
NUGGET: Neural Agglomerative Embeddings of Text

Guanghui Qin 1 Benjamin Van Durme 1

Abstract
Embedding text sequences is a widespread re-
quirement in modern language understanding.
Existing approaches focus largely on constant-
size representations. This is problematic, as the
amount of information contained in text can vary.
We propose a solution called NUGGET , which en-
codes language into a representation based on
a dynamically selected subset of input tokens.
These nuggets are learned through tasks like au-
toencoding and machine translation, and intu-
itively segment language into meaningful units.
We demonstrate NUGGET outperforms related ap-
proaches in tasks involving semantic comparison.
Finally, we illustrate these compact units allow for
expanding the contextual window of a language
model (LM), suggesting new future LMs that can
condition on larger amounts of content.

1. Introduction
You can’t cram the meaning of a whole %&!$#
sentence into a single $&!#* vector!

Ray Mooney

Embedding language into dense representations is a central
pursuit in modern Natural Language Processing and Ma-
chine Learning. Recent work on text encoding has largely
focused on fixed-dimensional representations that use either
one or a constant number of vectors, e.g., DAN (Iyyer et al.,
2015), DPR (Karpukhin et al., 2020), or TSDAE (Wang
et al., 2021). At the other extreme, COLBERT (Khattab &
Zaharia, 2020) represents and indexes content by storing the
final BERT (Devlin et al., 2019) layer encoding of nearly
every input token. Unfortunately a fixed dimensional rep-
resentation risks not scaling to long texts, while a solution
like COLBERT comes at significant cost. We propose that
a flexible balance can be found, leading to a “semantically
useful level of granularity” (Rudinger et al., 2017).

1Department of Computer Science, University of Johns Hop-
kins, USA. Correspondence to: Guanghui Qin <gqin2@jhu.edu>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

Figure 1. Three approaches to embedding text. Token-level models
map each token to a vector, while passage-level models map the
whole passage into a single vector. NUGGET generates a dynamic
number of vectors, where each nugget encodes a segment of text.

Our solution, NUGGET , is an encoding strategy employing
hard-attention to map linguistic input into a fractional num-
ber of dynamically selected embeddings called nuggets. As
the nugget selection process is non-differentiable, we build
a residual connection between the selector and decoder to
allow gradient propagation, enabling the model to be trained
in an end-to-end manner via tasks such as autoencoding
or machine translation. This approach allows the number
of vectors to grow with input length, trading performance
against memory as a configurable compression ratio.

NUGGET leads to an intrinsically interesting representation,
where the encoder learns to favor clausal text delimiters,
such as punctuation and conjunction words. Moreover, with-
out any explicit guidance during training, each resultant
nugget encodes a contiguous segment of text preceding
these clausal delimiters, such as illustrated in fig. 1.

We demonstrate that extrinsically these nuggets outperform
prior unsupervised approaches in experiments on document-
level paraphrase selection and related passage retrieval.

Finally, through an experiment on language modeling we
show that NUGGET can provide context information to other
models in an efficient way. Looking ahead, we believe
fractional representation strategies like NUGGET will allow
for exciting new developments in large language models
(LLMs). As nuggets support highly accurate reconstruction,
they hold promise as a compressed unit of language that
could enable scaling LLMs to condition on significantly
longer textual inputs.

1

NUGGET: Neural Agglomerative Embeddings of Text

2. Background
Token-level Embeddings are commonly used in NLP. To
map tokens to individual vectors, Pennington et al. (2014)
uses the word co-occurrence matrix as features, while
Mikolov et al. (2013) maps words to vectors by training a
model to reconstruct the context. Instead of static mappings,
encoders such as CoVe (McCann et al., 2017), ELMo (Peters
et al., 2018), BERT (Devlin et al., 2019) and BART (Lewis
et al., 2020) generate contextualized token embeddings.

Unsupervised methods for passage embedding Early
related work modeled passages as topic distributions (Lan-
dauer et al., 1998; Blei et al., 2003). With neural networks,
researchers map the sentence into one or a fixed number of
vectors. Some researchers try to derive a sentence repre-
sentation from the pretrained encoder without fine-tuning
(Wang & Kuo, 2020; Li et al., 2020). Researchers also treat
it as an unsupervised learning task. Kiros et al. (2015) trains
sentence encoding by predicting the surrounding sentences.
Bowman et al. (2016); Wang et al. (2021); Mahabadi et al.
(2021) explore autoencoding to map sentences into single
vectors. With a contrastive objective, Carlsson et al. (2021)
learns to have similar representations of the same sentence
with two independent encoders, while SimCSE (Gao et al.,
2021) uses different dropout masks on the same encoder.
Giorgi et al. (2021) is similar but relies on document struc-
ture to identify positive sentence pairs. Recently, Li et al.
(2022) propose to model texts by denoising a sequence of
Gaussian vectors, leading to better controllability.

Supervised methods for passage embedding To con-
struct datasets for general-purpose sentence encoders, it is
common to extract sentence pairs from datasets such as nat-
ural language inference and question answering (Conneau
et al., 2017). SBERT (Reimers & Gurevych, 2019) fine-
tunes the BERT model (Devlin et al., 2019) and uses mean
pooling over the token embeddings as the sentence encoding.
In the domain of dense information retrieval, people map
documents into vectors to measure their similarity. Some
models simply reuse the token-level encodings: Khattab &
Zaharia (2020) uses all token embeddings as the index of
the document, while Karpukhin et al. (2020) only reuses
the embedding of the CLS token. Gao & Callan (2021);
Oğuz et al. (2022) show that continual training can produce
information-rich CLS representations.

The methods mentioned above use a single vector or all
tokens as the representation. Tan et al. (2022) increase
the number of vectors by introducing pseudo sentences,
while Zhang et al. (2022) append View pseudo tokens to
the BERT (Devlin et al., 2019) self-attention; both have
fixed-sized vectors, regardless of the lengths of the input.
Rudinger et al. (2017), who helped inspire this work, de-
composed sentences into a variable number of propositional
embeddings, relying on a linguistic processing pipeline.

3. Approach
We use a modified transformer encoder-decoder architecture.
Let w = {wi}ni=1 denote the input sequence, where n is the
number of tokens. A transformer encoder is used to map
them into contextualized embeddings:

X = Encoder(w),

where X ∈ Rn×d and d is the hidden dimension. Instead of
feeding the entire X into the transformer decoder, we use a
“nugget generator”, denoted by Nugget, to produce a latent
variable Z that are fed as the inputs of the decoder:

Z = Nugget(X),

p(y | Z) = Decoder(Z) (1)

where Z ∈ Rk×d, k ≤ n is the number of “nuggets” gener-
ated by Nugget, and y is the target sequence. Note that k
is not a constant number and depends on X. Decoder is a
transformer module with causal masking and is conditioned
on Z via cross-attention.

In the remainder of this section we introduce the form of
Nugget and the corresponding training strategies.

3.1. Nugget Generator

Instead of producing vectors that do not correspond to ac-
tual tokens, such as the CLS or averaged pooling over all
token embeddings, we leverage the fact that contextual to-
ken embeddings carry the semantics of their surrounding
texts, and use them as document representations. We use
a feedforward network to measure the amount of context
information of every token embedding, then select the most
informative vectors as the output:

s = FFN(X), (2)
X′ = TopKk(s,X), (3)

Z = Nugget(X) = X′WV , (4)

where s ∈ Rn are a list of scores, TopK is an operator to
pick the top k elements in X sorted by s, and X′ ∈ Rk×d

are the selected embeddings, WV is a trainable parameter,
and Z ∈ Rk×d are the latent variables, called nuggets.

Choice of k If we let k be a constant, then Nugget falls
back to a fixed-dimensional representation. Instead, we let
k grow with the length of the text by setting k = ⌈n · r⌉,
where the compression ratio 0 < r ≤ 1 is a hyperparameter.

Alternative viewpoint Equivalently, one can also view
Nugget as hard attention. Let q ∈ Rd denote a trainable
query vector, and we use X as both keys and values. We
can regard eq. (2) as the attention logits:

s =
(
qWQ

) (
XWK

)⊤
,

2

NUGGET: Neural Agglomerative Embeddings of Text

Figure 2. The architecture of NUGGET . The diode symbol means
that the gradient cannot be back-propagated.

where WQ,WK ∈ Rd×d are trainable parameters. In the
next step, instead of aggregating the values X, we use hard
attention to take the top-k values in XWV with s as keys.

3.2. Ensuring Differentiability

Note that the TopK operator in eq. (3) is not differentiable,
thus the parameters in eq. (2) do not receive any gradient
signals. Therefore, we build a residual connection between
the encoder and the decoder to propagate the gradients back
to the Nugget. Specifically, we append the attention logits
s to the cross attention in the decoder by:

aι =
1√
d

[(
ZWQ

) (
xtgtWK

)⊤
+s

]
, (5)

where aι is the cross-attention logits for the target token xtgt

in one attention head at one of the decoder layers, and it
will be fed into a SoftMax operator to produce an attention
distribution. Note that we have replaced the source tokens
with the nuggets Z. In addition to attending to the nugget
vectors, the attention score directly takes into account the
nugget logits s. As the cross-attention is differentiable, it can
be viewed as a residual connection that allows the gradients
to be back-propagated to the hard attention parameters. The
architecture of NUGGET is shown in fig. 2.

Gradient analysis To interpret the gradients on s, we can
rewrite it as:

∂ℓ

∂s
=

∑
ι

(
∂aι
∂s

· ∂ℓ

∂aι

)
=

1√
d
·
∑
ι

∂ℓ

∂aι
, (6)

where ℓ is the loss value, and the summation on the subscript
ι is taken over all target tokens, attention heads, and decoder
layers. eq. (6) shows that the gradient on the s is propor-
tional to that on all aι. Consequently, the nugget logit si
tends to increase if the model tends to pay more attention to
the corresponding nugget vector zi. As the bottleneck of the
model is to limit the number of nuggets, the model learns
to select the token embeddings that contain the maximal
amount of contextual information.

Different from previous work with residual connections
(He et al., 2017), the introduction of eq. (5) to NUGGET is
propagating gradients to the logits s, which otherwise cannot
be learned. The absolute values of s do not greatly affect
the cross-attention of the decoder, and we do not observe
much performance difference in experiments when ablating
s in eq. (5) during inference.

3.3. Informed Nugget Encoding

The assumption behind NUGGET is that certain tokens func-
tion as nuggets to aggregate the surrounding semantics.
However, the nugget selection is done after the encoding
process, thus cannot affect its attention behavior. To in-
form the encoder of the selected nuggets, we prepone the
calculation of s to the l-th layer of the encoder:

s = FFN(X(l)), (7)

where X(l) are the hidden states of the encoder in the l-
th layer, and we suppose the encoder has L ≥ l layers in
total. With s and the compression ratio r, we are able to
tell apart the nugget and non-nugget tokens. Akin to the
“segment embedding” in Devlin et al. (2019), we add 2 “type
embedding” vectors, denoted by en and eo, to the hidden
states of nugget and non-nugget tokens in the l-th layer,
which are then fed into the next layer:

X(l+1) = SelfAttn(X(l)+E), (8)

where E ∈ Rn×d are the type embedding matrix. We call
this the nugget feedback.

Note that the encoding X used in eq. (3) are still the em-
beddings in the last layer. The updated nugget encoding is
illustrated in fig. 3.

Stabilized training In practice, we found that the training
of nugget selection in eq. (2) can be unstable when the
features fed into eq. (8) are being updated. We adopted the
common practice for fine-tuning pretrained LMs (Howard
& Ruder, 2018) to freeze the bottom l layers of the encoder,
which stabilized our training curves. 1

1Freezing bottom layers may also help preserve the multilin-
gual ability of a pretrained multilingual language model; this was
not tested in our experiments.

3

NUGGET: Neural Agglomerative Embeddings of Text

Figure 3. The encoder of NUGGET with feedback. The bottom l
layers do not receive gradient signals from back-propagation.

3.4. Learning

The model parameters θ are optimized by minimizing the
negative log likelihood:

ℓ = −
∑

w,y∈D
log p(y | w; θ),

where the inputs w and outputs y are sampled from the
dataset D. The dataset D can be a monolingual corpus, in
which case y should be identical to w and the NUGGET is
trained as an autoencoder. Following previous work (Wang
et al., 2021), we may randomly delete tokens from w as
noise. The dataset can also be bitexts, then the target docu-
ment y is translated from w. In this case, NUGGET is trained
as a machine translation model (McCann et al., 2017).

4. Experiment Setup
While we could apply the NUGGET concept to a variety
of existing models, for experiments here we build on the
architecture of BART (Lewis et al., 2020). We start with the
checkpoint in Tang et al. (2020), which is a model with 12
layers of encoder and decoder, and is optimized for many-
to-many machine translation. It contains 602M parameters,
with 256M in the embedding matrix, 152M in the encoder
and 203M in the decoder.

For the dataset, we use the English-to-Chinese subset of
WMT19 corpus (Barrault et al., 2019), the same corpus used
by Tang et al. (2020), as our datasets. WMT19 is comprised
of individual sentences, and we concatenate the adjacent
sentences together to recover the document structure, similar
to the practice of Junczys-Dowmunt (2019). We limit each
document to a maximum length of 128 sub-words. The
model is trained to translate English documents into Chinese

Figure 4. The micro-averaged BLEU value of the texts generated
from nuggets with the input document as the reference. Note that
r = 0.0 indicates that a single vector is used for each document.
Results are reported on the dev set of WMT19.

documents. For the autoencoding (AE) objective, we use
English documents on both the source and target sides.

We explored different compression ratios r from 0.05 to
0.25. We freeze the bottom 3 layers (l = 3) in section 3.3
across our main experiments, and we provide a study of the
effect of the number of frozen layers in section 7.1. We put
more training details in appendix B.1.

5. Intrinsic evaluation
In this section, we conduct experiments to investigate the
impact of compression ratio r. We also discuss the behaviors
of the nuggets and their relationship to the textual forms.

5.1. What is a sufficient compression ratio?

The compression ratio r controls the trade-off between space
efficiency and the “semantic completeness” of the nuggets.
Prior to applying NUGGET to downstream tasks to find a
sufficient compression ratio, we propose to use beam search
with a beam size of 5 to decode texts from the generated
nuggets and measure their difference from the inputs with
the BLEU (Papineni et al., 2002) metric.

We evaluate the model on the dev set of the English-to-
Chinese subset of WMT19, where sentences are concate-
nated to document with a maximum length of 128 tokens.
The experiment results are shown in fig. 4. With both the
AE and MT training objectives, the performance starts to be
saturated with a compression ratio of r = 0.1. It shows that
with 10% of tokens as nuggets, the model has already gained
sufficient information about the source documents. In the
case of autoencoding, the BLEU value is higher than 0.99
when r ≥ 0.1, meaning NUGGET reconstructs the inputs
nearly verbatim, achieving almost lossless text encoding.

5.2. What is selected as nuggets?

Instead of uniformly selecting tokens, the scorer (eq. (2))
of NUGGET prefers certain tokens. fig. 5 shows the top-6
most frequent tokens selected by NUGGET , and they are
mostly delimiter words, like punctuation tokens (commas

4

NUGGET: Neural Agglomerative Embeddings of Text

Figure 5. The 6 most frequent tokens selected by NUGGET . We
show their ratio in the nuggets with the AE and MT training objec-
tives compared to that in normal texts The statistics are sampled
from 128 documents of lengths up to 128. The compression ratio
is set as r = 0.1 for both models.

Natural language processing is an interdisciplinary
subfield of linguistics , computer science , and ar-
tificial intelligence concerned with the interactions
between computers and human language , in partic-

ular how to program computer s to process and
analyze large amounts of natural language data .
The goal is a computer capable of “understanding”
the contents of documents , including the contextual
nuances of the language within them . The technol-
ogy can then accurately extract information and in-
sights contained in the documents as well as cate-
gorize and organize the documents themselves .

Figure 6. Example texts processed by NUGGET . Tokens in darker
colors have higher scores, and those with green backgrounds are
selected as nuggets. The compression ratio is set as r = 0.1 and
AE is set as the training objective.

and periods), conjunctions, and prepositions. Previous work
on the study of transformer language models shows that
a large amount of self-attention focuses on the delimiter
tokens, such as punctuations, and they may be used as no-op
Clark et al. (2019). However, our study suggests that they
may also serve as summary tokens, as predicting the end of
a segment requires the model to understand the semantics
of the preceding texts.

It is worth noting that in our case study, NUGGET prefers
EOS while BOS is never selected, contrary to the practice
of Wang et al. (2021). Also, NUGGET is not necessarily
selecting the most frequent tokens. For example: the type

‘the’, which makes up 5.2% of all tokens in the corpus,
accounts for only 0.7% of selected nuggets. An example
text is shown in fig. 6, where commas, periods, and the
conjunction ‘and’ are selected as nuggets.

We note that the preference of NUGGET on text delimiters
is not specific to English. In appendix D, we show similar
results of fig. 5 in 9 other languages.

Figure 7. The red curve shows the distribution of token indices in
the input documents of the 3rd, 6th, and 9th nuggets, and the blue
curve shows the probability gain of every token given the corre-
sponding nugget. The distribution is averaged over 10k documents.
Compression ratio r is set as 0.1.

Figure 8. The probability gain conditioned on a single nugget.
Graphs are averaged over all nuggets of 10k documents by center-
ing the nugget and showing the relative indices of the tokens. The
ratio r is set as 0.1. Refer to appendix C for a complete version.

5.3. What is encoded in each nugget?

The model is optimized to encode information into nuggets,
but it is unclear how that information is distributed across
them. Thus we propose a method to probe the semantics of
individual nuggets.

We run teacher-forcing decoding on a document with a
model trained with the autoencoding objective, but expose
only 1 nugget during decoding. Suppose the j-th nugget is
exposed, then we calculate the “probability gain” by

gji = p(yi | y<i, zj)− p(yi | y<i). (9)

where gji measures the increment of probability mass the
model has on the i-th token compared to the unconditional
decoding. We order the nuggets in each document by the
indices of their corresponding tokens, and average gj across

5

NUGGET: Neural Agglomerative Embeddings of Text

the j-th nuggets of all documents. The curves of g are plot-
ted in fig. 7. We can see that the exposure of a nugget can
improve the decoding of its preceding texts. Combined with
our discovery in section 5.2, we speculate that NUGGET is
learning a divide-and-conquer strategy, encoding each seg-
ment with its ending delimiter tokens.

Note that this experiment made use of documents of length
128 tokens. We then force decoded documents of lengths
of 64 and 256 as well, illustrated in fig. 8. These results
suggests the properties of nuggets are generalizable to docu-
ments with different lengths.

6. What are they good for?
With the nice properties that we observe in section 5, can
NUGGET be useful for NLP applications? When used alone,
NUGGET can be help measure the semantic similarity be-
tween texts. NUGGET can efficiently encode long texts with
fewer vectors, so we evaluate the use of NUGGET in a doc-
ument similarity test. Also, NUGGET can be used as an
auxiliary module to provide long-context semantics to other
models with minimal information loss. To focus on the
language itself and exclude other factors, we propose to
integrate NUGGET into a language model and treat it as a
long-range sequence model.

6.1. Document similarity test

It is common to use semantic textual similarity (STS) to eval-
uate text representation models (Reimers & Gurevych, 2019;
Wang et al., 2021). However, existing datasets for STS, such
as Cer et al. (2017), are built on short sentences. To extend
this problem to long documents, we built 2 document simi-
larity test datasets based on the corpus of PARABANK (Hu
et al., 2019) and WikiText-103 (Merity et al., 2016). 2

6.1.1. TASKS AND DATASETS

Paraphrase identification on PARABANK PARABANK
is a large-scale English paraphrase dataset. It is built on
single sentences that are extracted from documents, and we
recover the original documents by concatenating adjacent
sentences up to 256 tokens. To make this problem difficult,
sentences are randomly removed from documents and para-
phrases with a probability of 20% independently. For each
document, in addition to its paraphrase, we find another
19 negative paraphrases retrieved by the BM25 algorithm
(Robertson et al., 2009), and the model is asked to identify
the correct paraphrases among 20 candidate paraphrases.

Passage re-ranking on WikiText-103 WikiText-103 is a
collection of Wikipedia articles. With the leading section

2Those 2 datasets are released in https://github.com/
hiaoxui/nugget-data

Task Corpus #queries Lq Ld

P I ParaBank 1024 241.3 242.1
RR WikiText-103 1024 287.0 333.8

Table 1. Data statistics for the task paraphrase identification (PI)
and passage re-raking (RR), where Lq and Ld denote the average
number of tokens in query and document.

as the query, we randomly sample one section in the same
article as the target document and retrieve 19 sections from
other articles with the BM25 algorithm as negative examples.
The model is asked to rank those 20 passages according to
their relevance to the leading section.

We put the statistics of the dataset in table 1. Please refer to
appendix A for a detailed description of the dataset.

6.1.2. MODEL CONFIGURATIONS AND BASELINES

For those two experiments, we set the compression ratio r as
0.05, 0.1, 0.15, and 0.25, and use the training objectives of
both AE and MT. We include the TSDAE model as our base-
line (Wang et al., 2021). TSDAE is an auto-encoding model
that is trained to reconstruct the input texts with the mean-
pooling 3 of all the token embeddings as the bottleneck. For
fairness, we re-train the TSDAE model on WMT19 with the
checkpoint of mBART under their training configurations,
where 60% 4 of input tokens are dropped as noise. As a
reference, we also tried replacing the training objective of
TSDAE with machine translation.

We do not include the unsupervised models with contrastive
learning objectives as baselines, such as Carlsson et al.
(2021) and Gao et al. (2021), as they are orthogonal to our
contribution: future work will consider contrastive learning
for further tuning NUGGET . We refer the readers to Wang
et al. (2021) for a comparison between contrastive learning
and AE objectives.

We include the approach of ColBERT (Khattab & Zaharia,
2020) as a reference, but replace the encoder with BART
(that we call “ColBART”). ColBART uses the last hidden
states of mBART encoder as the sentence embeddings.

For single-vector representation models, we adopt the com-
monly used cosine similarity to measure the similarity be-
tween texts. For multi-vector models (NUGGET and Col-
BART) we adopt the MaxSim algorithm proposed by Khat-
tab & Zaharia (2020) but replace the max with a mean

3To aggregate the token embeddings, we tried using 1) mean-
pooling 2) max-pooling 3) the embedding of the CLS token. Con-
sistent with the findings in table 7 in Wang et al. (2021), mean-
pooling performs best.

4We tried 0% (no noise), but training with noise works better.

6

https://github.com/hiaoxui/nugget-data
https://github.com/hiaoxui/nugget-data

NUGGET: Neural Agglomerative Embeddings of Text

I think , therefore I am .

Nugget

I think , so I am .

Max Max

Mean

Max over document

Mean over query

Nugget

Figure 9. The MaxSim algorithm in Khattab & Zaharia (2020).

ratio obj. multi. P I RR

N
U

G
G

E
T

0.25 AE ✓ 92.30 44.81
0.05 MT ✓ 92.11 40.54
0.1 MT ✓ 96.69 50.04
0.15 MT ✓ 97.31 52.36
0.25 MT ✓ 97.38 56.51

TSDAE AE × 95.59 50.48
MT × 95.04 45.86

ColBART ✓ 94.83 52.44

Table 2. Results on paraphrase identification (PI) and passage
reranking (RR), reported as MRR×100. “obj.” denotes train-
ing objective and “multi.” denotes multi-vector representation.

operator because we have variable numbers of vectors:

mq,d =
1

I

∑
i

max
j

cos(qi,dj), (10)

where qi (dj) is the i-th (j-th) vector representation of the
query q (document d), I is the number of query vectors, and
cos is the cosine similarity measurement. 5 The algorithm
is illustrated in fig. 9.

6.1.3. EXPERIMENT RESULTS

Results are shown in table 2. Generally speaking,
NUGGET trained with the MT objective is more suitable
for text similarity measurement without further tuning. A
higher ratio leads to better performance, and a ratio of 0.05
(0.15) can make NUGGET achieve comparable performance
as ColBART does on the PI (RR) task, while ColBART uses
20x (6.7x) more vectors to encode the text.

In practice, we found that the AE model with a low com-
pression ratio r does not perform well, with a performance
gap to TSDAE. We speculate it is because NUGGET with the
AE objective does not corrupt the inputs as TSDAE does,
while Wang et al. (2021) points out the importance of noisy
training for similarity tasks. We leave exploring noising

5We explored another 2 algorithms: 1) Apply MaxSim from
both sides to make it symmetric; 2) formulating it as a weighted
bipartite matching problem. We found MaxSim works better.

Past segments Nuggets Current segment

Nugget Encoder Sequence Model

Figure 10. The architecture of NUGGET sequence model. Past
segments are compressed with NUGGET and then fed into the
sequence model, together with the tokens in the current segment.

strategies to future work.

6.2. Long-range sequence modeling

An autoregressive sequence model predicts the next token
conditioned on past tokens:

p(yi | y1:i−1). (11)

When the contexts get longer, the computation can be costly
for transformers, which suffer from their quadratic time and
space complexity. However, one can compress the history
information with NUGGET , and use nuggets as a substitute
for the tokens. We rewrite eq. (11) as

p(yi | yi−s:i−1, Nugget(y1:i−s−1)), (12)

where we use NUGGET to encode all history tokens except
for the most recent s tokens. That is, distant information is
compressed before being fed into the sequence model.

In experiments, we adopt the decoder part of the mBART as
a language model, where the self-attention module is used
to read recent tokens and the cross-attention module is used
to read nuggets. To let NUGGET encoder work efficiently,
we split the distant tokens by the segment length s and
encode each segment independently. The architecture of our
NUGGET LM is illustrated in fig. 10.

6.2.1. DATASET, TRAINING, AND METRIC

We use WikiText-103 (Merity et al., 2016) as the dataset
with perplexity (PPL) as the evaluation metric. Models are
trained on the training set until convergence. All the results
are reported on the test set. We exclude all out-of-vocabulary
tokens during the evaluation. 6 Please refer to appendix B.2
for more training details.

6.2.2. MODEL CONFIGURATIONS AND BASELINES

We set the segment length s as 128 for all the experiments.
As the context can be very long, we only encode the past

6Because mBART works on subwords with the BPE tokenizer
(Gage, 1994), we take the production of the probabilities over sub-
words to compute the probability of the complete word. Note that
our method theoretically underestimates the model performance.

7

NUGGET: Neural Agglomerative Embeddings of Text

N
U

G
G

E
T h=1 h=2 h=4 h=8

r = 0.05 29.88 29.25 28.24 28.14
r = 0.1 29.83 29.21 28.44 28.10

TSDAE 30.09 29.55 29.01 28.77
Compressive - - 30.52 -
Transformers (h = 0) 31.46

Table 3. Experiment results on language modeling. Performance is
evaluated with perplexity (PPL). Above: NUGGET language mod-
els with access to different numbers of history segments. Below:
Transformer LMs with full attention with context lengths of 128
and 256, and compressive transformers (Rae et al., 2020).

h segments as inputs to the language model in addition to
the current segment, where we set h as 1, 2, 4, and 8, with
a corresponding context length of 256, 384, 640, and 1152.
We start NUGGET LM training from the checkpoints trained
with the AE objective and explored the compression ratios
of 0.05 and 0.1. As a baseline, we replace the NUGGET with
TSDAE and apply the same numbers of history segments.

We use compressive Transformers (Rae et al., 2020) as
another baseline, which compresses the past hidden states
into fewer vectors. We adopt the “mean pooling” strategy in
the paper and compress the most recent 512 tokens into 32
tokens, achieving a similar compression ratio as the model
with r = 0.05. As a reference for the original transformer
LM, we introduce a “full attention model” with a context
length of 128. It attends to all tokens without NUGGET , and
is equivalent to h = 0 in the NUGGET LM experiment.

6.2.3. EXPERIMENT RESULTS

Results are shown in table 3. All NUGGET -assisted models
can achieve lower PPL compared to full attention baseline,
meaning that the history information provided to LM is
effectively utilized. More history segments (larger h) are
helpful, though the improvement becomes marginal.

Though NUGGET outperforms the single-vector baseline
TSDAE, the difference between r = 0.05 and r = 0.1 is
insignificant. It might be because that r = 0.05 has already
encoded sufficient information about the content, according
to our analysis in section 5.1.

7. Discussion
7.1. Ablation studies

As an ablation study we run NUGGET without the nugget
feedback (section 3.3). By default NUGGET uses the fea-
tures of layer 3 (denoted by l = 3) to select nuggets and
freeze the parameters below it. Raising l can make the fea-
tures to the NUGGET selector more contextualized, but also
reduce the size of trainable parameters. In the ablation study

Configuration PI RR
NUGGET (l = 3) 96.69 50.04

NUGGET (l = 0) 69.82 29.20
NUGGET (l = 6) 93.24 48.84
NUGGET (l = 9) 84.03 47.36
No feedback 96.29 49.81
Chunking 95.56 42.41

NUGGET (r = 0.033) 89.07 49.49
Sentence boundary 87.91 38.40

Table 4. The experiment results for the ablation study. The perfor-
mance is measured by MRR×100.

we explored setting l as 0, 6, and 9, where l = 0 corresponds
to the embedding matrix.

The selector (section 3.1) is learned with gradient descent
with the algorithm in section 3.2. To ablate this module we
propose 2 rule-based selectors to replace eq. (2):

• Chunking selector We first equally split the docu-
ment into ⌈n · r⌉ chunks, where n is the number of
tokens. For each chunk, we select the last punctuation
token (comma or period) as the nugget. If no punctua-
tion exists in the chunk, we select the last token.

• Sentence boundary selector As we concatenate the
sentences in WMT19 to form documents, we use the
ending tokens of sentences as the nuggets. 3.3% of
tokens are selected nuggets on average, thus we train a
nugget model with r = 0.033 as a comparison.

We conduct experiments with those configurations on the
tasks of paraphrase identification and passage reranking. By
default, we use machine translation as the training objective
and use a compression ratio r = 0.1 (or r = 0.033 for the
“sentence boundary” experiments). The results are shown
in table 4. One can see that the learned nugget selector is
better than rule-based selection, and the optimal features for
eq. (2) should be derived from layer 3. The model can also
be benefited if NUGGET informs the selection of nuggets
via the feedback module.

7.2. Language modeling with long contexts

Previous work has explored ways to enlarge the effective
context size for transformer-based encoders (Tay et al., 2022;
Qin et al., 2023). As NUGGET provides certified minimal in-
formation loss with a high compression ratio, it may enable
a complementary approach for long-context modeling.

Large LMs enable in-context learning (ICL) (Brown et al.,
2020; Chowdhery et al., 2022), where prior task examples
are concatenated as a prefix to a new example which the LM
“reasons” over. ICL is constrained by the length of context

8

NUGGET: Neural Agglomerative Embeddings of Text

an LM may condition on: working with compressed nuggets
may enable more ICL signal at the same context size.

Wei et al. (2022) demonstrated that ICL performance on
complex tasks may be improved by prompting an LM to
generate intermediate reasoning steps ahead of a final an-
swer. Transformers suffer from quadratic time complexity,
so decoding a chain of thought is an expense if one only
cares about the final response. Would it be sufficient to
decode a chain of nuggets, thereby decreasing runtime?

8. Conclusion and future work
We proposed NUGGET to encode texts with a dynamic num-
bers of vectors. With auto-encoding or machine translation
training, NUGGET naturally segments the input texts follow-
ing subsentential structures. We demonstrate NUGGET can
be useful for semantic similarity and language modeling,
achieving better performance than comparable baseline mod-
els. To further improve NUGGET for downstream tasks, we
will consider additional training approaches such as through
contrastive learning, in addition to considering applications
of NUGGET to large-scale language modeling.

Acknowledgement
We appreciate the proofreading done by Elias Stengel-Eskin.
Thanks to the anonymous reviewers for their feedback.

This research relies on the following open-source software:
PyTorch (Paszke et al., 2019), Lightning AI (Falcon & The
PyTorch Lightning team, 2019), and Huggingface Trans-
formers (Wolf et al., 2020).

This work was supported by IARPA BETTER (#2019-
19051600005). The views and conclusions contained in
this work are those of the authors and should not be inter-
preted as necessarily representing the official policies, either
expressed or implied, or endorsements of ODNI, IARPA, or
the U.S. Government. The U.S. Government is authorized to
reproduce and distribute reprints for governmental purposes
notwithstanding any copyright annotation therein.

References
Barrault, L., Bojar, O., Costa-jussà, M. R., Federmann,

C., Fishel, M., Graham, Y., Haddow, B., Huck, M.,
Koehn, P., Malmasi, S., Monz, C., Müller, M., Pal,
S., Post, M., and Zampieri, M. Findings of the 2019
conference on machine translation (WMT19). In Pro-
ceedings of the Fourth Conference on Machine Transla-
tion (Volume 2: Shared Task Papers, Day 1), pp. 1–61,
Florence, Italy, August 2019. Association for Computa-
tional Linguistics. doi: 10.18653/v1/W19-5301. URL
https://aclanthology.org/W19-5301.

Blei, D. M., Ng, A. Y., and Jordan, M. I. Latent dirichlet al-
location. Journal of Machine Learning Research (JMLR),
3(Jan):993–1022, 2003.

Bowman, S. R., Vilnis, L., Vinyals, O., Dai, A. M., Joze-
fowicz, R., and Bengio, S. Generating Sentences from a
Continuous Space. In The SIGNLL Conference on Com-
putational Natural Language Learning (CoNLL), 2016.

Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan,
J., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G.,
Askell, A., Agarwal, S., Herbert-Voss, A., Krueger, G.,
Henighan, T., Child, R., Ramesh, A., Ziegler, D. M., Wu,
J., Winter, C., Hesse, C., Chen, M., Sigler, E., Litwin, M.,
Gray, S., Chess, B., Clark, J., Berner, C., McCandlish,
S., Radford, A., Sutskever, I., and Amodei, D. Language
Models are Few-Shot Learners, 2020.

Carlsson, F., Gogoulou, E., Ylipaa, E., Gyllensten, A. C.,
and Sahlgren, M. Semantic Re-Tuning with Contrastive
Tension. In International Conference on Learning Repre-
sentations (ICLR), 2021.

Cer, D., Diab, M., Agirre, E., Lopez-Gazpio, I., and Specia,
L. SemEval-2017 Task 1: Semantic Textual Similarity -
Multilingual and Cross-lingual Focused Evaluation. In
International Workshop on Semantic Evaluation, 2017.

Chowdhery, A., Narang, S., Devlin, J., Bosma, M., Mishra,
G., Roberts, A., Barham, P., Chung, H. W., Sutton,
C., Gehrmann, S., Schuh, P., Shi, K., Tsvyashchenko,
S., Maynez, J., Rao, A., Barnes, P., Tay, Y., Shazeer,
N., Prabhakaran, V., Reif, E., Du, N., Hutchinson, B.,
Pope, R., Bradbury, J., Austin, J., Isard, M., Gur-Ari, G.,
Yin, P., Duke, T., Levskaya, A., Ghemawat, S., Dev, S.,
Michalewski, H., Garcia, X., Misra, V., Robinson, K., Fe-
dus, L., Zhou, D., Ippolito, D., Luan, D., Lim, H., Zoph,
B., Spiridonov, A., Sepassi, R., Dohan, D., Agrawal,
S., Omernick, M., Dai, A. M., Pillai, T. S., Pellat, M.,
Lewkowycz, A., Moreira, E., Child, R., Polozov, O., Lee,
K., Zhou, Z., Wang, X., Saeta, B., Diaz, M., Firat, O.,
Catasta, M., Wei, J., Meier-Hellstern, K., Eck, D., Dean,
J., Petrov, S., and Fiedel, N. PaLM: Scaling Language
Modeling with Pathways, 2022.

Clark, K., Khandelwal, U., Levy, O., and Manning, C. D.
What Does BERT Look At? An Analysis of BERT’s At-
tention. In Conference on Empirical Methods in Natural
Language Processing (EMNLP), 2019.

Conneau, A., Kiela, D., Schwenk, H., Barrault, L., and Bor-
des, A. Supervised Learning of Universal Sentence Rep-
resentations from Natural Language Inference Data. In
Conference on Empirical Methods in Natural Language
Processing (EMNLP), 2017.

9

https://aclanthology.org/W19-5301

NUGGET: Neural Agglomerative Embeddings of Text

Devlin, J., Chang, M., Lee, K., and Toutanova, K. BERT:
Pre-training of Deep Bidirectional Transformers for Lan-
guage Understanding. In Annual Conference of the North
American Chapter of the Association for Computational
Linguistics (NAACL), 2019.

Falcon, W. and The PyTorch Lightning team. PyTorch Light-
ning, March 2019. URL https://github.com/
Lightning-AI/lightning.

Gage, P. A new algorithm for data compression. The C
Users Journal, 12(2):23–38, 1994.

Gao, L. and Callan, J. Condenser: A Pre-training Archi-
tecture for Dense Retrieval. In Conference on Empiri-
cal Methods in Natural Language Processing (EMNLP),
2021.

Gao, T., Yao, X., and Chen, D. SimCSE: Simple Con-
trastive Learning of Sentence Embeddings. In Conference
on Empirical Methods in Natural Language Processing
(EMNLP), 2021.

Giorgi, J., Nitski, O., Wang, B., and Bader, G. DeCLUTR:
Deep Contrastive Learning for Unsupervised Textual Rep-
resentations. In Annual Meeting of the Association for
Computational Linguistics (ACL), 2021.

He, K., Zhang, X., Ren, S., and Sun, J. Deep Residual Learn-
ing for Image Recognition. In The IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR),
2017.

Howard, J. and Ruder, S. Universal Language Model Fine-
tuning for Text Classification. In Annual Meeting of the
Association for Computational Linguistics (ACL), 2018.

Hu, J. E., Rudinger, R., Post, M., and Van Durme, B. Para-
Bank: Monolingual Bitext Generation and Sentential
Paraphrasing via Lexically-constrained Neural Machine
Translation. In Association for the Advancement of Artifi-
cial Intelligence (AAAI), 2019.

Iyyer, M., Manjunatha, V., Boyd-Graber, J., and Daumé III,
H. Deep Unordered Composition Rivals Syntactic Meth-
ods for Text Classification. In International Joint Confer-
ence on Natural Language Processing (IJCNLP), 2015.

Junczys-Dowmunt, M. Microsoft Translator at WMT 2019:
Towards Large-Scale Document-Level Neural Machine
Translation. In Conference on Machine Translation
(WMT), 2019.

Karpukhin, V., Oğuz, B., Min, S., Lewis, P., Wu, L., Edunov,
S., Chen, D., and Yih, W.-t. Dense Passage Retrieval
for Open-Domain Question Answering. In Conference
on Empirical Methods in Natural Language Processing
(EMNLP), 2020.

Khattab, O. and Zaharia, M. ColBERT: Efficient and Effec-
tive Passage Search via Contextualized Late Interaction
over BERT. In ACM Special Interest Group on Informa-
tion Retreival (SIGIR), 2020.

Kingma, D. P. and Ba, J. L. Adam: A Method for Stochastic
Optimization. In International Conference on Learning
Representations (ICLR), 2015.

Kiros, R., Zhu, Y., Salakhutdinov, R. R., Zemel, R., Urtasun,
R., Torralba, A., and Fidler, S. Skip-Thought Vectors. In
Conference on Neural Information Processing Systems
(NeurIPS), 2015.

Landauer, T. K., Foltz, P. W., and Laham, D. An introduction
to latent semantic analysis. Discourse processes, 25(2-3):
259–284, 1998.

Lewis, M., Liu, Y., Goyal, N., Ghazvininejad, M., Mo-
hamed, A., Levy, O., Stoyanov, V., and Zettlemoyer, L.
BART: Denoising Sequence-to-Sequence Pre-training for
Natural Language Generation, Translation, and Compre-
hension. In Annual Meeting of the Association for Com-
putational Linguistics (ACL), 2020.

Li, B., Zhou, H., He, J., Wang, M., Yang, Y., and Li, L.
On the Sentence Embeddings from Pre-trained Language
Models. In Conference on Empirical Methods in Natural
Language Processing (EMNLP), 2020.

Li, X. L., Thickstun, J., Gulrajani, I., Liang, P., and
Hashimoto, T. B. Diffusion-LM Improves Controllable
Text Generation. In Conference on Neural Information
Processing Systems (NeurIPS), 2022.

Mahabadi, R. K., Belinkov, Y., and Henderson, J.
Variational Information Bottleneck for Effective Low-
Resource Fine-Tuning. In International Conference on
Learning Representations (ICLR), 2021.

McCann, B., Bradbury, J., Xiong, C., and Socher, R.
Learned in Translation: Contextualized Word Vectors.
In Conference on Neural Information Processing Systems
(NeurIPS), 2017.

Merity, S., Xiong, C., Bradbury, J., and Socher, R. Pointer
Sentinel Mixture Models, 2016.

Mikolov, T., Corrado, G., Chen, K., and Dean, J. Efficient
Estimation of Word Representations in Vector Space,
2013.

Oğuz, B., Lakhotia, K., Gupta, A., Lewis, P., Karpukhin,
V., Piktus, A., Chen, X., Riedel, S., Yih, W.-t., Gupta,
S., and Mehdad, Y. Domain-matched Pre-training Tasks
for Dense Retrieval. In Annual Conference of the North
American Chapter of the Association for Computational
Linguistics (NAACL), 2022.

10

https://github.com/Lightning-AI/lightning
https://github.com/Lightning-AI/lightning

NUGGET: Neural Agglomerative Embeddings of Text

Papineni, K., Roukos, S., Ward, T., and Zhu, W. BLEU: A
method for automatic evaluation of machine translation.
In Annual Meeting of the Association for Computational
Linguistics (ACL), 2002.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,
Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga,
L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison,
M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L.,
Bai, J., and Chintala, S. PyTorch: An Imperative Style,
High-Performance Deep Learning Library. In Conference
on Neural Information Processing Systems (NeurIPS),
2019.

Pennington, J., Socher, R., and Manning, C. D. GloVe:
Global Vector for Word Representation. In Conference
on Empirical Methods in Natural Language Processing
(EMNLP), 2014.

Peters, M. E., Neumann, M., Iyyer, M., Gardner, M., Clark,
C., Lee, K., and Zettlemoyer, L. S. Deep contextualized
word representations. In Annual Conference of the North
American Chapter of the Association for Computational
Linguistics (NAACL), 2018.

Qin, G., Feng, Y., and Van Durme, B. The NLP Task
Effectiveness of Long-Range Transformers. In Annual
Conference of the European Chapter of the Association
for Computational Linguistics (EACL), 2023.

Rae, J. W., Potapenko, A., Jayakumar, S. M., and Lilli-
crap, T. P. Compressive Transformers for Long-Range
Sequence Modelling. In International Conference on
Learning Representations (ICLR), 2020.

Reimers, N. and Gurevych, I. Sentence-BERT: Sentence
Embeddings using Siamese BERT-Networks. In Confer-
ence on Empirical Methods in Natural Language Pro-
cessing (EMNLP), 2019.

Robertson, S., Zaragoza, H., et al. The probabilistic rele-
vance framework: Bm25 and beyond. Foundations and
Trends® in Information Retrieval, 3(4):333–389, 2009.

Rudinger, R., Duh, K., and Durme, B. V. Skip-Prop: Rep-
resenting Sentences with One Vector Per Proposition. In
International Conference on Computational Semantics
(IWCS), 2017.

Tan, H., Shao, W., Wu, H., Yang, K., and Song, L. A Sen-
tence is Worth 128 Pseudo Tokens: A Semantic-Aware
Contrastive Learning Framework for Sentence Embed-
dings. In Annual Meeting of the Association for Compu-
tational Linguistics (ACL), 2022.

Tang, Y., Tran, C., Li, X., Chen, P.-J., Goyal, N., Chaudhary,
V., Gu, J., and Fan, A. Multilingual Translation with
Extensible Multilingual Pretraining and Finetuning, 2020.

Tay, Y., Dehghani, M., Bahri, D., and Metzler, D. Efficient
Transformers: A Survey. ACM Computing Surveys, 55
(6):1–28, 2022.

Wang, B. and Kuo, C.-C. J. SBERT-WK: A Sentence Em-
bedding Method by Dissecting BERT-based Word Mod-
els. IEEE/ACM Transactions on Audio, Speech, and
Language Processing, 28:2146–2157, 2020.

Wang, K., Reimers, N., and Gurevych, I. TSDAE: Using
Transformer-based Sequential Denoising Auto-Encoder
for Unsupervised Sentence Embedding Learning. In Con-
ference on Empirical Methods in Natural Language Pro-
cessing (EMNLP), 2021.

Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B.,
Xia, F., Chi, E., Le, Q., and Zhou, D. Chain-of-Thought
Prompting Elicits Reasoning in Large Language Models.
In Conference on Neural Information Processing Systems
(NeurIPS), 2022.

Wolf, T., Debut, L., Sanh, V., Chaumond, J., Delangue, C.,
Moi, A., Cistac, P., Rault, T., Louf, R., Funtowicz, M.,
Davison, J., Shleifer, S., Von Platen, P., Ma, C., Jernite,
Y., Plu, J., Xu, C., Le Scao, T., Gugger, S., Drame, M.,
Lhoest, Q., and Rush, A. Transformers: State-of-the-Art
Natural Language Processing. In Conference on Empiri-
cal Methods in Natural Language Processing (EMNLP),
2020.

Zhang, S., Liang, Y., Gong, M., Jiang, D., and Duan, N.
Multi-View Document Representation Learning for Open-
Domain Dense Retrieval. In Annual Meeting of the Asso-
ciation for Computational Linguistics (ACL), 2022.

11

NUGGET: Neural Agglomerative Embeddings of Text

A. Data construction for document similarity test
We build two datasets for the document-level semantic similarity test. Those 2 datasets can be downloaded in https:
//github.com/hiaoxui/nugget-data. We discuss the details of the dataset construction in this section.

A.1. Paraphrase identification

The document-level paraphrase identification dataset is derived from PARABANK (Hu et al., 2019). PARABANK is a
large-scale English paraphrase dataset constructed with a Czech-English neural machine translation system. We use the v1.0
of its release downloaded from https://nlp.jhu.edu/parabank/.

PARABANK is sentence-level, but it does not shuffle the sentence orders. To recover the document structure, we concatenate
the adjacent sentences to make “fake documents”. The concatenation strategy is applied to both the documents and their
paraphrases by iterating their sentences in parallel until one of them reaches the 256-token limit. The construction process
produces a list of “(document, paraphrase)” pairs.

To make the problem difficult, we delete 20% of sentences randomly and independently on both sides. In practice, a sentence
will be included in the documents with a probability of 80%, and sentences are drawn independently on the document and
paraphrase sides. A robust model should be able to identify the paraphrased sentences even if they are not positionally
aligned with their original sentences.

To collect negative examples, we run a BM25 algorithm (Robertson et al., 2009) with the document as the query and
paraphrases as candidates. Since the corpus PARABANK is too large to be efficiently indexed, and the most challenging
negative examples always come from the same document, we try to run a sliding window around the query document with
a window size of 1024 documents. BM25 retrieves 19 negative examples from the candidates, and the model is asked to
identify the correct paraphrase.

A.2. Passage reranking

This task asks the model to identify a document with a similar topic to the query document. We start from the WikiText-103
data (Merity et al., 2016), which is a collection of Wikipedia articles. We split the dataset into articles, and use the texts in
sections as passages. As the validation and test splits of WikiText are too small to generate challenging negative examples,
we work on the training split. Note that WikiText is released with a raw version and a tokenized version, and we use the raw
version without masking out any UNK tokens.

The first section of each article is usually a general introduction about the article, thus we use it as the query document. We
randomly select another section from the same article as the answer passage, and uses the BM25 algorithm to retrieve 19
negative examples from all but the first sections of other articles.

The statistics of the above two datasets are shown in table 1.

B. Training details
B.1. Machine translation and auto-encoding training

We used the same codebase and training configurations for both the auto-encoding (AE) and machine translation (MT)
objectives. Both models are initialized from the checkpoint of mBART (Tang et al., 2020), which is a many-to-many
machine translation model. We used the Adam (Kingma & Ba, 2015) optimizer with a learning rate of 5 × 10−5. Each
model is trained until convergence on the dev set.

We build a document-level MT dataset from the English-to-Chinese subset of WMT19 (Barrault et al., 2019). The dataset is
constructed so that adjacent sentences are concatenated to make document (Junczys-Dowmunt, 2019) with up to 128 tokens.
The document might not be full and always contain complete sentences, as we do not break the sentences. The MT model
is trained to translate English into Chinese. For the AE objective, we use the same dataset but replace the target Chinese
documents with the inputs.

Every model is trained on 4 NVIDIA RTX 6000 GPUs with 24GB × 4 GPU memory. With a batch size of 16 on each card,
the MT model can converge in approximately 48 hours. The AE model usually converges in 36 hours.

12

https://github.com/hiaoxui/nugget-data
https://github.com/hiaoxui/nugget-data
https://nlp.jhu.edu/parabank/

NUGGET: Neural Agglomerative Embeddings of Text

Figure 11. The probability gain on individual tokens vs the nugget location. We use the same notation as that in fig. 7. Each graph
corresponds to one nugget in the texts, where nuggets are ordered by their indices on the original documents. Results are averaged over
10k documents, and only the first 13 nuggets in each document are considered.

B.2. Language model training

To be fair, each language model is initialized from a checkpoint of the AE model, even if they do not require the input of
history nuggets. In practice, the transformer and the compressive transformer baselines are initialized from the AE model
with r = 0.1. Thus, all models have the same number of parameters in the self-attention module, while the baseline models
do not utilize the cross-attention part.

The WikiText-103 data are segmented into chunks of 128 tokens, and the model is trained to predict each segment based on
a certain amount of history information. Note that during training, the training loss is calculated for all tokens in a segment
in parallel, while during inference we input the model with as many preceding tokens as possible in the current segment to
provide sufficient context, up to 128 tokens.

All models are trained with 4 NVIDIA RTX 6000 GPU cards with 24×4 GB GPU memories. Adam (Kingma & Ba, 2015)
is used and is configured with a learning rate of 5× 10−5. It takes around 48 hours for a model with nuggets to converge.
The model without nuggets, including the TSDAE baseline, can be faster to converge, taking around 24 hours.

C. Analysis of NUGGET encoding: Complete results
In this section, we show a complete version of fig. 7. We collect the first 13 nuggets in each document. Results are shown in
fig. 11. Please refer to section 5.3 for a description of the experiments.

13

NUGGET: Neural Agglomerative Embeddings of Text

(a) Chinese (b) Czech (c) Finnish

(d) French (e) German (f) Gujarati

(g) Kazakh (h) Lithuanian (i) Russian

Figure 12. The token frequency in text and nuggets with training objectives of autoencoding (AE) and machine translation (MT). The
experiments inherit the settings in fig. 5 and section 5.2 and are conducted in 9 other languages.

D. Nugget token distribution in languages other than English
In this section, we show the results of fig. 5 in languages other than English. We use all of the 9 languages from
WMT19 (Barrault et al., 2019): Chinese, Czech, Finnish, French, German, Gujarati, Kazakh, Lithuanian, and Russian.
Except that French is translated into German, other languages are all translated into English when the training objectives are
set as machine translation. Note that Kazakh and Gujarati have much less training data than other languages and the training
on them quickly stops. Results are shown in fig. 12. Please refer to section 5.2 for a description of the experiments.

14

