
Next-Latent Prediction Transformers Learn Compact World Models

Jayden Teoh*, Manan Tomar, Kwangjun Ahn, Edward S. Hu, Pratyusha Sharma, Riashat Islam,
Alex Lamb and John Langford

Microsoft Research

Abstract

Transformers replace recurrence with a memory that grows
with sequence length and self-attention that enables ad-hoc
look ups over past tokens. Consequently, they lack an inherent
incentive to compress history into compact latent states with
consistent transition rules. This often leads to learning solu-
tions that generalize poorly. We introduce Next-Latent Pre-
diction (NextLat), which extends standard next-token training
with self-supervised predictions in the latent space. Specif-
ically, NextLat trains a transformer to learn latent represen-
tations that are predictive of its next latent state given the
next output token. Theoretically, we show that these latents
provably converge to belief states, compressed information
of the history necessary to predict the future. This simple
auxiliary objective also injects a recurrent inductive bias into
transformers, while leaving their architecture, parallel training,
and inference unchanged. NextLat effectively encourages the
transformer to form compact internal world models with its
own belief states and transition dynamics—a crucial property
absent in standard next-token prediction transformers. Empir-
ically, across benchmarks targeting core sequence modeling
competencies—world modeling, reasoning, planning, and lan-
guage modeling—NextLat demonstrates significant gains over
standard next-token training in downstream accuracy, represen-
tation compression, and lookahead planning. NextLat stands
as a simple and efficient paradigm for shaping transformer
representations toward stronger generalization.

1 Introduction
In learning theory, it is well known that simpler explanations
of training observations tend to generalize better (Blumer
et al. 1986; Langford and Schapire 2005). Modern transform-
ers (Vaswani et al. 2017) stand in contrast to this principle.
By replacing recurrence with a memory that scales with se-
quence length and self-attention that enables flexible look
ups over past tokens, they achieve exceptional paralleliza-
tion and predictive power. Yet, this very capability removes
any inherent pressure to compress history into compact la-
tent representations with consistent update rules. As a result,
transformers often learn complex, task-specific shortcuts that
fit the training data well but generalize poorly (Anil et al.
2022; Dziri et al. 2023; Liu et al. 2023; Wu et al. 2024).

*Correspondence to: t3ohjingxiang[at]gmail[dot]com
Copyright © 2026, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

How can we encourage transformers to form simpler, more
principled explanations that avoid such shortcuts? A natural
approach is to reinstate a key property of recurrent models:
the ability to learn compact world models that channel future
prediction through compressed representations of the past.
We will show that this inductive bias can be introduced while
also retaining the parallel training efficiency of transformers.

In this paper, we introduce Next-Latent Prediction (Next-
Lat), which extends the standard next-token prediction ob-
jective with self-supervised predictions in the latent space.
NextLat jointly trains a transformer’s latent representation
alongside a latent dynamics model: the transformer encodes
the history into compact latent states such that, when con-
ditioned on the current latent and the next token (i.e., the
“action”), the dynamics model can predict the transformer’s
next latent state. This objective drives the transformer to form
compact latent summaries of past information with recurrent-
like dynamics. In effect, NextLat enables the transformer
to learn a compact internal world model while avoiding the
sequential processing overhead of recurrent architectures.
Importantly, NextLat leaves the transformer’s architecture,
inference, and parallel training procedure unchanged, intro-
ducing only a lightweight auxiliary loss on its latent repre-
sentations during training. The approach is inspired by the
self-predictive learning paradigm in reinforcement learning,
a family of algorithms that learn representations by minimiz-
ing the prediction error of their own future latent states (Tang
et al. 2023; Ni et al. 2024).

The core contributions of this paper are threefold. First, we
establish a theoretical foundation showing that NextLat prov-
ably shapes transformer representations into belief states—
compact summaries of past information sufficient for pre-
dicting future observations—a property enabling planning
and generalization, yet absent in next-token prediction trans-
formers. Second, we present a practical implementation of
NextLat that preserves the transformer’s architecture, infer-
ence procedure, and parallel training efficiency. By minimiz-
ing next-latent prediction error during training, we impose
a structural preference that promotes compression and gen-
eralization, without adding parameters or computation at in-
ference time. Finally, we empirically demonstrate NextLat’s
effectiveness across diverse domains spanning world model-
ing, reasoning, planning, and language modeling. Our results
show that transformers trained with NextLat outperform stan-

dard next-token training and other baselines in representation
compactness, lookahead planning, and downstream accuracy.
Together, these results position NextLat as an efficient and
broadly applicable framework for learning compact, predic-
tive, and generalizable representations in transformers.

2 Related Work
We are motivated by a long line of prior works in representa-
tion learning for prediction and control.

Self-Supervised Learning. Self-supervised learning (SSL;
de Sa (1993); Balestriero et al. (2023)) is a framework for
learning from unlabeled data, where a model generates its
own supervisory signals from the structure of raw inputs.
Across modalities such as vision, audio, and time series, SSL
has proven highly effective for pretraining useful features,
enabling downstream transfer that rivals, or even surpasses,
models trained on labeled data (Liu et al. 2022; Balestriero
et al. 2023; Zhang et al. 2024). There are several approaches
to SSL. Our method falls under self-predictive representa-
tion learning, which jointly learns latent representations and
a transition function that models how these representations
evolve over a sequence. Self-prediction has driven state-of-
the-art advances in reinforcement learning (RL) (Gelada et al.
2019; Zhang et al. 2020; Ye et al. 2021; Schwarzer et al.
2021; Hansen, Wang, and Su 2022). However, latent-space
SSL remains underexplored in language modeling. A recent
effort, LLM-JEPA (Huang, LeCun, and Balestriero 2025),
minimizes distances between embeddings of paired text–code
data, but relies on manually curated pairs and does not gener-
alize to raw text. In contrast, our method introduces a fully
self-supervised latent prediction objective that requires no
paired data, making it broadly applicable for training trans-
formers across arbitrary sequence modeling domains.

Belief States. In both sequence modeling and RL, models
must reason over long histories of observations. To miti-
gate this curse of dimensionality, recent work focused on
compressing history into latent representations capturing all
information necessary for future prediction. In RL, this latent
summary is formalized by Kaelbling, Littman, and Cassandra
(1998) as a belief state, defined as: “a sufficient statistic for
the past history . . . no additional data about its past actions
or observations would supply any further information about
the current state of the world”. In stochastic control, the same
notion of sufficient statistics appears as “information state”
(Striebel 1965). The idea of sufficient statistics is also key
to learning state abstractions in RL (Li, Walsh, and Littman
2006). While recurrent neural networks naturally enforce
such compression, transformers have no such constraint—
their internal state, or memory, grows linearly with sequence
length. Recently, Belief State Transformers (BST; (Hu et al.
2025)) extended the notion of belief states to transformers,
and demonstrated benefits in planning tasks. Compared to
BST, NextLat learns belief states without requiring a separate
transformer and is much more computationally efficient. We
compare these methods further in Section 5.

World Models. Loosely, a world model is an internal pre-
dictive model of how the world works, with varying inter-

pretations across cognitive science (Craik 1967; Johnson-
Laird 1983), neuroscience (Miall and Wolpert 1996; Friston
2010), and reinforcement learning (Sutton 1991; Schmidhu-
ber 1990; Ha and Schmidhuber 2018). Whether transformer
language models implicitly learn world models remains a
debate; some studies report emergent world understanding
(Patel and Pavlick 2022; Li et al. 2023; Gurnee and Tegmark
2024), while others find incoherent world structure (Vafa
et al. 2024, 2025). However, successful approaches in learn-
ing world models such as MuZero (Schrittwieser et al. 2020)
for achieving superhuman performance in video and board
games, Dreamer (Hafner et al. 2019, 2021, 2025) for general
model-based RL, and Genie (Bruce et al. 2024) for interac-
tive video generation share a common principle: they explic-
itly learn a latent dynamics model that takes a latent state
(an encoding of past observations), an action, and predicts
the next latent state. Yet, learning these latent dynamics for
autoregressive language modeling in transformers remains
underexplored. Our method, NextLat, addresses this gap by
introducing a self-prediction objective that explicitly learns a
latent dynamics model which governs how the transformer’s
latent states evolve given new tokens (i.e., “actions”), thereby
enabling the transformer to learn compact latent abstractions
of the world with consistent dynamics.

Beyond Next-Token Prediction. In the domain of lan-
guage modeling, a growing body of work has highlighted the
myopic nature of the next-token prediction objective, which
limits the model’s capability in downstream tasks such as
planning and reasoning (Bachmann and Nagarajan 2024; Na-
garajan et al. 2025). Recent works have also found improve-
ments from richer supervision signals that predict further into
the future (Gloeckle et al. 2024; Liu et al. 2024; Hu et al.
2025; Ahn, Lamb, and Langford 2025). However, these ap-
proaches operate predominantly in the token space. NextLat
takes a different approach: it shifts prediction into the latent
space, enforcing self-consistent dynamics over the model’s
latent representations rather than its token outputs.

3 Methodology: Next-Latent Prediction
In this section, we introduce a simple, yet powerful, method
for learning belief states in transformers through next-latent
prediction (or more specifically, via next-hidden state pre-
diction1). We begin by defining belief states in sequence
modeling.

Definition 3.1 (Belief states in sequence modeling). Let
X1:T denote a token sequence X1, . . . , XT . A random vari-
able bt = g(X1:t) is a belief state for the history X1:t if, for
every bounded measurable function f of the future,

E[f(Xt+1:T) | bt] = E[f(Xt+1:T) | X1:t] a.s.

1In the sequence modeling literature, intermediate latent repre-
sentations are often referred to as “hidden states”. To disambiguate,
we use the term “latent state” to broadly refer to learned represen-
tations within the transformer’s residual stream, and “hidden state”
to specifically refer to the final layer’s output at each time step (i.e.,
the pre-logit activations).

2

Next-Latent PredictionJoint-Token PredictionMulti-Token PredictionNext/Prev-Token Prediction (BST)

Input Tokens Predictions Teacher-forced Tokens

X1 X2 X3

X̂5

h3 hT−2

X̂4 X̂T−3

XT−2 XTXT−1

h3

X1 X2 X3

X̂4 X̂6X̂5

h3

X1 X2 X3 X4 X5

X̂4 X̂6X̂5

h3

X̂4

ĥ4 ĥ5

X̂6X̂5

X1 X2 X3 X4 X5

Figure 1: Illustration of different predictive mechanisms at time step t = 3. Other methods supervise only the token-level
emissions, leaving intermediate latent representations implicit. In contrast, NextLat explicitly learns latent dynamics that
predicts hidden state ĥt+1 from (ht, xt+1). Token-level supervision is then applied to the ĥt+1. Therefore, accurate multi-token
predictions emerge as a consequence of faithful latent dynamics modeling, with the latent acting as the bottleneck.

Equivalently, bt is a sufficient statistic (Striebel 1965) of
the history X1:t for predicting the future tokens, i.e., from
which we can sample from the distribution P(Xt+1:T | X1:t).

Why Next-Latent Prediction?
Theorem 3.2. Consider the joint learning of three compo-
nents:

1. a transformer with parameters θ that produces hidden
states ht at each time step t,

2. an output head pθ modeling the next-token distribution,
and

3. a latent dynamics model pψ modeling the transition
dynamics of the transformer’s hidden states.

NextLat optimizes for the following consistency objectives:

Next-Token Consistency:
pθ(Xt+1 | ht) = P(Xt+1 | X1:t), (1)

Transition Consistency:
pψ(ht+1 | ht, Xt+1) = P(ht+1 | X1:t+1), (2)

where the right-hand side of Equation (2) is the transition law
induced by the transformer’s weights. For these consistency
objectives to be satisfied, ht must converge to a belief state
for the sequence X1:t.

Proof Sketch. A formal proof by backward induction is
provided in Appendix B. Intuitively, optimizing for next-
token (Equation (1)) and transition (Equation (2)) consistency
ensures existence of measurable maps, i.e., pθ and pψ, that
allow recursive decoding of future tokens from ht:

ht
pθ−−−−−−−→

decode token
Xt+1

pψ−−−−−−→
update state

ht+1
pθ−−−−−−−→

decode token
Xt+2

pψ−−−−−−→
update state

ht+2 · · · pθ−→ XT .

For these maps to exist, and be learned, ht must jointly opti-
mize toward a belief state—a sufficient statistic for the history
to predict the future.

Remark. Optimizing only next-token consistency in stan-
dard transformers does not ensure that ht converges to a

belief state (c.f. Theorem 3 in Hu et al. (2025)). Intuitively,
self-attention enables ad-hoc lookup of past tokens, so there
is no pressure to compress all necessary information about
the past into compact latent summaries at every time step.

Learning to Predict Next-Latent States
We now describe the practical implementation of Next-
Lat, which augments standard next-token prediction with
a self-supervised predictions in the latent space. Our Next-
Lat implementation operates primarily on the hidden states
(i.e., the final-layer outputs) as they provide compact, fixed-
dimensional vectors through which gradients can be prop-
agated through the entire transformer efficiently. As usual,
we optimize the transformer and output head for next-token
prediction (Equation (1)) using the cross-entropy loss:

Lnext-token(θ) = Et<T
[
− log pθ(Xt+1 | ht)

]
.

NextLat additionally enforces transition consistency (Equa-
tion (2)) of the hidden states by introducing a latent dy-
namics model pψ that predicts the next hidden state ht+1

directly from (ht, Xt+1). For a deterministic transformer
model, P(ht+1 | ht, Xt+1) is a Dirac distribution, and we
can optimize pψ via regression. Moreover, observe that an
ideal latent dynamics model should admit recursive consis-
tency: its one-step map should compose correctly across mul-
tiple steps. Let ĥt+d = pψ(ht, Xt+1:t+d) denote the recur-
sive rollout of pψ over an d-step horizon using teacher-forced
tokens Xt+1:t+d. We supervise all d intermediate rollouts
using the smooth L1 loss2:

Lnext-h(θ, ψ; d) =

Et
[1
d

d∑
i=1

SmoothL1Loss
(
sg[ht+i], ĥt+i

)]
, (3)

where sg[·] denotes the stop-gradient operator, used to prevent
representational collapse in self-predictive learning (Ni et al.

2Note that belief state convergence (i.e., Theorem 3.2) holds
for any prediction horizon, including the 1-step case. Multi-step
horizons are used only to provide richer supervision.

3

(a) GPT (b) MTP (c) JTP (d) NextLat (ours)

Figure 2: Reconstructed maps from transformers trained on Manhattan taxi rides using different objectives. Generated edges
consistent with the true world model are colored black; invalid edges are red. Visibly, the transformer trained with NextLat learns
a world model more consistent with reality.

2024). To further align the semantics of predicted states ĥ
with true states, we introduce a complementary KL objective
enforcing agreement in token prediction space:

LKL(θ, ψ; d) =

Et
[1
d

d∑
i=1

DKL(p
sg
θ (· | sg[ht+i]) ∥ psg

θ (· | ĥt+i)
]
, (4)

where the output head psg
θ (·) is frozen so that gradients flow

only through the latent dynamics model. This KL acts sim-
ilarly to knowledge distillation (Hinton, Vinyals, and Dean
2015), providing soft supervision that guides learning of pψ .
It also resembles observation reconstruction in self-predictive
RL (Subramanian et al. 2022; Ni et al. 2024), encouraging
ĥt+i to reproduce the distribution over next observations (i.e.,
the output head’s logits).

Overall Objective. The final NextLat objective combines
all components, minimizing the following loss:

LNextLat(θ, ψ; d, λnext-h, λKL) = Lnext-token(θ)

+λnext-h Lnext-h(θ, ψ; d) + λKL LKL(θ, ψ; d), (5)

where λnext-h, λKL > 0 are scalar coefficients. Following stan-
dard training, we mask token-level losses (i.e., Lnext-token and
LKL) corresponding to context or prompt tokens. However,
we do not apply masking to the Lnext-h objective, ensuring
that belief state representations develop even during context
processing. Importantly, during inference, the learned trans-
former decodes autoregressively as usual; pψ is used only
during training to shape the transformer representations.

In the experiments that follow, we parameterize pψ using
simple MLPs as our goal is to demonstrate that NextLat yields
significant performance gains over baselines even without
sophisticated latent dynamics architectures. More implemen-
tation details and a PyTorch-style pseudocode of the NextLat
algorithm can be found in Appendix C.

4 Experiments
Modeling coherent latent dynamics and compact beliefs
about the underlying data-generating process is fundamental
to both algorithmic and human reasoning. Therefore, in this

section, we evaluate NextLat on four key axes where such ca-
pabilities matter most: world modeling, reasoning, planning,
and language modeling.

Our baseline comparisons include transformer-based
belief-learning methods, i.e., BST (Hu et al. 2025) and
JTP (Ahn, Lamb, and Langford 2025). Further discussions
and detailed comparisons with these methods are provided
in Section 5 and Appendix A. For completeness, we also
report the performances of standard next-token prediction
(GPT) and multi-token prediction (MTP). The MTP base-
line follows the implementation of Gloeckle et al. (2024).
Hereafter, we use the term “horizon” to refer to the multi-
step prediction horizon d in JTP, MTP and NextLat, and we
match horizon across these methods in all experiments to
ensure fair comparisons. For specific experiment details such
as hyperparameters, evaluation procedure, etc., please refer
to Appendix D.

World Modeling: Manhattan Taxi Rides
Vafa et al. (2024) introduced a dataset of turn-by-turn taxi
rides in Manhattan, where the true world model (i.e., the city’s
street map) is visually interpretable. Their study revealed that
transformers trained on such trajectories can achieve near-
perfect next-token accuracy, yet their internal maps remain
incoherent; they reconstruct streets with impossible orienta-
tions and even flyovers above other roads.

Setup. We use the random walks dataset from Vafa et al.
(2024), which consists of random Manhattan traversals (91M
sequences, 4.7B tokens) between taxi pickup and dropoff
points. Models are trained for 6 epochs (vs. 1 epoch in their
study) as we observe performance does not converge within
a single epoch. Due to its high computational cost, BST is
excluded from this benchmark but included in our other ex-
periments. For JTP, MTP, and NextLat, we set the multi-step
prediction horizon at d = 8. We evaluate world-modeling
performance using five comprehensive metrics:

1. Next-Token Test: Percentage of top-1 token predictions
corresponding to legal turns under teacher-forcing on
in-distribution validation sequences.

2. Valid Trajectories: Percentage of valid traversals for
out-of-distribution (OOD) pickup–dropoff pairs.

4

Next-Token
Test (↑) Valid

Trajectories (↑)
Sequence

Compression (↑) Effective
Latent Rank (↓) Detour

Robustness (↑)

GPT 100% 97.0% 0.65 160.1 85.0%
MTP 100% 98.1% 0.64 57.7 95.0%
JTP 100% 97.1% 0.32 215.8 87.0%
NextLat 100% 98.7% 0.71 52.7 95.0%

True world model 100% 100% 1.00 — 100%

Table 1: Comparison of transformers trained on Manhattan taxi rides with different objectives against the true world model
across several metrics.

3. Sequence Compression: Percentage of cases where the
model produces identical continuations when prompted
with two different traversals arriving at the same state
and sharing the same destination.

4. Effective Latent Rank: Effective rank/dimension of hid-
den states measured as the exponentiated Shannon en-
tropy of the normalized singular values (Roy and Vet-
terli 2007); lower values indicate better compression.

5. Detour Robustness: Percentage of valid traversals for
OOD pickup–dropoff pairs when we substitute the
model’s top-1 prediction with random detours (legal
turns) 75% of the time.

The results are shown in Table 1. More details on training
and evaluation are provided in Appendix D.

Results. Similar to the original study, all models achieved
100% accuracy on the next-token test. However, next-token
accuracy is a limited diagnostic and cannot meaningfully as-
sess the quality of a model’s learned world model. In Figure 2,
we visualize each model’s internal map using the reconstruc-
tion algorithm proposed by Vafa et al. (2024). Visibly, the
transformer trained with NextLat exhibits an internal map
more consistent with the true world model. Although not
perfect, its inconsistencies (red edges) are sparse and mostly
local. Beyond this qualitative evidence, NextLat consistently
outperforms all baselines across all metrics. On the trajectory
validity and detour robustness metrics, NextLat demonstrates
the strongest generalization to OOD pickup–dropoff pairs,
even when random detours are introduced.

We analyze the compactness of the learned world mod-
els using two compression metrics. A model that accurately
captures the underlying states and transitions should assign
identical continuations to trajectories that end in the same
state (i.e., intersection in Manhattan). By this criterion, Next-
Lat achieves the highest sequence compression of 0.71. The
true Manhattan graph comprises only 4,580 intersections
and 9,846 edges, and therefore an effective world model
should require only a modest latent dimensionality. Indeed,
NextLat has the lowest effective latent rank of 52.7—over
3x smaller than GPT’s. The combination of stronger plan-
ning performance and more compact latent representations
reinforces the view that NextLat, by promoting belief state
representations and coherent latent dynamics, enables trans-
formers to learn substantially better world models—ones that
are both accurate in their predictive structure and efficient in
their internal representation of the environment.

Reasoning: Countdown

Model Horizon (d) Accuracy (%)
GPT – 33.1

BST – 42.3

MTP
1 39.2
4 49.7
8 57.3

JTP
1 39.0
4 49.4
8 55.0

NextLat
1 54.2
4 57.4
8 57.8

Table 2: Performance on Countdown. Best result is bolded,
and second best is underlined.

Countdown (Countdown 2025) is a mathematical reason-
ing task and a generalized version of the Game of 24, which
even frontier models such as GPT-4 (Achiam et al. 2023) have
struggled with, achieving 4% by default (Yao et al. 2023). The
goal of the task is to combine a set of given numbers with ba-
sic arithmetic operations (+,−,×,÷) to obtain a target num-
ber. For example, given the numbers {90, 8, 20, 50}, the tar-
get number 24 can be obtained using the following sequence
of equations: 90× 8 = 720, 50− 20 = 30, 720÷ 30 = 24.
Countdown poses a difficult combinatorial search problem
due to its large branching factor and the need to efficiently
explore the solution space to reach the target number.

Setup. Following Gandhi et al. (2024), we generate 500k
training problems with target numbers ranging from 10 to
100 and reserve 10% of the targets for out-of-distribution
evaluation. During both training and testing, we insert eight
‘pause tokens’ (Goyal et al. 2023) after the target number,
allowing models additional computation to plan before gener-
ating a solution. Performance is measured as the percentage
of 10k test problems for which a model produces a valid se-
quence of equations that correctly reaches the target number,
averaged over three random seeds per baseline.

Results. As shown in Table 2, NextLat consistently outper-
forms all baselines on the Countdown task. Notably, even at

5

Eq. 1 Eq. 2 Eq. 3
0

20
40
60
80

100
Va

lid
ity

 (%
)

GPT BST MTP JTP NextLat

(a)

G2, 10 G5, 5 G7, 7
0

20
40
60
80

100

So
lv

e
Ra

te
 (%

)

GPT BST MTP JTP NextLat

(b) (c)

Figure 3: (a) Validity of equations (i.e., LHS = RHS) generated on Countdown. All models in this plot use d = 1. (b) Accuracy
on Path-Star Graph task. Unlike the baselines, NextLat maintains close to 100% solve rate for all graphs. (c) Illustration of a
G5,5 Path-Star graph (Bachmann and Nagarajan 2024).

a shallow prediction horizon of d = 1, NextLat substantially
surpasses the MTP and JTP baselines with the same horizon
(38% improvement). To better understand this gap, we ana-
lyzed the equations generated by each model and evaluated
their equation validity, i.e., whether the computed left-hand
side equals the right-hand side. As shown in Figure 3a, most
calculation errors occur in the final equation (Eq. 3). This
indicates that the model’s lack of planning capability results
in its realization of being unable to achieve the goal only
at the end. Unable to revise earlier missteps, it forces an
invalid final equation to match the desired outcome—a be-
havior termed the regretful compromise by Ye et al. (2025).
NextLat demonstrates stronger lookahead planning: even
with d = 1, it achieves substantially higher mean validity in
the final equation (54.2%) compared to the next best base-
line (42.3%). This suggests that the latent-state prediction
objective enables it to anticipate long-horizon dependencies
and form globally consistent plans, reducing the tendency
to make myopic errors. NextLat achieves the leading perfor-
mance with horizons d = 4 and 8.

Planning: Path-Star Graph
A path-star graph (Bachmann and Nagarajan 2024) Gd,ℓ con-
sists of a center node and d disjoint arms, each consisting of
ℓ − 1 nodes. Figure 3c depicts an instantiation of the G5,5

topology. A training instance is a sequence that contains
the edge list, the start and end nodes, and the correct path
from start to end. This task represents a minimal instance of
lookahead planning, a core capability underlying more com-
plex behaviors such as storytelling. Yet, despite its apparent
simplicity, next-token prediction models struggle to solve it.

Setup. Following Bachmann and Nagarajan (2024), we
generate 200k training samples and set N = 100, such
that node values in each graph are randomly drawn from
1, . . . , 100. For MTP, JTP, and NextLat, we set the multi-step
prediction horizon to d = ℓ − 2, ensuring that the target
(end) node lies within the multi-step prediction horizon of the
center node. We evaluate performance across three graph con-
figurations: G2,10, G5,5, and G7,7 across five random seeds
per baseline.

Results. As shown in Figure 3b, NextLat maintains close
to 100% solve rate for all topologies of the path-star graphs.
BST, while able to solve G2,10 and G5,5, begins to fail at the

larger graph G7,7. The Path-Star task is designed to reveal
the myopic behavior of teacher-forced next-token prediction
models, which tend to exploit local shortcuts instead of learn-
ing to perform lookahead planning necessary to solve the
task. This phenomenon, termed the Clever Hans cheat (Bach-
mann and Nagarajan 2024), has motivated methods such as
BST, MTP, and JTP, that attempt to mitigate shortcut learning
through multi-token predictions. However, these approaches
still operate in token space, making them susceptible to local
n-gram regularities that do not capture the underlying transi-
tion structure required for long-horizon planning. By contrast,
NextLat performs prediction in latent space, enforcing transi-
tion consistency at the representation level. NextLat’s success
across all graph configurations, unlike MTP, JTP, and BST,
suggests that latent-space prediction better avoids shortcut
learning and yields more generalizable solutions.

Language Modeling: TinyStories
Next, we compare the language modeling capabilities of the
models on TinyStories (Eldan and Li 2023), a dataset con-
sisting of synthetic short stories. TinyStories aims to repre-
sent key challenges in text generation while keeping training
tractable for small to medium scale models. After pretraining
the transformer methods on the dataset, we train linear probes
on the hidden representations of the frozen transformers to
predict future tokens. This allows us to assess whether the
models’ representations capture belief-state–like abstractions
that encode information predictive of future tokens, or just
local token correlations.

Setup. Following Hu et al. (2025), we tokenize the dataset
of 2.7 million stories into a vocabulary of 1,000 tokens
and construct training sequences of length 256. All models
are trained for 100k steps, which is sufficient for conver-
gence. We include comparisons of transformers trained using
MTP, JTP, and NextLat with multi-step prediction horizons
d ∈ {1, 8}. After training, we freeze the model parameters
and train 20 independent linear probes, one per token offset,
to predict tokens at offsets 1, . . . , 20 steps ahead from the
hidden states of the frozen models using the same dataset.

Results. We plot the difference in probe performance rel-
ative to probes trained on GPT’s hidden states in Figure 4.
For clarity, we display only selected token offsets here (see
Figure 6 in the appendix for full results). Observe that the

6

1 2 4 8 10 12 13 14 16 18 19 20
Token Offset

0.8

0.6

0.4

0.2

0.0

0.2

Cr
os

s-
En

tro
py

 L
os

s (
 v

s.
GP

T)
GPT Baseline
BST
MTP (d=1)
MTP (d=8)

JTP (d=1)
JTP (d=8)
NextLat (d=1)
NextLat (d=8)

Figure 4: Cross-entropy loss difference relative to GPT, obtained from linear probes trained on frozen hidden states to predict
tokens at varying token offsets (x-axis values) ahead. Lower values indicate better predictive performance.

additional token-level prediction objectives in BST, MTP, and
JTP consistently cause significant degradation in next-token
prediction (i.e., token offset = 1). Preserving high fidelity
in next-token prediction is arguably important, as empiri-
cal studies show that lower perplexity correlates strongly
with improved downstream performance (Gadre et al. 2024;
Thrush, Potts, and Hashimoto 2025). Moreover, probe per-
formance on JTP and MTP representations declines sharply
with increasing token offset. This indicates that these multi-
token prediction models, lacking guarantees of learning belief
states, could encode information useful only for short-horizon
prediction. In contrast, NextLat matches GPT’s next-token
performance across both d ∈ {1, 8} and exhibits the strongest
long-horizon predictive capability (up to 20 tokens ahead) for
both d = 1 and d = 8. These results suggest that NextLat’s
latent-state objective induces belief-like representations that
encode predictive information about future events—an ability
essential for maintaining coherence in long-range narrative
generation tasks like TinyStories.

5 Discussions
Comparison Against Current Approaches
In this section, we discuss the advantages of NextLat com-
pared to prior transformer learning approaches, focusing dis-
cussions on belief-learning methods, i.e., BST and JTP. For
readers unfamiliar with these methods, we include brief de-
scriptions of their training objectives in Appendix A. Table 3
summarizes the training and inference parameters, training
speed (in iterations per second), and gradient signal charac-
teristics for each method on TinyStories, providing context
for the discussions that follow.

Computational Costs. While BST benefits from O(T 2)
gradient signals per token sequence, this is a double-edged
sword. Even with the optimized implementation of Hu et al.
(2025), training remains extremely costly because gradients
must be accumulated over all O(T 2) predictions of different
prefix–suffix pairs. Moreover, BST trains two transformer
encoders, further increasing compute and parameter cost.
During inference, BST also uses both transformer encoders,
one for generation and the other for scoring the likelihood
of the generated sequence. On TinyStories, BST is over 10×
slower than NextLat (see Table 3) in training speed. In con-
trast, NextLat with d = 1 incurs only a minor slowdown

relative to GPT (3.26 vs. 3.72 iterations/s) while achieving
the same belief-state learning guarantees as BST.

We next compare the compute costs of the multi-step pre-
diction methods, i.e., MTP, JTP, and NextLat. The MTP
implementation of Gloeckle et al. (2024), as well as other
variants such as Liu et al. (2024), require additional trans-
former layers as the prediction horizon d increases, whereas
JTP and NextLat keep parameter counts fixed across hori-
zons. All three methods exhibit similar training speeds for
d = 1. However, at d = 8, JTP is faster than NextLat be-
cause NextLat sequentially unrolls its latent dynamics model
pψ to compute multi-step losses, while JTP computes them
in parallel. Nonetheless, this modest increase in computa-
tion for NextLat yields substantially better performance than
JTP across all benchmarks. Importantly, NextLat’s sequential
computation remains far more efficient than that of recurrent
neural networks, which we discuss in Section 5.

Belief State Learning. GPT and MTP lack any theoretical
learning pressure to form belief-state representations, which
means that they do not necessarily learn sufficient representa-
tions predictive of future observations. JTP, in contrast, can
learn belief states but only under the restrictive condition
that the prediction horizon satisfies d ≥ k, where k denotes
the observability horizon of the underlying data-generating
process (see Theorem A.1 in appendix). In long-context se-
quence modeling, however, the underlying process is often
k-observable for a very large k, rendering this condition im-
practical. NextLat, on the other hand, learns belief-state repre-
sentations independently of d and larger prediction horizons
are used only to provide richer gradient signals. It also avoids
the expensive O(T 2) gradient computation required by BST
to learn belief states. Taken together, these properties posi-
tion NextLat as a simple, efficient, and theoretically grounded
alternative to existing belief-state learning approaches (i.e.,
BST and JTP) in autoregressive sequence modeling.

Myopic Nature of Token-level Predictions. Token-level
supervision is often myopic. Next-token prediction trans-
formers tend to prioritize short-term dependencies, and stud-
ies have shown that early training can often resemble n-
gram modeling, which can delay or even prevent learning
of the true Markov kernel (Edelman et al. 2024; Makkuva
et al. 2025). Bachmann and Nagarajan (2024) further showed
that the myopic nature of next-token prediction training can
trap models in suboptimal local minima, undermining long-

7

GPT BST MTP JTP NextLat

Training parameters (d = 1 / d = 8) 57M 114M 64M / 114M 60M 66M
Inference parameters 57M 57M / 114M 57M 60M 57M
Training iterations/second (d = 1 / d = 8) 3.72 0.19 3.12 / 1.81 3.33 / 2.61 3.26 / 1.89
Gradients O(T) O(T 2) O(Td) O(Td) O(Td)

Table 3: Comparison of training speed, parameter count and gradient signals provided on TinyStories for all methods. For training
parameter numbers and training iterations/second, we report values for d = 1 and d = 8. If only a single value is shown, it means
that the values are the same for both horizons. All training speeds are measured on a single NVIDIA H100 NVL GPU.

horizon planning. In our experiments, we find that adding
additional token-level prediction objectives, as in BST, JTP,
and MTP, not only degrades next-token performance but
also fails to yield consistent gains in generalization. In con-
trast, NextLat, which emphasizes latent transition modeling
as its primary objective, avoids degradation in next-token
performance and improves downstream generalization by
encouraging the learning of structured, predictive representa-
tions rather than shallow token-level correlations. In doing
so, NextLat offers a compelling alternative to conventional
token-level prediction objectives for transformer training.

NextLat vs. Recurrent Neural Networks
Algorithmic reasoning requires capabilities most naturally
understood through recurrent models of computation, like
the Turing machine. However, strict recurrence imposes a
sequential computation bottleneck at training time. NextLat
introduces a recurrent inductive bias via latent transition
prediction without turning the transformer into a strictly se-
quential model.

Computational Efficiency and Relation to Backpropaga-
tion Through Time. RNNs incur O(T) sequential depen-
dence for training. In contrast, NextLat introduces only an
additional sequential cost proportional to the rollout horizon
d≪ T during training, corresponding to the unrolling of the
latent dynamics model pψ over d steps. This enables NextLat
to largely retain the transformer’s parallel training efficiency
while also incorporating a recurrent inductive bias. In prac-
tice, this yields a controllable trade-off: the horizon d can be
tuned to balance supervision strength and computational cost,
without incurring the full sequential burden of RNNs.

Conceptually, the one-step and multi-step prediction in
NextLat resembles truncated backpropagation through time
(TBPTT) in RNNs, with truncation windows of 1 and d, re-
spectively. However, a key distinction lies in how gradients
are propagated. In TBPTT for RNNs, gradient computation is
truncated beyond the chosen window, yielding biased gradi-
ent estimates that lack the convergence guarantees of stochas-
tic gradient descent. In contrast, the theoretical convergence
of belief-state learning in NextLat, as shown in Theorem 3.2,
is independent of d, since convergence requires only one-step
prediction optimality. Intuitively, NextLat performs full back-
propagation through the transformer’s computation graph,
whose self-attention connects all past tokens, while the latent
dynamics model is unrolled externally in an “outer loop”.
This outer-loop supervision does not truncate gradient flow
within the transformer, and therefore avoids bias with respect

to the chosen d. Larger prediction horizons simply provide
richer supervision and faster empirical convergence.

Expressivity of the Recurrence. Modern state-space mod-
els (SSMs), such as S4 and Mamba, implement efficient
linear recurrent updates in their hidden states, offering long-
range dependency modeling while remaining highly paral-
lelizable (Gu, Goel, and Ré 2022; Gu and Dao 2024). In
contrast to SSMs, the latent dynamics model pψ in NextLat
can express either linear or nonlinear transitions, depending
on the choice of model architecture. Moreover, NextLat does
not explicitly perform recurrence in the forward computation.
Instead, recurrent-like dynamics emerge implicitly through
one-step or multi-step unrolling of the latent dynamics model
and aligning successive hidden states via regression. This
setup allows NextLat to induce structured temporal consis-
tency within the latent space without changing the trans-
former’s architecture. However, it is important to note that
NextLat modifies the learned representations, not the under-
lying circuit complexity. The overall computational expres-
sivity of a transformer trained with NextLat remains bounded
by that of the transformer itself, that is, by the TC0 class of
constant-depth threshold circuits, which upper-bounds the
formal languages recognizable by fixed-depth transformers
(Merrill, Sabharwal, and Smith 2022).

6 Conclusion
In this paper, we introduced Next-Latent Prediction (Next-
Lat), a simple yet powerful framework that augments next-
token training with self-supervised latent-space prediction,
enabling transformers to learn belief-state representations.
Theoretically, we show that the pressure to form concise la-
tent summaries of past information sufficient to predict the fu-
ture arises naturally from the NextLat objective. Empirically,
NextLat yields more compact, predictive, and generalizable
representations across tasks in world modeling, reasoning,
planning, and language modeling—all without changing the
transformer’s architecture, parallel training efficiency, or in-
ference procedure. By reintroducing a recurrent inductive
bias through self-predictive latent dynamics, NextLat unifies
the inherent bias toward compact and temporally-consistent
representations of recurrent models with the scalability and
parallelism of transformers. Our method is broadly appli-
cable for training transformers in autoregressive sequence
modeling domains. Looking ahead, we view NextLat as a
step toward training objectives that endow autoregressive
sequence models with simpler, more compact, and therefore
more generalizable representations of complex systems.

8

References
Achiam, J.; Adler, S.; Agarwal, S.; Ahmad, L.; Akkaya,
I.; Aleman, F. L.; Almeida, D.; Altenschmidt, J.; Altman,
S.; Anadkat, S.; et al. 2023. Gpt-4 technical report. arXiv
preprint arXiv:2303.08774.
Ahn, K.; Lamb, A.; and Langford, J. 2025. Efficient Joint
Prediction of Multiple Future Tokens. arXiv:2503.21801.
Anil, C.; Wu, Y.; Andreassen, A.; Lewkowycz, A.; Misra,
V.; Ramasesh, V.; Slone, A.; Gur-Ari, G.; Dyer, E.; and
Neyshabur, B. 2022. Exploring Length Generalization in
Large Language Models. In Koyejo, S.; Mohamed, S.; Agar-
wal, A.; Belgrave, D.; Cho, K.; and Oh, A., eds., Advances in
Neural Information Processing Systems, volume 35, 38546–
38556. Curran Associates, Inc.
Ba, J. L.; Kiros, J. R.; and Hinton, G. E. 2016. Layer Nor-
malization. arXiv:1607.06450.
Bachmann, G.; and Nagarajan, V. 2024. The Pitfalls of Next-
Token Prediction. In Salakhutdinov, R.; Kolter, Z.; Heller,
K.; Weller, A.; Oliver, N.; Scarlett, J.; and Berkenkamp, F.,
eds., Proceedings of the 41st International Conference on
Machine Learning, volume 235 of Proceedings of Machine
Learning Research, 2296–2318. PMLR.
Balestriero, R.; Ibrahim, M.; Sobal, V.; Morcos, A.; Shekhar,
S.; Goldstein, T.; Bordes, F.; Bardes, A.; Mialon, G.; Tian, Y.;
Schwarzschild, A.; Wilson, A. G.; Geiping, J.; Garrido, Q.;
Fernandez, P.; Bar, A.; Pirsiavash, H.; LeCun, Y.; and Gold-
blum, M. 2023. A Cookbook of Self-Supervised Learning.
arXiv:2304.12210.
Blumer, A.; Ehrenfeucht, A.; Haussler, D.; and Warmuth,
M. 1986. Classifying learnable geometric concepts with
the Vapnik-Chervonenkis dimension. In Proceedings of the
eighteenth annual ACM symposium on Theory of computing,
273–282.
Bruce, J.; Dennis, M.; Edwards, A.; Parker-Holder, J.; Shi,
Y. J.; Hughes, E.; Lai, M.; Mavalankar, A.; Steigerwald, R.;
Apps, C.; Aytar, Y.; Bechtle, S.; Behbahani, F.; Chan, S.;
Heess, N.; Gonzalez, L.; Osindero, S.; Ozair, S.; Reed, S.;
Zhang, J.; Zolna, K.; Clune, J.; De Freitas, N.; Singh, S.; and
Rocktäschel, T. 2024. Genie: generative interactive environ-
ments. In Proceedings of the 41st International Conference
on Machine Learning, ICML’24. JMLR.org.
Countdown. 2025. Countdown (game show). [Online; ac-
cessed 12-October-2025].
Craik, K. J. W. 1967. The nature of explanation, volume 445.
CUP Archive.
de Sa, V. 1993. Learning Classification with Unlabeled Data.
In Cowan, J.; Tesauro, G.; and Alspector, J., eds., Advances in
Neural Information Processing Systems, volume 6. Morgan-
Kaufmann.
Dziri, N.; Lu, X.; Sclar, M.; Li, X. L.; Jiang, L.; Lin, B. Y.;
Welleck, S.; West, P.; Bhagavatula, C.; Bras, R. L.; Hwang,
J. D.; Sanyal, S.; Ren, X.; Ettinger, A.; Harchaoui, Z.; and
Choi, Y. 2023. Faith and Fate: Limits of Transformers on
Compositionality. In Thirty-seventh Conference on Neural
Information Processing Systems.

Edelman, E.; Tsilivis, N.; Edelman, B. L.; Malach, E.; and
Goel, S. 2024. The Evolution of Statistical Induction Heads:
In-Context Learning Markov Chains. In Globerson, A.;
Mackey, L.; Belgrave, D.; Fan, A.; Paquet, U.; Tomczak, J.;
and Zhang, C., eds., Advances in Neural Information Process-
ing Systems, volume 37, 64273–64311. Curran Associates,
Inc.
Eldan, R.; and Li, Y. 2023. Tinystories: How small can
language models be and still speak coherent english? arXiv
preprint arXiv:2305.07759.
Friston, K. 2010. The free-energy principle: a unified brain
theory? Nature reviews neuroscience, 11(2): 127–138.
Gadre, S. Y.; Smyrnis, G.; Shankar, V.; Gururangan, S.;
Wortsman, M.; Shao, R.; Mercat, J.; Fang, A.; Li, J.; Keh,
S.; Xin, R.; Nezhurina, M.; Vasiljevic, I.; Jitsev, J.; Soldaini,
L.; Dimakis, A. G.; Ilharco, G.; Koh, P. W.; Song, S.; Kol-
lar, T.; Carmon, Y.; Dave, A.; Heckel, R.; Muennighoff, N.;
and Schmidt, L. 2024. Language models scale reliably with
over-training and on downstream tasks. arXiv:2403.08540.
Gandhi, K.; Lee, D.; Grand, G.; Liu, M.; Cheng, W.; Sharma,
A.; and Goodman, N. D. 2024. Stream of search (sos): Learn-
ing to search in language. arXiv preprint arXiv:2404.03683.
Gelada, C.; Kumar, S.; Buckman, J.; Nachum, O.; and Belle-
mare, M. G. 2019. DeepMDP: Learning Continuous Latent
Space Models for Representation Learning. In Chaudhuri,
K.; and Salakhutdinov, R., eds., Proceedings of the 36th In-
ternational Conference on Machine Learning, volume 97
of Proceedings of Machine Learning Research, 2170–2179.
PMLR.
Gloeckle, F.; Idrissi, B. Y.; Rozière, B.; Lopez-Paz, D.; and
Synnaeve, G. 2024. Better & faster large language mod-
els via multi-token prediction. In Proceedings of the 41st
International Conference on Machine Learning, ICML’24.
JMLR.org.
Goyal, S.; Ji, Z.; Rawat, A. S.; Menon, A. K.; Kumar, S.;
and Nagarajan, V. 2023. Think before you speak: Train-
ing language models with pause tokens. arXiv preprint
arXiv:2310.02226.
Gu, A.; and Dao, T. 2024. Mamba: Linear-Time Sequence
Modeling with Selective State Spaces. arXiv:2312.00752.
Gu, A.; Goel, K.; and Ré, C. 2022. Efficiently Modeling Long
Sequences with Structured State Spaces. arXiv:2111.00396.
Gurnee, W.; and Tegmark, M. 2024. Language Models Rep-
resent Space and Time. In The Twelfth International Confer-
ence on Learning Representations.
Ha, D.; and Schmidhuber, J. 2018. World models. arXiv
preprint arXiv:1803.10122, 2(3).
Hafner, D.; Lillicrap, T.; Ba, J.; and Norouzi, M. 2019. Dream
to control: Learning behaviors by latent imagination. arXiv
preprint arXiv:1912.01603.
Hafner, D.; Lillicrap, T. P.; Norouzi, M.; and Ba, J. 2021.
Mastering Atari with Discrete World Models. In 9th Interna-
tional Conference on Learning Representations, ICLR 2021,
Virtual Event, Austria, May 3-7, 2021. OpenReview.net.
Hafner, D.; Pasukonis, J.; Ba, J.; and Lillicrap, T. 2025.
Mastering Diverse Control Tasks through World Models.
640(8059): 647–653.

9

Hansen, N.; Wang, X.; and Su, H. 2022. Temporal Difference
Learning for Model Predictive Control. arXiv:2203.04955.
Hendrycks, D.; and Gimpel, K. 2023. Gaussian Error Linear
Units (GELUs). arXiv:1606.08415.
Hinton, G.; Vinyals, O.; and Dean, J. 2015. Distill-
ing the knowledge in a neural network. arXiv preprint
arXiv:1503.02531.
Hu, E. S.; Ahn, K.; Liu, Q.; Xu, H.; Tomar, M.; Lang-
ford, A.; Teoh, J.; Xu, B.; Yan, D.; Jayaraman, D.; Lamb,
A.; and Langford, J. 2025. The Belief State Transformer.
arXiv:2410.23506.
Huang, H.; LeCun, Y.; and Balestriero, R. 2025. LLM-JEPA:
Large Language Models Meet Joint Embedding Predictive
Architectures. arXiv preprint arXiv:2509.14252.
Johnson-Laird, P. N. 1983. Mental models: Towards a cog-
nitive science of language, inference, and consciousness. 6.
Harvard University Press.
Kaelbling, L. P.; Littman, M. L.; and Cassandra, A. R. 1998.
Planning and acting in partially observable stochastic do-
mains. Artificial intelligence, 101(1-2): 99–134.
Langford, J.; and Schapire, R. 2005. Tutorial on practical pre-
diction theory for classification. Journal of machine learning
research, 6(3).
Li, K.; Hopkins, A. K.; Bau, D.; Viégas, F.; Pfister, H.; and
Wattenberg, M. 2023. Emergent world representations: Ex-
ploring a sequence model trained on a synthetic task. ICLR.
Li, L.; Walsh, T. J.; and Littman, M. L. 2006. Towards a
unified theory of state abstraction for MDPs. AI&M, 1(2): 3.
Liu, A.; Feng, B.; Xue, B.; Wang, B.; Wu, B.; Lu, C.; Zhao,
C.; Deng, C.; Zhang, C.; Ruan, C.; et al. 2024. Deepseek-v3
technical report. arXiv preprint arXiv:2412.19437.
Liu, B.; Ash, J. T.; Goel, S.; Krishnamurthy, A.; and Zhang,
C. 2023. Transformers Learn Shortcuts to Automata. In The
Eleventh International Conference on Learning Representa-
tions.
Liu, S.; Mallol-Ragolta, A.; Parada-Cabeleiro, E.; Qian, K.;
Jing, X.; Kathan, A.; Hu, B.; and Schuller, B. W. 2022. Audio
Self-supervised Learning: A Survey. arXiv:2203.01205.
Loshchilov, I.; and Hutter, F. 2019. Decoupled Weight Decay
Regularization. arXiv:1711.05101.
Makkuva, A. V.; Bondaschi, M.; Girish, A.; Nagle, A.; Jaggi,
M.; Kim, H.; and Gastpar, M. 2025. Attention with Markov:
A Curious Case of Single-layer Transformers. In The Thir-
teenth International Conference on Learning Representa-
tions.
Merrill, W.; Petty, J.; and Sabharwal, A. 2025. The Illusion
of State in State-Space Models. arXiv:2404.08819.
Merrill, W.; Sabharwal, A.; and Smith, N. A. 2022. Saturated
Transformers are Constant-Depth Threshold Circuits. Trans-
actions of the Association for Computational Linguistics, 10:
843–856.
Miall, R. C.; and Wolpert, D. M. 1996. Forward models for
physiological motor control. Neural networks, 9(8): 1265–
1279.

Nagarajan, V.; Wu, C. H.; Ding, C.; and Raghunathan, A.
2025. Roll the dice & look before you leap: Going beyond
the creative limits of next-token prediction. arXiv preprint
arXiv:2504.15266.
Ni, T.; Eysenbach, B.; SeyedSalehi, E.; Ma, M.; Gehring,
C.; Mahajan, A.; and Bacon, P.-L. 2024. Bridging State
and History Representations: Understanding Self-Predictive
RL. In The Twelfth International Conference on Learning
Representations.
Patel, R.; and Pavlick, E. 2022. Mapping language models to
grounded conceptual spaces. In International conference on
learning representations.
Power, A.; Burda, Y.; Edwards, H.; Babuschkin, I.; and Misra,
V. 2022. Grokking: Generalization Beyond Overfitting on
Small Algorithmic Datasets. arXiv:2201.02177.
Roy, O.; and Vetterli, M. 2007. The effective rank: A measure
of effective dimensionality. In 2007 15th European signal
processing conference, 606–610. IEEE.
Schmidhuber, J. 1990. Making the World Differentiable:
On Using Self Supervised Fully Recurrent Neural Networks
for Dynamic Reinforcement Learning and Planning in Non-
Stationary Environments. Forschungsberichte Künstliche
Intelligenz. Inst. für Informatik.
Schrittwieser, J.; Antonoglou, I.; Hubert, T.; Simonyan, K.;
Sifre, L.; Schmitt, S.; Guez, A.; Lockhart, E.; Hassabis, D.;
Graepel, T.; et al. 2020. Mastering atari, go, chess and shogi
by planning with a learned model. Nature, 588(7839): 604–
609.
Schwarzer, M.; Anand, A.; Goel, R.; Hjelm, R. D.;
Courville, A.; and Bachman, P. 2021. Data-Efficient Re-
inforcement Learning with Self-Predictive Representations.
arXiv:2007.05929.
Striebel, C. 1965. Sufficient statistics in the optimum control
of stochastic systems. Journal of Mathematical Analysis and
Applications, 12(3): 576–592.
Subramanian, J.; Sinha, A.; Seraj, R.; and Mahajan, A. 2022.
Approximate information state for approximate planning and
reinforcement learning in partially observed systems. Journal
of Machine Learning Research, 23(12): 1–83.
Sutton, R. S. 1991. Dyna, an integrated architecture for
learning, planning, and reacting. ACM Sigart Bulletin, 2(4):
160–163.
Tang, Y.; Guo, Z. D.; Richemond, P. H.; Pires, B. A.; Chan-
dak, Y.; Munos, R.; Rowland, M.; Azar, M. G.; Lan, C. L.;
Lyle, C.; György, A.; Thakoor, S.; Dabney, W.; Piot, B.;
Calandriello, D.; and Valko, M. 2023. Understanding self-
predictive learning for reinforcement learning. In Proceed-
ings of the 40th International Conference on Machine Learn-
ing, ICML’23. JMLR.org.
Thrush, T.; Potts, C.; and Hashimoto, T. 2025. Im-
proving Pretraining Data Using Perplexity Correlations.
arXiv:2409.05816.
Vafa, K.; Chang, P. G.; Rambachan, A.; and Mullainathan, S.
2025. What Has a Foundation Model Found? Using Inductive
Bias to Probe for World Models. In International Conference
on Machine Learning, 60727–60747. PMLR.

10

Vafa, K.; Chen, J. Y.; Rambachan, A.; Kleinberg, J.; and Mul-
lainathan, S. 2024. Evaluating the world model implicit in a
generative model. Advances in Neural Information Process-
ing Systems, 37: 26941–26975.
Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones,
L.; Gomez, A. N.; Kaiser, L. u.; and Polosukhin, I. 2017.
Attention is All you Need. In Guyon, I.; Luxburg, U. V.;
Bengio, S.; Wallach, H.; Fergus, R.; Vishwanathan, S.; and
Garnett, R., eds., Advances in Neural Information Processing
Systems, volume 30. Curran Associates, Inc.
Wu, Z.; Qiu, L.; Ross, A.; Akyürek, E.; Chen, B.; Wang, B.;
Kim, N.; Andreas, J.; and Kim, Y. 2024. Reasoning or Recit-
ing? Exploring the Capabilities and Limitations of Language
Models Through Counterfactual Tasks. In Duh, K.; Gomez,
H.; and Bethard, S., eds., Proceedings of the 2024 Confer-
ence of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies
(Volume 1: Long Papers), 1819–1862. Mexico City, Mexico:
Association for Computational Linguistics.
Yao, S.; Yu, D.; Zhao, J.; Shafran, I.; Griffiths, T.; Cao, Y.;
and Narasimhan, K. 2023. Tree of Thoughts: Deliberate
Problem Solving with Large Language Models. In Oh, A.;
Naumann, T.; Globerson, A.; Saenko, K.; Hardt, M.; and
Levine, S., eds., Advances in Neural Information Processing
Systems, volume 36, 11809–11822. Curran Associates, Inc.
Ye, J.; Gao, J.; Gong, S.; Zheng, L.; Jiang, X.; Li, Z.; and
Kong, L. 2025. Beyond Autoregression: Discrete Diffusion
for Complex Reasoning and Planning. In The Thirteenth
International Conference on Learning Representations.
Ye, W.; Liu, S.; Kurutach, T.; Abbeel, P.; and Gao, Y. 2021.
Mastering atari games with limited data. Advances in neural
information processing systems, 34: 25476–25488.
Zhang, A.; McAllister, R.; Calandra, R.; Gal, Y.; and
Levine, S. 2020. Learning invariant representations for re-
inforcement learning without reconstruction. arXiv preprint
arXiv:2006.10742.
Zhang, K.; Wen, Q.; Zhang, C.; Cai, R.; Jin, M.; Liu, Y.;
Zhang, J.; Liang, Y.; Pang, G.; Song, D.; and Pan, S. 2024.
Self-Supervised Learning for Time Series Analysis: Taxon-
omy, Progress, and Prospects. arXiv:2306.10125.

11

A Belief States in Sequence Modeling
Recent work has introduced variants of sequence modeling architectures based on the principle of learning belief states, i.e., BST
and JTP. We review these methods here. Let θ denote the parameters of a transformer-based model. Let hs:t denote the hidden
states produced by the transformer encoder for a token sequence Xs:t, where s ≤ t. When we use the notation ht, it is shorthand
for h1:t. The model’s output head produces a categorical distribution over the token vocabulary conditioned on some hidden
state representation, i.e., pθ(· | hs:t).
Belief State Transformer. The Belief State Transformer (BST; Hu et al. (2025)) learns compact belief states by jointly training
a next-token predictor and a previous-token predictor across all possible prefix–suffix decompositions of a sequence, including
cases where either the prefix or suffix is empty. Concretely, given a prefix X1:t and a suffix Xt+k:T with k ≥ 1, BST aims to
minimize the cross-entropy loss

LBST(θ) = Et<T
[
− log pθ(Xt+1 | h1:t,ht+k:T)︸ ︷︷ ︸

next-token prediction

− log pθ(Xt+k−1 | h1:t,ht+k:T)︸ ︷︷ ︸
previous-token prediction

]
, (6)

where h1:t and ht+k:T are produced by separate transformers. This bidirectional training shapes the hidden representations of
the BST into belief states.

Joint Multi-token Prediction. Joint multi-token prediction (JTP; Ahn, Lamb, and Langford (2025)) aims to learn the joint
distribution over the next d+ 1 tokens conditioned on ht, where d is the multi-step prediction horizon beyond the next token.
Specifically, JTP minimizes the loss

LJTP(θ; d, λJTP) = Et<T
[
− log pθ(Xt+1 | ht)︸ ︷︷ ︸

next-token prediction

− · 1
d

d∑
i=1

log pθ(Xt+i+1 | Fetch(ht, Xt+1:t+i))︸ ︷︷ ︸
joint multi-token prediction

]
, (7)

where an additional module Fetch(ht, Xt+1:t+i) is used to create an embedding combining the teacher-forced tokens Xt+1:t+i

with ht. Although Ahn, Lamb, and Langford (2025) suggest that their method learn “short-horizon belief states”, they do not
formally define the conditions under which this occurs. To understand how JTP learns belief states, we start by defining a
k-observable system.
Definition A.1 (k-observability for sequences). A system is k-observable if for any two sequences H = X1:t and H ′ = X1:j

that induce the same joint distribution over the next-k tokens, i.e., P(Xt+1:t+k | H) = P(Xt+1:t+k | H ′), it follows that their
full-horizon conditionals match:

P(Xt+1:T | H) = P(Xt+1:T | H ′). (8)

In other words, the distribution of all future observations is determined by the distribution of the next k observations.
Proposition A.2 (JTP forms belief states in k-observable systems). Assume the system is k-observable and let k = d +
1. Suppose the joint multi-token prediction model recovers the true joint next-k conditional, i.e. pθ(Xt+1 | ht)pθ(Xt+2 |
ht, Xt+1) . . . pθ(Xt+k | ht, Xt+1:t+k−1) = P(Xt+1:t+k | X1:t) a.s. for all t, then ht is a belief state for X1:t.

Proof. By k-observability (Theorem A.1), there exists a measurable map G taking the joint next-k conditional distribution to the
full-horizon conditional:

P(Xt+1:T | X1:t) = G
(
P(Xt+1:t+k | X1:t)

)
.

By the premise that JTP recovers the true next-k joint, conditioning on hT is equivalent to conditioning on X1:t for all bounded
measurable functionals of the future. Hence ht is a belief state for all t < T .

Intuitively, if all possible futures can be distinguished by the next k tokens, then a JTP model that accurately predicts the joint
next-k distribution would encode all information necessary to distinguish future trajectories. Note that both next-token prediction
and multi-token prediction do not guarantee belief state representations (c.f. Hu et al. (2025)).

B Formal Proof of Theorem 3.2
The proof follows the intuition illustrated below. Optimizing for next-token and transition consistency (Equations (1) and (2))
ensures the existence of measurable maps pθ and pψ that allow recursive decoding of future tokens:

ht
pθ−−−−−−−→

decode token
Xt+1

pψ−−−−−−→
update state

ht+1
pθ−−−−−−−→

decode token
Xt+2

pψ−−−−−−→
update state

ht+2 · · · pθ−→ XT .

A formal proof proceeds by backward induction on t. For the base case t = T − 1, the claim follows directly from Equation (1),
since hT−1 suffices to predict XT .

12

Now assume hk+1 is a belief state for X1:k+1. We will show that hk is also a belief state for X1:k. From hk, one can generate
Xk+1 ∼ pθ(· | hk),
hk+1 ∼ pψ(· | hk, Xk+1).

By next-token and transition consistency (Equations (1) and (2)), we have
P(Xk+1:T | hk) = P(Xk+2:T | Xk+1,hk) P(Xk+1 | hk)︸ ︷︷ ︸

Equation (1)

= P(Xk+2:T | Xk+1,hk)P(Xk+1 | X1:k)

=

[∫
P(Xk+2:T , hk+1 | Xk+1,hk) dhk+1

]
P(Xk+1 | X1:k)

=

[∫
P(Xk+2:T | hk+1, Xk+1,hk)︸ ︷︷ ︸P(hk+1 | Xk+1,hk)︸ ︷︷ ︸

Equation (2)

dhk+1

]
P(Xk+1 | X1:k)

=

[∫
P(Xk+2:T | hk+1)︸ ︷︷ ︸

Induction hypothesis

P(hk+1 | X1:k+1) dhk+1

]
P(Xk+1 | X1:k)

= P(Xk+2:T | X1:k+1)P(Xk+1 | X1:k) = P(Xk+1:T | X1:k).

This proves that hk is also a belief-state. This concludes the proof.

C More Details on NextLat Implementation

Figure 5: Illustration of the la-
tent transition model pψ .

We parameterize the latent transition model pψ with a three-layer MLP using GELU
(Hendrycks and Gimpel 2023) activations. The latent transition model takes as input
the layer-normalized (Ba, Kiros, and Hinton 2016) concatenation of the current hidden
state ht and next-token embedding Xt+1, and outputs a delta update applied via residual
connection:

ĥt+1 = pψ(ht, Xt+1) = fψ(ht, Xt+1) + ht (9)
where fψ(·) predicts the modification to ht (see Figure 5). This paper aims to demon-
strates that NextLat yields significant performance gains even with a simple MLP latent
transition. We foresee even better performances with more sophiscated latent transition
model architectures, but we leave that exploration to future work.

D Experiment Details
In this section, we provide more details on the setup of the experiments in the main body. Our experiments are executed on
NVIDIA H100 NVL GPUs and most of them complete within 48 hours on a single GPU, except those involving MTP and BST
which are more computationally intensive. Table 4 provides an overview of the training, model, and NextLat hyperparameters
across all experimental domains.

Manhattan Countdown Path-Star TinyStories

Training Parameters
Steps 400k (6 epochs) 100k (204 epochs) 20k (51 epochs) 100k (8.5 epochs)
Batch Size 256 1024 512 256
Learning Rate 1e-4 3e-4 5e-4 3e-4
Weight Decay 0.01 0.1 0.1 0.1
Optimizer AdamW (Loshchilov and Hutter 2019) with β1 = 0.9, β2 = 0.95

Model Parameters
Layers 48 12 12 8
Heads 8 12 6 8
Hidden Dimension 384 768 384 768

NextLat Parameters
λnext-h 1.0 2.0 1.0 1.0
λKL 0.1 1.0 1.0 1.0
pψ MLP Hidden Dimension 1536 768 384 2048
pψ MLP Layers 3 3 3 3

Table 4: Training, Model, and NextLat hyperparameters across all benchmarks.

13

Algorithm 1: Pseudocode for NextLat’s loss function in PyTorch syntax. The loss functions cross_entropy_loss() ,
smooth_l1_loss() , and KL_loss() are implemented externally.

1 import torch.nn as nn
2 from copy import deepcopy
3

4 def loss(batch, targets):
5 # batch:(B,T), targets: (B,T)
6 # embedding dimension = D, vocabulary size = V
7 batch_size, seq_len = batch.shape
8

9 # Encode sequences into latent states
10 hidden_states = Transformer(batch) # (B,T,D)
11

12 # Compute next-token loss
13 logits_post = Output_Head(hidden_states) # (B,T,V)
14 loss_next = cross_entropy_loss(logits_post, targets)
15

16 initial_hidden = torch.zeros(batch_size, 1, 1) # (B,1,1)
17 next_tokens = batch
18 next_states = hidden_states
19 current_states = hidden_states
20 loss_next_h = 0
21 loss_kl = 0
22

23 # Recursive multi-step predictions
24 for _ in range(multi_step_horizon):
25 # Shift hidden states back by 1 using dummy initial state, similar to RNNs
26 current_states = torch.cat([initial_hidden, current_states[:, :-1]], dim=1)
27 # Predict next hidden state using latent transition model
28 pred_next_states = Latent_Transition(current_states, next_tokens) #(B,T,D)
29 # Compute next-hidden loss using detached next states as targets
30 loss_kl += smooth_l1_loss(pred_next_states, next_states.detach())
31

32 # Compute KL loss using detached output head
33 logits_prior = deepcopy(Output_Head)(pred_next_states) # (B,T,V)
34 loss_kl += KL_loss(logits_post.detach(), logits_prior) # detach posterior
35

36 current_states = pred_next_states
37

38 loss_next_h = loss_next_h / belief_interval
39 loss_kl = loss_kl / belief_interval
40 # overall NextLat loss
41 return loss_next + next_h_lambda * loss_next_h + kl_lambda * loss_kl

14

Due to computational constraints, we did not perform exhaustive hyperparameter tuning for NextLat. Instead, the hyperpa-
rameters reported in Table 4 were chosen through a small-scale search, exploring λnext-h ∈ {1.0, 2.0} and λKL ∈ {0.1, 1.0},
guided by empirical observations and intuition. Encouragingly, we find that NextLat performs robustly over a wide range of
settings. In particular, λKL requires minimal tuning; λKL = 1.0 works decently across all tasks. After all, it primarily serves
as a complementary alignment objective. Likewise, λnext-h = 1.0 is effective in most cases, though slightly higher values (e.g.,
λnext-h = 2.0) was beneficial when the next-latent regression loss is of much smaller scale than the token-level losses (i.e.,
Lnext-token and LKL).

Manhattan Taxi Rides
Here, we provide additional details on our training and evaluation setups for the Manhattan Taxi Rides benchmark and clarify
key differences from the original study of Vafa et al. (2024).

Training. Since this task inherently requires state tracking (i.e., tracking position within Manhattan), and increasing model
depth is known to benefit transformers on such tasks (Merrill, Petty, and Sabharwal 2025), we employ 48-layer transformers with
384 hidden dimensions and 8 attention heads (89M parameters). This differs from Vafa et al. (2024), which used 12 layers, 768
hidden dimensions, and 12 heads for their smaller transformer variant. We found that increasing model depth yielded substantial
performance gains, whereas increasing hidden dimensionality offered negligible improvement. As shown in Table 1, the effective
latent rank of our models is substantially smaller than 384, suggesting that large hidden dimensions are unnecessary.

Unlike the original study, which trained models for only one epoch, our models are trained for six epochs, as we observed
that performances generally do not converge within a single epoch. This also helps rule out potential “grokking” phenomena
(Power et al. 2022), where generalization improves only after extended periods of overfitting. To enable longer training without
substantially increasing runtime, we apply sequence packing, i.e., concatenating multiple sequences into longer ones while
masking cross-sequence attention. This enables efficient utilization of GPU memory and computation. Most models complete six
training epochs in under three days on a single NVIDIA H100 NVL GPU, except MTP, which has substantially more parameters
than the others.

Evaluation. Models are trained on random traversals of length 100 connected pickup and dropoff intersections. This task
inherently requires not only state tracking but also planning, as models must reason over possible future paths to generate valid
100-step trajectories that reach the destination while avoiding dead ends, i.e., road segments disconnected from the goal due to the
one-way streets. Random traversals rarely correspond to true shortest paths and do not provide an inductive bias toward learning
the shortest-path algorithm, which relies on dynamic programming. Consequently, unlike Vafa et al. (2024), who evaluated pairs
with shortest paths of up to 100 steps, we limit evaluation pairs to paths of up to 50 steps. This adjustment ensures that evaluation
pairs do not demand long-horizon planning beyond the training distribution, which might otherwise force the model to produce
forced predictions to compensate for planning failure. This also ensures that inconsistencies in a model’s internal map are more
reflective of world-model incoherence rather than artifacts of long-horizon planning limitations. These evaluation pairs are used
to generate ?? and to compute the sequence compression and detour robustness metrics, following the procedure described in
Vafa et al. (2024).

For the effective latent rank, we pass a batch of 256 sequences (each of length 256) through the model to obtain the hidden
state matrix. Singular values smaller than 1e−12 are discarded, and the effective rank is then computed following Roy and
Vetterli (2007). For GPT and NextLat, we use the final-layer hidden states. For JTP, we extract the hidden states immediately
before the self-attention module in the Fetch head (see Equations 4–5 in Ahn, Lamb, and Langford (2025)). For MTP, we use the
output of the next-token prediction head to compute the effective rank.

Countdown
We largely follow Gandhi et al. (2024) for the Countdown training and evaluation setup. Each problem consists of four input
numbers and a solution sequence comprising three equations, consistent with prior work (Gandhi et al. 2024; Ye et al. 2025). A
training example is formatted as

14, 83, 88, 91, 23 | 83− 14 = 69, 91− 88 = 3, 69/3 = 23

where the first four numbers are the inputs, the fifth is the target number, and the pipe symbol “|” separates the input prompt
from the solution. During training, loss values corresponding to input prompt are masked out.

Previous studies involving the Countdown benchmark used pretrained GPT-2 byte-pair encoding tokenizers, which do not
necessarily tokenize multi-digit numbers as single units. In contrast, we construct a custom tokenizer that assigns each integer
from 1 to 10,000 to a unique token, ensuring that every number in the sequence is represented atomically. The arithmetic
operators and delimiters, i.e., { | , + , − , × , ÷ }, are each assigned their own token indices. Due to the large branching
factor of the Countdown problem, we insert eight pipe symbols (“|”) between the input and the solution as pause tokens (Goyal
et al. 2023), allowing the model additional computation steps to plan before generating its answer.

15

Path-Star
Our Path-Star data preparation, training, and evaluation follow Bachmann and Nagarajan (2024), except that we increase the
weight decay to 0.1, which we found helpful for stable convergence and higher solve rates in the multi-step prediction methods
(i.e., MTP, JTP, and NextLat). We evaluate each model’s ability to generate the correct arm on 20k held-out test instances. Unlike
Hu et al. (2025) and Ahn, Lamb, and Langford (2025) which generate a fresh set of graphs every batch, we adopt the original,
more challenging setup of Bachmann and Nagarajan (2024), which uses a fixed sample size of 200k and node values sampled
from N = 100. This difference accounts for the performance gap observed in the BST and JTP baselines in Figure 3b. The
Path-Star experiment is designed to expose the myopic behavior of teacher-forced next-token prediction, which can encourage
models to exploit superficial regularities—an effect referred to as the Clever Hans cheat (Bachmann and Nagarajan 2024).
Because the task’s sample space grows exponentially with graph size, identifying the correct algorithm that generalizes across all
graph instances is highly nontrivial. While not conclusive, our results suggest that latent-space prediction and the inductive bias
toward compressing history into belief states promote better discovery of generalizable solutions in data-constrained settings.

TinyStories

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Token Offset

0.8

0.6

0.4

0.2

0.0

0.2

Cr
os

s-
En

tro
py

 L
os

s (
 v

s.
GP

T)

GPT Baseline
BST
MTP (d=1)
MTP (d=8)

JTP (d=1)
JTP (d=8)
NextLat (d=1)
NextLat (d=8)

Figure 6: Full plot version of Figure 4 that shows probe performance across all 20 tokens offsets.

Our TinyStories setup follows exactly that of Hu et al. (2025). After pretraining on TinyStories, we train linear (one-layer)
probes on the hidden states of the frozen transformer models for an additional 20k steps on the same dataset. All probe training
hyperparameters (e.g., learning rate, batch size) match those used during pretraining (see Table 4).

For GPT, JTP, and NextLat, the choice of hidden states follows the setup used for measuring effective rank in the Manhattan
taxi rides task, as described in Section D. For BST, we use the final-layer hidden states of the forward transformer encoder. For
MTP (Gloeckle et al. 2024), we use the output of the shared transformer trunk, i.e., the hidden state before it branches into
separate transformer heads for multi-token prediction, as this final shared representation contains the most predictive information
about future tokens.

E Future Work
We are excited to extend this preliminary study of NextLat to a broader set of experiments. In future work, we plan to
evaluate NextLat in large-scale language model pretraining, investigating whether its self-predictive latent objective can improve
representation quality, data efficiency, and downstream performance in open-ended text modeling. We also intend to explore
NextLat as a finetuning objective. Because it introduces no architectural modifications to the transformer, NextLat can be applied
directly on top of existing pretrained models. This makes it a promising candidate for post-hoc finetuning, potentially improving
reasoning, planning, or world-modeling capabilities in pretrained language models for downstream tasks without retraining from
scratch. Finally, we aim to investigate architectural extensions that may further enhance NextLat’s effectiveness. For example,
we plan to experiment with higher-dimensional or hierarchical belief states obtained by combining hidden representations across
multiple layers or temporal contexts. Such designs could enable richer latent transition dynamics and improve the model’s
expressivity to perform structured reasoning and planning over longer horizons.

16

	Introduction
	Related Work
	Methodology: Next-Latent Prediction
	Why Next-Latent Prediction?
	Learning to Predict Next-Latent States

	Experiments
	World Modeling: Manhattan Taxi Rides
	Reasoning: Countdown
	Planning: Path-Star Graph
	Language Modeling: TinyStories

	Discussions
	Comparison Against Current Approaches
	NextLat vs. Recurrent Neural Networks

	Conclusion
	Belief States in Sequence Modeling
	Formal Proof of theorem:nhsbeliefstates
	More Details on NextLat Implementation
	Experiment Details
	Manhattan Taxi Rides
	Countdown
	Path-Star
	TinyStories

	Future Work

