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ABSTRACT

In ordinary-label learning, the correct label is given to each training sample. 1

Similarly, a complementary label is also provided for each training sample in 2

complementary-label learning. A complementary label indicates a class that the 3

example does not belong to. Robust learning of classifiers has been investi- 4

gated from many viewpoints under label noise, but little attention has been paid 5

to complementary-label learning. In this paper, we present a new algorithm of 6

complementary-label learning with the robustness of loss function. We also pro- 7

vide two sufficient conditions on a loss function so that the minimizer of the risk 8

for complementary labels is theoretically guaranteed to be consistent with the min- 9

imizer of the risk for ordinary labels. Finally, the empirical results validate our 10

method’s superiority to current state-of-the-art techniques. Especially in cifar10, 11

our algorithm achieves a much higher test accuracy than the gradient ascent algo- 12

rithm, and the parameters of our model are less than half of the ResNet-34 they 13

used. 14

1 INSTRUCTION 15

Deep neural networks have exhibited excellent performance in many real-applications. Yet, their 16

supper performance is based on the correctly labeled large-scale training set. However, labeling 17

such a large-scale dataset is time-consuming and expensive. For example, the crowd-workers need 18

to select the correct label for a sample from 100 labels for CIFAR100. To migrate this problem, 19

reachers have proposed many solutions to learn from weak-supervision: Noise-label learning Li 20

et al. (2017); Hu et al. (2019); Lee et al. (2018); Xia et al. (2019), semi-supervised learning Zhai 21

et al. (2019); Berthelot et al. (2019); Rasmus et al. (2015); Miyato et al. (2019); Sakai et al. (2017), 22

similar-unlabeled learning Tanha (2019); Bao et al. (2018); Zelikovitz & Hirsh (2000), unlabeled- 23

unlabeled learning Lu et al. (2018); Chen et al. (2020a;b), positive-unlabeled learning Elkan & Noto 24

(2008); du Plessis et al. (2014); Kiryo et al. (2017), contrast learning Chen et al. (2020a;b), partial 25

label learning Cour et al. (2011); Feng & An (2018); Wu & Zhang (2018) and others. 26

We investigate complementary-label learning Ishida et al. (2017) in this paper. A complementary 27

Label is only indicating that the class label of a sample is incorrect. In the view of label noise, 28

complementary labels can also be viewed as noise labels but without any true labels in the training 29

set. Our task is to learn a classifier from the given complementary labels, predicting a correct label 30

for a given sample. Collecting complementary labels is much easier and efficient than choosing a 31

true class from many candidate classes precisely. For example, the label-system uniformly chooses a 32

label for a sample. It has a probability of 1
k to be ordinary-label but k−1

k to be complementary-label. 33

Moreover, another potential application of complementary-label is data privacy. For example, on 34

some privacy issues, it is much easier to collect complementary-label than ordinary-label. 35

Robust learning of classifiers has been investigated from many viewpoints in the presence of label 36

noise Ghosh et al. (2017), but little attention paid to complementary-label learning. We call a loss 37

function robust if the minimizer of risk under that loss function with complementary labels would be 38

the same as that with ordinary labels. The robustness of risk minimization relies on the loss function 39

used in the training set. 40

This paper presents a general risk formulation that category cross-entropy loss (CCE) can be used to 41

learn with complementary labels and achieve robustness. We then offer some innovative analytical 42

results on robust loss functions under complementary labels. Having robustness of risk minimization 43
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helps select the best hyper-parameter by empirical risk since there are no ordinary labels in the44

validation set. We conclude two sufficient conditions on a loss function to be robust for learning45

with complementary labels. We then explore some popular loss functions used for ordinary-label46

learning, such as CCE, Mean square error (MSE) and Mean absolute error (MAE), and show that47

CCE and MAE satisfy our sufficient conditions. Finally, we present a learning algorithm for learning48

with complementary labels, named exclusion algorithm. The empirical results well demonstrate the49

advantage of the theoretical results we addressed and verify our algorithm’s superiority to the current50

state-of-the-art methods. The contribution of this paper can be summarized as:51

• We present a general risk formulation that can be view as a framework to employing a52

loss function that satisfies our robustness sufficient condition to learn from complementary53

labels.54

• We conclude two sufficient conditions on a loss function to be robust for learning with55

complementary labels.56

• We prove that the minimizer of the risk for complementary labels is theoretically guaran-57

teed to be consistent with the minimizer of the risk for ordinary labels.58

• The empirical results validate the superiority of our method to current state-of-the-art meth-59

ods.60

2 RELATED WORKS61

Complementary-label refers to that the pattern does not belong to the given label. Learning from62

complementary labels is a new topic in supervised-learning. It was first proposed by Ishida et al.63

(2017). They conduct such an idea to try to deal with time-consuming and expensive to tag a large-64

scale dataset.65

In their early work Ishida et al. (2017), they assume the complementary labels are the same prob-66

ability to be selected for a sample. And then, based on the ordinary one-versus-all (OVA) and67

pairwise-comparison (PC) multi-class loss functions Zhang (2004) proposed a modifying loss for68

learning with complementary labels.69

Even though they provided theoretical analysis with a statistical consistency guarantee, the loss70

function met a sturdy restriction that needs to be symmetric (`(z) + `(−z) = 1). Such a severe71

limitation allows only the OVA and PC loss functions with symmetric non-convex binary losses.72

However, the categorical cross-entropy loss widely used in the deep learning domain, can not be73

employed by the two losses they defined.74

Later, Yu et al. (2018a) assume there are some biased amongst the complementary labels and75

presents a different formulation for biased complementary labels by using the forward loss cor-76

rection technique Patrini et al. (2017) to modify traditional loss functions. Their suggested risk77

estimator is not necessarily unbiased and proved that learning with complementary labels can the-78

oretically converge to the optimal classifier learned from ordinary labels based on the estimated79

transition matrix. However, the key to the forward loss correction technique is to evaluate the tran-80

sition matrix correctly. Hence, one will need to assess the transition matrix beforehand, which is81

relatively tricky without strong assumptions. Moreover, in such a setup, it restricts a small com-82

plementary label space to provide more information. Thus, it is necessary to encourage the worker83

to provide more challenging complementary labels, for example, by giving higher rewards to the84

specific classes. Otherwise, the complementary label given by the worker may be too evident and85

uninformative. For example, class three and class five are not class one evidently but is uninforma-86

tive. This paper focuses on the uniform (symmetric) assumption and study random distribution as a87

biased assumption (asymmetric or non-uniform).88

Based on the uniform assumption, Ishida et al. (2019) proposed an unbiased estimator with a general89

loss function for complementary labels. It can make any loss functions available for use, not only90

soft-max cross-entropy loss function, but other loss functions can also be utilized. Their new frame-91

work is a generalization of previous complementary-label learning Ishida et al. (2017). However,92

their proposed unbiased risk estimator has an issue that the classification risk can attain negative93

values after learning, leading to overfitting Ishida et al. (2019). They then offered a non-negative94

correction to the original unbiased risk estimator to improve their estimator, which is no longer95
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guaranteed to be an unbiased risk estimator. In this paper, our proposed risk estimator is also not 96

unbiased, but the minimizer of the risk for complementary labels is theoretically guaranteed to be 97

consistent with the minimizer of the risk for ordinary labels, both uniform and non-uniform. 98

3 PRELIMINARIES 99

3.1 LEARNING WITH ORDINARY LABELS 100

In the context of learning with ordinary labels, let X ⊂ Rd be the feature space and Y = {1, · · · , k} 101

be the class labels. A multi-class loss function is a map: L(fθ(x), y) : X × Y → R+ . A classifier 102

can be presented as: 103

h(x) = arg max
i∈[k]

f
(i)
θ (x) , (1)

where fθ(x) = (f
(1)
θ (x), · · · , f (k)

θ (x)), θ is the set of parameters in the CNN network, f (i)
θ (x) is 104

the probability prediction for the corresponding class i. Even though h(x) is the final classifier, we 105

use notation of calling fθ(x) itself as the classifier. Given dataset S = {(xi, yi)}Ni , together with a 106

loss function L, ∀fθ ∈ F (F is the function space for searching), L-risk is defined as: 107

RSL(fθ) = ED [L(fθ(x), y)] = ES [L(fθ(x), y)] , (2)

Some popular multi-class loss functions are CCE, MAE, MSE. Specifically, 108

` (fθ(x), y) = ` (u, y) =



∑k
i=1 e

(i)
y log 1

µy
= log 1

µy
CCE,

‖ey − u‖1 = 2− 2µy MAE,

‖ey − u‖22 = ‖u‖22 + 1− 2µy MSE,

(3)

where u = fθ(x) = (µ1, · · · , µk), and ey is a one-hot vector that the y-th component equals to 1, 109

others are 0. The goal of multi-class classification is to learn a classifier fθ(x) that minimize the 110

classification riskRSL with multi-class loss L . 111

3.2 LEARNING WITH COMPLEMENTARY LABELS 112

In contrast to the ordinary-label learning, the complementary-label (CL) dataset contains only labels 113

indicating that the class label of a sample is incorrect. Corresponding to the ordinary labels dataset 114

S, the independent and identically distributed (i.i.d.) complementary labels dataset denoted as: 115

S̄ = {(x, ȳ)}Ni , (4)
where N is the size of the dataset S̄, and ȳ represents that pattern x does not belong to class-ȳ . 116

The general labels’ distribution of dataset S̄ is as: 117

P (ȳ|y) =


0 p12 . . . p1k

p21 0 . . . p2k

...
...

. . .
...

pk1 . . . pk(k−1) 0


k×k,

(5)

where pij denotes that the probability of the i-th class’s pattern x labeled as j,
∑k
j=1 pij = 118

1, pij 6=0, j 6= i. Supposing that the label system uniformly select a label from {1, · · · , k} \ {y} 119

for each sample x, then the Eq. (5) becomes 120

P (ȳ|y) =


0 1

k−1 . . . 1
k−1

1
k−1 0 . . . 1

k−1
...

...
. . .

...
1

k−1 . . . 1
k−1 0


k×k .

(6)

Yu et al. (2018b) make a strong assumption that there are some bias in Eq. (5), while Ishida 121

et al. (2017; 2019) focus on the assumption of Eq. (6). In this paper, we study both kinds of distri- 122

bution. 123
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4 METHODOLOGY124

In this section, we firstly propose a general risk formulation for leaning with complementary labels.125

And then prove that some loss functions designed for the ordinary labels learning are robust to126

complementary labels with our risk formulation, such as categorical cross-entropy loss and mean127

absolute error.128

4.1 GENERAL RISK FORMULATION129

The goal of learning with complementary labels is to learn a classifier that predicts a correct label for130

any sample drawn from the same distribution. Because there are not ordinary labels for the model,131

we need to design a loss function or model for learning with complementary labels. The key to learn-132

ing a classifier for ordinary label learning is to maximize the true label’s predict-probability. One133

intuitive way to maximize the true label’s predict-probability is to minimize the predict-probability134

of complementary labels. In this paper, with little abuse of notation, we let135

u = fθ(x) = (µ1, · · · , µk)

v = 1− fθ(x) = (1− µ1, · · · , 1− µk) .
(7)

Definition 1. (CL-loss) Together with loss function ` designed for the ordinary-label learning, the136

loss for learning with complementary-label is as:137

¯̀(fθ(x), ȳ) = ¯̀(u, ȳ) = `(v, ȳ) . (8)

4.2 THEORETICAL RESULTS138

Definition 2. (Robust loss) In the framework of risk minimization, a loss function is called robust139

loss function if minimizer of risk with complementary labels would be the same as with ordinary140

labels, i.e.,141

RS̄¯̀ (fθ∗)−RS̄¯̀ (fθ) ≤ 0⇒ RS` (fθ∗)−RS` (fθ) ≤ 0 . (9)

Theorem 1. Together with `, ¯̀ is a robust loss function for learning with complementary labels, if ¯̀142

satisfies:143

∂ ¯̀(u, ȳ)

∂µȳ
> 0,

∂ ¯̀(u, ȳ)

∂µi
= 0, ∀i ∈ {1, · · · , k} \ {ȳ} . (10)

Note that, in Eq. 10, it means that ¯̀ is a monotone increasing loss function only on u(ȳ).144

Proof. Recall that for any fθ, and any `,145

RS` (fθ) = E(x,y) [` (fθ(x), y)] =
1

|S|
∑

(x,y)∈S

` (fθ(x), y) . (11)

For any complementary-label distribution in Eq. (5), and any loss function `, we have146

RS̄¯̀ (fθ) = E(x,ȳ)

[
¯̀(fθ(x), ȳ)

]
=

1

|S̄|

k∑
i=1

∑
x∈Si

k∑
j 6=i

pij ¯̀(fθ(x), j) ,
(12)

where pij is the component of complementary labels distribution matrix P , S1 ∪ · · · ∪ Sk = S .147

Supposing that fθ∗ is the optimal classifier learns from the complementary labels, and ∀f ∈ F ,148

where F is the function space for searching, we have149

RS̄¯̀ (fθ∗)−RS̄¯̀ (fθ) =
1

|S̄|

k∑
i=1

∑
x∈Si

k∑
j 6=i

pij
(
¯̀(fθ∗(x), j)− ¯̀(fθ(x), j)

)
≤ 0, (13)

where pij 6= 0. If ∃x′ ∈ S̄, s.t., ¯̀(fθ∗(x
′
), ȳ) > ¯̀(fθ(x

′
), ȳ), let fθ′ satisfying150

fθ′ (x) =

{
fθ∗(x) x ∈ S̄ \ {x′},
fθ(x) x = x

′
,

(14)
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then according to Eq. 12 and 13, RS̄¯̀ (fθ′ ) < RS̄¯̀ (fθ∗), fθ∗ is not the optimal classifier. This 151

contradicts the hypothesize that fθ∗ is the optimal classifier. 152

Thus, ∀ȳ ∈ {1, · · · , k} \ {y}, we have 153

¯̀(fθ∗(x), ȳ) ≤ ¯̀(fθ(x), ȳ) . (15)

According to Eq. (10), ¯̀ is a monotone increasing loss function only on u(ȳ), then we have 154

∀ȳ ∈ {1, · · · , k} \ {y}, f (ȳ)
θ∗ (x) ≤ f (ȳ)

θ (x) . (16)

Thus, 155

f
(y)
θ∗ (x) ≥ f (y)

θ (x),

f (y)
θ (x) = 1−

∑
ȳ 6=y

f
(ȳ)
θ (x)

 (17)

and then, 156

`(fθ∗(x), y) ≤ `(fθ(x), y), (18)
thus, 157

RS` (fθ∗)−RS` (fθ) ≤ 0 . (19)

158

Theorem 2. Together with `, ¯̀ is a robust loss function for learning with complementary labels 159

under symmetric distribution or uniform distribution, if ¯̀satisfies: 160

∂ ¯̀(u, ȳ)

∂µȳ
> 0,

k∑
i=1

¯̀(u, i) = C, (C is a constant) . (20)

It should be noted that, in Eq. 20, it means that ¯̀ is a symmetric loss (
∑
`(u, i) = C), and ¯̀ is a 161

monotone increasing loss function on any ȳ. 162

Proof. For any complementary-label distribution in Eq. (6), and any loss function `, we have 163

RS̄¯̀ (fθ) = E(x,ȳ)

[
¯̀(fθ(x), ȳ)

]
=

1

|S̄|

k∑
i=1

∑
x∈Si

k∑
j 6=i

1

k − 1
¯̀(fθ(x), j)

=
1

|S̄|

k∑
i=1

∑
x∈Si

1

k − 1

(
C − ¯̀(fθ(x), i)

)
=

C

k − 1
−RS¯̀ (fθ),

(21)

where S1 ∪ · · · ∪ Sk = S . 164

Supposing that fθ∗ is the optimal classifier learns from the complementary labels, and ∀f ∈ F , 165

where F is the function space for searching, we have 166

RS̄¯̀ (fθ∗)−RS̄¯̀ (fθ) = RS¯̀ (fθ)−RS¯̀ (fθ∗) ≤ 0, (22)

According to the first constraint in Eq. (20), we then have 167

¯̀(fθ(x), y) ≤ ¯̀(fθ∗(x), y),
(
f

(y)
θ (x) ≤ f (y)

θ∗ (x)
)

(23)

and then, 168

`(fθ∗(x), y) ≤ `(fθ(x), y), (24)
thus, 169

RS` (fθ∗)−RS` (fθ) ≤ 0 . (25)

170
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Algorithm 1 Learning from complementary labels by exclusion
Require:
S̄ = {(xi, ȳi)}Ni : The given dataset;

Ensure: Classifier fθ (x)
1: Randomly initialize a group parameter θ for fθ (x);
2: Randomly split S̄ into a training set S̄train and a valid-set S̄valid;
3: for (e = 1; e ≤ Epochs; e+ +) do
4: for (xi, ȳi) in S̄train do
5: fθ(xi) = (µ1, · · · , µk);
6: u = 1− fθ(xi) = (1− µ1, · · · , 1− µk);
7: loss = `(u, ȳi);
8: w = w − β ∂lossw , w ∈ θ;
9: end for

10: end for
11: return fθ (x)

Together with some well known multi-class loss functions, such as CCE, MAE, MSE, the loss for171

learning with complementary labels with our definition are as follows:172

¯̀(fθ(x), ȳ) = ` (v, ȳ) =



∑k
i=1 e

(i)
ȳ log 1

1−µi
= log 1

1−µȳ
CCE,

‖eȳ − v‖1 = k − 2 + 2µȳ MAE,

‖eȳ − v‖22 = k − 3 + ‖u‖22 + 2µȳ MSE,

(26)

where eȳ is a one-hot vector that the ȳ-th component equals to 1, others are 0. As its shown in173

Eq. (26), CCE and MAE loss satisfy the Theorem 1, MAE also satisfies the Theorem 2, while MSE174

does not satisfies the two. Zhang & Sabuncu (2018) propose a GCE loss function for learning with175

label noise, their formulation is as:176

`GCE (fθ(x), y) =

(
1− µqy

)
q

, q ∈ (0, 1) . (27)

It is easily to know that the loss function satisfies the constraint in Theorem 1, thus, it can be used177

to learning with complementary labels.178

4.3 EXCLUSION ALGORITHM FOR LEARNING FROM COMPLEMENTARY LABELS179

Based on the loss function we designed for complementary-label learning, we present an algorithm180

to learn a classifier from complementary labels with our loss function, named exclusion algorithm181

(the label specifies that the sample does not belong to it). The algorithm details show in Alg. 1.182

Furthermore, our algorithm is easily combined with the models designed for ordinary-label learning,183

with only a minus operation, which can be view as a framework to use the loss designed for ordinary-184

label learning to learn the optimal classifier from complementary labels.185

5 EXPERIMENTS186

5.1 EXPERIMENTAL SETTINGS187

Datasets. We test our experiments on MNIST LeCun et al. (1998), FASHION-MNIST Xiao et al.188

(2017), CIFAR10 Krizhevsky (2009). Specifically, we generate two types of complementary labels:189

symmetric and asymmetric, for our experiments to verify our method’s effectiveness and the theorem190

we proved in the previous section. For symmetric complementary-label, we fix a label distribution as191

Eq. (6) to generate the complementary-label training set. The validation set is split from the training192

set, which contains none ordinary-label. Thus, the lower the validation accuracy, the better the193

classifier learns from the training set. For asymmetric complementary-label, we randomly generate194

a matrix as Eq. (5) that the pij is unknown as the complementary-label distribution and using it195
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to create complementary-label for experiments. The test accuracy of all experiments is tested on a 196

clean dataset that contains only the ordinary labels. 197

Approaches. We test our loss with ¯̀CCE, ¯̀MAE, ¯̀MSE, ¯̀GCE and compare with state-of-the-art meth- 198

ods in learning with complementary labels. The loss functions we used or compare in this paper 199

are listed as follows. 1) CCE: The categorical cross-entropy loss, neither symmetric nor bounded, 200

which widely use in machine learning and deep learning due to its fast convergence speed. 2) MAE: 201

The mean absolute error, a symmetric loss and bounded, has been proved Ghosh et al. (2017) to be 202

noise-tolerant. 3) MSE: The mean square error, not symmetric but bounded, widely used in regres- 203

sion learning. 4) GCE: It uses a hyper-parameter q to tune the loss between MAE and CCE, but 204

achieve noise-robust base on its bounded, we used the standard GCE where q=0.7 . 5) GA: Gradi- 205

ent ascent, a learning algorithm for complementary-label learning, is used to tackle the overfitting 206

problem of the unbiased estimator they proposed in Ishida et al. (2019). 6) PC: Pairwise compar- 207

ison (PC) with ramp loss designed for complementary-label learning Ishida et al. (2017). 7) Fwd: 208

Forward correction Patrini et al. (2017), Yu et al. (2018a) designed for learning with complementary 209

labels. 210

Network architecture. Following Ghosh et al. (2017), we use a network architecture that contains 211

five layers to test the above methods for all the experiments: a convolution layer with 32 filters which 212

filter size set as (3,3), a max-pooling layer with pooling-size of (3,3) and strides of (2,2), two fully 213

connected layers with 1024 units, and a fully connected layer with soft-max activated function that 214

the unit number set to the category number for prediction. Rectified Linear Unit (ReLU) is used as 215

the activated function in the network’s hidden layer. 216

Implement details. The implementation detail of our method shows in Alg. 1. We train our network 217

with stochastic gradient descent through back-propagation. Each experiment trains 200 epochs, and 218

the mini-batch size was set to 64. To exploit each loss function’s best performance, we set three start 219

learning rate for each loss function on each experiment and report the best accuracy amongst the 220

three learning rate of each loss function. CCE is set to [1e-3, 5e-4, 1e-4], while GCE, MAE, MSE 221

is set to [1.0, 0.5, 0.1]. The learning rate was halved per 50 epochs. 222

5.2 EXPERIMENTAL RESULTS 223
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Figure 1: Accuracy for CCE, MAE, GCE, MSE loss functions over epochs, for CIFAR10 dataset
with symmetric complementary labels (SCL) and asymmetric complementary labels (ACL). Leg-
ends are shown in the first sub figures on the first row.

Robustness. As shown in Fig. 1, together with CCE, MAE, and GCE loss, our algorithm achieves 224

strong robust to both symmetric and asymmetric complementary labels, which verify that the robust- 225

ness we prove in the Theorem 1 and Theorem 2. Even though the MAE satisfies the two theorems, 226

7



Under review as a conference paper at ICLR 2021

Table 1: The test accuracy and standard deviation (5 trials) on experiments with loss functions, under
different complementary labels’ distribution assumption, for datasets: MNIST, FASHION-MNIST,
CIFAR10. We report the last ten percent epochs average test accuracy. For fair comparison, the
last three columns’ data are directly copying from Table.2 in Ishida et al. (2019), where GA Ishida
et al. (2019): Gradient Ascent, PC Ishida et al. (2017): Pairwise Comparison, Fwd Yu et al. (2018b):
Forward correction. The top 2 accuracies are boldface.

Dataset Distribution
Loss

CCE MAE GCE MSE GA PC Fwd

MNIST
Symmetric 95.66 ± 0.15 93.78± 3.66 97.46 ± 0.06 91.58± 0.60 88.1± 2.5 79.3± 3.3 88.7± 0.3

Asymmetric 94.93 ± 0.12 68.11± 5.92 97.22 ± 0.12 85.98± 0.38 – – –

FASHION
Symmetric 86.43 ± 0.24 74.25± 0.26 86.43 ± 0.30 82.93± 0.18 78.7± 1.4 74.7± 1.6 77.5± 1.2

Asymmetric 85.22 ± 0.19 54.01± 6.24 85.55 ± 0.12 78.93± 0.22 – –

CIFAR10
Symmetric 44.46 ± 0.31 27.78± 2.28 42.64 ± 0.82 36.10± 1.23 36.8± 0.6 33.4± 2.0 30.8± 1.6

Asymmetric 37.93 ± 0.70 16.73± 0.22 36.01 ± 0.96 30.98± 0.74 – – –

it achieves a lower test accuracy than that of CCE and GCE due to it treats all labels the same (not227

sensitive to the labels). The subfigures in the last column of Fig. 1 shows that the MSE loss firstly228

achieves its highest test accuracy and then drop sharply over the epochs. Because MSE does not229

satisfy one of the two theorems we prove, it easily overfits the training set’s complementary labels.230

Such a trend is the same as asymmetric complementary labels learning. The results verify that the231

algorithm we design for the complementary labels is significant and confirms the theoretical results232

we analyzed in the previous section.233

Performance Comparison. The first four columns of Table. 1 show that the CCE and GCE loss234

achieve the best two test accuracies in our algorithm. In the MNIST dataset, the CCE achieves235

a little lower test accuracy than GCE, the same test accuracy in FASHION-MNIST, and a little236

higher test accuracy in CIFAR10 due to the dataset more challenge and CCE is more sensitive to237

labels. Even MAE is robust to complementary labels, and its performance is not well than others238

because it is a linear loss that is not sensitive to labels. As shown in Fig. 1, MSE is not robust to239

complementary labels, but with a small learning rate of 0.1, MSE only exhibited slight overfitting in240

Table 1. Furthermore, as shown in Table 1, together with CCE and GCE loss, our algorithm achieves241

a test accuracy higher than 95% in the MNIST dataset, which is comparable to that of learning with242

ordinary labels.243

For a fair comparison, The last three columns directly form Ishida et al. (2019) even those results244

are the max test accuracy. In the first two datasets, all loss functions with our algorithm achieve a245

higher test accuracy than GA, but they used an MLP model as their base model, simpler than ours.246

In CIFAR10, they used ResNet-34 (21.62M parameters) He et al. (2016) and DenseNet Huang et al.247

(2017) as their based model, which is much bigger than ours (8.43M parameters), but we achieve a248

much higher test accuracy than theirs. The results validate the superiority of our algorithm to current249

state-of-the-art methods.250

6 CONCLUSION251

This paper designs an algorithm for learning from complementary labels using the loss functions252

designed for ordinary-label learning. We provide theoretical analysis to show that the loss func-253

tions we design for learning from the complementary labels are robust to the complementary labels,254

i.e., the optimal classifier learned from the complementary labels can theoretically converge to the255

optimal classifier learned from ordinary labels. In this paper, the two theorems we present are the256

sufficient condition of a loss function robust to complementary labels. Experimental results show257

that though complementary-label learning is a new topic in supervised-learning, it offers excellent258

competitiveness. More methods should be studied to improve the performance of complementary259

learning in our future works, such as Amid et al. (2019b) and Amid et al. (2019a).260
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