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ABSTRACT

Multivariate time series forecasting has been suffering from the challenge of cap-
turing both temporal dependencies within variables and spatial correlations across
variables simultaneously. Current approaches predominantly repurpose backbones
from Natural Language Processing (NLP) or Computer Vision (CV) (e.g., Trans-
formers), which fail to adequately address the unique properties of time series
(e.g., periodicity and fluctuation). The research community lacks dedicated back-
bones incorporating temporal-specific inductive biases, depending on domain-
agnostic backbones supplemented with auxiliary techniques (e.g., signal decom-
position). We introduce Fourier Neural Filter (FNF) as the backbone and Dual
Branch Decoupler (DBD) as the architecture to provide exceptional learning capa-
bilities and optimal learning pathways for spatiotemporal modeling, respectively.
Our theoretical analysis proves that FNF integrates time-domain and frequency-
domain analysis while enabling adaptive truncation of noise components within
a unified backbone that extends naturally to spatial modeling. Through the lens
of information bottleneck theory, we reveal that DBD delivers superior gradi-
ent flow and representation capacity, enabling it to effectively capture local and
global, temporal and spatial information comprehensively. Our empirical evalua-
tion on 12 public benchmark datasets, encompassing both multivariate long-term
and short-term forecasting tasks, demonstrates state-of-the-art performance com-
pared to existing advanced baseline models. Notably, our approach achieves these
results without any auxiliary techniques, suggesting that properly designed neural
architectures can capture the inherent properties of time series, potentially trans-
forming time series modeling in scientific and industrial applications.

1 INTRODUCTION
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Figure 1: Radar chart of model performance across 12
benchmark datasets encompassing multivariate long-term and
short-term time series forecasting. The chart displays the average
MAE across different forecast horizons. Our proposed TiF consis-
tently outperforms other strong baseline models.

Time series forecasting, which
estimates future values based on
historical values, has attracted
substantial academic attention
and found widespread application
across diverse domains, includ-
ing energy Zhang et al. (2025),
meteorology Pathak et al. (2022),
and transportation Li et al. (2018).
Recent research has increasingly
focused on multivariate long-term
forecasting Zhou et al. (2021), which
presents several significant chal-
lenges. Extended forecast horizons
inevitably increase uncertainty and degrade prediction accuracy, while complex temporal depen-
dencies within variables and spatial correlations across variables further complicate modeling,
particularly with high-dimensional variables. Consequently, developing neural architectures capable
of simultaneously capturing heterogeneous temporal and spatial patterns has become critical for
advancing time series forecasting.
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For within-variable temporal modeling, the research community has developed several elaborate
approaches. These include: (i) decomposing time series into trend, seasonal, and residual terms
Oreshkin et al. (2020); Challu et al. (2023); (ii) deconstructing time series into frequency compo-
nents for multi-resolution modeling Dai et al. (2024a); and (iii) segmenting sequences into patches
of uniform Nie et al. (2023); Lee et al. (2023) or varying sizes Chen et al. (2024b); Yu et al. (2024b)
to capture both local and global temporal dependencies through multi-scale modeling. More sophis-
ticated techniques integrate multi-resolution and multi-scale modeling simultaneously Wang et al.
(2025), establishing comprehensive frameworks for time series representation learning.

Despite these advances, existing approaches primarily rely on backbones borrowed from Natural
Language Processing (NLP) or Computer Vision (CV), such as Transformers Vaswani et al. (2017),
CNNs Wu et al. (2023); Luo & Wang (2024b), and MLPs Zeng et al. (2023). These domain-agnostic
backbones cannot fully address the inherent properties of time series without auxiliary techniques
(e.g., signal decomposition). To address this fundamental limitation, we propose the Fourier Neural
Filter (FNF), a novel nonlinear integral kernel operator that integrates temporal-specific inductive
biases directly into the backbone design. Mathematically, FNF extends the standard Fourier Neural
Operator (FNO) Li et al. (2021) by introducing an input-dependent kernel function that enables
selective activation of time-domain and frequency-domain information through Hadamard product
operations, making it particularly effective for capturing the unique properties of time series. On
the other hand, we incorporate adaptive truncation following complex operation, making it capable
of effectively suppressing the noise components. Additionally, FNF offers several key advantages:
(i) it naturally extends to spatial modeling (explained in Section 3.1.1); (ii) it achieves OpN logNq

computational complexity compared to the OpN2q complexity of Transformers; and (iii) in contrast
to other purely Fourier-based models Zhou et al. (2022); Yi et al. (2023); Xu et al. (2023); Yu et al.
(2024a), it allows for dynamic information flow modulation between time-domain and frequency-
domain, constructing a unified time-frequency representation space.

For cross-variable spatial modeling, the researchers have developed diverse techniques: (i) indepen-
dent variable modeling Zeng et al. (2023); Nie et al. (2023), which maintains stability but ignores
inter-variable interactions; (ii) unified variable modeling Zhang & Yan (2023); Liu et al. (2023a),
which comprehensively captures relationships but exhibits sensitivity to irrelevant variable distur-
bances; and (iii) hierarchical variable modeling Chen et al. (2024a), which provides a compromise
approach but constrains flexibility by confining relationship patterns within predetermined cluster
boundaries. These techniques highlight the fundamental trade-offs in spatial modeling and empha-
size the need for adaptive systems that can effectively balance these conflicting demands.

To address above challenges, we propose the Dual Branch Decoupler (DBD). From an information
bottleneck perspective Tishby & Zaslavsky (2015), this parallel dual-branch architecture is able to
optimize information extraction and compression in multivariate time series by maintaining separate
processing pathways for temporal and spatial patterns. Unlike unified techniques that suffer from the
curse of dimensionality or sequential techniques Zhang & Yan (2023); Chen et al. (2024b) that ex-
perience cascading information loss due to unequal information processing, DBD ensures that each
branch independently achieves optimal trade-offs between information extraction and compression
while providing short and direct gradient flow.

The two proposed techniques FNF and DBD collectively form the innovative model we aim to
introduce, specifically designed for time series: Time Filter (TiF). Benefiting from the completely
isolated information flow of DBD, TiF is able to effectively capture local and global, temporal and
spatial information, more comprehensive than other baseline models.

To validate our proposed model, we conduct comprehensive experiments on 12 public benchmark
datasets, encompassing both multivariate long-term and short-term forecasting tasks. Our extensive
evaluation demonstrates that our approach achieves state-of-the-art results compared to existing ad-
vanced baseline models, as shown in Fig. 1. Additionally, we conduct fair comparisons with three
other purely Fourier-based models to further demonstrate the effectiveness of our approach.

Our contributions are as follows: (1) We propose FNF, a unified backbone integrating time-domain
and frequency-domain analysis, specifically designed for time series modeling; (2) We introduce
DBD, and prove its effectiveness for spatiotemporal modeling of time series both theoretically and
empirically; (3) The proposed model TiF achieves state-of-the-art performance in both multivariate
long-term and short-term time series forecasting.
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2 RELATED WORK

Distribution Shift The statistical properties of time series, such as mean and variance, tend to
change over time, creating fundamental challenges for time series modeling Passalis et al. (2019);
Liu et al. (2025). Researchers have developed various solutions to address this issue. RevIN Kim
et al. (2021) applies instance normalization on input sequences and performs de-normalization on
output sequences. Dish-TS Fan et al. (2023) extracts distribution coefficients for both intra- and
inter-variable to mitigate distribution shift. SAN Liu et al. (2023b) addresses non-stationarity by
using a lightweight neural network to model evolving local statistical properties. FAN Ye et al.
(2024) handles dynamic trend and seasonal patterns by employing Fourier transform to identify
key frequency components. DDN Dai et al. (2024b) eliminates non-stationarity by applying wavelet
transform to implement normalization of time and frequency domains within the sliding window.
Notably, Li et al. Li et al. (2023) demonstrated that after using instance normalization, excellent
results can be easily obtained with just a simple linear layer. Our work employs basic instance
normalization while introducing the FNF backbone to strengthen the ability to process the inherent
non-stationarity of time series.

Patch Embedding Time series patching has evolved from simple segmentation to elaborate strate-
gies that balance local and global information extraction Nie et al. (2023); Lee et al. (2023). These
techniques include overlapping Luo & Wang (2024b) or non-overlapping Zhang & Yan (2023)
patching, variable length patching Yu et al. (2024b), and hierarchical patching Huang et al. (2024).
Recent research has explored adaptive patching strategies based on input properties of time se-
ries Chen et al. (2024b). Although these approaches enhance representation learning capability ,
they are still limited to enhancing existing backbones through preprocessing without addressing
fundamental design principles. In contrast, our work maintains basic non-overlapping patching for
fair experimental comparison while introducing the FNF backbone specifically designed to unify
local time-domain and global frequency-domain processing for time series.

Non-Autoregressive Decoding To alleviate the error accumulation problem in autoregressive de-
coding, non-autoregressive approaches Wu et al. (2021); Zhou et al. (2021); Wu et al. (2023); Liu
et al. (2023a) have become the standard paradigm for time series forecasting. This technique si-
multaneously generates all future values through a linear layer, rather than recursively using previ-
ous predictions as inputs to obtain future values. While patch-based autoregressive models excel in
large-scale time series foundation models Das et al. (2024); Shi et al. (2025), non-autoregressive
approaches perform better in typical forecasting tasks. Recent research has identified that non-
autoregressive approaches implicitly assume conditional independence between future values, ig-
noring the autocorrelation inherent in time series Wang et al. (2024a). Our proposed FNF and DBD
enhance representation learning capability within this established system, despite the theoretical
limitations of the non-autoregressive paradigm.

3 METHODOLOGY

In this section, we establish the theoretical foundations of our proposed Fourier Neural Filter (FNF)
backbone and Dual Branch Decoupler (DBD) architecture.

3.1 FOURIER NEURAL FILTER (FNF)

L inear

Complex 
Transform

Adaptive 
Truncation

L inear

 

Input Output

Figure 2: Schematic diagram of our proposed
Fourier Neural Filter (FNF) backbone.

While FNO Li et al. (2021) has demonstrated
remarkable effectiveness in modeling complex
dynamic systems and solving partial differen-
tial equations through fixed integral kernel, our
proposed FNF (Fig. 2) makes a critical leap
forward: introducing an input-dependent inte-
gral kernel that can allow for adaptive and dy-
namic information flow between time-domain and frequency-domain, constructing a unified time-
frequency representation space. Intuitively, if FNO applies a fixed lens to process all input signals,
then FNF continuously adjusts the lens based on the preceding scene, achieving more detailed in-
formation extraction and more robust pattern recognition. We analyze the theoretical underpinnings

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

of FNF by examining integral kernel, global convolution, selective activation, complex transform,
adaptive truncation and the connection to Transformer backbone.

3.1.1 INTEGRAL KERNEL

Definition 1 FNO is defined via a fixed integral kernel operator:

pKvqpxq “

ż

D

κpx, yqvpyq dy, (1)

where κ : D ˆ D Ñ R is the kernel function and v : D Ñ R is the input function. Through the
Fourier transform, FNO can be formulated in the frequency domain as:

pKvqpxq “ F´1pRϕ ¨ Fpvqqpxq, (2)
where Rϕ “ Fpκq denotes the parameterized frequency-domain kernel.

Definition 2 FNF can be defined through an adaptive integral kernel operator:

pKvqpxq “

ż

D

κpx, y; vqvpyq dy, (3)

where κpx, y; vq is the input-dependent kernel function. In implementation, FNF can also be formu-
lated as:

pKvqpxq “ T pGpvq d P pvqqpxq, (4)

P pvqpxq “ F´1pRϕ ¨ FpHpvqqpxq, (5)

where Gpvq, Hpvq, and T pvq denote the linear transform used for expansion or compression, and d

is the Hadamard product operation.

Remark 1 The fundamental distinction between FNO and FNF lies in their kernel functions: FNO
employs a fixed kernel κpx, yq, whereas FNF applies an input-dependent kernel κpx, y; vq, enabling
adaptive information flow modulation between time-domain and frequency-domain, constructing a
unified time-frequency representation space.

Remark 2 Although FNF is originally motivated by spatial-temporal operator learning, its formu-
lation is not restricted to continuous spatial or temporal domains. For multivariate time series, the
variable dimension can be regarded as a discrete one-dimensional domain, where each variable in-
dex corresponds to a point in this domain. Under this view, applying FNF is equivalent to learning a
global operator to approximate this cross-variable correlation, through Fourier modes as a universal
basis. This perspective provides a theoretical justification: even in the absence of natural sequence or
geometric structures, FNF can still serve as an efficient kernel approximation method on the variable
index space, analogous to kernel methods in classical machine learning Cortes & Vapnik (1995);
Seeger (2004). In this sense, FNF plays a role in cross-variable learning that is conceptually parallel
to Transformers Gorishniy et al. (2021), where variable dimensions are treated as tokens, with the
exception that FNF employs spectral convolution instead of attention mechanism.

3.1.2 GLOBAL CONVOLUTION

Definition 3 When the kernel function κpx, yq “ κpx ´ yq exhibits translation invariance, the
fixed integral kernel operator in FNO reduces to a global convolution Li et al. (2021):

pKvqpxq “

ż

D

κpx ´ yqvpyq dy “ pκ ˚ vqpxq. (6)

Definition 4 Similarly, when the kernel function κpx, y; vq “ κpx ´ y; vq maintains translation
invariance, the adaptive integral kernel operator in FNF becomes a gated global convolution:

pKvqpxq “

ż

D

κ̃px ´ y; vqvpyq dy “ pκ̃p¨; vq ˚ vqpxq. (7)

Remark 3 Translation invariance enables efficient computation of integral operator through
Fourier transform in both FNO and FNF. Beyond this shared efficiency, the gated global convolu-
tion in FNF significantly enhances representation capacity by employing an input-dependent kernel
κ̃p¨; vq, which adaptively modulates filtering behavior while preserving computational efficiency.

4
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3.1.3 SELECTIVE ACTIVATION

Definition 5 The selective activation operates an element-wise multiplication in the time domain;
in the frequency domain, this operation is mathematically equivalent to the convolution operation
between Gpvqpxq and P pvqpxq:

FpGpvq d P pvqq pωq “
`

Ĝpvq ˚ P̂ pvq
˘

pωq. (8)
This formula can be viewed as approximate magnitude modulation and phase addition when the
signal Gpvq is relatively smooth or narrow:

pGpvq d P pvqqi « |Gpvqi| ¨ |P pvqi| ¨ eipθGpvqi
`θP pvqi

q, (9)
where |Gpvqi| and |P pvqi| represent magnitudes and θGpvqi and θP pvqi represent phases.

Remark 4 This formulation reveals how selective activation effectively achieves the joint
time–frequency modulation: it enhances informative mid-/high-frequency components while sup-
pressing redundant low-frequency ones on the magnitude side, and simultaneously provides flexible
alignment on the phase side. This design alleviates the well-known over-smoothing effect and band-
width bottleneck Rahaman et al. (2019) of FNO and improves the representation learning capability
.

3.1.4 COMPLEX TRANSFORM

Definition 6 The complex transform operates on the complex-valued input z “ zr ` izi with
complex weights W “ Wr ` iWi and biases b “ br ` ibi:

Lpzq “ pWrzr ´ Wizi ` brq ` ipWrzi ` Wizr ` biq. (10)

Remark 5 To reduce the parameter count, we adopt the block-diagonal structure for the
weights Guibas et al. (2022) and implement two complex transform layers equipped with the GELU
activation function Hendrycks & Gimpel (2016).

3.1.5 ADAPTIVE TRUNCATION

Definition 7 The adaptive truncation operates through a Softshrink function Donoho (2002) with
a learnable threshold:

Sλpzq “

#

p|z| ´ λq z
|z|
, if |z| ą λ

0, if |z| ď λ,
(11)

where λ is the threshold parameter.

Remark 6 The Softshrink function preserves phase while adaptively sparsifying the frequency
spectrum. Unlike traditional approaches with fixed thresholds, we make λ a learnable parameter to
automatically discover unimportant components in different frequency components. This adaptive
technique enables our backbone to: (1) balance noise suppression and signal preservation without
manual tuning, (2) adapt to varying input properties, and (3) achieve superior denoising performance
through end-to-end optimization.

3.1.6 CONNECTION TO TRANSFORMERS

Functionality FNF represents a unified backbone that implements core Transformer functions
through alternative computational mechanisms. The gated global convolution in FNF performs com-
prehensive information interaction across all positions, analogous to token mixing in Transformer.
Furthermore, the linear transformations (T pvq, Gpvq, and Hpvq) in FNF can be expanded to replicate
the functionality of Feed-Forward Network (FFN). FNF establishes functional equivalence between
different backbones while maintaining different computational paths.

Complexity FNF achieves token mixing with OpN logNq computational complexity through
Fourier transform, compared to the OpN2q complexity of standard Transformers for sequence length
N . Moreover, FNF typically requires fewer parameters while maintaining comparable performance,
making it particularly efficient for modeling spatiotemporal patterns in multivariate time series.

5
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3.2 DUAL BRANCH DECOUPLER (DBD)

Through the lens of information bottleneck theory Tishby & Zaslavsky (2015), spatiotemporal mod-
eling architectures can be categorized into three paradigms: unified (which suffers from the curse
of dimensionality) Alemi et al. (2017), sequential (which creates information bottlenecks) Zhang
& Yan (2023); Chen et al. (2024b), and parallel (which preserves information through independent
branches) Qiu et al. (2025). Our DBD architecture adopts the parallel approach to maximize gradient
flow and representation capacity.

Unified The unified paradigm captures temporal and spatial through a single operation X Ñ T Ñ

Y , where T must simultaneously encode both temporal and spatial information. This approach suf-
fers from the curse of dimensionality and requires substantially more parameters to achieve compa-
rable performance, while carrying the risk of overfitting.

Sequential The sequential paradigm implements cascaded information processing X Ñ T1 Ñ

T2 Ñ Y , where temporal processing precedes spatial processing. This architecture inherently suf-
fers from information loss due to the information processing inequality: IpX;Y q ě I pT1;Y q ě

I pT2;Y q, where each stage acts as an information bottleneck.

Parallel The parallel paradigm maintains independent information processing branches with di-
rect access to the original input Wang et al. (2018):

X Ñ

"

T1

T2
Ñ T Ñ Y . (12)

This approach ensures each branch independently achieves optimal information compression, with
each optimizing its own objective function:

min
T1

rI pT1;Xq ´ β1I pT1;Y qs

min
T2

rI pT2;Xq ´ β2I pT2;Y qs ,
(13)

where β1 and β2 control the trade-off between compression and performance for each branch.

Gradient Flow The parallel architecture offers significant advantages in gradient flow with inde-
pendent branches maintaining short and direct gradient paths:

BL

Bθ1
“

BL

Bg
¨

Bg

Bf1
¨

Bf1
Bθ1

BL

Bθ2
“

BL

Bg
¨

Bg

Bf2
¨

Bf2
Bθ2

.

(14)

These shorter gradient paths significantly reduce the risk of vanishing or exploding gradients, and
enable efficient parallelization during both forward and backward passes, accelerating convergence
without sacrificing model performance.

Representation Capacity The parallel architecture demonstrates superior representation capacity
through complementary information retention. Due to the orthogonal nature of temporal and spatial
information, their joint representation typically satisfies:

I pT1, T2;Y q ą max tI pT1;Y q , I pT2;Y qu . (15)

This inequality holds because temporal and spatial features capture fundamentally different aspects
of the input: temporal features extract dynamic patterns across time, while spatial features encode
structural relationships within each time point. Their combination provides a more comprehensive
view than either branch could achieve alone.

4 MODEL

Overview We denote the input sequence as X “ px1, . . . , xT q P RMˆL with L lookback window
and M variables, and the output sequence Y “ py1, . . . , yT q P RMˆH with H forecast horizon.
Our model TiF as illustrated in Fig. 3.

6
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Normalization To address distribution shift inherent in time series, we implement instance nor-
malization Kim et al. (2021):

x̂
piq
kt “

x
piq
kt ´ E

”

x
piq
kt

ı

c

Var
”

x
piq
kt

ı

` ϵ

, (16)

where E
”

x
piq
kt

ı

“ 1
Tx

řTx

j“1 x
piq
kj and Var

”

x
piq
kt

ı

“ 1
Tx

řTx

j“1

´

x
piq
kj ´ Et

”

x
piq
kt

ı¯2

denote the mean
and standard deviation vectors of the input sequence, with ϵ added to maintain numerical stability.

Embedding Each variable of input sequence X P RMˆL is divided into non-overlapping patches
X 1

p P RMˆNˆP , where each patch has a length of P and the number of patches N “
P

L
P

T

, then
each patch is mapped to a patch token Xp P RMˆNˆD through a linear layer Nie et al. (2023):

X 1
p “ PatchingpXq, Xp “ EmbeddingpX 1

pq, (17)
where each patch can be viewed as local temporal dependencies within its respective time window
P , which is particularly important for time series analysis, as it enables the capture of nuanced
temporal patterns that may be obscured in global temporal modeling.

Figure 3: Schematic diagram of our proposed Time Filter (TiF) architecture. Our model integrates ded-
icated components, including Instance Normalization, Patch Embedding, Temporal Filter, Spatial Filter, and
Fusion, with each tailored to a distinct facet of the time series forecasting challenge.

Temporal Filter We apply FNF to the dimension of the number of patches N to capture global
temporal dependencies:

X 1
t “ FNFtpXpq. (18)

The output embedding X 1
t P RMˆNˆD is flattened, and projected through a linear layer to ob-

tain Xt P RMˆD1

, which stands for the representation that aggregates local and global temporal
dependencies:

Xt “ LinearpFlattenpX 1
tqq. (19)

Spatial Filter We apply FNF to the dimension of the number of variables M to capture local
spatial correlations:

X 1
ls “ FNFlspXpq. (20)

The output embedding X 1
t P RNˆMˆD is transposed, flattened, and projected to obtain Xls P

RMˆD1

, which stands for the representation that aggregates local spatial correlations:
Xls “ LinearpFlattenpTransposepX 1

lsqqq. (21)

Subsequently, we similarly apply FNF to Xls P RMˆD1

for capturing global spatial correlations:
Xgs “ FNFgspXlsq. (22)

7
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Fusion The final step is to fuse the representations on behalf of the three different spatiotemporal
patterns Xt, Xls, Xgs P RMˆD1

, to obtain the output sequence Y P RHˆM :
Y “ Linear3 ˝LayerNorm ˝Linear2 ˝GELU ˝Linear1 ˝ConcatpXt, Xls, Xgsq. (23)

5 EXPERIMENT

In this section, to validate the effectiveness of our proposed TiF, we conduct extensive experiments
on a variety of time series forecasting tasks, including both long-term and short-term forecasting.

Baselines For long-term forecasting, we select a diverse set of state-of-the-art baseline models.
These include Transformer-based models (iTransformer Liu et al. (2023a), DeformableTST Luo &
Wang (2024a), PatchTST Nie et al. (2023), Crossformer Zhang & Yan (2023), and Leddam Yu et al.
(2024a)), CNN-based models (TimesNet Wu et al. (2023) and ModernTCN Luo & Wang (2024b)),
MLP-based models (DLinear Zeng et al. (2023) and TimeMixer Wang et al. (2024b)), and Fourier-
based models (FBM Yang et al. (2024), FITS Xu et al. (2023), and FreMLP Yi et al. (2023)). For
short-term forecasting, we further include three strong baseline models: DUET Qiu et al. (2025),
SOFTS Han et al. (2024), and TiDE Das et al. (2023).

Settings All experiments are conducted using PyTorch 2.5 with Python 3.10 on an NVIDIA H100
80GB GPU. We employ the Adam optimizer with L1 loss for training. Following prior works Zhou
et al. (2021); Wu et al. (2021), we adopt Mean Squared Error (MSE) and Mean Absolute Error
(MAE) as evaluation metrics.

Table 1: Average results across seven long-term
forecasting datasets compared with other three
Fourier-based models. Best results in bold, second-
best underlined.

Model TiF (Ours) FBM FITS FreMLP

Metric MSE MAE MSE MAE MSE MAE MSE MAE

ETTm1 0.347 0.369 0.348 0.378 0.361 0.379 0.380 0.404
ETTm2 0.251 0.305 0.258 0.317 0.258 0.315 0.303 0.354
ETTh1 0.399 0.418 0.414 0.427 0.406 0.424 0.480 0.479
ETTh2 0.320 0.368 0.347 0.389 0.327 0.378 0.495 0.493
Weather 0.222 0.255 0.227 0.264 0.228 0.266 0.234 0.282
Electricity 0.156 0.251 0.164 0.257 0.173 0.266 0.175 0.273
Traffic 0.382 0.236 0.412 0.278 0.446 0.293 0.483 0.321

Long-term Forecasting We conduct long-
term forecasting experiments on eight widely-
used real-world datasets, including the ETT
dataset with its four subsets (ETTh1, ETTh2,
ETTm1, ETTm2) Wu et al. (2021), as well as
Weather, Electricity, Traffic Wu et al. (2023),
and Solar Liu et al. (2023a).

We compare our model with other three
Fourier-based models. The lookback window is
set to 336 for all baseline models. As shown
in Tab. 1, TiF outperforms all baseline models
on both MAE and MSE evaluation metrics. This improvement stems from our innovative backbone
and architecture design, achieving superior representation learning capability compared to existing
Fourier-based models.

We compare our model with other state-of-the-art baseline models. In all cases, we employ grid
search to determine the optimal lookback window from the set t96, 192, 336, 512, 720u and other
hyperparameters. As shown in Tab. 2, TiF consistently achieves the best model performance. No-
tably, for the large-scale Traffic dataset, with its 862 variables, poses substantial challenges due to its
complex spatiotemporal dependencies. TiF effectively balances within-variable and cross-variable
modeling, achieving consistently strong forecasting performance. This robust performance of our
model across diverse datasets provides compelling evidence of its practicality and generalizability
in the real-world settings.

Table 2: Average results for all models across eight long-term forecasting datasets. This table provides
a summary of the full results presented in the Appendix. Best results are bold on a pale gold background;
second-best are underlined on a light green background. Lower values indicate better performance.

Dataset
TIF
(Ours)

iTransformer
(2023a)

DeformableTST
(2024a)

TimeMixer
(2024b)

PatchTST
(2023)

Crossformer
(2023)

Leddam
(2024a)

ModernTCN
(2024b)

TimesNet
(2023)

DLinear
(2023)

MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTm1 0.341 0.367 0.362 0.391 0.348 0.383 0.355 0.380 0.353 0.382 0.420 0.435 0.354 0.381 0.351 0.381 0.400 0.406 0.357 0.379
ETTm2 0.251 0.306 0.269 0.329 0.257 0.319 0.257 0.318 0.256 0.317 0.518 0.501 0.265 0.320 0.253 0.314 0.291 0.333 0.267 0.332
ETTh1 0.393 0.417 0.439 0.448 0.404 0.423 0.427 0.441 0.413 0.434 0.440 0.463 0.415 0.430 0.404 0.420 0.458 0.450 0.423 0.437
ETTh2 0.316 0.368 0.374 0.406 0.328 0.377 0.349 0.397 0.324 0.381 0.809 0.658 0.345 0.391 0.322 0.379 0.414 0.427 0.431 0.447
Weather 0.220 0.254 0.233 0.271 0.221 0.262 0.226 0.264 0.226 0.264 0.228 0.287 0.226 0.264 0.224 0.264 0.259 0.287 0.240 0.300
Electricity 0.152 0.248 0.164 0.261 0.161 0.261 0.185 0.284 0.159 0.253 0.181 0.279 0.162 0.256 0.156 0.253 0.192 0.295 0.166 0.264
Traffic 0.370 0.233 0.397 0.282 0.391 0.278 0.409 0.279 0.391 0.264 0.523 0.284 0.452 0.283 0.396 0.270 0.620 0.336 0.434 0.295
Solar 0.182 0.213 0.200 0.260 0.185 0.254 0.193 0.252 0.194 0.245 0.191 0.242 0.223 0.264 0.228 0.282 0.244 0.334 0.247 0.309
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Short-term Forecasting For short-term forecasting, we conduct experiments on the PeMS
datasets Liu et al. (2022), which the complex spatiotemporal dependencies of urban transportation
networks. The lookback window is set to 96 for all baseline models.

Some models, including PatchTST Nie et al. (2023) and DLinear Zeng et al. (2023), achieve strong
performance in long-term forecasting using channel-independent technique. However, these models
show significant performance drops on the PeMS dataset. This because this dataset has strong cross-
variable correlations. In contrast, our model maintains robust performance on this challenging task.
As shown in Tab. 3, TiF consistently outperforms all baseline models, demonstrating its effectiveness
in capturing complex spatiotemporal dependencies.

Table 3: Average results for all models across four short-term forecasting datasets. This table provides a
summary of the full results presented in the Appendix. Best results are bold on a pale gold background; second-
best are underlined on a light green background. Lower values indicate better performance.

Model
TiF DUET iTransformer Leddam SOFTS PatchTST Crossformer TimesNet TiDE DLinear

(Ours) (2025) (2023a) (2024a) (2024) (2023) (2023) (2023) (2023) (2023)

MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

PeMS03 0.082 0.186 0.086 0.192 0.096 0.204 0.101 0.210 0.087 0.192 0.151 0.265 0.138 0.253 0.119 0.271 0.271 0.380 0.219 0.295

PeMS04 0.087 0.190 0.096 0.203 0.098 0.207 0.102 0.213 0.091 0.196 0.162 0.273 0.145 0.267 0.109 0.220 0.307 0.405 0.236 0.350

PeMS07 0.069 0.161 0.076 0.176 0.088 0.190 0.087 0.192 0.075 0.173 0.166 0.270 0.181 0.272 0.106 0.208 0.297 0.394 0.241 0.343

PeMS08 0.091 0.186 0.096 0.192 0.127 0.212 0.102 0.211 0.114 0.208 0.238 0.289 0.232 0.270 0.150 0.244 0.347 0.421 0.281 0.366

Table 4: Ablation study. Best results in
bold, second-best underlined.

Model TiF w/o AT w/o SA

Metric MSE MAE MSE MAE MSE MAE

ETTm1 0.341 0.367 0.347 0.369 0.354 0.376

ETTh1 0.393 0.417 0.402 0.422 0.403 0.423

Model TiF w/o LS w/o GS

Metric MSE MAE MSE MAE MSE MAE

PeMS03 0.082 0.186 0.094 0.199 0.087 0.193

PeMS08 0.091 0.186 0.101 0.197 0.098 0.194

Ablation Study To validate the effectiveness of our
proposed backbone and architecture, we conduct a com-
prehensive ablation study on representative datasets, as
shown in Tab. 4. Specifically, we evaluate the impact of
Adaptive Truncation (AT) and Selective Activation (SA)
on the ETTm1 and ETTh1 datasets. The experimental
results demonstrate that both components are essential
for achieving optimal performance. Subsequently, we as-
sess the contributions of Local Spatial (LS) and Global
Spatial (GS) information on the PeMS03 and PeMS08
datasets. The experimental results confirms that both lo-
cal and global spatial modeling are crucial for effective
spatiotemporal modeling.

200 0 200 400 600 800 1000 1200 1400
Training Time (ms/iter)
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0.225
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SOFTS
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TimesNet
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DLinear
670MB 26ms
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11292MB 177ms

5K 15K 30K

Memory Usage (MB)

Traffic

Figure 4: Model efficiency comparison on the Traffic
dataset in terms of MAE and training time.

Efficiency Analysis We comprehensively
compare the forecasting performance, training
speed, and memory consumption of our model
against other baseline models, where lookback
window and forecast horizon are both set to
96. As shown in Fig. 4, TiF outperforms other
Transformer-based and CNN-based models in
terms of model efficiency.

6 CONCLUSION

Limitations While our model achieves state-
of-the-art performance in multivariate time se-
ries forecasting, three key limitations remain: (1) reduced effectiveness on highly irregular or event-
driven sequences, and (2) untested performance on other time series tasks such as imputation, clas-
sification, and anomaly detection.

Broader Impact Our work delivers tangible benefits, including better forecasting performance
and potential improvement in resource allocation across various domains. However, potential risks
include perpetuation of historical information biases , and over-reliance on automated forecasting in
the absence of adequate human oversight. We encourage ongoing research to address these concerns
while maximizing the positive impact of advanced forecasting capability.
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8 REPRODUCIBILITY STATEMENT

To ensure reproducibility of our results, we provide the following resources: (1) complete imple-
mentation details and hyperparameters are described in Section 5 and Appendix C; (2) all datasets
used in our experiments are publicly available and properly cited with access information provided
in Section 5 and Appendix B; (3) theoretical proofs and derivations are included in Section 3; and
(4) source code will be made available upon publication to facilitate replication of our experimental
results.
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