such inconsistencies
hinder consensus on a shared sparsity pattern (i.e., the same binary mask), lowering global model
performance (Babakniya et al.| [2023). Recent approaches address these issues using fixed sparse
masks (Huang et al.| 2022} Qiu et al, |2021) or dynamic methods involving mask warm-up and re-
freshing (Babakniya et al.,|2023)). However, fixed masks reduce adaptability to unseen distributions,
while dynamic methods require careful tuning of additional hyperparameters (e.g., warm-up dura-
tion, refresh interval). Fixed-mask methods also limit model plasticity—the ability to rewire and
adapt to diverse distributions (Lyle et al.|, |2022; 2023). For example, it is known that in a multi-



Under review as a conference paper at ICLR 2025

task or continual learning setting, neural networks can be iteratively pruned to build task-specific
sub-networks (Mallya & Lazebnik, |2018)), a lost ability when adopting a fixed-mask method.

This lack of adaptability makes fixed-mask approaches unsuitable for cross-device FL, where unseen
distributions frequently arise. Thus, we argue that sparse training methods for cross-device FL
should (a) adopt dynamic masking and (b) remain agnostic to optimization and selection methods,
while minimizing hyperparameter complexity.
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Figure 1:  SparsyFed pipeline. (1) Server broadcasts the global model w;. (2) Client ¢ re-
parameterizes local weights. (3) Executes a forward pass on batch B. (4a) Computes layer-wise
sparsity s;. (4b) Prunes activations using s; and stores them. (5) Computes grads. (6) Applies grads.
(7) Computes model updates and applies TopK pruning. (8) Sends sparse updates Aw! back to the
server. (9) Apply server optimizer to obtain global model. Steps (2-6) repeat to convergence.

To address these challenges, our work introduces SparsyFed, a sparse training method for training
sparse global models in cross-device federated learning. During local training, as illustrated in fig.[T]
SparsyFed uses an easy-to-tune sparse training approach by: (1) pruning activations with an adaptive
layer-wise method, and (2) pruning model weights before communication using the target sparsity.
These strategies reduce communication costs by transmitting sparse updates and thus accelerate
federated training. With suitable hardware support (Raihan & Aamodt, |2020), FLOPs and memory
usage can also be reduced. Unlike previous methods (Babakniya et al.,[2023;|Q1u et al.,2021)), which
applied fixed global sparsity across layers, our layer-wise approach prunes based on each layer’s
parameter proportion. This removes more capacity from dense layers while preserving parameter-
efficient ones. SparsyFed also prunes models at the end of each round, allowing full flexibility for
local optimzation. Crucially, by starting from a dense model in the first round, SparsyFed provides
robust initialization for crucial layers, such as embeddings. Earlier works (Qiu et al.| [2021; [Rathan
& Aamodt, [2020) that pruned from the first step had to exclude layers to preserve performance.

Additionally, SparsyFed employs a sparsity-inducing weight reparameterization (Schwarz et al.,
2021) reliant on a single parameter, enhancing the model’s resilience to sparsity and improving
plasticity, which facilitates adapting the global mask to new clients with diverse data distributions.
SparsyFed is agnostic to the choice of the outer optimizer, treating sparse model updates as pseudo-
gradients. It is also compatible with biased client selection policies, allowing training masks to
remain plastic and adapt to the utilized training data.

The primary scientific contributions of this paper include:

1. We introduce SparsyFed, a method which accelerates on-device training in FL. SparsyFed
achieves high sparsity (up to 95%) without sacrificing accuracy through a novel approach
combining hyperparameter-free activation pruning and weight reparameterization.

2. We compare SparsyFed against the latest state-of-the-art methods, demonstrating superior
accuracy over sparse training baselines (including those using fixed sparse masks) and, in
some cases, surpassing non-pruned baselines at extreme sparsity levels.

3. SparsyFed quickly achieves consensus on client sparse model masks, enabling faster global
convergence and significantly reducing downlink communication costs (up to 19.29x).

4. We evaluate SparsyFed with ablation studies on typical cross-device FL datasets, including
CIFAR-10/100 (Krizhevskyl 2012) and Speech Commands (Warden, [2018]), under various
data heterogeneity conditions.

Finally, to facilitate result reproducibility and as a code base for the community of researchers in the
field, we have made the developed code publicly available in this repository.


 https://anonymous.4open.science/r/sparsyfed-F43D/README.md
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2 BACKGROUND

In the following, we describe typical sparse training and weight reparametrization techniques, which
are key components of our work, while also discussing their relevance to cross-device FL.

2.1 CROSS-DEVICE FEDERATED LEARNING

Cross-device FL (Kairouz et al.| [2021]) involves the distributed training of a machine learning (ML)
model across a population of edge devices exchanging model updates with a central server through
heterogeneous networks (McMahan et al., 2017} [Li et al.,|2020a). Clients in these settings usually
possess very limited data samples and very heterogeneous data distributions |[Kairouz et al.| (2021}).
Given the constraints of edge devices (e.g., limited processing power and battery life) and the hetero-
geneity of networks (e.g., diverse bandwidth), computational- and communication-efficient training
methods are crucial for practical FL. (Bonawitz et al.,|2019). The research community has proposed
means to optimize FL for communication efficiency (Sattler et al., [2019; Jiang et al.l 2023)) and
computational efficiency (Horvath et al., 2021} [Niu et al., 2022; [Mei et al., 2022). Our approach
aims to optimize both by leveraging sparse training.

2.2 SPARSE TRAINING

In centralized settings, sparse training tries to learn a sparse model during training, typically to
achieve model compression, lower computational demands during training, or faster inference. A
typical sparse training pipeline tends to start with a random sparse network and follow a cycle of
regular training, pruning, and regrowth (Mocanu et al.l [2018; Mostafa & Wang, 2019} [Dettmers &
Zettlemoyer, 2019; Liu et al.,|2020), acting only on model parameters. A more advanced technique
relevant to our work, Sparse Weight Activation Training (SWAT) (Rathan & Aamodt, 2020), tailors
the forward and backward passes, acting on both activations and model parameters, to induce a
sparse weight topology and reduce the computational burden. In each forward iteration, SWAT
selects the TopK weights based on magnitude, using only these as the active weights. During
the backward pass, only the highly activated neurons associated with TopK sparsified activations
are considered for backpropagation. Importantly, full gradients are still applied in the backward
pass, allowing updates to both active and non-active weights. This mechanism enables the dynamic
exploration of different network topologies throughout the training process.

2.3  WEIGHT REPARAMETRIZATION

Weight reparametrization (Salimans & Kingma,2016;|Li et al., [2019;|Gunasekar et al.,|2017; Miyato
et al.,|2018}; |Vaskevicius et al., [2019; Kusupati et al., 2020; Schwarz et al., 2021} [Zhao et al., [2022)
in neural network training involves restructuring how weights are represented to improve training
dynamics, optimize convergence, or introduce specific properties such as sparsity, without chang-
ing the network’s architecture. Particularly relevant to our work, |Schwarz et al.| (2021) propose a
sparsity-inducing weight reparametrization that aims to shift the weight distribution towards higher
density near zero, aiding in pruning low-magnitude weights. This is achieved by raising the model
parameters to the power of 3 > 1 during the forward pass while preserving their sign. The re-
parametrized weight vector component w is computed as w = sign(v) - [v|#~1, where v represents
the original weight vector component, and [ is a scalar value. Due to the chain rule, small-valued
parameters receive smaller gradient updates, while large-valued parameters receive larger updates,
reinforcing a “rich get richer” dynamic.

3 SPARSE ADAPTIVE FEDERATED TRAINING

In the following, we present our SparsyFed method for sparse training in cross-device FL settings.
SparsyFed reduces the computational and communication overhead of highly heterogeneous FL
environments, adapting the sparse mask of the global model during the training. Our method intro-
duces a novel approach based on activation pruning and weight parametrization, applicable to any
cross-device FL setting for obtaining a sparse global model. The procedure is outlined in Algo-
rithms [[and 21
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Algorithm 1 Sparse federated training pipeline of SparsyFed.
Require: wy: initial model’s weights, 3: weight re-parametrization exponent, §: target sparsity
Require: 7: number of federated rounds, £': number of client local epochs per round
Require: P: clients population, 7; = n(t): learning rate scheduler as function of round ¢
Require: {D;};cp: clients’ datasets, B: local batch size

1: procedure SparsyFed

2: fort=0,..., T —1do

3: Server samples a subset of clients S; C P

4: for each client i € S, in parallel do

5: W0 £ Wt

6: fork=0,...,F—1do

7: wj k+1 < SparseClientOpt(w; k, D;, B, 5,m) > See Alg
8: Aw! + wi g —wt > Compute pseudo-gradient
9: AQ! « TopK(Aw!,8) > Prune Aw! w/ global unstructured TopK using target §
10 wii1 ¢ OuterOPT(wy, {Ad!}ics,) > Server optimization, e.g., Reddi et al.|(2021)
11: return wr

Assumptions on the FL setting. As usual in cross-device FL settings, the training is orchestrated
by a parameter server (McMahan et al.| 2017)) that is in charge of initializing the global model,
sampling a subset of clients every federated round, aggregating the pseudo-gradients after clients
have trained on their local datasets. By following practical considerations (as extensively discussed
in/Bonawitz et al.|(2019);|Wang et al.|(2021)), SparsyFed does not require any particular assumption
on the client selection policy, nor on the server optimizer, nor the client optimizer. Thus, the design
of our algorithm will have the opportunity to seamlessly benefit from any novel contribution from the
research community on these topics, without losing its properties. Notably, SparsyFed only requires
the addition of one hyperparameter compared to the standard dense training, whose sensitivity is
discussed in appendix [E.2] making it most suitable for cross-device FL where hyperparameter tuning
is challenging (Khodak et al.| [2021). After initialization, the parameter server iteratively samples
clients, broadcasts the latest version of the global model, waits for pseudo-gradients to arrive from
clients, and aggregates the updates for obtaining the new global model, as described in Algorithm 1]
Let us notice that, in this way, we assume agnosticism to any server optimizer (line 10 in Alg. [1) to
allow practitioners to use their preferred one, e.g., ServerOpt in/Reddi et al.|(2021)).

Algorithm 2 Sparse Client Optimization of SparsyFed

Require: wy: initial model’s weights, 3: weight re-parametrization exponent, 7: learning rate
Require: D = {x;,y;};=1,... n: dataset composed of N samples with inputs x; and outputs y;
Require: B: batch of data samples, B: batch size, T' = [%] : number of batches, F': cost function
Require: s(6;;): function computing the sparsity of the layer 6, ; at time ¢
Require: size(#): computes the number of layers in the model 6
Require: GetLayer(ay,l): function extracts the weights and activations for the current layer.
Require: SetLayer(a.;,!): function updates the sparse weights and activations in the model.

1: procedure SPARSECLIENTOPT(wq, D, B, 3,m)

2: for eachstept =0,...,7 —1do

3: B, < GetNextMiniBatch(D, B,t)

4: 0; + sign(w;) - |w¢|? > Point-wise weights re-parametrization (Schwarz et al., 2021)
5: a; < Forward(fy, B;) > Forward pass to compute activations
6: for each layer [ =0, . .., size(6;) — 1 do

7: 01,1, a1, < GetLayer(0y,1),GetLayer(as,l)

8: St = S(Gt,l)

9: g, < TopK(ag, St.1) > Prune a; ; w/ unstructured TopK using target s; ;
10: a; < SetLayer(a,!)

11: gt < VF(0,,,a.,B) > Compute gradients using sparse activations
12: wry1 = ClientOpt(we, gi,m,t) > Apply client optimizer, e.g.,|Reddi et al.| (2021)
13: return wr
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Sparsity-Inducing Weights Reparametrization. Before the local forward pass at step ¢, we ap-
ply a sparsity-inducing reparametrization to the local model weights w;, producing 6; (line 4, Alg.
[2). As discussed in section [2.3] reparametrization techniques have been widely studied for various
purposes. In our case, we aim to enhance pruning effectiveness and efficiency by inducing sparsity
directly through optimization, adapting to input data. This is particularly beneficial in cross-device
FL settings, where datasets are highly imbalanced, and some clients may only have a few samples
(section 2.T)). From the available sparsity-inducing methods, we adopt Powerpropagation (Schwarz
et al.| [2021)) due to its simplicity (introducing only one hyperparameter) and its ability to preserve
the neural network’s functional relationships during training. Furthermore, it avoids introducing
non-uniform biases across layers, which improves its compatibility with pruning. Every parameter
weight w € w is transformed into v = sign(w) - |w|?, where sign(w) is the sign of w, |w] is its
L1 norm, and [ is the Powerpropagation parameter. More broadly, this reparametrization enhances
global training by promoting client consensus. The dynamics introduced by Powerpropagation natu-
rally guide training toward the subset of non-zero weights in the global model. Weights transitioning
from zero to non-zero during training typically have smaller magnitudes, limiting their impact on
updates. This ensures that clients focus on a shared subset of weights, facilitating aggregation.

Pruning Activations During Local Training. The local training procedure of SparsyFed is outlined
in Algorithm 2] and relies on two main pillars. First, it ensures that the edge devices benefit from the
model’s sparsity by reducing the FLOPs and memory footprint. Second, it guarantees the retention
of as much information as possible during the training. Following Raihan & Aamodt (2020), we:
(a) Use dense activation vectors (a¢, line 5) during the forward pass to retain all learned information.
(b) Prune activations before the backward pass by aligning their sparsity with the weight vectors
(lines 7-10). Specifically, activations are pruned layer wise using the TopK method with a target
per-layer sparsity level (s;;, line 8), determined by the corresponding per-layer weight sparsity
(line 9). This involves retrieving the weights and activations per layer (line 7) and updating the
pruned activations before computing gradients. The weight parametrization preserves high sparsity
throughout training (Figure [§] in the appendix), ensuring consistent patterns between weights and
activations and seamless integration into the model’s sparse structure. (c) Keep gradient vectors
(g¢, line 11) dense to avoid losing crucial information during updates. Pruning activations before
the backward pass reduces computational cost while maintaining dense gradients for robust updates.
Notably, initial model weights remain unpruned to allow meaningful training initialization, as clients
train a dense model in the first round. With these principles, the local training procedure is designed
to be optimizer-agnostic, e.g., compatible with ClientOpt (Reddi et al.,[2021).

Pruning model parameters before communication. The data-driven and hyperparameter-less
pruning procedure described above requires a further step to ensure satisfaction of the communi-
cation requirements. Clients receive a model parameters target sparsity, S, from the server, which
must be met before communicating the pseudo-gradient updates. Thus, the client applies a global
unstructured pruning step based on TopK using the target value § for the output sparsity, guaran-
teeing to save communication costs using a single parameter. Notably, this allows for non-uniform
sparsity across layers, which has been proved to help maintain performance (Kusupati et al., [2020).

4 EXPERIMENTAL DESIGN

Datasets. We selected three datasets to assess SparsyFed’s performance: CIFAR-10 (Krizhevsky),
2012), CIFAR-100 (Krizhevsky, |2012), and Speech Commands (Warden, 2018). CIFAR-10 and
CIFAR-100 datasets contain 32 x 32 color images of 10 and 100 classes, respectively. The Speech
Commands dataset includes audio samples of 35 predefined spoken words, and it is used for a
speech recognition task. These datasets are commonly used in the federated learning literature, as
their samples can be easily distributed across a pre-defined number of clients to simulate real-world
heterogeneous data distributions. On all datasets, we trained for multi-label classification tasks.

Data partitioning and sampling. The datasets above are distributed among 100 clients and parti-
tioned using the method in [Hsu et al| (2019), simulating various levels of data heterogeneity. The
distribution of labels across clients is controlled via a concentration parameter « that rules a Latent
Dirichlet Allocation (LDA), where a lower « value translates to non-1ID distribution and a higher
value to the IID distribution of labels. Specifically, we refer to data distributions as IID for o = 103
and non-IID for & = 1.0 and o = 0.1. To ensure reproducibility, we fixed the seed to 1337 for the
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LDA partitioning process. The federated orchestrator randomly sampled 10 clients out of the 100
clients in the population every round.

Model and training implementation. We employed a ResNet-18 (He et al.l [2016) backbone for
all experiments, adapting the classification layer to each specific task depending on the number of
classes. ResNet-18 was chosen for its popularity as part of the ResNet family, which allows for
scalability and comparability with other works in the field. While our training pipeline is imple-
mented with PyTorch (Paszke et al., [2019), we designed custom layers and functions for some
of SparsyFed’s components, such as layer-wise activation pruning and weight parametrization. We
used Flower (Beutel et al., [2022) to simulate the federated learning setting. All models were
trained from scratch without relying on any pre-trained weights.

Sparsity ratios. In our experiments, we targeted different values for the sparsity ratio in the set
{0.9,0.95,0.99,0.995,0.999}. We chose 0.9 as the minimum value because it has been shown to
bring effective gains on edge devices for both memory footprints and FLOPs. Our investigation
spans to the extreme value of 0.999 to fairly present the downsides of these sparsity ratios. We
applied the same target sparsity for all devices across the federation. Introducing heterogeneous
sparsity among clients would have required the addition of a well-motivated simulation framework
for hardware heterogeneity based on real-world data. However, given its minimal design assump-
tions, we expect our method to extend straightforwardly to such a setting.

Communication costs. The measure of communication costs of SparsyFed is crucial for under-
standing its practical implications on cross-device FL settings. To make our analysis agnostic to any
compression technique implementation, we report the costs as the number of non-zero parameters
effectively exchanged during the FL. Therefore, the communication cost is derived from the effec-
tive sparsity of the transmitted model, considering both the downlink (server-to-clients) and uplink
(clients-to-server) communication steps. For clarity, we calculate the communication cost as if only
one client were participating, assuming all communication occurs in parallel. This ensures that our
measurements reflect the total communication load without temporal delays between clients and
avoids any bias introduced by the varying sampling proportion of clients in each round.

5 EVALUATION

We discuss in this section the assessment we conducted to evaluate our method, SparsyFed, for
adaptive sparse training in cross-device FL. The experimental results shown here aim to answer the
following questions.

1. Does SparsyFed mitigate the expected accuracy degradation at high and very high spar-
sity levels? We compare against the baselines, i.e., TopK, ZeroFL (Qiu et al., 2021), and
FLASH (Babakniya et al., [2023)), for both the accuracy and the communication costs (sec-
tions [5.1]and [5.2] respectively).

2. How does our adaptive sparsity pattern interact with the heterogeneous data distributions
compared to other sparse training methods? Similarly to|Babakniya et al.| (2023)), we ana-
lyze the consensus across clients on the sparse pattern (section [5.3).

3. How do the main components of SparsyFed contribute to maintaining the accuracy at dif-
ferent sparsity levels? We ablate the activation pruning step (section [5.3)) and vary the
weight reparametrization (section[5.4) to answer this question.

To ensure a fair and comprehensive comparison, we re-implemented state-of-the-art methods in
our experiments, including ZeroFL, FLASH, and TopK pruning. A detailed description of these
baseline methodologies and their comparisons against SparsyFed is presented in appendix |G|

5.1 ACCURACY DEGRADATION

Our approach demonstrated SparsyFed’s resilience to the performance degradation typically associ-
ated with pruning, allowing us to achieve competitive results even at high levels of sparsity. Com-
pared to other competitive methods under the same sparsity constraints, table[T|shows that SparsyFed
exhibits the lowest accuracy drop across all settings and target sparsity levels. A noticeable drop in
performance compared to the dense model was observed only at 99% sparsity. This advantage arises
from using weight reparametrization, which, in some cases, can even enhance the performance of



Under review as a conference paper at ICLR 2025

a=1.0 a=0.1
ResNet-18 ZeroFL FLASH SparsyFed ResNet-18 ZeroFL FLASH SparsyFed

dense 83.70 + 1.70 - - 73.81 £ 4.84 - - -
0.9 80.56 190 76.164+1.30 81.15+1.03 8213+1.53 69.79+3.78 67.40+4.11 71.87 £2.63 75.00 £2.78
0.95 7471 £3.29 7553 +£2.27 7936+1.03 82.60+1.58 60.00+4.66 61.55+4.18 72.08+2.09 7595+ 3.39

Dataset Sparsity

CIFAR-I0 99 6627508 7071015 7345+ 137 7771+1.69 4396+ 1199 5171354 35691355 63.69+3.90
0995  6382+241 5602+395 69.15+ 160 70.01+043 1902+ 1077 4133364 5215+387 5679+ 3.97
0999 3179+ 19.10 17.66 834 3607749 S139=3.19 11501449 1876+4.28 2931+675 43.68+7.61
dense 5229+ 114 ; - - 4834+ 271 g - -
09 4657+ 171 4070472 51994021 5308090 4196+216 3192765 4559+075 4837+ 173
ClFAR.I00 095 28072327 38BIE175 47194188 S2BI4L72 1148+ 1751 34215765 4431+214 4827270
099 1965+ 1630 1897+208 4276408 46.64+159 0.14+072 13.07+226 3475+338 41.03+2.14
0995 951+ 1481 601474 3643+497 4221103 014072 704525 2644+ 1735 3572+ 201
0999  381+£218 196+066 580286 1596=0.64 0.14+072 1664097 356207 1384+ 3.69
dense 91.49 + 0.94 - - - 80.15 +2.69 - - -
09  8428+088 8779+ 140 8868+ 172 9232+ 159 6544+097 7035+265 TI5+077 79.67+2.78
Speech 095 78584044 8429+ 150 84.80+049 8914+ 115 5739+ 1.04 6500+ 1.88 7128+ 1.75 7546+ 2.24
Commands 099 6501 £0.84 57791082 6922+ 159 7582+372 5042+626 4142+160 53.55+2.00 5669+ 4.56

0.995 56.73 +£1.00 37.16+2.71 5823 +1.84 68.02+3.14 34204143 22.61+345 43.16+347 48.30+5.39
0.999  21.56+12.79 10.10 £4.01 17.70+£2.58 47.43 £1.66 19.25 +6.01 8.85+3.76 17.14 2297 29.24 +2.34

Table 1: Aggregated results for CIFAR-10, CIFAR-100, and Speech Command datasets, with
ResNet-18, ZeroFL, FLASH, and SparsyFed implementations.

the dense model. Additionally, the minimal performance drop at lower sparsity levels (90 — 95%)
allows SparsyFed to outperform the dense model in certain scenarios. To completely assess our
method capabilities, we increased the target sparsity to the point (99.9%) where SparsyFed is no
longer able to retain sufficient accuracy. Our results show that other methods struggle to train ef-
fectively under such conditions. The plasticity of SparsyFed promotes more consistent performance
across clients, even in highly sparse settings, leading to a more synchronized and globally pruned
model.

5.2 COMMUNICATION COSTS

The promising accuracy achieved at very high sparsity ratios makes SparsyFed particularly suit-
able for cross-device FL settings, where communication costs are a critical concern. As illustrated
in fig. [6] (left), SparsyFed significantly outperforms the baselines regarding both communication
savings (19.29x less communication costs compared to the dense model and 1.66 x compared to
ZeroFL) and maintaining required accuracy (consistently above 45%). FLASH has comparable
communications costs, 0.97x ours, but results in lower accuracy. Notably, SparsyFed consistently
achieves higher accuracy for any given communication cost (x-value) compared to the baselines.
This advantage arises from our ability to prune weights during client training and maintain a close-
to-target sparsity ratio during server aggregation, effectively reducing uplink and downlink commu-
nication costs. Importantly, FLASH does not see an increase in model density after aggregation due
to its fixed local training regime, which prevents any regrowth of weights. This characteristic re-
sults in stable communication costs. In contrast, ZeroFL experiences a substantial increase in model
density after aggregation, leading to a systematic and significant rise in downlink communication
costs.

5.3 CONSENSUS ON THE SPARSE MASKS ACROSS CLIENTS

Achieving consensus on the sparse masks of the clients’ updates after each training round is crucial
for ensuring minimal accuracy drop. This consensus is evident in the global model’s progressively
more stable sparsity level across federated rounds. As shown in fig. [6] (right), SparsyFed demon-
strates a minimal deviation from the target sparsity (90%), unlike ZeroFL and TopK, whose values
drop below 47% and 83%, respectively, during the first stage of training. SparsyFed’s consistency
implies that clients effectively collaborate to train the same subset of parameters, which reduces
the need for excessive pruning after local training and helps retain more useful information. For
all methods, local updates maintain consistent sparsity due to post-training pruning; therefore, any
increase in the global model’s density indicates that local weight regrowth during training alters the
local masks. Once clients’ updates are aggregated, such alteration results in a denser global model
on the server. This misalignment among clients’ masks can negatively impact communication effi-
ciency and accuracy. Global training seems to take advantage of this consensus in terms of training
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Figure 2: (a) The plot on the left compares accuracy versus communication cost for four imple-
mentations: ZeroFL, Top-K, FLASH, and SparsyFed, with the dense model as a reference. The
test is conducted on CIFAR-100 with LDA a = 0.1 and 95% sparsity. Our implementation out-
performs the others, achieving high accuracy quickly. (b) The plot on the right shows the global
model sparsity level, measured on the server after aggregating local updates (CIFAR-100, o = 0.1).
The density gain reflects mismatches between client updates, causing the aggregated model to re-
gain density, which can degrade performance and increase downlink communication. Note: FLASH
maintains target sparsity after the first round with a fixed mask.
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Figure 3: Intersection over Union (IoU) of global model binary masks between training rounds for
SparsyFed, TopK, and ZeroFL (CIFAR-100, o« = 0.1, 95% target sparsity). The IoU is calculated
between each mask and all other masks across rounds to show mask movement over time. Both the
x and y axes represent training rounds, with the diagonal indicating identical comparisons. Higher
IoU values (close to 1.0) signify stronger similarity between masks, while lower values indicate sig-
nificant changes. SparsyFed shows consistent mask movement with minimal variation, suggesting
strong consensus on weight usage among clients. ZeroFL struggles the most to find mask consensus,
with masks continuing to shift even in later rounds. Note: FLASH is not present since the global
mask is fixed for the entire federate training.

convergence, as shown in fig. [6] (left), where both SparsyFed and FLASH outperform TopK despite
similar overall communication costs.

5.3.1 SPARSITY PATTERN DYNAMICS

A deeper analysis of the global model’s sparse mask evolution during training highlights
SparsyFed’s ability to maintain a stable sparse pattern, driven by two key factors: focused weight
utilization and plasticity. The weight reparameterization method targets a critical subset of weights,
concentrating information where it is most impactful. This targeted approach improves training
efficiency, enhances client collaboration, and reduces communication costs, as shown in ﬁg.@

Unlike fixed-mask methods like FLASH, SparsyFed incorporates dynamic mask adaptation, pro-
moting plasticity throughout the training process. This allows a natural warmup phase during which
the sparsity pattern emerges organically, as shown in fig. B|left. Clients rapidly converge on a stable
shared mask, ensuring consistent performance. In contrast, TopK (fig. @center), while faster in its
initial rounds, never fully settles on a stable mask, resulting in continuous variation across rounds.
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ZeroFL (fig. [Blright), though more robust initially, struggles to maintain performance as it forces
weight regrowth to adjust the mask, leading to instability in later rounds.

FLASH is not considered in this comparison, as it fixes its mask after the first round, eliminating
any plasticity but reducing mask variability entirely. While this strategy ensures that the model
adheres to a fixed sparse structure, it introduces potential drawbacks. Specifically, since the mask
is determined based on the data distribution observed in the first round, FLASH becomes highly
dependent on the initial client data. This lack of plasticity contrasts with our method, which allows
continuous adaptation, enabling it to handle shifts in data distribution across rounds more effectively.

5.4 ABLATION ON WEIGHT REPARAMETRIZATION

In this ablation study, we assessed various weight
reparameterization techniques for their ability to sus-
tain a sparsity-driven model while preserving dense-
like performance. Since the sparse activations dur-
ing the backward pass rely on a sparse weight model,
it is essential for the model to maintain high spar-
sity levels throughout training while minimizing ac-
curacy loss.
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We evaluated three approaches: fixed-mask train-
ing, spectral reparameterization|Miyato et al.[(2018)),

and Powerpropagation Schwarz et al.| (2021). Each 5 95
technique was applied to a ResNet-18 model trained Sparsity Level
with sparse activations for the backward pass and
TopK unstructured pruning at the end of each train-
ing round. This setup enabled direct comparison
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Figure 4: Test accuracy of different repa-

with a baseline model that lacked any reparam-
eterization. Among the methods, Powerpropaga-
tion proved most effective for our use case (fig. ),
demonstrating superior resilience in preserving ac-
curacy with minimal degradation. By leveraging a
“rich get richer” dynamic, Powerpropagation natu-
rally induces sparsity during training. This enables
the model to remain sparse during the training com-
plementing our sparse activation backward pass, im-
proving the model’s overall efficiency and effective-

rameterization methods with sparse activa-
tions during backpropagation. We deployed
a ResNet-18 trained on the CIFAR-10 dataset
using LDA with o« = 1. This plot illus-
trates the model’s performance under differ-
ent proposed reparameterization techniques
on different sparsity levels. Powerpropaga-
tion exhibited superior robustness to the ap-
plied sparsity levels, achieving the best over-
all performance among these methods.

ness.

5.5 ABLATION ON ACTIVATION PRUNING

The activation pruning step in SparsyFed (lines 6-10 in algorithm 2) is designed to reduce computa-
tional costs on edge devices. This decision is motivated by prior studies, as discussed in the related
work section. As part of our ablation studies, we analyzed the impact of this step on the model’s
accuracy and overall performance. Since sparsifying activations during the backward pass do not
directly affect weight density, this analysis specifically focuses on its influence on test accuracy.

To evaluate this, we compared SparsyFed with and without activation pruning during the backward
pass. Our results show that activation pruning has a minimal impact on test accuracy at higher
density levels. Significant performance degradation occurred only under extreme sparsity, where
excessive pruning in specific layers substantially reduced activations, leading to diminished overall
performance. Ultimately, the computational speedup achieved through activation pruning validates
its inclusion in SparsyFed, as it balances efficiency with model accuracy.

6 RELATED WORK

Sparse training in centralized settings. Methods to enforce sparsity in neural networks can be
grouped into two main categories: (1) dense-to-sparse methods that train a dense model and achieves
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a = 10° (IID) a = 1.0 (non-1ID) a = 0.1 (non-1ID)
Sparsity no Act. Pr. Act. Pr. no Act. Pr. Act. Pr. no Act. Pr. Act. Pr.
0.90 8392 +£1.58 8431 £0.86 82.27+221 82.13+1.23 76.60+1.54 75.004+2.78
0.95 83.80 20.90 84.25+1.38 81.53+2.10 82.6 = 1.58 7529 +2.64 75.95 + 3.39

0.99 7754 198 77.16 085 7576+£1.78 7771 +1.69 63.79 +3.96 63.69 +3.90
0.995 74.6 £1.01 7271 £0.65 70.89£2.22 70.01 £043 59.15+249 56.79+3.97
0.999 6212 +1.74 5524 +£2.09 62.67£2.19 5139=+3.191 4943+245 43.68+7.61

Table 2: Accuracy comparison between SparsyFed with and without the pruning of the activation,
on CIFAR-10 with LDA o = 10, a = 1.0, and o = 0.1.

a sparse model after training (Molchanov et al., 2017} [Louizos et al., |[2017), (2) sparse-to-sparse
methods where pruning happens during training (Louizos et al., 2018; Dettmers & Zettlemoyer,
2019;Evci et al.|[2020; Jayakumar et al., 2021} Raithan & Aamodt,2020), thus theoretically reducing
computational requirements (Bengio et al., 2015) and speeding up training. Our work introduces a
novel method to implement sparse training directly within FL clients, inspired by sparse-to-sparse
approaches in centralized settings such as|Raihan & Aamodt (2020).

Pruning model updates in FL. After-training pruning, where clients first train dense models and
then prune updates, is a common approach in FL (Sattler et al., [2019; Wu et al.| 2020; Maleki-
joo et al., 2021)). Sparse Ternary Compression (Sattler et al.,2019) combines TopK pruning with
ternary quantization to compress client updates, while FedZip (Malekijoo et al., 2021} uses layer-
wise pruning, and FedSCR (Wu et al., 2020) employs patterns in client updates for more aggressive
compression. However, these methods primarily improve communication efficiency without reduc-
ing computational overhead, as they still train dense models. In contrast, our method trains sparse
models from the start, resulting in sparse updates and maintaining sparsity even after server aggre-
gation, ensuring efficient upstream and downstream communication.

Sparse training in FL. Several studies have explored sparse learning in federated settings (Bibikar
et al.;,2022; Huang et al.| |2022; Jiang et al., 2023; Qiu et al., 2021; |Babakniya et al., |2023)), but each
has limitations. FedDST (Bibikar et al.,[2022)) applies RigL (Evci et al.}[2020) to train sparse models,
focusing on heterogeneous data without addressing extreme sparsity levels. FedSpa (Huang et al.,
2022) uses a fixed sparse mask throughout training without a clear rationale behind it. PruneFL
(Jiang et al.| 2023) computes a sparse mask using biased client data and requires full gradient
uploads, increasing communication costs. ZeroFL (Qiu et al., [2021)) integrates SWAT (Rathan &
Aamodt, |2020) for local training but struggles with weight regrowth, requiring pruning after each
round, which can cause information loss. FLASH (Babakniya et al., [2023)) introduces a fixed mask
after a warmup phase, but it depends heavily on the chosen clients during the first sampling and
does not adapt to concept drift. In contrast, our method uses a dynamic sparse mask, offering more
flexibility and better performance in highly non-IID FL settings.

7 CONCLUSIONS

This work presents SparsyFed, an adaptive sparse training method tailored for cross-device federated
learning (FL). We show that SparsyFed can achieve impressive sparsity levels while minimizing the
accuracy drop due to the compression. SparsyFed outperforms in accuracy three federated sparse
training baselines, TopK, ZeroFL, and FLASH, using adaptive and fixed sparsity for three typical
datasets used in cross-device FL.. We were able to ensure a limited drop in accuracy at sparsity
levels of up to 95%, achieving up to a 19.29x reduction in communication costs compared to dense
baselines. The results presented in this work make our proposal particularly suitable for cross-device
FL settings, which may require extreme communication cost reductions and the capability to adapt
to heterogeneous distributions across federated rounds.
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A IMPLEMENTATION

We implemented all experiments using a ResNet-18 backbone (He et al.,2016), which was adjusted
to accommodate the number of classes for each task. The training pipeline was developed using
PyTorch (Paszke et al., 2019), and specific components of the various methods, such as layer-
wise activation pruning and weight reparameterization, were implemented through custom layers
and functions.

To simulate the federated learning environment, we used the Flower framework (Beutel et al.
2022). All models were trained from scratch, without pre-trained weights, to ensure a fair evaluation
of SparsyFed’s performance under different sparsity settings.

To structure the code and ensure easy reproducibility, we utilized a template from CaMLSys Lab.
The complete code for the implementation is available in this repository.

B RELATED WORK

Sparse training in centralized settings. Methods to enforce sparsity in neural networks can be
grouped into two main categories: (1) dense-to-sparse methods that train a dense model and achieves
a sparse model after training (Molchanov et al., 2017} [Louizos et al., [2017), (2) sparse-to-sparse
methods where pruning happens during training (Louizos et al., 2018; Dettmers & Zettlemoyer,
2019; [Evci et al.| [2020; Jayakumar et al., [2021; Raihan & Aamodt, 2020), thus theoretically reduc-
ing computational requirements (Bengio et al.l |2015) and speeding up training. In our work, we
introduce a novel method, inspired by sparse-to-sparse approaches in centralized settings such as
Raihan & Aamodt (2020), to implement sparse training directly within FL clients.

Pruning model updates in FL. After-training model pruning, where clients regularly train their
dense model and then apply pruning to the resulting updates, has been widely explored in the FL lit-
erature (Sattler et al., 2019; Wu et al., [2020; [Malekijoo et al., |2021). |Sattler et al.|(2019)) introduced
Sparse Ternary Compression, which combines TopK pruning with ternary quantization on client
updates. Similarly, FedZip (Malekijoo et al., 2021)) applies a layer-wise pruning approach, while
FedSCR (Wu et al., [2020) leverages patterns in client updates for more aggressive compression.
However, these methods primarily focus on enhancing communication efficiency without tackling
the issue of reducing computational overhead during training, as they conduct regular training on a
dense model before pruning weight updates. Our approach simultaneously addresses both concerns,
as training a sparse model naturally yields sparse updates. Furthermore, existing after-training prun-
ing methods typically focus solely on upstream communications or experience performance degra-
dation when applied downstream. In contrast, our method effectively maintains sparsity after server-
side aggregation, as clients rapidly converge on a shared sparsity mask, ensuring that server-to-client
payloads remain sparse as well.

Sparse training in FL. Few studies have investigated the benefits of sparse learning in federated
settings (Bibikar et al.||2022;Huang et al., 2022} Jiang et al.}[2023;|Q1u et al., |2021;[Babakniya et al.,
2023)). Specifically, FedDST (Bibikar et al.,2022) used RigL (Evci et al.}[2020) to train sparse mod-
els on clients but mainly focused on highly heterogeneous data distributions without considering
extreme sparsity levels. FedSpa (Huang et al.| 2022)) employed a randomly initialized sparse mask
that remained fixed throughout training, providing no clear justification for this approach. PruneFL
(Jiang et al., 2023) computes the sparse mask during the initial round on a designated client, using
its potentially biased data. |Qiu et al.|(2021) empirically found that, after local training, the TopK
weights differ across clients, particularly at higher sparsity levels, leading to divergent sparse masks.
This divergence makes aggregation inefficient and results in downstream dense models. In response,
Qiu et al.|(2021) proposed ZeroFL, which integrates unstructured SWAT during local client training.
However, this alone does not guarantee achieving the desired level of sparsity, as SWAT often leads
to weight regrowth with each optimizer step. To address this, ZeroFL applies TopK pruning before
sending the model back to the server, ensuring the model meets the targeted sparsity. It is important
to highlight that ZeroFL applies the same level of sparsity uniformly across all layers of the model,
regardless of their sensitivity. Additionally, it suffers significantly from weight regrowth, necessi-
tating pruning after training, which may lead to the loss of valuable information. The recent work
in |Babakniya et al.| (2023) introduces FLASH, which employs a fixed binary mask throughout the
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entire training process. This mask is established during a warmup phase where a subset of clients
([10, 20]) train their model for a non-negligible number of epochs ([10, 20, 40]), and compute their
per-layer sensitivity. The server aggregates the client’s sensitivities to determine the mask. The fixed
nature of this mask means that no weight regrowth is allowed, and no further pruning is required
after the warmup phase.

However, the success of FLASH heavily depends on the warm-up phase, which is influenced by
the client pool used to determine the mask and requires tuning an additional hyperparameter (the
number of epochs for computing sensitivity). Also, due to the mask’s fixed nature, FLASH does not
adapt to concept drift in client data during subsequent FL rounds.

In contrast to these studies, we utilize a dynamic sparse mask, allowing for greater flexibility and
enabling the model to achieve extreme sparsity even with continual settings and highly non-IID data
suffering limited performance degradation.

Cross-device federated learning. Federated Learning (FL) has emerged as a paradigm shift
from traditional machine learning approaches improving data privacy and moving the computation
load to the network’s edge. FL enables collaborative model training across decentralized devices
while keeping data localized, thereby mitigating risks associated with centralized data aggregation
(McMahan et al., [2017). In FL, client devices participate in model training via iterative rounds,
aggregating local updates to build a global model. This distributed approach is particularly advan-
tageous for scenarios involving edge devices with limited computational resources and intermittent
connectivity (Kairouz et al.l 2021). Cross-device Federated Learning (FL) is particularly challeng-
ing due heterogeneous and resource-constrained nature of client devices, such as smartphones and
IoT devices. The variability in hardware capabilities and data distributions across devices necessi-
tates specialized techniques to optimize both computation and communication techniques such as
quantization and model pruning have shown promise in reducing the amount of data that needs to
be transmitted during each communication round. However, these methods often face challenges
related to maintaining model performance and achieving consensus on the sparsity patterns among
clients.

Model sparsification. |Sattler et al.| (2019) propose Sparse Ternary Compression (STC), a lossy
compression scheme able to extremely reduce the per-round communication cost of FL iterations.
STC first applies top-k sparsification after unaltered on-device training and then further compresses
the weight updates using a ternary quantization. Other types of work have followed the idea pro-
posed in Rigging the Lottery Ticket (Evci et al., 2020) where an initial sparse mask is fixed at the
beginning of the training and remains mostly unchanged throughout. This approach allows clients
to train only the initially fixed weights (Jiang et al., [2023} |Babakniya et al.| [2023]).

Weight parametrization. Weight reparameterization in machine learning refers to the process
of altering the parameterization of a model’s weights to achieve various goals or facilitate certain
training strategies (L1 et al.,[2019}|Gunasekar et al.,|2017;|Zhao et al.|,|2022}; | Vaskevicius et al.;,[2019).
This approach can be particularly useful for enhancing the model’s robustness to the application of
sparsity. In this work, we consider a parameterization based on Weight Spectral Normalization
(Miyato et al., |2018)) and Powerpropagation (Schwarz et al.,[2021). The former reparameterizes the
weights based on the proportion of each weight relative to the one with the highest magnitude, while
the latter applies an alpha power to the weights inducing a “’rich get richer” mechanism.

w

Wrefaclor =W m

C ADDITIONAL EXPLANATIONS ON SparsyFed COMPONENTS

Model Preparation for Sparsification. The first step is to prepare the model for sparsification
by applying a parametrization to the weights at the layer level. Several parametrizations have been
proposed in the past, but we opted for the one proposed in [Schwarz et al.[(2021). This approach
leverages the information already present in the model itself. The idea is to apply a power to a
specific value, (3, to the weights of the network. While prior work aimed to aid model convergence,
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this parametrization induces a sparse representation. This transformation is applied only to the
weights of the model, leaving other parameters untouched.

Following the original approach, each weight w; is replaced by wf . This transformation is only

applied to the weights of the neural network, leaving other parameters unchanged. Given the repa-
rameterized loss function L(w?), the gradient with respect to w becomes:

VwL(wP) = Vs L(w’) - w1

Here, Vs L(w?) is the gradient with respect to the reparameterized weights. This gradient is
scaled element-wise by Aw?~1, which adjusts the step size proportionally to the magnitude of each
weight. This update is distinct from simply scaling the gradients in the original parameterization,
as it directly modifies the reparameterized weights, not the original weights. This modified gradient
step enables a “rich-get-richer” dynamic where the gap between high and low-magnitude weights
increases, leading to a natural separation between them. This makes the model relatively insensitive
to pruning.

While the original work utilized this approach to implement a package for various tasks in a cen-
tralized environment, we leveraged these new properties to implement an extensive sparsification
method to reduce training and communication costs.

Weight Sparsification. Subsequent to the reparametrization, the model is then ready to be pruned.
Our first concern was to reduce the model’s size during communication rounds to speed up FL
training. In this context, a compression mechanism is typically used to reduce the payload size
that has to be exchanged. To achieve this, it is necessary to reduce the number of parameters in
the network, inducing a high level of sparsity. We decided to use a top-k sparsification method to
remove all low-magnitude weights from the network. This pruning operation is implemented at the
end of each local training on the client. This decision is based on several observations: (a) since
the parametrization affects gradient descent, pruning before training would not be beneficial, (b) the
server is not aware of the features of the data on the clients, and initializing the sparsity mask on the
server side could cause a significant drop in performance.

We also decided to induce sparsity from the very first round. Using a dense model for initial rounds
of training and then pruning has proven ineffective and can even degrade performance. This is
because the clients would only use a small portion of the weights during training. It is crucial that
they start training with the restricted fraction from the beginning to maximize their effectiveness.
Learning on a wider network that is later pruned does not help them converge.

Sparsity is then induced after the first round of training on each device, allowing the local updates to
be sent back to the server for aggregation into a new global model. From this communication round
onwards, a high level of compression can be performed to reduce the model’s size.

From the next round onward, a second quality of Powerpropagation comes into play, drastically
reducing the regrowth of new weights during training. This results in minimal shifts of the model’s
sparsity mask from the global one received from the server. Thus, the sparsity mask of the new
model update sent to the server will differ very little from the global one. In other words, using
Powerpropagation, we are forcing all clients to converge towards a shared sparsity mask, similar to
Evci et al,| (2020), without totally inhibiting the regrowth of new paths. The mask is decided by
the clients in the very first round of training based on their local data. This means that the global
model will remain highly sparse even after aggregating new local updates from the clients. This
result allows for significant compression during the downlink communication from the server to the
clients in subsequent training rounds.

Activation Sparsification. To further reduce memory consumption during the training phase, we
implemented a layer-wise pruning similar to the one proposed in |[Raihan & Aamodt (2020). The
original idea was to speed up inference and training by reducing the number of computational op-
erations, inducing a fixed level of sparsity on the weights of each layer during both the forward and
backward passes. However, this could cause a significant drop in performance with high levels of
sparsity, as not all layers retain the same level of information. Applying the same sparsity to all lay-
ers could negatively impact those that naturally retain more information. In our implementation, we
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heavily modified the approach, retaining only key concepts. Since we keep the model sparse during
almost all training rounds, except for the first, sparsifying the weights during the forward pass is not
necessary.

For the sparsification of activations during the backward pass, instead of applying the same level
of sparsity to all layers of the model, the global sparsity mask is used to determine the pruning
sensitivity of each layer. The level of sparsification applied to the activations is directly proportional
to the level of sparsity of the weights in the same layer, allowing layers that retain more information
to maintain denser activations while drastically reducing the activations in layers that reach a high
level of sparsity.

Following this approach, we were able to utilize effective and extensive sparsification while mini-
mizing the degradation typically induced by pruning.

D ADDITIONAL BACKGROUND

D.1 POWERPROPAGATION

Powerpropagation is a weight reparameterization technique that induces sparsity in neural networks.
Essentially, it causes gradient descent to update the weights in proportion to their magnitude, leading
to a “rich get richer” dynamic where small-valued parameters remain largely unaffected by learning.
As a result, models trained with Powerpropagation exhibit a weight distribution with significantly
higher density at zero, allowing more parameters to be pruned without compromising performance.
Powerpropagation involves raising model parameters to the power of 8 (where 8 > 1) in the forward
pass, while preserving their sign. This reparameterization can be expressed as

w=uv- |v|ﬁf1

where w represents the weights, and v are the reparameterized parameters. Due to the chain rule,
this reparameterization causes the magnitude of the parameters (raised to 8 — 1) to appear in the gra-
dient computation. Consequently, small-valued parameters receive smaller gradient updates, while
large-valued parameters receive larger updates, thus amplifying the “rich get richer” dynamic. Pow-
erpropagation leads to intrinsically sparse networks, meaning that a significant portion of the weights
converge to values near zero during training. This property allows for the pruning (removal) of a
large number of weights without significantly compromising model performance. Powerpropaga-
tion can also be easily integrated with existing sparsity algorithms to further enhance performance.
Studies show the benefits of combining Powerpropagation with popular methods such as Iterative
Pruning and TopKAST (Gale et al.,[2019; Jayakumar et al., 2021).

D.2 FIXED MASK SPARSE TRAINING (FLASH)

Training a fixed subset of weights can be an effective approach for sparse model training in Federated
Learning (FL), offering several significant benefits. By limiting the number of active (non-zero)
weights, this approach reduces the computational and memory demands compared to dense models,
which is particularly advantageous given the resource constraints often found in client devices within
FL. In addition to these resource savings, sparse models also enhance communication efficiency
between clients and servers. Since only the active weights need to be transmitted, the message size
is reduced, leading to faster training and lower bandwidth usage.

Another advantage of this method lies in its potential to uncover ”winning tickets” within neural
networks [Frankle & Carbin| (2019). Research indicates that dense, randomly initialized networks
often contain sparse sub-networks, known as ”winning tickets,” which, when trained independently,
can achieve similar performance to the full model. Training a fixed subset of weights promotes this
sparsity and encourages the model to learn more efficient representations, potentially revealing these
sub-networks.

Despite these benefits, certain challenges arise when using a fixed subset of weights in FL. If the
mask is not initialized correctly or fails to adapt during training, the model’s performance may be
compromised. To mitigate these issues, strategies such as sensitivity-based pruning and selective
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mask updates are crucial for fully leveraging the advantages of sparse learning in FL [Babakniya
et al.|(2023). The training process for sparse models can be formalized as:

Wsparse =MoW

where Wiparse represents the sparse weights, M is the binary mask (with values 0 or 1), and ©
denotes element-wise multiplication.

D.3 SPECTRAL NORMALIZATION

Spectral Normalization (SN) is a weight normalization technique that aims to limit the largest
singular value of each weight matrix, thereby controlling the Lipschitz constant of the function
represented by the network. This is achieved by constraining the spectral norm of each layer
g ¢ hin, = hoye. Formally, given a weight matrix W, its spectral norm is defined as the largest
singular value o (W), i.e.,

W,
W) = ma
W) = e Tl

SN normalizes the weight matrix W by dividing it by its spectral norm:

w

W=

This ensures that the Lipschitz constant of each layer remains bounded, promoting stability during
training, particularly in scenarios where gradients may explode. Originally proposed as a regular-
ization technique to stabilize discriminator training in Generative Adversarial Networks (GANSs)
Miyato et al.| (2018]), SN has since found broader applications, including improvements in genera-
tive neural networks Zhao et al.[(2018]), and has been theoretically linked to enhanced generalization
and adversarial robustness [Farnia et al.| (2018)); |[Sokolic et al.|(2017); Cisse et al.|(2017)).

In the context of federated learning and sparse training, SN can significantly improve the resilience
of models to sparsification. SN regularizes the model mappings by enforcing the Lipschitz con-
straint, reducing sensitivity to high sparsity levels. This effect has been observed in prior work
on pruning, where SN was used to prune redundant mappings and enforce a spectral-normalized
identity prior Lin et al.[(2020).

However, by strictly constraining the Lipschitz constant, SN may reduce the model’s flexibility
during training, potentially affecting convergence in some cases. To address this, following an
approach similar to those proposed in other parameterization works Vaskevicius et al.| (2019), we
propose a slightly different method where the spectral norm is modified to enhance the distribution
of the weights. Specifically, we redefine the weight update rule as:

|w]
o(W)

w=w -

This approach allows us to maintain most of the model’s performance while improving its resilience
to pruning.
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E ADDITIONAL EXPERIMENTAL RESULTS

E.1 NAIVE POWERPROPAGATION FEDERATED ADAPTATION

In the original Powerpropagation paper, pruning was applied at the end of centralized training after
training a dense model. To create a baseline for comparison, we implemented a naive federated
version of Powerpropagation that follows this methodology. In this version, pruning is not applied
during local training at the client level. Instead, clients train with the full model, sending and re-
ceiving full model updates. At the end of the federated training (after the final round), pruning is
applied to the global model using the Top—-K method. We compare this naive version of federated
Powerpropagation to our proposed method, SparsyFed, across various sparsity levels and different
levels of data heterogeneity, in Table[3] As shown in the results, SparsyFed significantly outperforms
the naive federated Powerpropagation in terms of performance and stability, even in the presence of
sparsity.

. a = 10 (1ID) « = 1.0 (non-1ID) a = 0.1 (non-1ID)
Sparsity
Naive PP SparsyFed Naive PP SparsyFed Naive PP SparsyFed
0.000 84.69 + 1.57 - 84.31 + 1.01 - 74.86 + 2.28

0.900 7141 £7.01 8431+086 66.70+3.76 82.13+1.53 4582+6.32 75.00+2.78
0.950 35.02+6.37 8425+ 1.38 33.84+13.71 82.60 +1.58 2428 +8.79 75.95 £ 3.39
0.990 1240 £4.17 7716 £0.85 12.30+3.68 77.71 £1.69 928 £2.52  63.69 + 3.90
0.995 1033 £0.57 72771 £0.65 10.03+0.05 70.01 =043 9.74+324  56.79 + 3.97
0.999 9.86 £0.25 55.24+2.09 1001 £0.02 51.39+319 11.67+6.66 43.68+7.61

Table 3: Accuracy comparison for Naive Powerpropagation and SparsyFed on CIFAR-10 with dif-
ferent LDA settings (o = 103, & = 1.0, and o = 0.1).

E.2 SENSITIVITY ANALYSIS OF POWERPROPAGATION EXPONENT IN SparsyFed

The primary concern with introducing Powerpropagation reparameterization is the addition of an-
other hyperparameter that needs to be tuned for federated training. However, preliminary tests sug-
gest that the sensitivity of this hyperparameter is not as critical as initially expected. We tested
several values proposed in the original paper to assess their performance in sparse training within a
federated environment. As shown in the figure, any value between 1 and 2 results in a significant
performance improvement in dynamic sparse training compared to the baseline without parameteri-
zation.

90

Test Accuracy (%)

——- Resnet18 (Dense)

65 1

——- Top-K
—— SparsyFed
60 T T T T T T T
1.25 1.50 2.00 2.25 2.50 2.75 3.00
B Exponent

Figure 5: Test Accuracy with different 8 values, with 95% sparsity on CIFAR-10 LDA « = 1.0.

E.3 GLOBAL MODELS SPARSITY LEVELS
During training, the global model experiences fluctuations in its sparsity due to the mismatch in

client updates. As a result, the global model’s sparsity is not always fixed and can fluctuate sig-
nificantly throughout the training process. As shown in the following figures, the level of sparsity
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is directly influenced by the sparsity target. Higher sparsity targets tend to lead to greater weight
regrowth during training, as seen in Figure[8] which results in a larger mismatch on the server, lead-
ing to a denser model. This effect is particularly noticeable at the beginning of training, when the
model is more susceptible to significant changes in shape, as illustrated in Figure[3] Following this,
we present a plot of the sparsity measure on the global model for different sparsity targets during
training.
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Figure 6: (a) From the top left to the bottom right, we present the plots of the sparsity levels for
ZeroFL, SparsyFed, and Top—K at sparsity levels of 95%, 99%, 99.5%, and 99.9%. In all cases,
ZeroFL struggles to reach the target sparsity, partially due to its aggregation method, which only
aggregates non-zero weights. This leads to large magnitude weights, even if they are present in only
a fraction of the clients. SparsyFed and Top—-K tend to reach the target more quickly, with SparsyFed
showing a small fluctuation in the initial training phase, due to the movement of the mask, as shown
in Figure[3]

E.4 DISTRIBUTION OF THE SPARSITY THROUGH THE LAYERS.

Sparsity distribution is crucial as the sparsity achieved in the weights of each layer is used to de-
termine the sparsity level applied to the activations during the backward pass. Each layer is pruned
with a distinct sparsity level based on the information it contains, leveraging layer sensitivity to
implement an effective pruning strategy for activations. This ensures that the sensitivity observed
in the weights is reflected in the activation pruning, allowing for dynamic sparsity for both weights
and activations based on the natural sensitivity of each layer. Empirical evidence, shown in fig.[7]
supports this approach, showing that in ZeroFL implementations, the sparsity of the layers remains
uniform across all layers of the model, while in others, the sparsity levels vary significantly between
layers. The first layers tend to be nearly fully dense, while the deeper layers exceed the global
sparsity target, indicating that the first layers retain more information than the deeper layers.

A key factor in this behaviour is the limited weight regrowth observed in SparsyFed, where only
a small number of weights transition from zero to non-zero values after each training round. As
depicted in [8] SparsyFed exhibits minimal regrowth, which stabilizes quickly over a few rounds.
This is directly attributable to the use of Powerpropagation during training, which drastically reduces
the impact of smaller weights. Although this behaviour was not highlighted in the original paper,
it represents empirical evidence supporting the effectiveness of an inherited sparse model training
procedure.
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Figure 7: Different sparsity ration of some relevant layer, ZeroFL (red) vs SparsyFed with Pow-
erpropagation and sparsity ratio of 60%. The first layers are not shown as they are kept dense in
ZeroFL. Empirical observation regarding the nature of the pruning procedure (constant across lay-
ers for ZeroFL, variable unstructured across layers for SparsyFed). We could use this in the main
paper only if we make the case that our method performs better because of this. We consider this
appendix material for now.

Weight Regrowth

Figure 8: Number of weights regrown (weights switching from zero to non-zero) after one epoch of
local training, compared between SparsyFed and ZeroFL. ZeroFL performs the worst of all tested
implementations in this regard, with 50-80% of weights regrowing after local training. In contrast,
SparsyFed shows near-zero regrowth (200x lower than ZeroFL). This ensures that the movement
of the mask focuses on important weights rather than being distributed across many. Note: FLASH
does not allow weight regrowth due to its fixed-mask training approach, so it is excluded from this
graph.
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Our implementation, as illustrated in 3] shows that the global model’s mask shifts slightly during
the initial training rounds. This suggests that overly rigid approaches, such as those proposed in
FLASH, may negatively impact performance by failing to accommodate necessary flexibility. On
the other hand, SparsyFed’s approach maintains flexibility while still converging toward a consistent
global mask.

E.5 HETEROGENEOUS SPARSITY EXPERIMENTS

In this experimental setup, we aim to evaluate heterogeneous sparsity by using two distinct sets of
model sparsity:

1. [0.9, 0.85, 0.8]: These sparsity levels are based on the settings proposed by FLASH in their
heterogeneous setup. These values represent a moderate range of sparsity, which does not
significantly impact the performance of the model in this task.

2. [0.99, 0.95, 0.9]: These are denser models previously tested in other experiments, offering
a more challenging setup. SparsyFed outperforms FLASH in these settings due to its ability
to adapt efficiently to varying sparsity levels across clients.

The clients are partitioned into three groups containing [40, 30, 30] clients. Each group trains on
a different level of sparsity in the model. They receive a model matching their capability and send
back an update of the same dimensions. For clarity, a client in group 0 in the first setting will receive
a model with sparsity 0.9, train on it, and then send back a sparse update with sparsity 0.9. As shown
in Table ] we achieve high performance in all the settings, with a clear margin in the more extreme
setting

FLASH SparsyFed
Setting LDA Lower Sparsity  Higher Sparsity | Lower Sparsity ~ Higher Sparsity

a=10% | 83.15+0.96 83.77 + 0.84 83.28 + 0.44 83.27 £ 0.44
a=0.1 70.9 £0.92 74.65 £ 0.96 74.97 £ 2.39 74.98 £+ 2.39

a=103 | 7472 +0.49 74.72 £ 0.67 81.04 + 0.26 81.20 + 0.39
a=0.1| 57.63+483 59.82 +2.99 69.74 + 0.28 69.96 + 0.19

Moderate

Extreme

Table 4: Performance comparison between FLASH and SparsyFed across different heterogeneous
sparsity settings and LDA values. The model has been evaluated on all the sparsity-level trained.
For simplicity, we show the test accuracy for the dense model (which reaches a density equal to the
target density trained, 0.8 and 0.95 for moderate and extreme settings) and the less dense models
(0.9 and 0.99 for moderate and extreme). While in the moderate setting, the performances are
similar and in line with the dense model’s performance (see Table Table |I|), in the extreme setting,
SparsyFed demonstrated more versatility, achieving high performance even with the sparsest model.
It is important to note that in such a setting, the model’s performance would align with the sparsest
model trained, especially considering it is trained from a larger (though not majority) group of clients
compared to the others.

E.6 WIDE FEDERATED CIFAR10

In this experiment, we aimed to address the challenge of training a model in a setting where the
number of samples per client is extremely low. To do this, following an approach similar to the one
proposed in[Charles et al.| (2021a)), we partitioned the CIFAR-10 dataset into 1,000 clients following
an LDA distribution with v = 0.1. As shown in Table[5] SparsyFed significantly outperformed the
alternative in this setting, where clients retain a very limited amount of information. Notably, both
sparse methods outperformed the dense one in this setting, likely due to the dilution of information
in the dense model when such a small amount of data is used at each round.
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Method Accuracy (%)
Dense 4711 +£2.77
FLASH 51.96 + 2.84
SparsyFed  54.37 + 1.28

Table 5: Performance comparison of the dense model, FLASH, and SparsyFed. Both FLASH and
SparsyFed have been trained with a sparsity of 0.95. The experiments were conducted on CIFAR-
10, partitioned across 1000 clients following LDA with « = 0.1, and a participation rate of 0.1%.
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E.7 FULL TABLES ACCURACY RESULTS

Dataset Sparsity Resnet18 ZeroFL FLASH SparseFedPP
dense 85.14 £ 1.18 - - -
0.9 82.16 = 0.80 78.67 £1.52 82.57+2.05 84.31 + 0.86
CIFAR10 0.95 77.92£097 76.16 =128 8222 +0.14 84.25 +1.38
(o =10%) 0.99 68.11 £3.50 72.40+1.08 7748 +2.86 77.16 £ 0.85
0.995 5449 £8.70 6031 £4.11 71.85+1.63 72.71 £ 0.65
0.999 17.87 £6.22 2191 +1.11 4643 +16.73 55.24 + 2.09
dense 53.79 £ 1.63 - - -
0.9 4647 £1.74 4411 4+£093 53.06£1.10 54.44 +1.33
CIFAR100 0.95 1345 £21.45 33.67£334 4925+1.63 5433 +1.48
(o =10%) 0.99 1.54+122 1059 +248 4440+ 1.77 47.62 £ 1.67
0.995 0.97 + 0.64 4.04 £343 36.82+£1.72 42.05+1.21
0.999 0.97 + 0.64 0.87 £ 0.21 9.61 £ 3.61 13.85 + 1.01
dense 92.98 £ 0.67 - - -
0.9 8553+0.84 89.12+£1.11 89.89+0.74 91.34 £ 0.52
Speech Commands 0.95 80.19 +192 85.63£1.12 88.16+137 89.79 £ 0.21
(o =10%) 0.99 67.67 £2.32 60.79 244 7641 +131 77.00 £ 0.73
0.995 36.69 £ 145 41.16£3.10 6754+1.15 70.03 £1.14
0.999 63.63 £3.24 1677 £6.23 31.83+2.18  49.27 £ 0.50

Table 6: Aggregated results for CIFAR10, CIFAR100, and Google Speech Command datasets.

Dataset Sparsity Resnet18 ZeroFL FLASH SparseFedPP
dense 83.70 £ 1.70 - - -
0.9 80.56 =190 76.16 £1.30 81.15+1.03 82.13 +1.53
CIFAR10 0.95 7471 £3.29 7553 4+227 7936+ 1.03 82.60 + 1.58
(a=1.0) 0.99 66.27 £5.08 70.71 £0.15 7345+ 1.37 77.71 + 1.69
0.995 63.82 £241 56.02£395 69.15+£1.60 70.01+ 043
0.999  31.79 £19.10 17.66 £8.34 36.07+7.49 51.39+3.19
dense 5229+ 1.14 - - -
0.9 46.57 £1.71 40.70 £4.72 5199 £0.21 53.08 + 0.90
CIFAR100 0.95 28.07 £23.27 3882+1.75 47.19+1.88 52.81 +1.72
(a=1.0) 0.99 19.65 £ 1630 18.97 £2.08 42.76 +4.08 46.64 + 1.59
0.995 951+ 1481 6.01 =474 3643+497 42.21+1.03
0.999 3.81 £2.18 1.96 £0.66 5.80+286 15.96 £ 0.64
dense 91.49 + 0.94 - - -
0.9 84.28 +0.88 87.79 £ 1.40 88.68+1.72 92.32 £ 1.59
Speech Commands 0.95 78.58 £0.44 8429+ 150 84.89£0.49 89.14 +1.15
(a =1.0) 0.99 65.01 £0.84 57.79+0.82 69.22+1.59 75.82+3.72
0.995 56.73 £1.00 37.16 £2.71 58.23+1.84 68.02 &+ 3.14
0.999 2156 £12.79 10.10£4.01 17.70 £2.58 47.43 + 1.66

Table 7: Aggregated results for CIFAR10, CIFAR100, and Google Speech Command datasets.
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Dataset Sparsity Resnet18 ZeroFL FLASH SparseFedPP
dense 73.81 £4.84 - - -
0.9 69.79 +£3.78 6740 +4.11 71.87£2.63 75.00 £ 2.78
CIFAR 10 0.95 60.00 £4.66 61.55+4.18 72.08+2.09 75.95 + 3.39
(a=0.1) 0.99 4396 £ 11.99 51.71 £3.54 5691 £3.55 63.69 £ 3.90
0.995 19.02 +10.77 4133 £3.64 52.15+3.87 56.79 £ 3.97
0.999 11.5+£4494 18776 £4.28 2931 +6.75 43.68 £ 7.61
dense 48.34 +2.71 - - -
0.9 4196 £2.16 3192+7.65 45594+0.75 48.37+1.73
CIFAR100 0.95 1148 £17.51 3421 £7.65 44314214 4827 +2.70
(a=0.1) 0.99 0.14+0.72  13.07+£226 34.75+£3.38 41.03 +2.14
0.995 0.14 £ 0.72 7.04+£525 2644 £17.35 35.72 +2.01
0.999 0.14 £0.72 1.66 = 0.97 356 +2.07  13.84 + 3.69
dense 80.15 £ 2.69 - - -
0.9 6544 £097 7035£2.65 77.15+0.77 79.67 + 2.78
Speech Commands 0.95 5739+ 1.04 6590+ 1.88 7128 £1.75 75.46 £ 2.24
(a=0.1) 0.99 5042 £626 41.42+£1.60 53.554+2.00 56.69 + 4.56
0.995 3420+ 143 2261 £345 43.16+3.47 48.30 + 5.39
0.999 19.25 £ 6.01 8.85 £3.76 17.14 £2.97  29.24 +2.34

Table 8: Aggregated results for CIFAR10, CIFAR100, and Google Speech Command datasets.

F ADDITIONAL EXPERIMENTAL CONFIGURATION DETAILS

Learning rate scheduler. The learning rate follows a scheduled pattern defined by the function:

t Tlend
Tt = Tstart €XP f In| —
Tstart

(D

Reproducibility. Seeds were used for client sampling, while others were fixed for reproducibility
purposes. All simulations were conducted using three different client sampling seeds: 5378, 9421,
and 2035.

Experimental Setting. Each round consisted of one local epoch with a local batch size of 16. The
initial learning rate was set to 0.5, gradually decreasing to a final value of 0.01 following eq. (T).
For SparsyFed, the exponent for parameterization was set to 5 = 1.25 for the CIFAR-10/100 exper-
iments and 5 = 1.15 for the Speech Commands experiment. The CIFAR experiments were run for
700 rounds, while the Speech Commands experiment was run for 500 rounds.

G COMPARATIVE ANALYSIS ON ALGORITHMS AND BASELINES

Here is a brief description of the implementation used during the experiments for TopK, ZeroFL
Qiu et al.| (2021)), FLASH Babakniya et al.|(2023)), and SparsyFed:

G.1 Tork

1. Sparsification: The model is pruned per round at clients after executing the (local) training
on their own data, i.e., just before sending the updated model to the server. The pruning
method used is global unstructured Top-k, which prunes all the model parameters except
for the k largest values.

2. Aggregation strategy: FedAvg. Alternatively, other aggregation strategies acting on the
pseudo-gradients can also be applied straightforwardly.
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G.2 ZEROFL

1.

Sparsification: Pruning is performed during the local training at clients and before send-
ing the model update back to the central server. During training, the SWAT unstructured
(per-layer, in contrast to standard global unstructured TopK) approach is used to prune the
weights before the forward pass and the activations during the forward pass. This alone
doesn’t ensure obtaining a model with the targeted degree of sparsity because SWAT often
results in weight regrowth per optimizer step. To achieve the target sparsity, the model is
pruned again before sending it back to the server, using the same approach as TopK, i.e.,
global unstructured. In the original work, three levels of masks ([0.0, 0.1, 0.2]) have been
proposed to increase the density of the model before the uplink communication. For our
experiments, we used the smaller one (0.0) since it is more in line with

. Aggregation strategy: A slight variation of FedAvg is used, where the averaging is exe-

cuted among the non-zero weights to avoid excessive dilution of information in the pres-
ence of highly sparse models. Adapting the aggregation function to act only on non-zero
weights supports alternative aggregation strategies acting on the pseudo-gradients.

G.3 FLASH - SPDST (SENSITIVITY-DRIVEN PRE-DEFINED SPARSE TRAINING)

(THE ONE USED IN THE EXPERIMENTS)

1.

Sparsification: Pruning is performed at the end of the first round of training (similar to
TopK), which, in the original paper, is referred to as a warmup phase. Thus, the first round
of training is executed using the dense model, producing the initial mask. The binary mask
obtained during the warmup phase is fixed for the subsequent federated rounds, and only
the non-zero weights are trained. This means there is no need for further pruning of the
weights in subsequent rounds since no regrowth is allowed (in this version of Flash).

. Aggregation strategy: The aggregation is performed only among the non-zero weights,

similar to ZeroFL. During the first aggregation, at the end of the initial training round, the
model is further pruned on a per-layer basis to counter the regained density caused by the
mismatch in local masks. The pruning is done using the average sparsity level achieved by
all clients for each layer. For example, if the average sparsity of layer [ is d;, adjusted by
a factor 7, then layer [ of the pruned global model will have sparsity d;. The factor r helps
to maintain the target global sparsity by ensuring that the sum of individual layer sparsities
meets the overall goal. The resulting binary mask becomes the final one, maintained for
all subsequent training rounds. This process, defined in the original paper as sensitivity
analysis, is applied only in the first round, as fixed mask training prevents any further
modification of the mask in later rounds.

G.4 FLASH - IMWST (JOINT MASK WEIGHT SPARSE TRAINING)

1.

2.

Sparsification: A normal training procedure is applied (NO FIXED MASKS). Pruning is
performed at the end of each local training session.

Aggregation strategy: The server aggregates and then prunes the model, applying the
same sensitivity analysis introduced in SPDST to address the regained density. This is
done every r round, as the training method allows for the regrowth of the clients. The
original paper proposed two values for r: » = 1 and r = 5.

G.5 SPARSYFED

1.

2.

Sparsification: Powerpropagation is applied to re-parametrize the weights during the for-
ward pass executed at clients. Pruning during training is applied only to the activations
during the backward pass. At the end of the local training, the model is pruned and re-
turned to the server. The first round of training is executed using a full-size model.
Aggregation strategy: FedAvg. Alternatively, other aggregation strategies acting on the
pseudo-gradients can also be applied straightforwardly.
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