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ABSTRACT

Artificial neural networks suffer from catastrophic forgetting when they are se-
quentially trained on multiple tasks. To overcome this problem, there exist many
continual learning strategies. One of the most effective is the hypernetwork-based
approach. The hypernetwork generates the weights of a target model based on
the task’s identity. The model’s main limitation is that hypernetwork can produce
completely different nests for each task. Consequently, each task is solved sepa-
rately. The model does not use information from the network dedicated to previ-
ous tasks and practically produces new architectures when it learns the subsequent
tasks. To solve such a problem, we use the lottery ticket hypothesis, which pos-
tulates the existence of sparse subnetworks, named winning tickets, that preserve
the performance of a full network.
In the paper, we propose a method called HyperMask, which trains a single net-
work for all tasks. Hypernetwork produces semi-binary masks to obtain target
subnetworks dedicated to new tasks. This solution inherits the ability of the hy-
pernetwork to adapt to new tasks with minimal forgetting. Moreover, due to the
lottery ticket hypothesis, we can use a single network with weighted subnets ded-
icated to each task.

1 INTRODUCTION
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Figure 1: Commonly, the parameters of a neural net-
work are directly adjusted from data to solve a task.
In HyperMask hypernetwork maps embedding vectors
ei to semi-binary mask, which produces a subnetwork
dedicated to the target network to solve the i–th task.

Learning from a continuous data stream
is challenging for deep learning mod-
els. Artificial neural networks suffer
from catastrophic forgetting (McCloskey
& Cohen, 1989) and drastically forget pre-
viously known information upon learn-
ing new knowledge. Continual learning
(CL) Hsu et al. (2018) effectively learns
consecutive tasks, preventing forgetting
already learned ones. Continuous learning
is a rapidly developing field of machine
learning that utilizes various techniques.
Regularization-based methods (Kirkpatrick et al., 2017; Chaudhry et al., 2020; Jung et al., 2020;
Titsias et al., 2019; Mirzadeh et al., 2020) aim to keep the learned information about previous tasks
by regularizing it to previous weights. Rehearsal-based methods Rebuffi et al. (2017); Chaudhry
et al. (2018); Saha et al. (2020) use a set of real or generated data from previous tasks. Architecture-
based approaches Mallya et al. (2018); Serra et al. (2018); Li et al. (2019); Wortsman et al. (2020);
Kang et al. (2022) suggest that interference between tasks can be reduced by using newly developed
architectural elements.

The hypernetwork von Oswald et al. (2019); Henning et al. (2021) approach is located at the cross-
roads of regularization-based and architecture-based approaches. A hypernetwork architecture Ha
et al. (2016) is a neural network that generates weights for a separate target network designated
to solve a specific task. In a continual learning setting, a hypernetwork generates the weights of
a target model based on the task identity. Such models can be considered an architecture-based

1



Under review as a conference paper at ICLR 2024

approach, since we build a new architecture for each task. On the other hand, we can treat hyper-
network like a regularization model. At the end of training, we have a single meta-model, which
produces dedicated weights. Due to the ability to generate completely different weights for each
task, hypernetwork-based models feature minimal forgetting. Unfortunately, such properties were
obtained by producing completely different architectures for substantial tasks. Only hypernetworks
uses information on tasks. Such a model can produce different nests for each task and solve them
separately. The hypernetwork cannot use the weight of the target network from the previous task.

To solve such a problem, we use the lottery ticket hypothesis (LTH) Frankle & Carbin (2018),
which postulates that we can find subnetworks named winning tickets with performance similar (or
even better) to the full architecture. However, the search for optimal winning tickets in continual
learning scenarios is difficult Mallya et al. (2018); Wortsman et al. (2020), as iterative pruning
requires repetitive pruning and retraining for each arriving task, which is impractical. Alternatively,
Winning SubNetworks (WSN) Kang et al. (2022) incrementally learns model weights and task-
adaptive binary masks. WSN eliminates catastrophic forgetting by freezing the subnetwork weights
considered important for the previous tasks and memorizing masks for all tasks.

Our paper proposes a method called HyperMask1 which combines hypernetwork and lottery ticket
hypothesis paradigms. Hypernetwork produces semi-binary masks to the target network to obtain
weighted subnetworks dedicated to new tasks; see Fig. 1. The masks produced by the hypernetwork
modulate the weights of the main network and act like dynamic filters, enhancing the target weights
that are important for a given task and decreasing the importance of the remaining weights. In conse-
quence, we work on a single network with subnetworks dedicated to each task and we do not need to
freeze any part of this model. When HyperMask learns a new task, we reuse the learned subnetwork
weights from the previous tasks. HyperMask also inherits the ability of the hypernetwork to adapt
to new tasks with minimal forgetting. We produce a semi-binary mask directly from the trained task
embedding vector, which creates a dedicated subnetwork for each dataset.

To the best of our knowledge, our model is the first architecture-based CL model that uses hy-
pernetwork, or, in general, any meta-model, for producing masks for other networks. Updates of
hypernetworks are prepared not directly for the weights of the main model, like in von Oswald et al.
(2019), but for masks dynamically filtering the target model.

Our contributions can be summarized as follows:

• We propose a method that uses the hypernetwork paradigms for modeling the lottery ticket-
based subnetwork. The hypernetwork modulates the weights of the main model instead of
their direct preparation as in von Oswald et al. (2019).

• HyperMask inherit the ability to reuse weights from the lottery ticket module and adapt to
new tasks from the hypernetwork paradigm.

• The semi-binary mask of HyperMask helps the target network to discriminate classes in
consecutive CL tasks, see Fig. 3.

2 RELATED WORKS

Continual learning Typically, continual learning approaches are divided into three main cat-
egories: regularization, dynamic architectures, and replay-based techniques (Parisi et al., 2019;
De Lange et al., 2021; Wang et al., 2023).

Regularization-based techniques expand the loss function by using regularization terms that control
the distance between optimal parameters from the previous task and the new one. We hypothesize
that the best parameters for a new task can be located in the neighborhood of nest parameters from
prior tasks. In the case of weight regularization, we regularize the variation of the most important
network parameters. In EWC (Kirkpatrick et al., 2017; Ritter et al., 2018), the importance is ex-
pressed by the Fisher information matrix. SI (Zenke et al., 2017) approximates the contribution
of the parameter to the total loss variation and its update length throughout the training trajectory.
MAS (Aljundi et al., 2018) accumulates importance measurements based on the sensitivity of pre-
dictive results to changes in parameters, both online and unsupervised.

1The source code is available at https://github.com/...
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In the case of function regularization, we use the regularization term not on weights but on the inter-
mediate or final output of the prediction function. In the learning without forgetting paradigm (LwF)
(Li & Hoiem, 2017), we use distillation loss to compare new task outputs generated by the new and
old models. LwM (Dhar et al., 2019) takes advantage of attention maps for training samples. EBLL
(Jung et al., 2020) learns task-specific autoencoders and prevents changes in feature reconstruction.
In CW-TaLaR (Mazur et al., 2022), we use the Cramer-Wold distance Knop et al. (2020) between
two probability distributions defined in a target layer of an underlying neural network shared by all
tasks.

Rehearsal-based approaches store information about data for training previous tasks and replay them
to prevent catastrophic forgetting. In experience replay, we typically store a few old training samples
within a small memory buffer. Reservoir Sampling (Riemer et al., 2018; Chaudhry et al., 2019)
randomly selects a fixed number of old training samples obtained from each training batch. A Ring
Buffer (Lopez-Paz & Ranzato, 2017) guarantees that the same amount of old training samples is
present for each class. Mean-of-Feature (Rebuffi et al., 2017) selects a similar number of old training
samples that are closest to the mean of the features of each class. In generative replay or pseudo-
rehearsal, we train an additional generative model to replay generated data. DGR (Shin et al., 2017)
provides an initial framework for data sampling from the old generative model to inherit previously
learned knowledge. MeRGAN (Wu et al., 2018) enforces the consistency of the generated data with
the same random noise between the old and new generative models, similar to the role of function
regularization.

Architecture-based approaches use dynamic architectures that dedicate separate model branches to
different tasks. These branches can be developed incrementally, such as in the case of Progressive
Neural Networks Rusu et al. (2016). The architecture of a system can be optimized to enhance
parameter effectiveness and knowledge transfer, for example, by reinforcement learning (RCL (Xu
& Zhu, 2018), BNS (Qin et al., 2021)), architecture search (LtG (Li et al., 2019), BNS (Qin et al.,
2021)), and variational Bayesian methods (BSA (Kumar et al., 2021)). Alternatively, a static archi-
tecture can be reused with iterative pruning as proposed by PackNet (Mallya & Lazebnik, 2018) or
by the application of Supermasks (Wortsman et al., 2020).

Pruning-based Continual Learning Most architecture-based methods use additional memory to
obtain better performance of continual learners. In the pruning-based method, we build computa-
tionally efficient and memory-efficient strategies.

CLNP (Golkar et al., 2019) freezes the most significant neurons for a given task. Then, we reini-
tialize weights that were not selected for future task training. Piggyback (Mallya et al., 2018) uses
a pre-trained model and task-specific binary masks. This technique has limited knowledge transfer
since we retrain the binary masks for each task. Consequently, the approach’s effectiveness largely
depends on the caliber of the backbone model. HAT (Serra et al., 2018) uses task-specific learnable
attention vectors to recognize significant weights for each task.

LL-Tickets (Chen et al., 2020) show that we can find a subnetwork, referred to as lifelong tickets,
that performs well on all tasks during continual learning. If the tickets cannot work on the new
task, the method looks for more prominent tickets from the existing ones. However, the LL-Tickets
expansion process is made up of a series of retraining and pruning steps.

In Winning SubNetworks (WSN) Kang et al. (2022), authors propose to jointly learn the model and
task-adaptive binary masks dedicated to task-specific subnetworks (winning tickets). Unfortunately,
WSN eliminates catastrophic forgetting by freezing the subnetwork weights for the previous tasks
and memorizing masks for all tasks.

This paper proposes the next step toward producing a sparse subnetwork for continual learning.
Instead of the classical binary mask and freezing strategy, we use the hypernetwork paradigm. The
hypernetwork generates a semi-binary mask to a target model based on the task embedding.

Hypernetworks for continual learning A hypernetwork architecture Ha et al. (2016) is a neural
network that generates a vector of weights for a separate target network designated to solve a spe-
cific task. Hypernetworks are widely used, , e.g., generative models Spurek et al. (2020), implicit
representation Szatkowski et al. (2023) and few-shot learning Sendera et al. (2023).
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In a continuous learning environment, a hypernetwork generates the weights of a target model based
on the task’s identity. HNET von Oswald et al. (2019) uses task embeddings to produce weights
dedicated to each task. HNET can be seen as an architecture-based strategy as we create a distinct
architecture for each task, but it can also be viewed as a regularization model. After training, a sin-
gle meta-model is left, which produces specialized weights. Thanks to the possibility of generating
completely different weights for each task, hypernetwork-based models demonstrate minimal forget-
ting. However, this advantage leads to difficulty with forward/backward transfers. Hypernetworks
can generate different nests for tasks and solve them independently. Consequently, the hypernetwork
may have problems using the previously learned knowledge to solve a new task. In Henning et al.
(2021), authors propose a Bayesian version of the hypernetworks in which they produce parameters
of the prior distribution of the Bayesian network.

3 HYPERMASK: ADAPTIVE HYPERNETWORKS FOR CONTINUAL LEARNING

This section describes our hypernetwork-based continual learning method called HyperMask. In
HyperMask, the hypernetwork returns semi-binary masks to produce weighted subnetworks dedi-
cated to new tasks. This solution inherits the ability of the hypernetwork to adapt to new tasks with
minimal forgetting. Moreover, we can use a single network with weighted subnets dedicated to each
task thanks to the lottery ticket hypothesis.

Problem statement Let us consider a supervised learning setup where T tasks are derived to a
learner sequentially. We denote that Xt = {xi,t}nt

i=1 is the dataset for the task t, composed of nt

elements of raw instances and Yt = {yi,t}nt
i=1 are the corresponding labels. Data from all tasks we

denote by Dt = (Xt, Yt) ⊂ X × Y . We assume a neural network f(·;θ), parameterized by the
model weights θ and the standard continual learning scenario

θ∗ = minimizeθ
1

nt

nt∑
i=1

L (f(xi,t;θ)) ,

where L(·, ·) is a classification objective loss such as the cross-entropy loss. Dt for task t is only
accessible when learning task t, but repetition-based continual learning methods allow memorization
of a small portion of the dataset to replay. We further assume that task identity is given in both the
training and testing stages, except for the additional series of experiments.

To provide space for learning future tasks, a continuing learner often adopts over-parameterized deep
neural networks. We can find subnets with equal or better performance assuming overly parametric
depth neural networks. In our model, we use a hypernetwork paradigm to produce subnets.

Hypernetwork Hypernetworks, introduced in Ha et al. (2016), are defined as neural models that
generate weights for a separate target network solving a specific task. Before we present our solu-
tion, we describe the classical approach to using hypernetworks in CL. A hypernetwork generates
individual weights for all tasks in a continual learning setting. In HNET von Oswald et al. (2019);
Henning et al. (2021) the authors propose using trainable embeddings et ∈ RN , for t ∈ {1, ..., T},
and the hypernetwork H with weights Φ generating weights θt for the target network f dedicated
to the t–th task

H(et;Φ) = θt.

HNET meta-architecture (hypernetwork) produces different weights for each continual learning
task. We have the function fθt

: X → Y (a neural network classifier with weights θt), which
takes elements from a continuous learning dataset and predicts labels.

The target network is not trained directly. In HNET, we use a hypernetwork HΦ : RN ∋ et → θt,
which for a task embedding et returns weights θt to the corresponding target network fθt : X → Y .
Thus, each continual learning task is represented by a function (classifier)

f(·;θt) = f(·;H(et;Φ)).

At the end of training, we have a single meta-model, which produces dedicated weights. Due to the
ability to generate completely different weights for each task, hypernetwork-based models feature
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minimal forgetting. Hypernetworks can produce different nests for each task and solve them sepa-
rately. We practically produce a new architecture when we update the prior task. To solve such a
problem, we use the lottery ticket hypothesis, which postulates the existence of sparse subnetworks,
named winning tickets, that preserve the performance of a full network.

Algorithm 1: The pseudocode of HyperMask.
Input: hypernetworkH with weights Φ,

target network f with weights θ,
sparsity p ≥ 0, regularization strength
β > 0, and λ > 0, n training
iterations, datasets {D1, D2, ..., DT },
(xi,t, yi,t) ∈ Dt, t ∈ {1, ..., T}

Output: updated hypernetwork weights Φ,
updated target network weights θ

1 Initialize randomly weights Φ and θ with
embeddings {e1, e2, ..., eT };

2 for t← 1 to T do
3 if t > 1 then
4 θ∗ ← θ;
5 for t′ ← 1 to t− 1 do
6 Store mt′ ← H(et′ , p;Φ);
7 end
8 end
9 for i← 1 to n do

10 mt ← H(et, p;Φ);
11 θt ←mt ⊙ θ;
12 ŷi,t ← f(xi,t;θt);
13 if t = 1 then
14 L ← Lcurrent;
15 end
16 else
17 L ←

Lcurrent+β·Loutput+λ·Ltarget;
18 end
19 Update Φ and θ;
20 end
21 Store et;
22 end

HyperMask – overview Now we are ready
to present HyperMask. Our approach uses hy-
pernetwork to produce semi-binary masks for
the target network.

We use the tanh activation function on the out-
put of Hypernetwork. Then, we select the
p% weights with the highest weight scores,
where p is the ratio of target layer capacity
and c(p, i, t;x) is a threshold value for the i-
th iteration of the t-th task for a given net-
work layer x and t ∈ {1, ..., T}. The selection
of weights are represented by a task-dependent
semi-binary weight mask mt, where an abso-
lute value greater than the threshold denotes
that the weight is taken into account during the
forward pass and zero otherwise. Formally, mt

is obtained by applying an indicator function
σp(·; ·) to a weight w which is an element of x
representing a single layer of the hypernetwork
H output

σp(w;x) =

{
0 if |w| ≤ c(p, i, t;x),
w otherwise.

Additionally, the ratio p is constant starting
from the second task but, for the first trained
task, is gradually increased from 0 to p

c(p, i, t;x) =

{
P (p; |x|) if t > 1,
P ( i

n · p; |x|) otherwise.

Each task is trained through n iterations. The
absolute value of consecutive weights of x is
calculated element-wise. P (p; |x|) represents
the p-th percentile of the set of absolute values
of a given mask layer.

HyperMask uses trainable embeddings et ∈ RN for t ∈ {1, ..., T}, threshold level p and hypernet-
work H with weights Φ generating a semi-binary mask mt with p% zeros for the target network
weights θ dedicated to each task

H(et, p;Φ) = σp(:,H(et;Φ)) = mt;

σp(:, ·) means that the indicator function is applied for all values at the output ofH.

In HyperMask, we have two trainable architectures. Hypernetwork H has trainable parameters
Φ, and the target network has trainable parameters θ. Meta-architecture (hypernetwork) produces
different semi-binary masks for each continual learning task.

More precisely, we model the function fθ : X → Y with general weights θ dedicated to all tasks.
The target network is trained with a classical cross-entropy cost function. We simultaneously train
a hypernetwork HΦ : RN ∋ et →mt, which for a task embedding et returns semi-binary mask
mt to the corresponding target network weights θ. Thus, each continual learning task is represented
by a function (classifier)

f(·;θ ⊙mt) = f(·;θ ⊙H(et, p;Φ)),

where ⊙ is element-wise multiplication.
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In the training procedure, we have added two regularization terms. The first one is output regularizer
proposed by Li & Hoiem (2017):

Loutput =

T−1∑
t=1

|Xt|∑
i=1

∥f(xi,t;θ
∗ ⊙mt)− f(xi,t;θ ⊙mt)∥2,

where θ∗ is the set of the target network parameters before attempting to learn task T .

This solution is not only expensive in terms of memory but also does not follow the online learning
paradigm adequately. But hypernetworks von Oswald et al. (2019); Henning et al. (2021) avoid this
problem. Task-conditioned hypernetworks produce an output depending on the task embedding. We
can compare the fixed hypernetwork output produced before learning task T with weights Φ∗ with
the output after a current proposition of hypernetwork weight modifications ∆Φ, according to the
cross-entropy loss. The difference between HyperMask and von Oswald et al. (2019) relies on the
fact that we just regularize masks dedicated to consecutive continual learning tasks and the target
weights have to work in general, while von Oswald et al. (2019) regularize weights that are further
directly placed in the target network.

Finally, in HyperMask, the output regularization loss is given by:

Loutput(Φ
∗,Φ,∆Φ, {et}) =

1

T − 1

T−1∑
t=1

∥H(et, 0;Φ∗)−H(et, 0;Φ+∆Φ)∥2,

where ∆Φ is considered fixed. We do not sparse the hypernetwork weights at this stage, i.e. p = 0.

Table 1: Average accuracy with a standard deviation of different
continual learning methods. We obtained better results than two
of our main baselines: WSN and HNET. Moreover, we have the
the best results on CIFAR-100 and Tiny ImageNet and second
scores in Permuted MNIST and Split MNIST. Results for differ-
ent methods than HyperMask are derived from other papers.
∗ − model trained on ResNet-20 architecture;
∗∗ − model trained on ZenkeNet architecture.

Method Permuted MNIST Split MNIST Split CIFAR-100 Tiny ImageNet

HAT 97.67 ± 0.02 − 72.06 ± 0.50 −
GPM 94.96 ± 0.07 − 73.18 ± 0.52 67.39 ± 0.47
PackNet 96.37 ± 0.04 − 72.39 ± 0.37 55.46 ± 1.22
SupSup 96.31 ± 0.09 − 75.47 ± 0.30 59.60 ± 1.05
La-MaML − − 71.37 ± 0.67 66.99 ± 1.65
FS-DGPM − − 74.33 ± 0.31 70.41 ± 1.30

WSN, c = 3% 94.84 ± 0.11 − 70.65 ± 0.36 68.72 ± 1.63
WSN, c = 5% 95.65 ± 0.03 − 72.44 ± 0.27 71.22 ± 0.94
WSN, c = 10% 96.14 ± 0.03 − 74.55 ± 0.47 71.96 ± 1.41
WSN, c = 30% 96.41 ± 0.07 − 75.98 ± 0.68 70.92 ± 1.37
WSN, c = 50% 96.24 ± 0.11 − 76.38 ± 0.34 69.06 ± 0.82
WSN, c = 70% 96.29 ± 0.00 − − −

EWC 95.96 ± 0.06 99.12 ± 0.11 72.77 ± 0.45 −
SI 94.75 ± 0.14 99.09 ± 0.15 − −
DGR 97.51 ± 0.01 99.61 ± 0.02 − −
HNET+ENT 97.57 ± 0.02 99.79 ± 0.01 − −

HyperMask (our) 97 .66 ± 0 .04 99 .64 ± 0 .07
77.34 ± 1.94∗

76.22 ± 1.06∗
73.58 ± 0.30∗∗

Moreover, we have added classi-
cal L1 regularization on the tar-
get network weights

Ltarget(θ
∗
t ,θt) = ∥θ∗

t − θt∥1,

where θ∗
t is the set of target net-

work parameters before attempt-
ing to learn task T . Option-
ally, we can multiply Ltarget

by the hypernetwork-generated
mask (masked L1) to ensure that
the most important target net-
work weights will not be dras-
tically modified while the other
ones will be more susceptible to
modifications. In such a case

Ltarget(θ
∗
t ,θt,mt)

= mt ⊙ ∥θ∗
t − θt∥1.

During hyperparameter opti-
mization, we compared two
variants of Ltarget, i.e. masked
and non-masked L1. A conclu-
sive choice is dependent on the
considered dataset.

The final cost function consists of the classical cross-entropy Lcurrent, output regularization
Loutput, and target layer regularization Ltarget

L = Lcurrent + β · Loutput + λ · Ltarget,

where β and λ are hyperparameters that control the strength of regularization.

4 EXPERIMENTS
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Figure 2: Visualization of mean accuracy (with 95% confidence intervals) for Permuted MNIST for
10 and 100 tasks and Split MNIST for 5 tasks. The blue lines represent test accuracy calculated
after training consecutive models, while the orange lines correspond to test accuracy after finishing
all CL tasks. The decrease in accuracy for 10-task Permuted MNIST and Split MNIST is very small.
In the Permuted MNIST 100-task case, the mean accuracy equals 95.92± 0.18.
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Figure 3: Visualization of a target network’s output classifi-
cation layer activations in two scenarios. On the left hand,
we used a target network weighted by a semi-binary mask
(HyperMask). On the right side, we used only the target net-
work without a mask produced by the hypernetwork. In the
first case, data sample classes are separated; in the second
case, only samples from the first task are distinguished.

This section presents a numerical
comparison of our model with a few
baseline solutions. We analyzed task-
incremental continual learning with a
multi-head setup for all the experi-
ments. We followed the experimental
setups from recent works Saha et al.
(2020); Yoon et al. (2020); Deng et al.
(2021).

Architecture We used two-layered
MLP with 100 neurons per layer for
Permuted MNIST and Split MNIST.
For Split CIFAR-100, we used
ResNet-20 and ZenkeNet (Zenke
et al., 2017) and for Tiny ImageNet
we applied ResNet-20.

Baselines We compared our solution with two natural baselines: WSN Kang et al. (2022) and
HNET von Oswald et al. (2019). WSN used the lottery ticket hypothesis, while HNET used the
hypernetwork paradigm. We also added a comparison with strong CL baselines from different cat-
egories. In particular, we used regularisation-based methods: HAT Serra et al. (2018) and EWC
Kirkpatrick et al. (2017), rehearsal-based methods like GPM Saha et al. (2020) and FS-DGPM Deng
et al. (2021), a pruning-based method like PackNet Mallya & Lazebnik (2018) and SupSup Worts-
man et al. (2020), and a meta learning approach like La-MAML Gupta et al. (2020).

Experimental setting We used the experimental setting from WSN Kang et al. (2022) and HNET
von Oswald et al. (2019). We did not change the original architectures provided by the authors.
Some results in the tables were directly taken from papers.

Numerical comparison We evaluated our algorithm on four standard benchmark datasets: Per-
muted MNIST, Split MNIST, Split CIFAR-100, and TinyImageNet Le & Yang (2015). In Tab. 1,
we compared HyperMask with the state-of-the-art models. The most important conclusion is that
we obtained better results than two of our main baselines: WSN and HNET. Moreover, we had the
second score in Permuted MNIST and Split MNIST. In the case of Permuted MNIST, our exact re-
sult was equal to 97.664, so it was only 0.006 smaller than HAT. In the case of CIFAR-100, we had
the best score when we used ResNet-20 and about 4% less for ZenkeNet. Using ResNet-20, we out-
performed all reference methods in Tiny ImageNet by over 4%. However, in WSN, La-MaML and
FS-DPGM, authors used an architecture with four convolutional and three fully-connected layers.

Influence of semi-binary mask on classification task In this subsection, we show that the semi-
binary mask of HyperMask helped the target network to discriminate classes in consecutive CL
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Figure 5: Mean test accuracy for consecutive CL tasks averaged over five runs of the best architecture
settings of HyperMask (left side) and the default setting of HNET (right side) for ten tasks of the
Permuted MNIST dataset. Training of subsequent tasks leads to a slight decrease in the overall
accuracy of the previous tasks, but, in general, HyperMask achieves higher accuracy for more recent
tasks while HNET is more powerful for the first tasks.

tasks. To visualize such properties, we considered the Permuted MNIST dataset (results for other
datasets we included in Appendix). We took the fully-trained model and collected activations of the
classification layer of the target network. In Fig. 3, we present t-SNE two-dimensional embeddings
obtained from the set of activations containing all data samples from 10 tasks. Values were calcu-
lated for an exemplary model that achieved 97.72% overall accuracy after 10 CL tasks. The results
for a tandem hypernetwork and target network (like in HyperMask) are presented on the left side.
On the right side is shown a situation in which a mask from the hypernetwork was not applied to the
target network trained in HyperMask. In the first case, data sample classes are clearly separated; in
the second case, only samples from the first task are distinguished. The remaining data samples form
one cluster in the embedding space. Interestingly, data from the first task are separated from samples
from all subsequent tasks, which indicates that the first task plays a special role for HyperMask.
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Figure 4: Visualization of sta-
bility of HyperMask. We ob-
tained similar results for dif-
ferent hyperparameters.

Forgetting of previous tasks The HNET models produce com-
pletely different weights for each task. In consequence, they
demonstrate minimal forgetting. HyperMask models inherit such
ability thanks to generating different masks for each task. To vi-
sualize such properties. we present in Fig. 2 mean accuracy (with
95% confidence intervals) for the best setting of HyperMask for ten
tasks of the Permuted MNIST dataset (left side) and five tasks of the
Split MNIST dataset (right side). The blue lines represent test accu-
racy calculated after training consecutive models, while the orange
lines correspond to test accuracy after finishing all CL tasks. The
decrease in accuracy is very small, and the confidence intervals al-
most overlap, suggesting a very limited negative backward transfer.
In Fig. 5, we present a comparison of our HyperMask and HNET in
terms of test accuracies for CL tasks after consecutive training ses-
sions. Both methods suffer from performance drops only slightly.

However, HyperMask is the most efficient for the first and the more recent tasks while the accuracy
of HNET decreases smoothly with subsequent tasks.

Interestingly, HyperMask preserves the accuracy on the first task even after training of many subse-
quent ones. It is clearly visible in Fig. 2 where results for 100-task Permuted MNIST are presented.
Even after training of the next 99 tasks, HyperMask has similar test accuracy on the first task to the
accuracy calculated just after its training. Then, a performance drop typical for continual learning
methods may be observed. It may indicate that the tandem of hyper- and the target network is getting
used to the first task which strongly affects the behavior of weights.

Stability of HyperMask model HyperMask models have a similar number of hyperparameters
as HNET. The most critical parameters are β and λ, which control regularization strength. We
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also use a parameter describing the level of zeros in a semi-binary mask and we define whether
masked or non-masked L1 has to be used. Masked L1 means that Ltarget was multiplied by the
hypernetwork-generated mask while non-masked L1 denotes the opposite case. In Fig. 4, we present
mean test accuracy (with 95% confidence intervals) for five runs of the selected architecture settings
of HyperMask, for ten tasks of the Permuted MNIST dataset, calculated after training of all tasks.
The presented results indicate that a small change in hyperparameters does not cause a performance
drop. The blue line represents the best hyperparameter setting found.

Scenario with model’s task prediction We also evaluated HyperMask in a scenario in which task
identity is not directly given to the model but must be inferred by the network itself. Following von
Oswald et al. (2019), we prepared a task inference method based on the entropy values. After train-
ing for all tasks, consecutive data samples were propagated through the hyper- and target network
for different task embeddings. The task with the lowest entropy value of the classification layer’s
output in the target network was selected for the final calculations. Then, the classifier decision for
the corresponding embedding was considered.

Table 2: Mean overall accuracy (in %)
in a scenario where the model must rec-
ognize task identity. For HNET+ENT
and HyperMask, the inference is made
based on the entropy results. The pre-
sented results from methods different
than HyperMask are derived from von
Oswald et al. (2019).

Method Permuted MNIST Split MNIST

HNET+ENT 91.75 ± 0.21 69.48±0.80
EWC 33.88 ± 0.49 19.96±0.07
SI 29.31 ± 0.62 19.99±0.06
DGR 96.38 ± 0.03 91.79 ± 0.32

HyperMask 90.31 ± 1.36 85.80±3.08

Table 2 presents results for two datasets: Permuted
MNIST (10 tasks) and Split MNIST. HyperMask was
compared with its natural baseline, i.e. HNET+ENT von
Oswald et al. (2019), which has the same strategy adopted
for task inference. Also, the results for the three different
methods (EWC, SI and DGR) are shown. WSN in the pa-
per Kang et al. (2022) only realizes the strategy in which
the task identity is known in advance and the authors did
not describe a method for task inference. Therefore, we
did not evaluate WSN in the above scenario.

The results indicate that, in this strategy, for the two
datasets presented, the most competitive method is DGR.
Our main baseline, HNET+ENT, is slightly better than
HyperMask for Permuted MNIST (with 10 tasks) and
considerably worse for the Split MNIST dataset. For Hy-

perMask, we also calculated mean task prediction accuracy, which is equal to 90.30 ± 1.56 for
Permuted MNIST and 62.90 ± 5.83 for Split MNIST. The discussed scores indicate a potential of
HyperMask for task inference approaches, i.e. with another neural network for task prediction.

Limitations and future works One of the main limitations of HyperMask is the memory con-
sumption due to the fact that the hypernetwork output layer must have the same number of neurons
as the number of parameters in the target network. The chunking approach described in von Oswald
et al. (2019), in which the target’s weight values are generated by the hypernetwork partially, was not
adopted in HyperMask because it led to considerably worse results so far. However, this approach
should be analyzed thoroughly and may bring positive future results.

HyperMask may be considered in few-shot class incremental learning in which a model is trained
in a large number of base samples and then a small portion of samples representing new classes is
delivered to the model Kang et al. (2023). Due to the high accuracy of HyperMask on the first task
(despite many subsequent ones), our method may be very useful in this CL scenario.

5 CONCLUSION

We present HyperMask, a method that trains a single network for all tasks. The hypernetwork
produces semi-binary masks to generate target subnetworks tailored to new tasks. This approach
utilizes the hypernetwork’s capacity to adjust to new tasks with minimal forgetting. Also, due to the
lottery ticket hypothesis, we can use a single network with weighted subnets devoted to each task.

The experimental section shows that our model performs better than lottery ticket and hypernetwork
-based continual learning models. We also obtained comparable results to the state-of-the-art meth-
ods. We applied our method for multilayer perceptions and convolutional neural networks working
as classifiers. HyperMask also has a potential for application in strategies in which task identity has
to be inferred by the method and is not known a priori.
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A APPENDIX: BACKWARD TRANSFER

We used overall accuracy for the evaluation of backward transfer (BWT) for the selected CL meth-
ods: WSN Kang et al. (2022), HNET von Oswald et al. (2019) and HyperMask. BWT measures
forgetting previous tasks after learning the subsequent ones:

BWT =
1

T − 1

T−1∑
i=1

AT,i −Ai,i,
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where AT,i is the test accuracy for task i after training on task T , while Ai,i is the test accuracy for
task i just after training the model on this task. Negative BWT means that learning new tasks caused
the forgetting of past tasks. Zero BWT represents a situation where the accuracy of CL tasks did not
change after learning the new knowledge. Finally, positive BWT corresponds to the state in which
the model gained additional knowledge after learning the next tasks that improved the accuracy of
the previous CL tasks.

Table 3 presents mean backward transfer for 5 training runs of HNET+ENT and HyperMask for
three experiments: Permuted MNIST with 10 or 100 tasks and Split MNIST. By definition, WSN
remembers masks from the preceding tasks. Therefore, the backward transfer in this case is always
equal to zero. HNET and HyperMask achieved comparable and slightly negative values of BWTs for
Permuted MNIST on 10 tasks and Split MNIST. In the case of Permuted MNIST on 100 CL tasks,
we only have results for HyperMask. Despite a much larger number of tasks, the negative back-
ward transfer did not exceed 2%, which means that HyperMask is largely immune to catastrophic
forgetting.

Table 3: Mean backward transfer (in %) with standard deviation for different continual learning
methods.

Dataset Permuted MNIST Split MNIST
10 tasks 100 tasks

WSN, c = 30% 0.0 − −
HNET+ENT −0.018± 0.01 − −0.027± 0.07

HyperMask −0.025± 0.03 −1.791± 0.18 −0.009± 0.04

B APPENDIX: ARCHITECTURE DETAILS

We implemented HyperMask in Python 3.7.16 with the use of such libraries like hypnettorch
0.0.4 von Oswald et al. (2019), PyTorch 1.5.0, NumPy 1.21.6, Pandas 1.3.5, Matplotlib 3.5.3,
seaborn 0.12.2 and others. All network training sessions were performed using several NVIDIA
GeForce RTX 2080 Ti graphic cards.

We tried to implement hypernetwork / target network architectures close to the work presenting
HNET algorithm von Oswald et al. (2019), but for some hyperparameters, especially those present
only in HyperMask, we performed an intensive grid search optimization. In all cases, we did not
use chunked hypernetworks, i.e. we did not generate a mask in small pieces. It means that the
hypernetwork output layer always had such a number of neurons as the number of weights of the
target network. This is due to the fact that the size of the generated mask has to be the same as the
number of target network parameters. This solution is more memory expensive than the chunking
approach but it ensures higher classification accuracy in the case of HyperMask.

Permuted MNIST Final experiments on the Permuted MNIST dataset with 10 CL tasks were
performed using the following architecture. The hypernetwork had two hidden layers with 100
neurons per each. As the target network was selected a multilayer perceptron with two hidden
layers of 1000 neurons and ELU activation function with α hyperparameter regarding the strength
of the negative output equaling to 1. The size of the embedding vectors was set to 24. The sparsity
parameter p was adjusted to 0 and the regularization hyperparameters were as follows: β = 0.0005
and λ = 0.001. Furthermore, a masked L1 regularization was chosen. The training of models was
performed through 5000 iterations with a batch size of 128 and Adam optimizer with a learning
rate set to 0.001. Finally, models after the last training iterations were selected. The validation set
consisted of 5000 samples. The data was not augmented. The presented results are averaged over 5
training runs for different seed values. Also, the dataset was padded with zeros and the final size of
the MNIST images was 32× 32.

For 100 CL tasks, the hyperparameters were the same as above, but 3 training runs were performed.

To select the best hyperparameter set, we performed an intensive hyperparameter optimiza-
tion. In the final stage, we evaluated, in different configurations, various hypernetwork set-
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tings ([25, 25], [100, 100]), masked and non-masked L1 regularization, p ∈ {0, 30}, β ∈
{0.0005, 0.001, 0.0025, 0.005, 0.01, 0.1} and λ ∈ {0.0005, 0.001, 0.0025, 0.005, 0.01}.
In the initial experiments, we also considered hypernetworks having 2 hidden layers with 50 neurons
per each, embeddings of sizes 8 and 72, a learning rate of 0.0001, batch size of 64, β = 0.05,
λ ∈ {0.0001, 0.00001, 0.05} and p = 70.

Split MNIST For this dataset with 5 CL tasks, we applied data augmentation and trained models
through 2000 iterations. The best-performing model was composed of a hypernetwork with two
hidden layers with 25 neurons per each and a target network with two hidden layers consisting 400
neurons. We used β = 0.001 and a sparsity parameter p = 30. Furthermore, the embedding size was
128. In each task, 1000 samples were assigned to the validation set. The rest of the hyperparameters
were exactly the same as for the Permuted MNIST, i.e. we applied a masked L1 regularization with
λ = 0.001, ELU activation function with α = 1, Adam optimizer with a learning rate of 0.001 and
batch size of 128. Also, the mean results are averaged over 5 training runs.

During the hyperparameter optimization stage, we evaluated models with embedding sizes of
24, 72, 96 and 128, hypernetworks with hidden layers of shapes [10, 10], [25, 25] and [50, 50],
masked and non-masked L1 regularization, batch sizes of 64 and 128, β ∈ {0.001, 0.01}, p ∈
{0, 30, 70} and λ ∈ {0.0001, 0.001}.

CIFAR-100 In this dataset, we assumed 10 tasks with 10 classes per each. Another version of this
CL benchmark adopts CIFAR-10 and 5 tasks (i.e., 50 classes) of CIFAR-100 dataset, like in von
Oswald et al. (2019). However, we selected the first scenario, similarly as in Kang et al. (2022).

We performed experiments for two different convolutional target networks: ResNet-20 and
ZenkeNet. The first of them was similar to the network considered in von Oswald et al. (2019)
but it was slightly shorter, while the second one was more similar to AlexNet used in Kang et al.
(2022). ZenkeNet was even a less sophisticated architecture than AlexNet.
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Figure 6: t-SNE embeddings of features extracted from all data samples of 10 tasks of the Permuted
MNIST dataset, created similarly as presented in Fig. 3, but the samples are labelled relative to
the CL tasks. On the left column, results for HyperMask (i.e. hypernetwork and target network) are
shown. On the right column are presented only results for the target network, without the application
of a mask from hypernetwork. The plots clearly indicate that samples from the first task form a
separate structure in the data space. Even when the classical version of HyperMask is used, the first
task plays a particular role.

In more detail, we selected a ResNet architecture containing 20 layers with 9 residual blocks and
a widening factor equal to 2, which means doubling the convolutional filters. During the hyper-
parameter optimization, we also considered a narrower architecture as well as shorter and longer
ResNets (up to 32 layers) but they were less promising than a 20-layer network. Also, batch nor-
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Figure 7: t-SNE embeddings of features extracted from all data samples of 5 tasks of the Split
MNIST dataset. Values were taken from the classification layer of the target network for an exem-
plary model that achieved 99.76% overall accuracy after 5 CL tasks. On the left column, results for
a tandem hypernetwork and target network (like in HyperMask) are presented. On the right column
is shown a mask from hypernetwork that was not applied to the target network while it trained in
tandem in HyperMask. In the first case, classes form different clusters, especially the pairs of classes
that were mutually compared in consecutive CL tasks (0 and 1, 2 and 3, etc.). In the second case,
only 0’s and 1’s are separated while the remaining data samples are mixed in the embedding sub-
space. Furthermore, in this situation, data from the first task form a separate cluster which suggests
that it mainly defines the structure of the data space.

malization was used (these layers were excluded from multiplying by hypernetwork-based masks).
Batch statistics were calculated even during the evaluation, i.e. parameters were not stored after
consecutive CL tasks.

ZenkeNet was a convolutional neural network described in Zenke et al. (2017). It consisted of two
blocks of two convolutional layers containing 32 and 64 filters, respectively. Each block was finished
by a single max pooling layer. Finally, the network had two fully connected layers with 512 and 10
neurons, respectively.

During the hyperparameter optimization for ZenkeNet, we compared models having embedding size
set to 48, a hypernetwork with one hidden layer with 100 neurons, trained with Adam optimizer us-
ing a learning rate of 0.001 and batch size of 32. A non-masked L1 regularization was selected as the
more promising. Furthermore, we evaluated β ∈ {0.01, 0.1, 1} and λ ∈ {0.01, 0.1, 1}. The dataset
was augmented, and in the validation set were 500 samples. Furthermore, the sparsity parameter p
was set to 0. It is worth emphasizing that the lack of data augmentation led to significantly lower
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Figure 8: Mean test accuracy for consecutive CL tasks, averaged over 5 runs of the best architecture
settings of HyperMask (left side) and the default setting of HNET (right side) for 5 tasks of the Split
MNIST dataset. Similarly, as for the Permuted MNIST, the performance drops after consecutive CL
tasks are slight. Interestingly, the second and the last tasks (i.e., classification of numbers 2 and 3 or
numbers 8 and 9, respectively) are the most challenging for both methods.

accuracy than in the opposite case. The network training was performed through 200 epochs and the
best model was chosen based on the validation loss. Also, a learning rate scheduler was applied, i.e.
after five consecutive epochs without improvement, the learning rate was multiplied by

√
0.1. In the

case of ZenkeNet, for the final experiments, β = 0.01 and λ = 0.01 were selected.

For the ResNet, most of the hyperparameters were the same as for ZenkeNet, excluding β = 0.01
and λ = 1.

Tiny ImageNet In this case, we divided the dataset randomly into 40 tasks with 5 classes, simi-
larly to Kang et al. (2022). We assumed the same training strategy, i.e. we learned each task through
10 epochs and the validation set consisted of 250 samples. We performed experiments with ResNet-
20 architecture, which is explained in detail in the section devoted to CIFAR-100. However, in
WSN Kang et al. (2022), La-MaML Gupta et al. (2020) and FS-DPGM Deng et al. (2021) authors
used an architecture with four convolutional and three fully-connected layers. The best models were
chosen according to the values of the validation loss. We augmented the dataset using random crop-
ping and horizontal flipping. For the hypernetwork, we selected a multilayer perceptron with two
hidden layers of 100 neurons while the size of the task embedding vector was set to 96. Furthermore,
we used non-masked L1 regularization with β = 1 and λ = 0.1. Also, the sparsity parameter p was
adjusted to 0 in this case. We performed training with Adam optimizer with batch size set to 16 and
learning rate set to 0.0001. The learning rate scheduler was exactly the same as for CIFAR-100, i.e.
a patience step was equal to 5 epochs and the multiplication factor was

√
0.1.

In the hyperparameter optimization stage, we considered an order of magnitude greater learning rate,
i.e. 0.001, like in Kang et al. (2022), but it led to weaker results. Also, other sizes of embedding vec-
tors, consisting of 48 and 128 coordinates, were further from optimal solutions than 96. Similarly,
smaller hypernetworks, i.e., those consisting of two hidden layers with 10 neurons or one hidden
layer with 100 neurons, were rejected. We also tested a masked L1 regularization and lower values
of β and λ but stronger regularization is preferred for this target network architecture and such a
complicated dataset. For some solutions, p = 30 led to better solutions than p = 0, but finally, we
selected p = 0.

C APPENDIX: INFLUENCE OF SEMI-BINARY MASK ON CLASSIFICATION TASK

In the main paper, we showed that the semi-binary mask of HyperMask helps the target network to
discriminate classes in consecutive CL tasks. We considered the Permuted MNIST dataset to visu-
alize such properties (see Fig. 3). Now, in Fig. 6, we present plots for this dataset with data samples
labelled according to the CL task and present results on Split MNIST; see Fig. 7. Interestingly, even
when the mask was not applied, the first task was still solved correctly and the corresponding sam-
ples formed separate clusters. Furthermore, data from the first task form a separate structure in the
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embedding subspace, even when only the target network is applied. This suggests that the first task
is especially important. This observation is supported by the results presented in Fig.2, where the
classification accuracy for the first task remains high despite learning many subsequent CL tasks.

D APPENDIX: FORGETTING OF PREVIOUS TASKS

The HNET model produces completely different weights for each task. In consequence, it demon-
strates minimal forgetting. HyperMask model inherits such ability to minimize forgetting previous
tasks thanks to masks created by hypernetworks. To visualize such properties, we used the Permuted
MNIST dataset, see Fig. 5, to compare HyperMask with HNET. Now we show analogical results on
Split MNIST in Fig. 8. Both methods feature minimal forgetting after training of consecutive CL
tasks. The situation changes when we consider a more demanding dataset like Split CIFAR-100,
see Fig. 9. ZenkeNet, despite lower classification accuracy than ResNet-20, achieved only a slight
decrease in performance after subsequent tasks. In the case of ResNet-20, the drop in efficiency
was considerable, for instance from 83.1% just after learning of the first task to 73.7% at the end
of the CL scenario. However, a more intense regularization (i.e. higher values of β and λ) which
may prevent the network from knowledge forgetting, led to slightly lower accuracy averaged over
10 tasks. Therefore, a final hyperparameter choice has to be a compromise.
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Figure 9: Visualization of mean accuracy (with 95% confidence intervals) of HyperMask for 10 tasks
of the CIFAR-100 dataset for two different target network architectures (ResNet-20 and ZenkeNet).
The blue lines represent test accuracy calculated after training subsequent models, while the orange
lines correspond to test accuracy after finishing training for all CL tasks. Despite the fact that
ResNet-20 achieved higher accuracy than ZenkeNet, it suffers from catastrophic forgetting in a
more severe way than the second considered architecture.

E APPENDIX: STABILITY OF HYPERMASK MODEL

HyperMask model has a similar number of hyperparameters as HNET. The most critical parameters
are β and λ, which control regularization strength. This method also has parameter p describing the
level of zeros in consecutive layers of the semi-binary mask. Moreover, we define whether L1 will be
multiplied by the mask values or not. Furthermore, similarly as in HNET, there exists another branch
of hyperparameters regarding the networks’ shape, for instance, the hypernetwork embedding size,
the number of hidden layers and the number of neurons in consecutive layers. Similarly, we have to
define the setting of the target network.

In Fig. 11, we present mean test accuracy for consecutive CL tasks averaged over 2 runs of different
architecture settings of HyperMask for 5 tasks of the Split MNIST dataset. Most of the HyperMask
models achieve the highest classification accuracy for the first CL task while the weakest one for the
subsequent task. In all of the above plots, results are compared with the best hyperparameter setting,
i.e. embedding size is equal to 128, hypernetwork has two hidden layers with 25 neurons per each,
β = 0.001, λ = 0.001, p = 30, the batch size is equal to 128 and the masked L1 norm is applied.
In consecutive subplots, some of the above hyperparameters are changed and the performance of
corresponding models is compared with the most efficient setup.
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Figure 10: Mean test accuracy for consecutive CL tasks averaged over five runs of HyperMask for
two target network architectures: ResNet-20 (left side) and ZenkeNet (right side) for ten tasks of
the CIFAR-100 dataset. For ZenkeNet only a slight decrease in overall accuracy for previous tasks
may be noticed while for ResNet-20 there is a substantial drop in performance. However, the mean
results are better for ResNet-20, regardless.
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Figure 11: Mean test accuracy for consecutive CL tasks averaged over 2 runs of different architec-
ture settings of HyperMask for 5 tasks of the Split MNIST dataset. Most of the HyperMask models
achieve the highest classification accuracy for the first CL task while the weakest one for the subse-
quent task. In many cases, differences in performance of the compared models are small.
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F APPENDIX: TIME CONSUMPTION

We depicted in Tab. 4 the mean training time of HyperMask for five tasks of Split MNIST, ten tasks
of Permuted MNIST and ten tasks of Split CIFAR-100 using a single NVIDIA GeForce RTX 2080
Ti graphic card. For the easiest dataset, HyperMask needs only slightly more than 21 minutes. In
the case of Permuted MNIST, which consists of more advanced CL tasks, HyperMask needs less
than 2 hours. For Split CIFAR-100 and more complicated convolutional architectures, calculation
times are higher: about 6 hours for ZenkeNet and more than 10 hours for ResNet-20.

Table 4: Mean training time of HyperMask for different datasets.

Dataset Mean calculation time in HH:MM:SS (with standard deviation)

Split MNIST 00:21:06 ± 00:02:37
Permuted MNIST 01:45:14 ± 00:04:07
Split CIFAR-100 (ZenkeNet) 06:02:25 ± 00:01:54
Split CIFAR-100 (ResNet-20) 10:26:37 ± 00:10:05
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