
Two-step lookahead Bayesian optimization with
inequality constraints

Yunxiang Zhang
Cornell University

yz2547@cornell.edu

Xiangyu Zhang
Cornell University

xz556@cornell.edu

Peter I. Frazier
Cornell University
pf98@cornell.edu

Abstract

Recent advances in computationally efficient non-myopic Bayesian optimization
offer improved query efficiency over traditional myopic methods like expected
improvement, with only a modest increase in computational cost. These advances
have been largely limited to unconstrained BO methods with only a few exceptions
which require heavy computation. For instance, one existing multi-step lookahead
constrained BO method [1] relies on computationally expensive unreliable brute-
force derivative-free optimization of a Monte Carlo rollout acquisition function.
Methods that use the reparameterization trick for more efficient derivative-based
optimization of non-myopic acquisition functions in the unconstrained setting,
like sample average approximation and infinitesimal perturbation analysis, do not
extend: constraints introduce discontinuities in the sampled acquisition function
surface. Moreover, we argue here that being non-myopic is even more important in
constrained problems because fear of violating constraints pushes myopic methods
away from sampling the boundary between feasible and infeasible regions, slowing
the discovery of optimal solutions with tight constraints. In this paper, we propose
a computationally efficient two-step lookahead constrained Bayesian optimization
acquisition function (2-OPT-C) supporting both sequential and batch settings.
To enable fast acquisition function optimization, we develop a novel likelihood-
ratio-based unbiased estimator of the gradient of the two-step optimal acquisition
function that does not use the reparameterization trick. In numerical experiments,
2-OPT-C typically improves query efficiency by 2x or more over previous methods,
and in some cases by 10x or more.

1 Introduction

We consider constrained optimization of a continuous black-box function f under continuous black-
box constraints gi, minx∈A f(x) subject to gi(x) ≤ 0, i = 1, . . . , I , within the compact design space
A ⊆ Rd. We suppose both f(x) and gi(x) are derivative-free, time-consuming-to-evaluate and also
noise-free. Such problems arise, for example, in tuning hyperparameters of machine learning models
subject to runtime or fairness constraints and policy optimization in reinforcement learning with
safety constraints. For instance, neural networks deployed on mobile phones must be accurate but
may also have limited computation available while needing to respond to users in real time, creating
a constraint on how long the model takes to predict at test time [2]. Another example, from [3], is
predicting recidivism risk in the criminal justice system with a fairness constraint ensuring that false
positive rates are equal across racial and ethnic groups. Other applications arise in drug discovery [4]
and aircraft design [5].

Bayesian optimization (BO) has proven successful at solving black-box optimization problems
with expensive objectives [6, 7], including constrained problems of the form above. BO methods
for constrained problems include constrained expected improvement (EIC as in [8], rediscovered

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

by [9]), constrained BO with stepwise uncertainty reduction [10], predictive entropy search with
unknown constraints [11], Alternating Direction Method of Multipliers Bayesian optimization [12],
constrained BO with max-value entropy search [13], and augmented Lagrangian techniques that
convert constrained problems into a sequence of unconstrained ones [14]. It also includes methods
designed specifically for equality and mixed constraints [15], for batch observations [16] and for
problems with high dimensions [17].

All of these existing methods, however, for constrained Bayesian optimization (CBO), are myopic,
in the sense that they only consider the immediate improvement in solution quality resulting from
a function evaluation and ignore later improvements in solution quality enabled by this evaluation.
(Notable exceptions are [1, 18], discussed below.) This greedy behavior may hinder an algorithm’s
ability to find good solutions efficiently. While a recent flurry of activity is addressing this issue
for unconstrained problems [19, 20, 21, 22, 23], and the performance improvements provided by
these non-myopic algorithms for unconstrained BO suggest that non-myopic BO is promising for
constraints as well, substantial non-myopic development has not reached the constrained setting.

Moreover, we argue in detail below that being non-myopic provides even more value in constrained
settings than it does in unconstrained ones. To find a global optimum under constraints quickly,
an algorithm benefits by efficiently learning the boundary between the feasible region where the
constraint is satisfied and the infeasible region where it is not. This is facilitated by sampling points
likely to be close to this boundary. Myopic methods, however, such as EIC, undervalue sampling
such points because they have a substantial probability of being infeasible and because infeasible
points do not directly improve solution quality. Non-myopic methods, on the other hand, understand
that learning about the boundary’s location will provide future benefits, allowing them to value this
information more appropriately. Localizing the boundary efficiently is especially important when the
global optimum lies on this boundary, as it often does in constrained optimization when the objective
(e.g., the quality of a product) is negatively correlated with a constraint (e.g., the cost required to
produce it). We illustrate this via a simple example in §3 and our numerical experiments in §6, which
show several-fold improvement over the state-of-the-art in some problems.

One existing non-myopic constrained BO method [1] first formulates CBO as a dynamic program
(DP). However, this DP is intractable. To mitigate the issue, rollout, an approximate DP technique, is
used. Nevertheless, this approach requires an extremely large amount of computation to approximate
the multi-step lookahead policy well, especially in problems with more than a few dimensions, in
part because it relies on computationally expensive derivative-free optimization , and because its
acquisition function is computed via Monte Carlo, further increasing the computation required. This
limits its applicability.

The constrained multi-information source BO method recently proposed by [18] is also non-myopic.
It focuses on the multi-information source setting and assumes that the objective and constraint are
evaluated in a decoupled fashion. In contrast, our applications of interest often compute the objective
and constraints simultaneously. For example, when tuning ML hyperparameters to maximize accuracy
subject to a model execution time constraint, the marginal cost of evaluating accuracy is negligible
once we evaluate model execution time and incur the training cost. Thus, a method that evaluates the
objective and constraints in a decoupled way discards information in such settings.

Our Contributions. We provide a novel non-myopic computationally efficient method for batch
CBO. It substantially outperforms myopic CBO methods. In relation to [1] it requires substantially
less computation to decide where to sample. Its query efficiency is substantially better in relatively
higher-dimensional problems and is at least as good in lower-dimensional ones.

The key to our approach is a new method for optimizing stochastic acquisition functions, leveraging
the likelihood ratio method [24]. Standard efficient approaches to optimizing stochastic non-myopic
acquisition functions, such as infinitesimal perturbation analysis (IPA) [25] or the one-shot method
[26] (also called sample average approximation or SAA), rely on a sampled acquisition function
surface created using the reparameterization trick. In CBO, however, this surface is discontinuous,
preventing the efficient use of these methods. Our novel approach is potentially generalizable to other
settings where such discontinuities prevent the use of IPA and one-shot optimization.

Our work builds on the unconstrained two-step optimal method [21], overcoming substantial com-
putational difficulties created by constraints’ inherent discontinuities. These difficulties require
abandoning the IPA approach used in [21] and instead developing a new likelihood-ratio-based

2

approach. The likelihood ratio method that we use here to estimate the gradient of the acquisition
function relies on a change of measure of the same type used within importance sampling. [21]
coincidentally also uses importance sampling, but in a fundamentally different way: as a variance
reduction technique, and not for gradient estimation.

2 Background

We briefly review the literature on myopic CBO. Then we summarize standard results needed later
on Gaussian processes and the widely used myopic method EIC as well as its batch version.

2.1 Myopic Constrained Bayesian Optimization

This work builds on the larger literature on myopic CBO. We review this literature here, giving more
details than in §1. [9] proposes constrained expected improvement, a constraint-weighted expected
improvement acquisition function which multiplies the expected improvement with the probability
of feasibility associated with each constraint, rediscovering an approach due to [8]. [27] proposes
an approach in which the point to sample is found by maximizing EIC and then a decision is made
whether to evaluate the objective or the constraint based on the information gain. [10] proposes a
stepwise uncertainty reduction method in which the acquisition function aims to maximally decrease
our uncertainty on the location of the optimizer with a single evaluation. Predictive entropy search
with constraints (PESC) [11], an extension of predictive entropy search [28] is another information-
gain based approach. It chooses the point to evaluate by approximating the expected information gain
on the value of the constrained minimizer. [14] proposes a hybrid approach combining the expected
improvement with an augmented Lagrangian framework. [15] extends this technique by introducing
an alternative slack variable formulation that handles equality and mixed constraints. Integrated
expected conditional improvement (IECI) [29] proposes a new acquisition function that integrates
a conditional improvement with respect to a reference point over the design space. [16] develops a
quasi-Monte Carlo approximation of expected improvement under batch optimization with noisy
observations and noisy constraints. [13] modifies the mutual information criterion of max-value
entropy search [30] and extends to the constrained setting with the ability to handle both continuous
and binary constraints. [12] leverages the ADMM framework to convert constrained problems into
multiple unconstrained subproblems by introducing auxiliary variables for each constraint, then
solves the subproblems using standard BO. Similar to TuRBO [31], [17] proposes an acquisition
function for constrained optimization that scales to high dimensions by maintaining and adjusting
trust regions.

2.2 Gaussian Processes

BO makes productive use of Gaussian processes (GPs) [32]. We put a GP prior on the objective
function f , which is specified by a mean function µ(·) and a kernel function K(·, ·). After observing
the data points D = {x(1), x(2), x(3), . . . , x(n)} and their corresponding function values f(D) :=
{f(x(1)), f(x(2)), f(x(3)), . . . , f(x(n))}, the GP prior over f is updated by:

f(x)|D, f(D) ∼ N
(
µ(x;D), σ2(x;D)

)
,

where µ(x;D) is the posterior mean and σ(x;D) is the posterior standard deviation. µ(D) is the set
of values of the prior mean function evaluated at points in D.

While we support multiple constraints, we focus on a single constraint g for ease of presentation. We
use µc(·) and Kc(·, ·) to denote the mean function and the kernel of the independent GP prior on g
respectively, and µc(x;D) and σc(x;D) to denote the mean and standard deviation of the posterior.
We refer readers to the supplement for multiple constraints.

2.3 Constrained Expected Improvement

We briefly review constrained expected improvement (EIC) [9, 8], introducing notation used later.
Suppose we have independent GP priors on f and g and observations f(D) := {f(x) : x ∈ D} and
g(D) := {g(x) : x ∈ D} at a collection of datapoints D. Let f∗ be the best point observed so far

3

subject to our constraints, f∗ = minx∈D,g(x)≤0 f(x). The constrained expected improvement at x is:

EIC(x) = E
[
[f∗ − f(x)]

+ · 1{g(x) ≤ 0}
]

= E[f∗ − f(x)]+ · E[1{g(x) ≤ 0}] = EI(x) · PF(x),

(1)

where E[·] is the expectation taken with respect to the posterior given D, f(D), and g(D). EI(x) and
PF(x) are the expected improvement and the probability of feasibility at x respectively, and both
have analytic forms. Here, we assume the prior on f and g are independent as in [9]. We refer readers
to [33] and [9] for more details.

We now define EIC in the batch setting, building on the first discussion of which we are aware [16].
Let X = {x(n+1), x(n+2), . . . , x(n+q)} be the batch of q candidate points that we consider evaluating
next. Then the constrained multi-points expected improvement EIC(X) is,

EIC(X) = E
[
max
x∈X

(f∗ − f(x))+ · 1{g(x) ≤ 0}
]
. (2)

The details of the derivation of EIC(X) are provided in the supplement.

3 Constrained Two-step Acquisition Function

In this section, we first show that why being non-myopic is important in CBO. Then we formally
define the novel acquisition function 2-OPT-C that is at the heart of our method.

3.1 The Importance of Being Non-Myopic in CBO

1 0 1 2 3 41.7

0.0

1.7

1 0 1 2 3 40.6

0.0

0.6

1 0 1 2 3 40.0

0.2

0.4
EIC

1 0 1 2 3 41.7

0.0

1.7

1 0 1 2 3 40.6

0.0

0.6

1 0 1 2 3 40.0

0.2

0.4
2-OPT-C

1 0 1 2 3 41.7

0.0

1.7

1 0 1 2 3 40.6

0.0

0.6

1 0 1 2 3 40.0

0.1

0.2
EIC

1 0 1 2 3 41.7

0.0

1.7

1 0 1 2 3 40.6

0.0

0.6

1 0 1 2 3 40.1

0.2

0.3
2-OPT-C

1 0 1 2 3 41.7

0.0

1.7

1 0 1 2 3 40.6

0.0

0.6

1 0 1 2 3 40.0

0.1

0.2
EIC

1 0 1 2 3 41.7

0.0

1.7

1 0 1 2 3 40.6

0.0

0.6

1 0 1 2 3 40.0

0.1

0.2
2-OPT-C

Figure 1: EIC and 2-OPT-C optimizing a 1-d synthetic function. The first three graphs of each row
are the posterior on f , the posterior on g, and the acquisition function under EIC, and the last three
graphs are the corresponding quantities under 2-OPT-C. Each row shows one iteration, proceeding
from the first iteration at the top to the last iteration at the bottom. In the plots of the posterior on f
and g, “x” denotes infeasible points and a square denotes feasible points. The constraint threshold (0)
is plotted as a red line. The red dot is the point newly sampled in the current iteration. 2-OPT-C
explores potentially infeasible points more aggressively and discovers a better feasible point.
Before presenting out non-myopic acquisition function, 2-OPT-C, we give an intuition for why being
non-myopic is even more important in constrained problems than it is in unconstrained ones. Suppose
the constraint function value of the (unobserved) best feasible point is equal or close to the constraint
threshold. To find this point with as few function evaluations as possible, the algorithms need to
efficiently learn the feasible region’s boundaries. This happens most quickly when evaluating points
close to this boundary. Since the boundary is uncertain, this requires an algorithm to be willing to
evaluate points that may be infeasible. However, the value of such points to myopic CBO algorithms
like EIC is significantly reduced because the probability of infeasibility is high — typically near
50%, lowering the PF(x) term in (1). Thus, myopic CBO algorithms may insufficiently explore the
boundary, instead sticking well inside the feasible region.

Figure 1 illustrates this with an example. On the first iteration, EIC evaluates a point in a region
around an existing feasible point that is likely feasible, getting a small one-step improvement but little
information on f and g for future evaluations. However, 2-OPT-C (defined below) explores more

4

aggressively. The point it evaluates is not feasible but provides a significant amount of information
about the boundary between the feasible and infeasible region. As a result, after progressing two
steps, 2-OPT-C locates a new feasible point (g(x) = −0.02) with a much lower objective function
value while EIC remains stuck near the previous feasible point.

3.2 Definition of 2-OPT-C

We define our two-step optimal acquisition function for CBO, called 2-OPT-C, for both sequential
and batch settings, and then discuss its computational optimization in §4. As in other CBO methods,
we sequentially evaluate f and g next at the point that maximizes our acquisition function. This point
is optimal to measure now assuming we will be able to measure one additional point before being
awarded the maximum value found over the two new measurements and in our previously collected
data. In other words, 2-OPT-C looks two steps ahead instead of the one-step ahead considered by
myopic methods. For clarity, we assume a single constraint and treat multiple constraints in the
supplement.

In the batch setting, we find the batch of q points to measure next assuming we will then measure
one additional point before being awarded the best value found. We assume only one additional
point rather than a full additional batch for computational tractability. We argue that even the single
additional point allows 2-OPT-C to think non-myopically and to value information about the feasible
region that will only be acted on later.

We first define notation. We use subscripts {0, 1, 2} to denote stages. Stage 0 is the current stage
when we will evaluate a batch of points. In stage 1, we will evaluate one additional point based on the
results of stage 0 and then in stage 2 will be judged based on the best of these points evaluated. We
put independent GP priors on f and g. Let D be the collection of data points that we have observed
so far. Then given the information in D and their corresponding objective f(D) and constraint g(D)
values, the posterior distribution on the objective f is a Gaussian process with a mean function µ0

and kernel K0. Similarly, the posterior distribution on the constraint g is also a Gaussian process with
a mean function µc0 and kernel Kc

0 . E0 denotes taking the expectation with respect to the posterior
distributions given D.

Let f∗0 be the best evaluated point satisfying the constraint so far, i.e. f∗0 = minx∈D,g(x)≤0 f(x).
Let X1 be the set of q candidate points that we consider evaluating at the first stage and let Yf =
{f(x) : x ∈ X1} and Yg = {g(x) : x ∈ X1} be the sets of corresponding objective function values
and constraint values respectively. We let µ1, µc1 and K1, Kc

1 denote the mean function and kernel
for the posterior distributions of f and g respectively given D and X1. Let σ1(x) =

√
K1(x, x) and

σc1(x) =
√
Kc

1(x, x). Let E1 indicate the expectation with respect to the corresponding Gaussian
processes given both D and X1. Finally, we use x2 to denote a single point to be evaluated in the
second stage, based on the results of the first.

Let f∗1 and f∗2 be the best evaluated feasible point by the end of the first and second stage respectively,
f∗1 = min{f∗0 ,minx∈X1,g(x)≤0 f(x)} and f∗2 = min{f∗1 , f(x2)} if g(x2) ≤ 0 and f∗2 = f∗1 if not.

Following the principle of dynamic programming, our goal is to choose X1 to minimize the overall
expected objective E1(f∗2) . This is done under the assumption that x2 will be chosen optimally
leveraging observations of X1. Equivalently, our goal is to maximize

E0

[
max
x2

[f∗0 − f∗2]

]
= E0

[
f∗0 − f∗1 + max

x2

E1[f∗1 − f∗2]

]
,

over X1 chosen in the first stage. E1[f∗1 − f∗2] depends implicitly on the information obtained from
X1, which is Yf and Yg , and is included in the posterior over which E1 is taken.

Thus, we define the constrained two-step acquisition function:

2-OPT-C(X1) := E0

[
f∗0 − f∗1 + max

x2∈A(δ)
E1 [f∗1 − f∗2]

]
,

where A(δ) is a compact subset of A consisting of points at least δ away from sampled points in
D ∪X1. With δ = 0, A = A(δ). We introduce the parameter δ ≥ 0 purely to overcome a technical
hurdle in our theoretical analysis: that the standard deviation of the posterior distribution is not
smooth at sampled points. We believe δ can be set to 0 in practice. Indeed, the theoretical analysis
(Theorem 1) allows setting δ at any arbitrary small positive value.

5

For use in §4, we derive a more directly computable expression for 2-OPT-C(X1). We rewrite

2-OPT-C(X1) = E0

[
max

x2∈A(δ)
[f∗0 − f∗1 + E1 [f∗1 − f∗2]]

]
= E0

[
max

x2∈A(δ)
α(X1, x2, Y)

]
,

where Y = (Yf , Yg) ∼ p(y;X1) and p(y;X1) is the distribution of Y given f(D) and g(D),
specified explicitly as

p(y;X1) = N

([
µ0(X1)

µc0(X1)

]
,

[
K0(X1, X1) 0

0 Kc
0(X1, X1)

])
. (3)

Then, α(X1, x2, Y) can be written in closed form:

α(X1, x2, Y) = f∗0 − f∗1 +EI(f∗1 − µ1(x2), σ1(x2)2) · PF(µc1(x2), (σc1(x2))2),

where EI(m, v) = mΦ(m/
√
v) +

√
vϕ(m/

√
v) and PF(mc, vc) = Φ

(
−mc/

√
vc
)
.

4 Optimizing 2-OPT-C Using Likelihood Ratios

Evaluating 2-OPT-C(X1) requires performing a simulation where each replication samples Y and
then evaluates maxx2

∈ A(δ)α(X1, x2, Y). Averaging these replications gives a Monte Carlo
estimate of 2-OPT-C(X1). Optimizing 2-OPT-C(X1) using such Monte Carlo estimates is difficult
because of noise from simulation and because there is not a straightforward way to obtain derivatives.

Indeed, we show in the supplement that the two widely used approaches to efficiently optimizing
Monte Carlo acquisition functions, IPA and SAA, fail to optimize 2-OPT-C well because constraints
cause discontinuities in the surface they sample using the reparameterization trick.

Here, we develop a novel approach for optimizing Monte Carlo acquisition functions like 2-OPT-C
without using the reparameterization trick, overcoming the challenges created by these discontinuities.
This approach uses the likelihood ratio method to derive an unbiased estimator of the gradient for
2-OPT-C. We then use this novel estimator in multistart stochastic gradient ascent to maximize
2-OPT-C. (For details on multistart stochastic gradient ascent for maximizing a Monte Carlo
acquisition function, see [34].) To the best of our knowledge, we are the first to demonstrate the
benefits of the likelihood ratio method for acquisition function gradient estimation in BO.

4.1 Background on the Likelihood Ratio Method

We first give background on the likelihood ratio method using generic notation before describing how
we use it in our setting. Given a generic random variable θ(x) whose distribution depends on a control
vector x with density p(θ;x) and a function V (x, θ(x)), our goal is to solve maxx E[V (x, θ(x))]. To
do this, we estimate the gradient of E[V (x, θ(x))] for use within multistart stochastic gradient.

To provide this gradient estimator, we first choose a density p̃(θ) that does not depend on x and for
which {θ : p(θ, x) > 0} ⊆ {θ : p̃(θ) > 0} for all x. Using this density, we construct the likelihood
ratio, L(θ;x) = p(θ;x)/p̃(θ). We then have that

E[V (x, θ(x))] =

∫
V (x, θ) p(θ;x) dθ =

∫
V (x, θ)L(θ;x)p̃(θ) dθ.

This is referred to as importance sampling and p̃ is referred to as the importance sampling distribution.

The likelihood ratio method uses this expression to construct a gradient estimator. Under regularity
conditions [35], we can exchange the gradient operator and integration,

∇xE[V (x, θ(x))] = ∇x
∫
V (x, θ)L(θ;x)p̃(θ) dθ =

∫
∇xV (x, θ)L(θ;x)p̃(θ) dθ.

From this we can create an unbiased estimator of the gradient of E[V (x, θ(x))] by sampling θ from
the density p̃(θ) and returning as our estimator∇xV (x, θ)L(θ;x).

A natural choice for the importance sampling distribution suggested in [24] is to take p̃(θ) = p(θ, x̃)
when estimating ∇xE[V (x, θ(x))] at x = x̃. We make this choice when designing an unbiased
gradient estimator for 2-OPT-C. We discuss this in detail later in §4.2.

6

4.2 Optimizing 2-OPT-C

To apply the likelihood ratio method to develop a gradient estimator for 2-OPT-C, we begin by
rewriting the expression to be differentiated using importance sampling.

Mapping the notation of our generic discussion of importance sampling onto our specific problem,
our control x is the batch of points X1, our random variable θ is Y (whose distribution depends on
X1), and V (x, θ) is maxx2

α(X1, x2, Y). Y is a multivariate normal random variable whose density
we write p(y;X1), noting that its mean and covariance matrix are determined by X1. We let p(y; X̃1)

be our importance sampling density for Y , for some fixed point X̃1. X̃1 is arbitrary for now but is
specified below. Our likelihood ratio is then L(y;X1, X̃1) = p(y;X1)/p(y; X̃1).

As discussed above, the key step in the likelihood ratio method is to interchange the integral and
gradient operator. This is justified in our setting by Theorem 1 below. The proof is provided in the
supplement. As a result, we have

∇X1
2-OPT-C(X1) =

∫
Γ(X1, X̃1, y) p(y; X̃1)dy, (4)

where

Γ(X1, X̃1, y) :=∇X1

[
max

x2∈A(δ)
α(X1, x2, y)L(y;X1, X̃1)

]
= [∇X1

α(X1, x
∗
2, Y)]L(y;X1, X̃1) + α(X1, x

∗
2, Y) [∇X1

p(y;X1)] /p(y; X̃1)

with x∗2 ∈ arg maxx2∈A(δ) α(X1, x2, Y). The last equality is by the envelope theorem [36], i.e.,
maxx2∈A(δ) α(X1, x2, Y) can be differentiated with respect to X1 by first optimizing over x2 given
X1, then holding x∗2 fixed while differentiating with respect to X1. From now on, we will drop the
subscript of the differential operator∇ for simplicity.

By (4), Γ(X1, X̃1, Y) is an unbiased estimator of∇ 2-OPT-C(X1) when Y is drawn according to
p(y; X̃1). With this stochastic gradient estimator, we then can use stochastic gradient ascent [37]
with multiple restarts to find a collection of stationary values for X1. Then we use simulation to
evaluate 2-OPT-C(X1) at these values and select the one with the highest estimated 2-OPT-C. This
then provides a computationally efficient algorithm for optimizing 2-OPT-C. Pseudocode for using
2-OPT-C is provided in the supplement.

As discussed above, the key step to developing our unbiased estimator is to interchange the integral
and gradient operator, which is justified by Theorem 1 below. The proof is provided in the supplement.
Although Theorem 1 assumes δ > 0, in practice, we choose δ = 0 in our stochastic gradient estimator.

Theorem 1. We assume:

1. The prior on the objective function f is a Gaussian Process f ∼ GP (µf (x),Kf (x, x′)),
and the prior on the constraints g is another Gaussian Process g ∼ GP (µg(x),Kg(x, x

′)).
These two Gaussian processes are independent.

2. µf and µg is continuously differentiable with x.

3. Kf (x, x′) and Kg(x, x
′) is continuously differentiable with x and x′.

4. Given n different points X = (x1, x2, ..., xn), the matrix Kf (X,X) and Kg(X,X) are of
full rank.

Then 2-OPT-C(X1)’s partial derivatives exist almost everywhere for any δ > 0. When
2-OPT-C(X1) is differentiable,

∇ 2-OPT-C(X1) =

∫
Γ(X1, X̃1, y)p(y; X̃1)dy

Choice of Importance Sampling Distribution We have constructed an estimator of the gradient
∇ 2-OPT-C at X1. This estimator was constructed using an importance sampling distribution
parameterized by X̃1. We are free to choose this X̃1 as we wish. We recommend setting X̃1 equal

7

to X1, as our gradient estimator takes a particularly simple form and offers robust performance. In
particular, when X̃1 = X1, L(y;X1, X1) = 1, so our gradient estimator is

Γ(X1, X1, y) := α(X1, x
∗
2, y) [∇p(y;X1)] /p(y;X1) + [∇α(X1, x

∗
2, y)] ,

where x∗2 ∈ arg maxx2
α(X1, x2, y).

5 Numerical Experiments

This section numerically investigates our algorithms on problems widely used as benchmarks in
the constrained BO literature. Benchmarks demonstrate that 2-OPT-C usually provides significant
improvements in query efficiency over state-of-the-art methods. In the main paper, we focus on query
efficiency for the sequential setting. The supplement includes additional experiments and discussions
of batch evaluations and 2-OPT-C’s computational overhead.

The benchmark problems include three synthetic problems from [1], named P1, P2, and P3, and
two real-world problems, portfolio optimization and robot pushing. Detailed descriptions are in the
supplement. We use these five problems in comparisons with myopic methods in §5.2. In §5.3 we
compare with the non-myopic method from [1]. Since code for [1] was not available, we compare
2-OPT-C against the results previously published in that paper, consisting only of P1, P2, and P3.

5.1 Experiment Setup

Evaluation Metrics We follow [11] in our evaluation methodology. Along with each evaluation
n each algorithm makes a “recomendation”, which is the point we would evaluate if it were our
last evaluation before being scored by the best point evaluated. From this recommended point, we
compute a score f∗∗n for this algorithm in this timestep n. If the recommended point is feasible, then
f∗∗n is its objective function value. If not, f∗∗n is the best observed feasible value so far before the
recommended point. Following [11], the point recommended is the one with the lowest posterior
mean objective value, among those whose probability of satisfying each constraint is 0.975 or better.
We then report the utility gap, εn = |f∗∗n − f∗|, which is the difference between this score and the
global constrained optimum f∗. We report the log10 median utility gaps for P1, P2, P3, and the robot
pushing problem in the main paper. Mean utility gap results are provided in the supplement. In the
portfolio optimization problem, the optimum is unknown so we report the mean annualized return
rate instead of the utility gap.

Setup for §5.2 The 2-OPT-C implementation uses GPs with a constant zero-mean prior and ARD
square-exponential kernels for both objectives and constraints. GP hyperparameters are obtained by
maximizing the marginal likelihood using GPy [38]. SAA+CMA ES is implemented similarly to
2-OPT-C and all the hyperparameters are the same or obtained in the same way as 2-OPT-C.

For all three synthetic problems (P1, P2, and P3), we run 150 experiment replications for all
algorithms. For the two real-world problems (portfolio optimization and robot pushing), we run 50
experiment replications. For the initialization of each experiment, we randomly sample three points
with at least one feasible point from a Latin hypercube design. We run N = 40 function evaluations
for P1 and P2, N = 60 for P3, N = 30 for portfolio optimization problem, and N = 50 for robot
pushing problem. We use batch size of 1 for all five experiments.

Setup for §5.3 The setup for §5.3 is nearly the same as for §5.2, with three key differences. These
arose from the need to replicate the experimental setup from [1].

First, we run 500 experiment replications. Second, rather than 3 initial points per problem, we use 1.
Third, the evaluation method differs slightly. If the recommended point is infeasible, then rather than
setting f∗∗n to the value of the best previously observed feasible point, we set it to the maximum of
the objective function over all points in the domain, thus enforcing a substantial penalty.

5.2 Comparison with Myopic Methods

Figure 2 first compares the myopic methods ADMMBO [12], BO Slack [15], NEI [16], EIC [9, 8]
and PESC [11] on three synthetic problems. In general, 2-OPT-C offers significantly lower median

8

0 10 20 30 40
Function Evals

5

4

3

2

1

0

1

Lo
g1

0
Me

dia
n

Ut
ilit

y G
ap

P1

Random Search
ADMMBO
BO_Slack
NEI
PESC
SAA_CMAES
EIC
2-OPT-C

0 10 20 30 40
Function Evals

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0.0

0.5

Lo
g1

0
Me

di
an

 U
til

ity
 G

ap

P2

0 10 20 30 40 50 60
Function Evals

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

Lo
g1

0
Me

dia
n

Ut
ilit

y G
ap

P3

Figure 2: Log10 median utility gap of Random Search, ADMMBO, BO Slack, NEI, EIC, PESC,
SAA CMAES, and 2-OPT-C with 95% confidence intervals for problems P1, P2, and P3.

0 5 10 15 20 25 30
Function Evals

5.0

5.5

6.0

6.5

7.0

7.5

8.0

Me
an

 A
nn

ua
liz

ed
 R

et
ur

n
Ra

te

Portfolio_Optimization
Random Search
NEI
PESC
EIC
2-OPT-C

0 10 20 30 40 50
Function Evals

1.00

0.75

0.50

0.25

0.00

0.25

0.50

Lo
g1

0
Me

di
an

 U
til

ity
 G

ap

Robot_Pushing

Random Search
NEI
PESC
EIC
2-OPT-C

Figure 3: Real-world experiment results on Random Search, NEI, EIC, PESC, and 2-OPT-C. We
report the mean annualized return rate for portfolio optimization problem and log10 median utility
gap for robot pushing problem.

utility gaps than the myopic methods across all three problems. For example, in P1, 2-OPT-C
quickly converges to a utility gap 10−5 (in 27 evaluations), while the best of the other benchmarks
(EIC) has a utility gap of 10−3 at this many evaluations. There is only one method and problem,
ADMMBO on problem P3, in which a myopic method achieves an optimality gap comparable to
2-OPT-C, but 2-OPT-C reaches this optimality gap in fewer iterations.

Figure 2 additionally compares with an SAA implementation of 2-OPT-C that uses CMA-ES [39]
to optimize the SAA to the acquisition function on P1, P2, and P3, denoted as SAA CMAES. We see
that SAA CMAES generally perform better than myopic policies on all three problems (except EIC
on P1), supporting the value of two-step lookahead for CBO over myopic approaches. However, due
to the discontinuity introduced by SAA, it underperforms 2-OPT-C on all three synthetic problems.
It also underperforms EIC in P1 and ADMMBO in P3. In addition, it requires substantially more
computation. This is because, as we note in the supplement, discontinuities in the SAA to the
acquisition function make it extremely difficult to optimize. We provide additional experiments to
illustrate this in the supplement.

Figure 3 compares 2-OPT-C with the mostly widely-used myopic methods, NEI, PESC, and EIC, on
real-world problems. As in the synthetic problems, 2-OPT-C outperforms the competing benchmarks.
In portfolio optimization, 2-OPT-C provides roughly 0.5% more annualized return than the best
myopic method (EIC). In robot pushing, 2-OPT-C outperforms EIC and NEI over the full range of
function evaluations; PESC eventually matches 2-OPT-C but there is a range of function evaluations
where 2-OPT-C performs strictly better.

5.3 Comparison with the Non-myopic Method

We compare 2-OPT-C with the non-myopic rollout algorithm of [1] on the three synthetic problems
based on the results reported in their paper. We use the terms Rollout-1, Rollout-2, and Rollout-3 to
denote this algorithm with horizons of 1, 2, and 3, respectively.

To compare with the rollout algorithm, we extract experimental data from [1] and replicate their
experimental setup, adding 2-OPT-C’s results to their Figures 2 and 3.

Figure 4 reports the results of these comparisons. It shows that 2-OPT-C provides query efficiency
that is at least as good as the non-myopic rollout methods with different horizons on all three problems
and is sometimes substantially better. In detail, for P1, 2-OPT-C increases solution quality by more
than a factor of 2 (10−4.59/10−4.92) compared to the best rollout strategies, i.e., Rollout-1. For P3,

9

0 10 20 30 40
Function Evals

5

4

3

2

1

0

1

Lo
g1

0 M
ed

ian
 U

tili
ty

 G
ap

P1
Rollout, h = 1
Rollout, h = 2
Rollout, h = 3
2-OPTC

0 10 20 30 40
Function Evals

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0.0

Lo
g1

0
Me

dia
n

Ut
ilit

y G
ap

P2
Rollout, h = 1
Rollout, h = 2
Rollout, h = 3
2-OPTC

0 10 20 30 40 50 60
Function Evals

1.2

1.4

1.6

1.8

2.0

2.2

2.4

Lo
g1

0 M
ed

ian
 U

tili
ty

 G
ap

P3
Rollout, h = 1
Rollout, h = 2
Rollout, h = 3
2-OPTC

Figure 4: Log10 median utility gap of 2-OPT-C and the existing non-myopic constrained BO
algorithm with different rollout horizons on P1, P2, and P3. The three lines of the rollout algorithm
are extracted from Figure 3 in [1]. Additional information is provided in Table 1 in the supplement.

2-OPT-C is able to improve solution quality over the best competing rollout method by roughly a
factor 2 when the evaluation budget is tight (after 30 function evaluations).

2-OPT-C also uses less computation than the rollout algorithm [1]. Since the code from [1] is not
publicly available, we refer to discussion in [21] of the computational time of an unconstrained version
of the rollout algorithm, which we understand from private communication has a similar cost to [1].
This states that the unconstrained rollout strategies require from 10 minutes to 1 hour to evaluate a
single point even on a low-dimensional problem. This may be even larger in constrained settings,
since we need a separate GP to model the constraint function. 2-OPT-C is more computationally
efficient. On P3, for instance, 2-OPT-C optimizes a batch of 5 points in 25-30 minutes.

Rollout-1 is actually attempting to optimize the same theoretical acquisition function used by
2-OPT-C. Indeed, [1] uses EIC as its rollout strategy, which is optimal over a horizon of h = 1.
Rollout-1 is then trying to identify the point to evaluate now that would be optimal if one additional
point were evaluated after using EIC. If this point could be found exactly, it would be 2-step optimal.

Despite attempting to optimize an acquisition function that is conceptually the same as 2-OPT-C, the
performance of Rollout-1 is substantially worse (the utility gap is roughly 2x larger over all budgets),
despite requiring more than double the computation. This is because [1] optimizes this two-step
acquisition function without the type of derivative estimates provided by our likelihood ratio method.

6 Conclusion

This paper presents a non-myopic CBO algorithm, supporting both batch and sequential settings, that
substantially improves both query efficiency and computation time over the one previous method
focused on this class of problems for both sequential and batch settings.

While our method offers significant improvements in query efficiency compared to the state-of-the-art
that more than offset its computational expense, there are likely more opportunities for reducing its
computational cost. This, as well as a further theoretical investigation regarding our method providing
such significant improvements in query efficiency compared to other methods, presents valuable
directions for future work.

Faster constrained optimization of time-consuming-to-evaluate functions with our methodology
enables creation of new engineering systems, better supervised learning methods, and lower-cost
business operations. While we believe technological innovation is on balance good, new technology
created using our methods also has the potential for negative effects. Understanding the societal
effects of improved optimization capabilities is an important area for future research.

7 Acknowledgements

The authors were partially supported by AFOSR FA9550-19-1-0283 and FA9550-20-1-0351.

10

References
[1] Remi Lam and Karen Willcox. Lookahead bayesian optimization with inequality constraints.

In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett,
editors, Advances in Neural Information Processing Systems 30, pages 1890–1900. Curran
Associates, Inc., 2017.

[2] Scott Clark and Patrick Hayes. Sigopt web page. https://sigopt.com.

[3] Valerio Perrone, Michele Donini, Muhammad Bilal Zafar, Robin Schmucker, Krishnaram
Kenthapadi, and Cédric Archambeau. Fair bayesian optimization, 2021.

[4] John D. Trawick and Christophe H. Schilling. Use of constraint-based modeling for the
prediction and validation of antimicrobial targets. Biochemical Pharmacology, 71(7):1026–
1035, 2006. Special Issue on Antibacterials.

[5] Berk Ozturk and Ali Saab. Optimal aircraft design deicions under uncertainty via robust
signomial programming. In AIAA Aviation 2019 Forum, page 3351, 2019.

[6] Jasper Snoek, Hugo Larochelle, and Ryan P Adams. Practical bayesian optimization of machine
learning algorithms. In F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger, editors,
Advances in Neural Information Processing Systems, volume 25, pages 2951–2959. Curran
Associates, Inc., 2012.

[7] Peter I Frazier. A tutorial on bayesian optimization. arXiv preprint arXiv:1807.02811, 2018.

[8] Matthias Schonlau, William J. Welch, and Donald R. Jones. Global versus local search in
constrained optimization of computer models. Lecture Notes-Monograph Series, 34:11–25,
1998.

[9] Jacob R. Gardner, Matt J. Kusner, Zhixiang Xu, Kilian Q. Weinberger, and John P. Cunningham.
Bayesian optimization with inequality constraints. In Proceedings of the 31st International
Conference on International Conference on Machine Learning - Volume 32, ICML’14, pages
II–937–II–945. JMLR.org, 2014.

[10] Victor Picheny. A Stepwise uncertainty reduction approach to constrained global optimization.
In Samuel Kaski and Jukka Corander, editors, Proceedings of the Seventeenth International
Conference on Artificial Intelligence and Statistics, volume 33 of Proceedings of Machine
Learning Research, pages 787–795, Reykjavik, Iceland, 22–25 Apr 2014. PMLR.

[11] Jose Miguel Hernandez-Lobato, Michael Gelbart, Matthew Hoffman, Ryan Adams, and Zoubin
Ghahramani. Predictive entropy search for bayesian optimization with unknown constraints.
In Francis Bach and David Blei, editors, Proceedings of the 32nd International Conference on
Machine Learning, volume 37 of Proceedings of Machine Learning Research, pages 1699–1707,
Lille, France, 07–09 Jul 2015. PMLR.

[12] Setareh Ariafar, Jaume Coll-Font, Dana Brooks, and Jennifer Dy. Admmbo: Bayesian op-
timization with unknown constraints using admm. Journal of Machine Learning Research,
20(123):1–26, 2019.

[13] Valerio Perrone, Iaroslav Shcherbatyi, Rodolphe Jenatton, Cedric Archambeau, and Matthias
Seeger. Constrained bayesian optimization with max-value entropy search. arXiv preprint
arXiv:1910.07003, 2019.

[14] Robert B Gramacy, Genetha A Gray, Sébastien Le Digabel, Herbert KH Lee, Pritam Ranjan,
Garth Wells, and Stefan M Wild. Modeling an augmented lagrangian for blackbox constrained
optimization. Technometrics, 58(1):1–11, 2016.

[15] Victor Picheny, Robert B Gramacy, Stefan Wild, and Sebastien Le Digabel. Bayesian op-
timization under mixed constraints with a slack-variable augmented lagrangian. In D. Lee,
M. Sugiyama, U. Luxburg, I. Guyon, and R. Garnett, editors, Advances in Neural Information
Processing Systems, volume 29, pages 1435–1443. Curran Associates, Inc., 2016.

11

[16] Benjamin Letham, Brian Karrer, Guilherme Ottoni, Eytan Bakshy, et al. Constrained bayesian
optimization with noisy experiments. Bayesian Analysis, 14(2):495–519, 2019.

[17] David Eriksson and Matthias Poloczek. Scalable constrained bayesian optimization. In Arindam
Banerjee and Kenji Fukumizu, editors, Proceedings of The 24th International Conference on
Artificial Intelligence and Statistics, volume 130 of Proceedings of Machine Learning Research,
pages 730–738. PMLR, 13–15 Apr 2021.

[18] Seyede Fatemeh Ghoreishi and Douglas Allaire. Multi-information source constrained bayesian
optimization. Structural and Multidisciplinary Optimization, 59(3):977–991, 2019.

[19] Remi Lam, Karen Willcox, and David H. Wolpert. Bayesian optimization with a finite bud-
get: An approximate dynamic programming approach. In D. Lee, M. Sugiyama, U. Luxburg,
I. Guyon, and R. Garnett, editors, Advances in Neural Information Processing Systems, vol-
ume 29, pages 883–891. Curran Associates, Inc., 2016.

[20] Javier Gonzalez, Michael Osborne, and Neil Lawrence. Glasses: Relieving the myopia of
bayesian optimisation. In Arthur Gretton and Christian C. Robert, editors, Proceedings of the
19th International Conference on Artificial Intelligence and Statistics, volume 51 of Proceedings
of Machine Learning Research, pages 790–799, Cadiz, Spain, 09–11 May 2016. PMLR.

[21] Jian Wu and Peter Frazier. Practical two-step lookahead bayesian optimization. In H. Wallach,
H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, editors, Advances in
Neural Information Processing Systems 32, pages 9810–9820. Curran Associates, Inc., 2019.

[22] Shali Jiang, Henry Chai, Javier Gonzalez, and Roman Garnett. BINOCULARS for efficient,
nonmyopic sequential experimental design. In Hal Daumé III and Aarti Singh, editors, Proceed-
ings of the 37th International Conference on Machine Learning, volume 119 of Proceedings of
Machine Learning Research, pages 4794–4803. PMLR, 13–18 Jul 2020.

[23] Shali Jiang, Daniel Jiang, Maximilian Balandat, Brian Karrer, Jacob Gardner, and Roman
Garnett. Efficient nonmyopic bayesian optimization via one-shot multi-step trees. Advances in
Neural Information Processing Systems, 33, 2020.

[24] Søren Asmussen and Peter W. Glynn. Stochastic simulation - algorithms and analysis. In
Stochastic modeling and applied probability, 2007.

[25] Philip Heidelberger, Xi-Ren Cao, Michael Zazanis, and Rajan Suri. Convergence properties of
infinitesimal perturbation analysis estimates. Management Science, 34:1281–1302, 11 1988.

[26] Maximilian Balandat, Brian Karrer, Daniel R Jiang, Samuel Daulton, Benjamin Letham, An-
drew Gordon Wilson, and Eytan Bakshy. Botorch: A framework for efficient monte-carlo
bayesian optimization. arXiv preprint arXiv:1910.06403, 2019.

[27] Michael A Gelbart, Jasper Snoek, and Ryan P Adams. Bayesian optimization with unknown
constraints. arXiv preprint arXiv:1403.5607, 2014.

[28] José Miguel Hernández-Lobato, Matthew W Hoffman, and Zoubin Ghahramani. Predictive
entropy search for efficient global optimization of black-box functions. In Z. Ghahramani,
M. Welling, C. Cortes, N. Lawrence, and K. Q. Weinberger, editors, Advances in Neural
Information Processing Systems, volume 27, pages 918–926. Curran Associates, Inc., 2014.

[29] Robert B. Gramacy and Herbert K. H. Lee. Optimization under unknown constraints. Bayesian
Statistics 9 (2011), no. 9, 229. eds.

[30] Zi Wang and Stefanie Jegelka. Max-value entropy search for efficient Bayesian optimization. In
Doina Precup and Yee Whye Teh, editors, Proceedings of the 34th International Conference on
Machine Learning, volume 70 of Proceedings of Machine Learning Research, pages 3627–3635.
PMLR, 06–11 Aug 2017.

[31] David Eriksson, Michael Pearce, Jacob Gardner, Ryan D Turner, and Matthias Poloczek.
Scalable global optimization via local bayesian optimization. In H. Wallach, H. Larochelle,
A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, editors, Advances in Neural Information
Processing Systems, volume 32. Curran Associates, Inc., 2019.

12

[32] Carl Edward Rasmussen and Christopher K. I. Williams. Gaussian Processes for Machine
Learning (Adaptive Computation and Machine Learning). The MIT Press, 2005.

[33] J. Mockus. On bayesian methods for seeking the extremum. In G. I. Marchuk, editor, Optimiza-
tion Techniques IFIP Technical Conference Novosibirsk, July 1–7, 1974, pages 400–404, Berlin,
Heidelberg, 1975. Springer Berlin Heidelberg.

[34] Jialei Wang, Scott C Clark, Eric Liu, and Peter I Frazier. Parallel bayesian global optimization
of expensive functions. Operations Research, 68(6):1850–1865, 2020.

[35] Pierre L’Ecuyer. A unified view of the ipa, sf, and lr gradient estimation techniques. Management
Science, 36(11):1364–1383, 1990.

[36] Paul Milgrom and Ilya Segal. Envelope theorems for arbitrary choice sets. Econometrica,
70(2):583–601, 2002.

[37] Harold Kushner and G George Yin. Stochastic approximation and recursive algorithms and
applications, volume 35. Springer Science & Business Media, 2003.

[38] GPy. GPy: A gaussian process framework in python. http://github.com/SheffieldML/
GPy, since 2012.

[39] Nikolaus Hansen. The cma evolution strategy: a comparing review. Towards a new evolutionary
computation, pages 75–102, 2006.

13

http://github.com/SheffieldML/GPy
http://github.com/SheffieldML/GPy

	Introduction
	Background
	Myopic Constrained Bayesian Optimization
	Gaussian Processes
	Constrained Expected Improvement

	Constrained Two-step Acquisition Function
	The Importance of Being Non-Myopic in CBO
	Definition of 2-OPT-C

	Optimizing 2-OPT-C Using Likelihood Ratios
	Background on the Likelihood Ratio Method
	Optimizing 2-OPT-C

	Numerical Experiments
	Experiment Setup
	Comparison with Myopic Methods
	Comparison with the Non-myopic Method

	Conclusion
	Acknowledgements

