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ABSTRACT

Multivariate time series forecasting has been suffering from the challenge of cap-
turing both temporal dependencies within variables and spatial correlations across
variables simultaneously. Current approaches predominantly repurpose backbones
from Natural Language Processing (NLP) or Computer Vision (CV) (e.g., Trans-
formers), which fail to adequately address the unique properties of time series
(e.g., periodicity and fluctuation). The research community lacks dedicated back-
bones incorporating temporal-specific inductive biases, depending on domain-
agnostic backbones supplemented with auxiliary techniques (e.g., signal decom-
position). We introduce Fourier Neural Filter (FNF) as the backbone and Dual
Branch Decoupler (DBD) as the architecture to provide exceptional learning capa-
bilities and optimal learning pathways for spatiotemporal modeling, respectively.
Our theoretical analysis proves that FNF integrates time-domain and frequency-
domain analysis while enabling adaptive truncation of noise components within
a unified backbone that extends naturally to spatial modeling. Through the lens
of information bottleneck theory, we reveal that DBD delivers superior gradi-
ent flow and representation capacity, enabling it to effectively capture local and
global, temporal and spatial information comprehensively. Our empirical evalua-
tion on 12 public benchmark datasets, encompassing both multivariate long-term
and short-term forecasting tasks, demonstrates state-of-the-art performance com-
pared to existing advanced baseline models. Notably, our approach achieves these
results without any auxiliary techniques, suggesting that properly designed neural
architectures can capture the inherent properties of time series, potentially trans-
forming time series modeling in scientific and industrial applications.
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Recent research has increasingly
focused on multivariate long-term
forecasting ( ), which
presents several significant chal-
lenges. Extended forecast horizons

benchmark datasets encompassing multivariate long-term and
short-term time series forecasting. The chart displays the average
MAE across different forecast horizons. Our proposed TiF consis-
tently outperforms other strong baseline models.

inevitably increase uncertainty and degrade prediction accuracy, while complex temporal depen-
dencies within variables and spatial correlations across variables further complicate modeling,
particularly with high-dimensional variables. Consequently, developing neural architectures capable
of simultaneously capturing heterogeneous temporal and spatial patterns has become critical for

advancing time series forecasting.
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For within-variable temporal modeling, the research community has developed several elaborate
approaches. These include: (i) decomposing time series into trend, seasonal, and residual terms

( ); ( ); (i1) deconstructing time series into frequency compo-
nents for multi-resolution modeling ( ); and (iii) segmenting sequences into patches
of uniform ( ); ( ) or varying sizes ( ); ( )

to capture both local and global temporal dependencies through multi-scale modeling. More sophis-
ticated techniques integrate multi-resolution and multi-scale modeling simultaneously
( ), establishing comprehensive frameworks for time series representation learning.

Despite these advances, existing approaches primarily rely on backbones borrowed from Natural
Language Processing (NLP) or Computer Vision (CV), such as Transformers ( ),
CNNs ( ); ( ), and MLPs ( ). These domain-agnostic
backbones cannot fully address the inherent properties of time series without auxiliary techniques
(e.g., signal decomposition). To address this fundamental limitation, we propose the Fourier Neural
Filter (FNF), a novel nonlinear integral kernel operator that integrates temporal-specific inductive
biases directly into the backbone design. Mathematically, FNF extends the standard Fourier Neural
Operator (FNO) ( ) by introducing an input-dependent kernel function that enables
selective activation of time-domain and frequency-domain information through Hadamard product
operations, making it particularly effective for capturing the unique properties of time series. On
the other hand, we incorporate adaptive truncation following complex operation, making it capable
of effectively suppressing the noise components. Additionally, FNF offers several key advantages:
(1) it naturally extends to spatial modeling (explained in Section 3.1.1); (ii) it achieves O(N log N)
computational complexity compared to the O(N?) complexity of Transformers; and (iii) in contrast
to other purely Fourier-based models ( ); ( ); ( );

( ), it allows for dynamic information flow modulation between time-domain and frequency-
domain, constructing a unified time-frequency representation space.

For cross-variable spatial modeling, the researchers have developed diverse techniques: (i) indepen-

dent variable modeling ( ); ( ), which maintains stability but ignores
inter-variable interactions; (ii) unified variable modeling ( ); ( ),
which comprehensively captures relationships but exhibits sensitivity to irrelevant variable distur-
bances; and (iii) hierarchical variable modeling ( ), which provides a compromise

approach but constrains flexibility by confining relationship patterns within predetermined cluster
boundaries. These techniques highlight the fundamental trade-offs in spatial modeling and empha-
size the need for adaptive systems that can effectively balance these conflicting demands.

To address above challenges, we propose the Dual Branch Decoupler (DBD). From an information
bottleneck perspective ( ), this parallel dual-branch architecture is able to
optimize information extraction and compression in multivariate time series by maintaining separate
processing pathways for temporal and spatial patterns. Unlike unified techniques that suffer from the
curse of dimensionality or sequential techniques ( ); ( ) that ex-
perience cascading information loss due to unequal information processing, DBD ensures that each
branch independently achieves optimal trade-offs between information extraction and compression
while providing short and direct gradient flow.

The two proposed techniques FNF and DBD collectively form the innovative model we aim to
introduce, specifically designed for time series: Time Filter (TiF). Benefiting from the completely
isolated information flow of DBD, TiF is able to effectively capture local and global, temporal and
spatial information, more comprehensive than other baseline models.

To validate our proposed model, we conduct comprehensive experiments on 12 public benchmark
datasets, encompassing both multivariate long-term and short-term forecasting tasks. Our extensive
evaluation demonstrates that our approach achieves state-of-the-art results compared to existing ad-
vanced baseline models, as shown in Fig. 1. Additionally, we conduct fair comparisons with three
other purely Fourier-based models to further demonstrate the effectiveness of our approach.

Our contributions are as follows: (1) We propose FNF, a unified backbone integrating time-domain
and frequency-domain analysis, specifically designed for time series modeling; (2) We introduce
DBD, and prove its effectiveness for spatiotemporal modeling of time series both theoretically and
empirically; (3) The proposed model TiF achieves state-of-the-art performance in both multivariate
long-term and short-term time series forecasting.
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2 RELATED WORK

Distribution Shift The statistical properties of time series, such as mean and variance, tend to
change over time, creating fundamental challenges for time series modeling ( );
( ). Researchers have developed various solutions to address this issue. RevIN

( ) applies instance normalization on input sequences and performs de-normalization on
output sequences. Dish-TS ( ) extracts distribution coefficients for both intra- and
inter-variable to mitigate distribution shift. SAN ( ) addresses non-stationarity by
using a lightweight neural network to model evolving local statistical properties. FAN
( ) handles dynamic trend and seasonal patterns by employing Fourier transform to identify
key frequency components. DDN ( ) eliminates non-stationarity by applying wavelet
transform to implement normalization of time and frequency domains within the sliding window.
Notably, Li et al. ( ) demonstrated that after using instance normalization, excellent
results can be easily obtained with just a simple linear layer. Our work employs basic instance
normalization while introducing the FNF backbone to strengthen the ability to process the inherent
non-stationarity of time series.

Patch Embedding Time series patching has evolved from simple segmentation to elaborate strate-
gies that balance local and global information extraction ( ); ( ). These
techniques include overlapping ( ) or non-overlapping ( )
patching, variable length patching ( ), and hierarchical patching ( ).
Recent research has explored adaptive patching strategies based on input properties of time se-
ries ( ). Although these approaches enhance representation learning capability ,
they are still limited to enhancing existing backbones through preprocessing without addressing
fundamental design principles. In contrast, our work maintains basic non-overlapping patching for
fair experimental comparison while introducing the FNF backbone specifically designed to unify
local time-domain and global frequency-domain processing for time series.

Non-Autoregressive Decoding To alleviate the error accumulation problem in autoregressive de-
coding, non-autoregressive approaches ( ); ( ); ( );

( ) have become the standard paradigm for time series forecasting. This technique si-
multaneously generates all future values through a linear layer, rather than recursively using previ-
ous predictions as inputs to obtain future values. While patch-based autoregressive models excel in
large-scale time series foundation models ( ); ( ), non-autoregressive
approaches perform better in typical forecasting tasks. Recent research has identified that non-
autoregressive approaches implicitly assume conditional independence between future values, ig-
noring the autocorrelation inherent in time series ( ). Our proposed FNF and DBD
enhance representation learning capability within this established system, despite the theoretical
limitations of the non-autoregressive paradigm.

3 METHODOLOGY

In this section, we establish the theoretical foundations of our proposed Fourier Neural Filter (FNF)
backbone and Dual Branch Decoupler (DBD) architecture.

3.1 FOURIER NEURAL FILTER (FNF)

While FNO ( ) has demonstrated
remarkable effectiveness in modeling complex
dynamic systems and solving partial differen-
tial equations through fixed integral kernel, our “~--------------"--"-"--~-"—~-~—"—~—~—\—~—— -
proposed FNF (Fig. 2) makes a critical leap Figure 2: Schematic diagram of our proposed
forward: introducing an input-dependent inte- Fourier Neural Filter (FNF) backbone.

gral kernel that can allow for adaptive and dy-

namic information flow between time-domain and frequency-domain, constructing a unified time-
frequency representation space. Intuitively, if FNO applies a fixed lens to process all input signals,
then FNF continuously adjusts the lens based on the preceding scene, achieving more detailed in-
formation extraction and more robust pattern recognition. We analyze the theoretical underpinnings
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of FNF by examining integral kernel, global convolution, selective activation, complex transform,
adaptive truncation and the connection to Transformer backbone.

3.1.1 INTEGRAL KERNEL

Definition 1 FNO is defined via a fixed integral kernel operator:

(Kv)(x) = fD (e, y)oly) dy, )

where k : D x D — R is the kernel function and v : D — R is the input function. Through the
Fourier transform, FNO can be formulated in the frequency domain as:

(Kv)(z) = F~(Ry - F(v)) (), 2
where R, = F (k) denotes the parameterized frequency-domain kernel.

Definition 2 FNF can be defined through an adaptive integral kernel operator:
(K0)@) = [ stago)dy ®
D

where k(z, y; v) is the input-dependent kernel function. In implementation, FNF can also be formu-
lated as:

(Kv)(z) = T(G(v) © P(v))(z), )
P(v)(x) = F~H(Ry - F(H(v))(x), (5)

where G(v), H(v), and T'(v) denote the linear transform used for expansion or compression, and ®
is the Hadamard product operation.

Remark 1 The fundamental distinction between FNO and FNF lies in their kernel functions: FNO
employs a fixed kernel x(x, y), whereas FNF applies an input-dependent kernel «(z, y; v), enabling
adaptive information flow modulation between time-domain and frequency-domain, constructing a
unified time-frequency representation space.

Remark 2  Although FNF is originally motivated by spatial-temporal operator learning, its formu-
lation is not restricted to continuous spatial or temporal domains. For multivariate time series, the
variable dimension can be regarded as a discrete one-dimensional domain, where each variable in-
dex corresponds to a point in this domain. Under this view, applying FNF is equivalent to learning a
global operator to approximate this cross-variable correlation, through Fourier modes as a universal
basis. This perspective provides a theoretical justification: even in the absence of natural sequence or
geometric structures, FNF can still serve as an efficient kernel approximation method on the variable
index space, analogous to kernel methods in classical machine learning ( );

( ). In this sense, FNF plays a role in cross-variable learning that is conceptually parallel
to Transformers ( ), where variable dimensions are treated as tokens, with the
exception that FNF employs spectral convolution instead of attention mechanism.

3.1.2 GLOBAL CONVOLUTION

Definition 3 When the kernel function «(x,y) = x(x — y) exhibits translation invariance, the
fixed integral kernel operator in FNO reduces to a global convolution ( ):

(Kv)(x) = L k(@ — y)oly) dy = (k = v)(@). ®)

Definition 4 Similarly, when the kernel function x(z,y;v) = k(x — y;v) maintains translation
invariance, the adaptive integral kernel operator in FNF becomes a gated global convolution:

(Kv)(z) = JD Rz —y;v)o(y) dy = (K(50) = v)(2). ()

Remark 3 Translation invariance enables efficient computation of integral operator through
Fourier transform in both FNO and FNF. Beyond this shared efficiency, the gated global convolu-
tion in FNF significantly enhances representation capacity by employing an input-dependent kernel
R (+;v), which adaptively modulates filtering behavior while preserving computational efficiency.
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3.1.3 SELECTIVE ACTIVATION

Definition 5 The selective activation operates an element-wise multiplication in the time domain;
in the frequency domain, this operation is mathematically equivalent to the convolution operation
between G (v)(z) and P(v)(x):

F(G(v) © P(v)) (w) = (G(v) * P()) (). (®)

This formula can be viewed as approximate magnitude modulation and phase addition when the
signal G(v) is relatively smooth or narrow:

(G(v) © P(v)); = |G(v)i] - |P(v)i] - !PeitOrn), )
where |G(v);| and | P(v)i| represent magnitudes and G (v)i and 0 P(v); represent phases.
Remark 4 This formulation reveals how selective activation effectively achieves the joint
time—frequency modulation: it enhances informative mid-/high-frequency components while sup-
pressing redundant low-frequency ones on the magnitude side, and simultaneously provides flexible

alignment on the phase side. This design alleviates the well-known over-smoothing effect and band-
width bottleneck ( ) of FNO and improves the representation learning capability

3.1.4 COMPLEX TRANSFORM

Definition 6 The complex transform operates on the complex-valued input z = z, + i2z; with
complex weights W = W,. + ¢W; and biases b = b,. + ib;:

L(z) = Wyzp — Wiz + by) + i(Wyezg + Wiz + b;). (10)
Remark 5 To reduce the parameter count, we adopt the block-diagonal structure for the
weights ( ) and implement two complex transform layers equipped with the GELU
activation function ( ).

3.1.5 ADAPTIVE TRUNCATION

Definition 7 The adaptive truncation operates through a Softshrink function ( ) with
a learnable threshold:
(lz2]| = N &, iflz| > A
A (2) {0’ if |2] < A, Y

where ) is the threshold parameter.

Remark 6 The Softshrink function preserves phase while adaptively sparsifying the frequency
spectrum. Unlike traditional approaches with fixed thresholds, we make A a learnable parameter to
automatically discover unimportant components in different frequency components. This adaptive
technique enables our backbone to: (1) balance noise suppression and signal preservation without
manual tuning, (2) adapt to varying input properties, and (3) achieve superior denoising performance
through end-to-end optimization.

3.1.6 CONNECTION TO TRANSFORMERS

Functionality FNF represents a unified backbone that implements core Transformer functions
through alternative computational mechanisms. The gated global convolution in FNF performs com-
prehensive information interaction across all positions, analogous to token mixing in Transformer.
Furthermore, the linear transformations (7'(v), G(v), and H (v)) in FNF can be expanded to replicate
the functionality of Feed-Forward Network (FFN). FNF establishes functional equivalence between
different backbones while maintaining different computational paths.

Complexity FNF achieves token mixing with O(N log N) computational complexity through
Fourier transform, compared to the O(/N?) complexity of standard Transformers for sequence length
N. Moreover, FNF typically requires fewer parameters while maintaining comparable performance,
making it particularly efficient for modeling spatiotemporal patterns in multivariate time series.
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3.2 DUAL BRANCH DECOUPLER (DBD)

Through the lens of information bottleneck theory ( ), spatiotemporal mod-
eling architectures can be categorized into three paradigms: unified (which suffers from the curse
of dimensionality) ( ), sequential (which creates information bottlenecks)

( ); ( ), and parallel (which preserves information through independent
branches) ( ). Our DBD architecture adopts the parallel approach to maximize gradient
flow and representation capacity.

Unified The unified paradigm captures temporal and spatial through a single operation X — 7" —
Y, where T must simultaneously encode both temporal and spatial information. This approach suf-
fers from the curse of dimensionality and requires substantially more parameters to achieve compa-
rable performance, while carrying the risk of overfitting.

Sequential The sequential paradigm implements cascaded information processing X — T; —
T, — Y, where temporal processing precedes spatial processing. This architecture inherently suf-
fers from information loss due to the information processing inequality: I(X;Y) > I (T1;Y) >
I (T5;Y'), where each stage acts as an information bottleneck.

Parallel The parallel paradigm maintains independent information processing branches with di-
rect access to the original input ( ):

T

This approach ensures each branch independently achieves optimal information compression, with
each optimizing its own objective function:

Hzlriln [I(T1;X)— 511 (T1;Y)]

X—»{Tl ST ->Y. (12)

min [I (To; X) — BoI (To;Y)], -

where (31 and 32 control the trade-off between compression and performance for each branch.

Gradient Flow The parallel architecture offers significant advantages in gradient flow with inde-
pendent branches maintaining short and direct gradient paths:

oL 0L dg Of:
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These shorter gradient paths significantly reduce the risk of vanishing or exploding gradients, and
enable efficient parallelization during both forward and backward passes, accelerating convergence
without sacrificing model performance.

Representation Capacity The parallel architecture demonstrates superior representation capacity
through complementary information retention. Due to the orthogonal nature of temporal and spatial
information, their joint representation typically satisfies:

I(Th,T5;Y) > max {I (T1;Y), I (T»;Y)}. (15)

This inequality holds because temporal and spatial features capture fundamentally different aspects
of the input: temporal features extract dynamic patterns across time, while spatial features encode
structural relationships within each time point. Their combination provides a more comprehensive
view than either branch could achieve alone.

4 MODEL
Overview We denote the input sequence as X = (1, ..., 27) € RM*L with L lookback window
and M variables, and the output sequence Y = (yi,...,yr) € RM™>*H with H forecast horizon.

Our model TiF as illustrated in Fig. 3.
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Normalization To address distribution shift inherent in time series, we implement instance nor-
malization ( ):

40 M 6
Var [x,(ft)] +e€

_ . . . I\ 2
where E [x,(;t)] = £ x,(jj) and Var [xgt)] = A3 (xgj) —E, [x,(jt)]) denote the mean

and standard deviation vectors of the input sequence, with € added to maintain numerical stability.
Embedding Each variable of input sequence X € R *Z is divided into non-overlapping patches
X, € RM*NxP "ywhere each patch has a length of P and the number of patches N = [%1 then
each patch is mapped to a patch token X, € RM*N*D through a linear layer ( ):

X, = Patching(X), X, = Embedding(X,), (17)
where each patch can be viewed as local temporal dependencies within its respective time window

P, which is particularly important for time series analysis, as it enables the capture of nuanced
temporal patterns that may be obscured in global temporal modeling.

. Instance Norm
E BXM, N, D Global Temporal B, M. D
! Temporal Projection | | l | E
N Local ﬂ XLy :
"B, T,M Temporal B, M, D B.H.M .
: Patch I a :
' @_* Embedding I Fusion :
. Input .
B, M, N, D BM.D Output :
-Spatial Projection Spatial
g g
Filter1 |, L, Filter2 |, Ly
Local Spatial Global Spatial

Figure 3: Schematic diagram of our proposed Time Filter (TiF) architecture. Our model integrates ded-
icated components, including Instance Normalization, Patch Embedding, Temporal Filter, Spatial Filter, and
Fusion, with each tailored to a distinct facet of the time series forecasting challenge.

Temporal Filter We apply FNF to the dimension of the number of patches N to capture global
temporal dependencies:

X! = FNF,(X,). (18)
The output embedding X; € RM*NxD jg flattened, and projected through a linear layer to ob-

tain X; € RM*D’ which stands for the representation that aggregates local and global temporal
dependencies:

X; = Linear(Flatten(X})). (19)

Spatial Filter We apply FNF to the dimension of the number of variables M to capture local
spatial correlations:

X, = FNF5(X,). (20)
The output embedding X; € RN*MxD jg transposed, flattened, and projected to obtain X;, €
RM*D’ which stands for the representation that aggregates local spatial correlations:

X = Linear(Flatten(Transpose(X},))). 21
Subsequently, we similarly apply FNF to X;, € RM*P " for capturing global spatial correlations:
Xgs = FNF 45(Xis). (22)
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Fusion The final step is to fuse the representations on behalf of the three different spatiotemporal
patterns X, X;5, Xy € RM*D" 10 obtain the output sequence Y € R¥*M:

Y = Linears o LayerNorm o Lineary o GELU o Linear; o Concat(X;, Xis, Xgs)- 23)

5 EXPERIMENT

In this section, to validate the effectiveness of our proposed TiF, we conduct extensive experiments
on a variety of time series forecasting tasks, including both long-term and short-term forecasting.

Baselines For long-term forecasting, we select a diverse set of state-of-the-art baseline models.

These include Transformer-based models (iTransformer ( ), DeformableTST

( ), PatchTST ( ), Crossformer ( ), and Leddam
( )), CNN-based models (TimesNet ( ) and ModernTCN ( ),
MLP-based models (DLinear ( ) and TimeMixer ( )), and Fourier-
based models (FBM ( ), FITS ( ), and FreMLP ( )). For
short-term forecasting, we further include three strong baseline models: DUET ( ),
SOFTS ( ), and TiDE ( ).

Settings All experiments are conducted using PyTorch 2.5 with Python 3.10 on an NVIDIA H100
80GB GPU. We employ the Adam optimizer with L1 loss for training. Following prior works
( ); ( ), we adopt Mean Squared Error (MSE) and Mean Absolute Error

(MAE) as evaluation metrics.
Table 1: Average results across seven long-term

Long-term Forecasting We conduct long- forecasting datasets compared with other three
term forecasting experiments on eight widely- Fourier-based models. Best results in bold, second-
used real-world datasets, including the ETT best underlined.

dataset with its four subsets (ETThl, ETTh2, Model TiF (Ours) FBM FITS FreMLP

ETTml, ETTm2) ( ), as well @8 Negic MSE MAE MSE MAE MSE MAE MSE MAE
Weather, Electricity, Traffic ( )s ETTml 0347 0.369 0.348 0.378 0361 0.379 0.380 0.404
and Solar ( ). ETTm2  0.251 0.305 0.258 0.317 0.258 0.315 0.303 0.354

. ETThl  0.399 0.418 0.414 0.427 0.406 0.424 0.480 0.479
We compare our model with other three ETTh2  0.320 0.368 0.347 0.389 0.327 0.378 0.495 0.493

Fourier-based models. The lookback window is ~ Weather  0.222 0.255 0.227 0.264 0.228 0.266 0.234 0.282
et 10 336 for al baseline models. As shown e 0156 121 6164 03670 11 03 017302
in Tab. 1, TiF outperforms all baseline models

on both MAE and MSE evaluation metrics. This improvement stems from our innovative backbone
and architecture design, achieving superior representation learning capability compared to existing
Fourier-based models.

We compare our model with other state-of-the-art baseline models. In all cases, we employ grid
search to determine the optimal lookback window from the set {96,192, 336,512,720} and other
hyperparameters. As shown in Tab. 2, TiF consistently achieves the best model performance. No-
tably, for the large-scale Traffic dataset, with its 862 variables, poses substantial challenges due to its
complex spatiotemporal dependencies. TiF effectively balances within-variable and cross-variable
modeling, achieving consistently strong forecasting performance. This robust performance of our
model across diverse datasets provides compelling evidence of its practicality and generalizability
in the real-world settings.

Table 2: Average results for all models across eight long-term forecasting datasets. This table provides
a summary of the full results presented in the Appendix. Best results are bold on a pale gold background;
second-best are underlined on a light green background. Lower values indicate better performance.

TIF iTransformer DeformableTST TimeMixer  PatchTST  Crossformer  Leddam  ModernTCN  TimesNet DLinear
Dataset (Ours) (2023a) (2024) (2024b) (2023) (2023) (20243) (2024b) (2023) (2023)

|MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTml 0.341 0.367 0.362 0.391 0.348 0.383 0.355 0.380 0.353 0.382 0.420 0.435 0.354 0.381 0.351 0.381 0.400 0.406 0.357 0.379
ETTm2 |0.251 0.306 0.269 0.329 0.257 0.319 0.257 0.318 0.256 0.317 0.518 0.501 0.265 0.320 0.253 0.314 0.291 0.333 0.267 0.332
ETTh1 0.393 0.417 0.439 0.448 0404 0423 0427 0441 0.413 0.434 0.440 0.463 0.415 0.430 0.404 0.420 0.458 0.450 0.423 0.437
ETTh2 0.316 0.368 0.374 0.406 0.328 0.377 0.349 0.397 0.324 0.381 0.809 0.658 0.345 0.391 0.322 0.379 0.414 0.427 0.431 0.447

Weather |0.220 0.254 0.233 0.271 0.221 0.262 0.226 0.264 0.226 0.264 0.228 0.287 0.226 0.264 0.224 0.264 0.259 0.287 0.240 0.300

Electricity | 0.152 0.248 0.164 0.261 0.161 0.261 0.185 0.284 0.159 0.253 0.181 0.279 0.162 0.256 0.156 0.253 0.192 0.295 0.166 0.264
Traffic 0.370 0.233 0.397 0.282 0.391 0.278 0.409 0.279 0.391 0.264 0.523 0.284 0.452 0.283 0.396 0.270 0.620 0.336 0.434 0.295
Solar 0.182 0.213 0.200 0.260 0.185 0.254 0.193 0.252 0.194 0.245 0.191 0.242 0.223 0.264 0.228 0.282 0.244 0.334 0.247 0.309
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Short-term Forecasting For short-term forecasting, we conduct experiments on the PeMS
datasets ( ), which the complex spatiotemporal dependencies of urban transportation
networks. The lookback window is set to 96 for all baseline models.

Some models, including PatchTST ( ) and DLinear ( ), achieve strong
performance in long-term forecasting using channel-independent technique. However, these models
show significant performance drops on the PeMS dataset. This because this dataset has strong cross-
variable correlations. In contrast, our model maintains robust performance on this challenging task.
As shown in Tab. 3, TiF consistently outperforms all baseline models, demonstrating its effectiveness
in capturing complex spatiotemporal dependencies.

Table 3: Average results for all models across four short-term forecasting datasets. This table provides a
summary of the full results presented in the Appendix. Best results are bold on a pale gold background; second-
best are underlined on a light green background. Lower values indicate better performance.

TiF DUET iTransformer ~ Leddam SOFTS PatchTST Crossformer TimesNet TiDE DLinear
Model (Ours) (2025) ( ) ( ) (2024) (2023) (2023) (2023) (2023) (2023)

MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE
PeMSO3\0.082 0.186\0.086 0.192\0.096 0.204\0.101 0.210\0.087 0.192\0.151 0.265\0.138 0.253\0.119 0.271 \0,271 0.380\0.219 0.295
PeMSO4‘0.087 0.190‘()‘096 0203‘0‘098 0.207 ‘0.102 ()213‘0‘091 0.196‘()‘162 0273‘0‘145 0267‘0‘109 0.220‘0.307 0405‘0‘236 0.350

PeMS07 ‘ 0.069 0.161 ‘ 0.076 0.176 ‘ 0.088 0.190 ‘ 0.087 0.192 ‘ 0.075 0.173 ‘0.166 0.270 ‘ 0.181 0.272 ‘ 0.106 0.208 ‘ 0.297 0.394 ‘ 0.241 0.343

PeMS08]0.091 0.186]0.096 0.192|0.127 0.212]0.102 0.211]0.114 0.208]0.238 0.289|0.232 0.270|0.150 0.244]0.347 0.421]0.281 0.366

Table 4: Ablation study. Best results in Ablation Study To validate the effectiveness of our
bold, second-best underlined. proposed backbone and architecture, we conduct a com-
Model TiF wio AT wio SA prehensive ablation study on representative datasets, as
shown in Tab. 4. Specifically, we evaluate the impact of
Adaptive Truncation (AT) and Selective Activation (SA)
ETTml 0341 0.367 0347 0369 0.354 0376 on the ETTm] and ETThl datasets. The experimental
ETThI 0393 0417 0402 0422 0403 0423 Tresults demonstrate that both components are essential
———— for achieving optimal performance. Subsequently, we as-
sess the contributions of Local Spatial (LS) and Global
Metric  MSE MAE MSE MAE MSE MAE Spatial (GS) information on the PeMS03 and PeMS08
PeMSO3 0.082 0.186 0094 0.199 0087 0193 datasets. The experimental results confirms that both lo-
——— cal and global spatial modeling are crucial for effective
spatiotemporal modeling.

Metric MSE MAE MSE MAE MSE MAE

Model TiF w/o LS w/o GS

PeMS08 0.091 0.186 0.101 0.197 0.098 0.194

Efficiency Analysis We comprehensively Traffic
compare the forecasting performance, training ' 670MB 26ms |
speed, and memory consumption of our model ~ °%"® PatchTST
against other baseline models, where lookback oo~ '#eHe2eme pimesNet ~ Memory Usage (M)
window and forecast horizon are both set to o1z ‘
96. As shown in Fig. 4, TiF outperforms other ¥,
Transformer-based and CNN-based models in - 7194MB 112ms 3047048 926ms
terms of model efficiency. buET

0.250 16990MB 235ms

0.225 2096MB 48ms ‘

’ TiF (Ours)
6 CONCLUSION 020000 o' 300 400 600 800 000 1200 1400

Training Time (ms/iter)
Figure 4: Model efficiency comparison on the Traffic
Limitations While our model achieves state-  dataset in terms of MAE and training time.
of-the-art performance in multivariate time se-
ries forecasting, three key limitations remain: (1) reduced effectiveness on highly irregular or event-
driven sequences, and (2) untested performance on other time series tasks such as imputation, clas-
sification, and anomaly detection.

Broader Impact Our work delivers tangible benefits, including better forecasting performance
and potential improvement in resource allocation across various domains. However, potential risks
include perpetuation of historical information biases , and over-reliance on automated forecasting in
the absence of adequate human oversight. We encourage ongoing research to address these concerns
while maximizing the positive impact of advanced forecasting capability.
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7 ETHICS STATEMENT

This work does not involve human subjects, does not raise concerns regarding data privacy, bias,
fairness, or potential harmful applications, and does not present conflicts of interest or legal com-
pliance issues. The research methodology and findings do not pose ethical concerns that require
additional consideration beyond standard academic practices.

8 REPRODUCIBILITY STATEMENT

To ensure reproducibility of our results, we provide the following resources: (1) complete imple-
mentation details and hyperparameters are described in Section 5 and Appendix C; (2) all datasets
used in our experiments are publicly available and properly cited with access information provided
in Section 5 and Appendix B; (3) theoretical proofs and derivations are included in Section 3; and
(4) source code will be made available upon publication to facilitate replication of our experimental
results.
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