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Abstract

One of the main challenges in offline Reinforcement Learning (RL) is the distri-
bution shift that arises from the learned policy deviating from the data collection
policy. This is often addressed by avoiding out-of-distribution (OOD) actions
during policy improvement as their presence can lead to substantial performance
degradation. This challenge is amplified in the offline Multi-Agent RL (MARL)
setting since the joint action space grows exponentially with the number of agents.
To avoid this curse of dimensionality, existing MARL methods adopt either value
decomposition methods or fully decentralized training of individual agents. How-
ever, even when combined with standard conservatism principles, these methods
can still result in the selection of OOD joint actions in offline MARL. To this
end, we introduce AlberDICE, an offline MARL algorithm that alternatively per-
forms centralized training of individual agents based on stationary distribution
optimization. AlberDICE circumvents the exponential complexity of MARL by
computing the best response of one agent at a time while effectively avoiding OOD
joint action selection. Theoretically, we show that the alternating optimization
procedure converges to Nash policies. In the experiments, we demonstrate that
AlberDICE significantly outperforms baseline algorithms on a standard suite of
MARL benchmarks.

1 Introduction

Offline Reinforcement Learning (RL) has emerged as a promising paradigm to train RL agents
solely from pre-collected datasets [13, 16]. Offline RL aims to address real-world settings in which
further interaction with the environment during training is dangerous or prohibitively expensive, e.g.,
autonomous-car driving, healthcare operations or robotic control tasks [3, 4, 39]. One of the main
challenges for successful offline RL is to address the distribution shift that arises from the difference
between the policy being learned and the policy used for data collection. Conservatism is a commonly
adopted principle to mitigate the distribution shift, which prevents the selection of OOD actions via
conservative action-value estimates [11] or direct policy constraints [6].

However, avoiding the selection of OOD actions becomes very challenging in offline Multi-Agent
RL (MARL)2, as the goal is now to stay close to the states and joint actions in the dataset. This is

∗Equal Contribution
2We assume cooperative MARL for this paper in which agents have common rewards.
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not trivial since the joint action space scales exponentially with the number of agents, a problem
known as the curse of dimensionality. Previous attempts to address these issues include decomposing
the joint action-value function under strict assumptions such as the Individual-Global-Max (IGM)
principle [30, 33, 36, 40], or decentralized training which ignores the non-stationarity caused by the
changing policies of other agents [18, 25, 38]. While effective in avoiding the curse of dimensionality,
these assumptions are insufficient in avoiding OOD joint action selection even when applying the
conservatism principles.

To illustrate the problem of joint action OOD, consider the XOR game in Figure 1. In this game,
two agents need to coordinate to achieve optimal joint actions, here, either (A,B) or (B,A).
Despite its simple structure, the co-occurrence of two global optima causes many existing algo-

A B
A 0 1
B 1 0

Figure 1: XOR Game

rithms to degenerate in the XOR game [5]. To see this, suppose we have
an offline dataset D = {(A,A, 0), (A,B, 1), (B,A, 1)}. In this situation,
IGM-based methods [40] represent the joint Q(a1, a2) as a combination of
individual Q1(a1) and Q2(a2), where action B is incentivized over action A
by both agents in the individual Q functions. As a consequence, IGM-based
methods end up selecting (B,B), which is the OOD joint action. Similarly,
decentralized training methods [25] also choose the OOD joint action (B,B), given that each agent
assumes that another agent is fixed with a data policy of selecting A with probability 2

3 . Furthermore,
we can see that even behavior-cloning on the expert-only dataset, i.e., D = {(A,B), (B,A)}, may
end up selecting OOD joint actions as well: each individual policy π1(a1) and π2(a2) will be uniform
over the two individual actions, leading to uniform action selection over the entire joint action space;
thus, both (A,A) and (B,B) can be selected. Consequently, OOD joint actions can be hard to avoid
especially in these types of environments with multiple global optima and/or when the offline dataset
consists of trajectories generated by a mixture of data collection policies.

Our approach and results To address these challenges, we introduce AlberDICE (ALternate
BEst Response Stationary DIstribution Correction Estimation), a novel offline MARL algorithm
for avoiding OOD actions in the joint action space while circumventing the curse of dimensionality.
We start by presenting a coordinate descent-like training procedure where each agent sequentially
computes their best response policy while fixing the policies of others. In order to do this in an
offline manner, we utilize the linear programming (LP) formulation of RL for optimizing stationary
distribution, which has been adapted in offline RL [14] as a stable training procedure where value
estimations of OOD actions are eliminated. Furthermore, we introduce a regularization term to
the LP objective which matches the stationary distributions of the dataset in the joint action space.
This regularization term allows AlberDICE to avoid OOD joint actions as well as the curse of
dimensionality without any restrictive assumptions such as factorization of value functions via IGM
or fully decentralized training. Overall, our training procedure only requires the mild assumption of
Centralized Training and Decentralized Execution (CTDE), a popular paradigm in MARL [17, 28, 30]
where we assume access to all global information such as state and joint actions during training while
agents act independently during execution.

Theoretically, we show that our regularization term preserves the common reward structure of the
underlying task and that the sequence of generated policies converges to a Nash policy (Theorem 4.2).
We also conduct extensive experiments to evaluate our approach on a standard suite of MARL
environments including the XOR Game, Bridge [5], Multi-Robot Warehouse [27], Google Research
Football [12] and SMAC [31], and show that AlberDICE significantly outperforms baselines. To the
best of our knowledge, AlberDICE is the first DICE-family algorithm successfully applied to the
MARL setting while addressing the problem of OOD joint actions in a principled manner.3

2 Background

Multi-Agent MDP (MMDP) We consider the fully cooperative MARL setting, which can be
formalized as a Multi-Agent Markov Decision Process (MMDP) [24] 4. An N -Agent MMDP is
defined by a tuple G = ⟨N ,S,A, r, P, p0, γ⟩ where N = {1, 2, . . . , N} is the set of agent indices,
s ∈ S is the state, A = A1 × · · · × AN is the joint action space, p0 ∈ ∆(S) is the initial state

3Our code is available at https://github.com/dematsunaga/alberdice
4We consider MMDPs rather than Dec-POMDP for simplicity. However, our method can be extended to the

Dec-POMDP settings as shown in the experiments. We provide further details in Appendix J.1
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distribution, and γ ∈ (0, 1) is the discount factor. At each time step, every agent selects an action
ai ∈ Ai via a policy πi(ai|s) given a state s ∈ S , and receives a reward according to a joint (among
all agents) reward function r : S × A → R. Then, the state is transitioned to the next state s′ via
the transition probability P : S ×A → ∆(S) which depends on the global state s ∈ S and the joint
action a = {a1, . . . , aN} ∈ A and the process repeats. We also use a−i to denote the actions taken
by all agents other than i.

Given a joint policy π = {π1, . . . , πN}
(
or π = {πi,π−i} when we single out agent i ∈ N

)
, we

have that π(a|s) = π1(a1|s) ·π2(a2|s, a1) · · ·πN (aN |s, a1, . . . , aN−1). If the πi’s can be factorized
into a product of individual policies, then π is factorizable, and we write π(a|s) =

∏N
j=1 πj(aj |s).

We denote the set of all policies as Π, and the set of factorizable policies as Πf . Given a joint policy
π, a state value function V π and a action-value function Qπ are defined by:

V π(s) := Eπ [
∑∞
t=0 γ

tr(st,at)|s0 = s] , Qπ(s,a) := Eπ [
∑∞
t=0 γ

tr(st,at)|s0 = s,a0 = a]

The goal is to find a factorizable policy π ∈ Πf that maximizes the joint rewards so that each agent
can act in a decentralized manner during execution. We will consider solving MMDP in terms of
optimizing stationary distribution. For a given policy π, its stationary distribution dπ is defined by:

dπ(s,a) = (1− γ)
∞∑
t=0

γt Pr(st = s,at = a), s0 ∼ p0, at ∼ π(st), st+1 ∼ P (st,at), ∀t ≥ 0.

In offline MARL, online interaction with the environment is not allowed, and the policy is optimized
only using the offline dataset D = {(s,a, r, s′)k}|D|

k=1 collected by diverse data-collection agents.
We denote the dataset distribution as dD and abuse the notation dD for s ∼ dD, (s, a) ∼ dD, and
(s, a, s′) ∼ dD.

Nash Policy We focus on finding the factorizable policy {πi : S → ∆(Ai)}Ni=1 ∈ Πf during
centralized training, which necessitate the notions of Nash and ϵ-Nash policies.
Definition 2.1 (Nash and ϵ-Nash Policy). A joint policy π∗ = ⟨π∗

i ⟩Ni=1 is a Nash policy if it holds

V
π∗
i ,π

∗
−i

i (s) ≥ V πi,π
∗
−i

i (s), ∀i ∈ N , πi, s ∈ S. (1)

Similarly, a joint policy π∗ = ⟨π∗
i ⟩Ni=1 is an ϵ-Nash policy if there exists an ϵ > 0 so that for each

agent i ∈ N , it holds that V
π∗
i ,π

∗
−i

i (s) ≥ V πi,π
∗
−i

i (s)−ϵ, for all πi, s. In other words, π∗ = ⟨π∗
i ,π

∗
−i⟩

is a Nash policy, if each agent i ∈ N has no incentive to deviate from π∗
i to an alternative policy, πi,

given that all other agents are playing π∗
−i.

3 AlberDICE

In this section, we introduce AlberDICE, an offline MARL algorithm that optimizes the stationary
distribution of each agent’s factorizable policy while effectively avoiding OOD joint actions. Al-
berDICE circumvents the exponential complexity of MARL by computing the best response of one
agent at a time in an alternating manner. In contrast to existing methods that adopt decentralized
training of each agent [25] where other agents’ policies are assumed to follow the dataset distribution,
AlberDICE adopts centralized training of each agent, which takes into account the non-stationarity
incurred by the changes in other agents’ policies.

Regularized Linear Program (LP) for MMDP The derivation of our algorithm starts by augment-
ing the standard linear program for MMDP with an additional KL-regularization term, where only a
single agent i ∈ N is being optimized while other agents’ policies π−i are fixed:

max
di≥0

∑
s,ai,a−i

di(s, ai)π−i(a−i|s)r(s, ai,a−i)− αDKL

(
di(s, ai)π−i(a−i|s)∥dD(s, ai,a−i)

)
(2)

s.t.
∑

a′
i,a

′
−i

di(s
′, a′

i)π−i(a
′
−i|s′) = (1− γ)p0(s

′) + γ
∑

s,ai,a−i

P (s′|s, ai,a−i)di(s, ai)π−i(a−i|s) ∀s′, (3)

where DKL (p(x)∥q(x)) :=
∑
x p(x) log

p(x)
q(x) is the KL-divergence between probability distributions

p and q, and α > 0 is a hyperparameter that controls the degree of conservatism, i.e., the amount of
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penalty for deviating from the data distribution, which is a commonly adopted principle in offline
RL [8, 14, 22, 42]. Satisfying the Bellman-flow constraints (3) guarantees that d(s, ai,a−i) :=
di(s, ai)π−i(a−i|s) is a valid stationary distribution in the MMDP.

As we show in our theoretical treatment of the regularized LP in Section 4, the selected regularization
term defined in terms of joint action space critically ensures that every agent i ∈ N optimizes the
same objective function in (2). This ensures that when agents optimize alternately, the objective
function always monotonically improves which, in turn, guarantees convergence (see Theorem 4.2).
This is in contrast to existing methods such as [25], where each agent optimizes the different objective
functions. Importantly, this is achieved while ensuring conservatism. As can be seen from (2), the
KL-regularization term is defined in terms of the joint stationary distribution of all agents which
ensures that the optimization of the regularized LP effectively avoids OOD joint action selection.

The optimal solution of the regularized LP (2-3), d∗i , corresponds to the stationary distribution for
a best response policy π∗

i against the fixed π−i, and π∗
i can be obtained by π∗

i =
d∗i (s,ai)∑
a′
i
d∗i (s,ai)

.

The (regularized) LP (2-3) can also be understood as solving a (regularized) reduced MDP M̄i =
⟨S,Ai, P̄i, r̄i, γ, p0⟩ for a single agent i ∈ N , where P̄i and r̄i are defined as follows5:

P̄i(s
′|s, ai) :=

∑
a−i

π−i(a−i|s)P (s′|s, ai,a−i), r̄i(s, ai) :=
∑
a−i

π−i(a−i|s)r(s, ai,a−i).

Then, d∗i is an optimal stationary distribution on the reduced MDP, M̄i, but the reduced MDP is
non-stationary due to other agents’ policy, π−i, updates. Therefore, it is important to account for
changes in π−i during training in order to avoid selection of OOD joint actions.

Lagrangian Formulation The constrained optimization (2-3) is not directly solvable since we do
not have a white-box model for the MMDP. In order to make (2-3) amenable to offline learning in a
model-free manner, we consider a Lagrangian of the constrained optimization problem:

min
νi

max
di≥0

E (s,ai)∼di
a−i∼π−i(s)

[r(s, ai,a−i)]− α
∑

s,ai,a−i

di(s, ai)π−i(a−i|s) log di(s,ai)π−i(a−i|s)
dD(s,ai)πD

−i(a−i|s,ai)

+
∑
s′

νi(s
′)
[
(1− γ)p0(s′)−

∑
a′i

di(s
′, a′i) + γ

∑
s,ai,a−i

P (s′|s, ai,a−i)di(s, ai)π−i(a−i|s)
]

(4)

where νi(s) ∈ R is the Lagrange multiplier for the Bellman flow constraints6. Still, (4) is not directly
solvable due to its requirement of P (s′|s, ai,a−i) for (s, ai) ∼ di that are not accessible in the
offline setting. To make progress, we re-arrange the terms in (4) as follows

min
νi

max
di≥0

(1− γ)Es0∼p0 [νi(s0)] + E(s,ai)∼di

[
− α log di(s,ai)

dD(s,ai)
(5)

+ E a−i∼π−i(s)
s′∼P (s,ai,a−i)

[
r(s, ai,a−i)− α log π−i(a−i|s)

πD
−i(a−i|s,ai)

+ γνi(s
′)− νi(s)

]
︸ ︷︷ ︸

=:eνi (s,ai)

]

= min
νi

max
di≥0

(1− γ)Es0∼p0 [νi(s0)] + E(s,ai)∼dD
[
di(s,ai)
dD(s,ai)

(
eνi(s, ai)− α log di(s,ai)

dD(s,ai)︸ ︷︷ ︸
=:wi(s,ai)

)]
(6)

= min
νi

max
wi≥0

(1− γ)Es0∼p0 [νi(s0)] + E(s,ai)∼dD
[
wi(s, ai)

(
eνi(s, ai)− α logwi(s, ai)

)]
(7)

where eνi(s, ai) is the advantage by νi, and wi(s, ai) are the stationary distribution correction ratios
between di and dD. Finally, to enable every term in (7) to be estimated from samples in the offline
dataset D, we adopt importance sampling, which accounts for the distribution shift in other agents’
policies, π−i:

min
νi

max
wi≥0

(1− γ)Ep0 [νi(s0)]+

+ E(s,ai,a−is
′)∼dD

[
wi(s, ai)

π−i(a−i|s)
πD

−i(a−i|s,ai)

(
êνi(s, ai,a−i, s

′)− α logwi(s, ai)
)]

(8)

5The reduced MDP is also used by [44], where it is termed averaged MDP.
6The use of minνi maxdi≥0 rather than maxdi≥0 minνi is justified due to the convexity of the optimization

problem in (2) which allows us to invoke strong duality and Slater’s condition.
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where êνi(s, ai,a−i, s
′) := r(s, ai,a−i)− α log π−i(a−i|s)

πD
−i(a−i|s,ai)

+ γνi(s
′)− νi(s). Every term in (8)

can be now evaluated using only the samples in the offline dataset. Consequently, AlberDICE aims
to solve the unconstrained minimax optimization (8) for each agent i ∈ N . Once we compute the
optimal solution (ν∗i , w

∗
i ) of (8), we obtain the information about the optimal policy π∗

i (i.e. the best

response policy against the fixed π−i) in the form of distribution correction ratios w∗
i = dπ

∗
i (s,ai)

dD(s,ai)
.

Pretraining autoregressive data policy To optimize (8), we should be able to evaluate
πD−i(a−i|s, ai) for each (s, ai,a−i) ∈ D. To this end, we pretrain the data policy via behavior
cloning, where we adopt an MLP-based autoregressive policy architecture, similar to the one in [43].
The input dimension of πD−i only grows linearly with the number of agents. Then, for each i ∈ N ,
we optimize the following:

max
πD

−i

E(s,ai,a−i)∼dD

[
N∑

j=1,j ̸=i
logπD−i(aj |s, ai, a<j)

]
(9)

While, in principle, the joint action space grows exponentially with the number of agents, learning a
joint data distribution in an autoregressive manner is known to work quite well in practice [7, 29].

Practical Algorithm: Minimax to Min Still, solving the nested minimax optimization (7) can be
numerically unstable in practice. In this section, we derive a practical algorithm that solves a single
minimization only using offline samples. For brevity, we denote each sample (s, ai,a−i, s

′) in the
dataset as x. Also, let Êx∈D[f(x)] := 1

|D|
∑
x∈D f(x) be a Monte-Carlo estimate of Ex∼p[f(x)],

where D = {xk}|D|
k=1 ∼ p. First, we have an unbiased estimator of (7):

min
νi

max
wi≥0

(1− γ)Ês0∈D0
[νi(s0)] + Êx∈D

[
wi(s, ai)ρi(x)

(
êνi(x)− α logwi(s, ai)

)]
(10)

where ρi(x) is defined as:

ρi(x) :=
π−i(a−i|s)

πD
−i(a−i|s,ai)

=
∏

j ̸=i πj(aj |s)
πD

−i(a−i|s,ai)
. (11)

Optimizing (10) can suffer from large variance due to the large magnitude of ρ(x), which contains
products of N − 1 policies. To remedy the large variance issue, we adopt Importance Resampling
(IR) [32] to (10). Specifically, we sample a mini-batch of sizeK fromD with probability proportional
to ρ(x), which constitutes a resampled dataset Dρi = {(s, ai,a−i, s′)k}Kk=1. Then, we solve the
following optimization, which now does not involve the importance ratio:

min
νi

max
wi≥0

(1− γ)Ês0∈D0
[νi(s0)] + ρ̄iÊx∈Dρi

[
wi(s, ai)

(
êνi(x)− α logwi(s, ai)

)]
(12)

where ρ̄i := Êx∈D[ρi(x)]. It can be proven that (12) is still an unbiased estimator of (7) thanks to
the bias correction term of ρ̄ [32]. The resampling procedure can be understood as follows: for each
data sample x = (s, ai,a−i, s

′), if other agents’ policy π−i selects the action a−i ∈ D with low
probability, i.e., π−i(a−i|s) ≈ 0, the sample x will be removed during the resampling procedure,
which makes the samples in the resampled dataset Dρi consistent with the reduced MDP M̄i’s
dynamics. Finally, to avoid the numerical instability associated with solving a min-max optimization
problem, we exploit the properties of the inner-maximization problem in (12), specifically, its
concavity in wi, and derive its closed-form solution.
Proposition 3.1. The closed-form solution for the inner-maximization in (12) for each x is given by

ŵ∗
νi(x) = exp

(
1
α êνi(x)− 1

)
(13)

By plugging equation (13) into (12), we obtain the following minimization problem:

min
νi

ρ̄iαÊx∈Dρi

[
exp

(
1
α êνi(x)− 1

)]
+ (1− γ)Es0∼p0 [νi(s0)] =: L(νi). (14)

As we show in Proposition B.1 in the Appendix, L̃(νi) is an unconstrained convex optimization
problem where the function to learn νi is state-dependent. Furthermore, the terms in (14) are estimated
only using the (s, ai,a−i, s

′) samples in the dataset, making it free from the extrapolation error by
bootstrapping OOD action values. Also, since νi(s) does not involve joint actions, it is not required
to adopt IGM-principle in νi network modeling; thus, there is no need to limit the expressiveness
power of the function approximator. In practice, we parameterize νi using simple MLPs, which take
the state s as an input and output a scalar value.
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Policy Extraction The final remaining step is to extract a policy from the estimated distribution

correction ratio w∗
i (s, ai) =

dπ
∗
i (s,ai)

dD(s,ai)
. Unlike actor-critic approaches which perform intertwined

optimizations by alternating between policy evaluation and policy improvement, solving (14) directly
results in the optimal ν∗i . However, this does not result in an executable policy. We therefore utilize
the I-projection policy extraction method from [14] which we found to be most numerically stable

argmin
πi

DKL

(
dD(s)πi(ai|s)π−i(a−i|s)||dD(s)π∗

i (ai|s)π−i(a−i|s)
)

(15)

=argmin
πi

Ês∈D,ai∼πi

[
− logw∗

i (s, ai) + DKL(πi(ai|s)||πDi (ai|s))
]

(16)

In summary, AlberDICE computes the best response policy of agent i by: (1) resampling data points
based on the other agents’ policy ratios ρ (11) where the data policy πD−i(a−i|s, ai) can be pretrained,
(2) solving a minimization problem to find ν∗i (s) (31) and finally, (3) extracting the policy using the
obtained ν∗i by I-projection (15). In practice, rather than training νi until convergence at each iteration,
we perform a single gradient update for each agent νi and πi alternatively. We outline the details of
policy extraction (Appendix E.2) and the full learning procedure in Algorithm 1 (Appendix E).

4 Preservation of Common Rewards and Convergence to Nash Policies

In the previous sections, AlberDICE was derived as a practical algorithm in which agents alternately
compute the best response DICE while avoiding OOD joint actions. We now prove formally that this
procedure converges to Nash policies. While it is known that alternating best response can converge
to Nash policies in common reward settings [1], it is not immediately clear whether the same result
holds for the regularized LP (2-3), and hence the regularized reward function of the environment,
preserves the common reward structure of the original MMDP. As we show in Lemma 4.1, this is
indeed the case, i.e., the modified reward in (2-3) is shared across all agents. This directly implies
that optimization of the corresponding LP yields the same value for all agents i ∈ N for any joint
policy, π, with factorized individual policies, {πi}i∈N .
Lemma 4.1. Consider a joint policy π = (πi)i∈N , with factorized individual policies, i.e., π(a|s) =∏
i∈N πi(ai|s) for all (s,a) ∈ S ×A with a = (ai)i∈N . Then, the regularized objective in the LP

formulation of AlberDICE, cf. equation (2), can be evaluated to∑
s,ai,a−i

dπi (s, ai)π−i(a−i|s)r̃(s, ai,a−i),

with r̃(s, ai,a−i) := r(s, ai,a−i) − α · log dπ(s)π(a|s)
dD(s,ai,a−i)

, for all (s,a) ∈ S × A. In particular, for
any joint policy, π = (π)i∈N , with factorized invdividual policies, the regularized objective in the
LP formulation of AlberDICE attains the same value for all agents i ∈ N .

We can now use Lemma 4.1 to show that AlberDICE enjoys desirable convergence guarantees in
tabular domains in which the policies, πi(ai|s), can be directly extracted from di(s, ai) through the
expression πi(ai|s) = di(s,ai)∑

aj
di(s,aj)

.

Theorem 4.2. Given an MMDP, G, and a regularization parameter α ≥ 0, consider the modified
MMDP G̃ with rewards r̃ as defined in Lemma 4.1 and assume that each agent alternately solves the
regularized LP defined in equations (2-3). Then, the sequence of policy updates, (πt)t≥0, converges
to a Nash policy, π∗ = (π∗

i )i∈N , of G̃.

The proofs of Lemma 4.1 and Theorem 4.2 are given in Appendix D. Intuitively, Theorem 4.2 relies
on the fact that the objectives in the alternating optimization problems (2-3) involve the same rewards
for all agents for any value of the regularization parameter, α ≥ 0, cf. Lemma 4.1. Accordingly,
every update by any agent improves this common value function, (Ṽ π(s))s∈S , and at some point the
sequence of updates is bound to terminate at a (local) maximum of Ṽ . At this point, no agent can
improve by deviating to another policy which implies that the corresponding joint policy is a Nash
policy of the underlying (modified) MMDP. For practical purposes, it is also relevant to note that
the process may terminate at an ϵ-Nash policy (cf. Definition 2.1), since the improvements in the
common value function may become arbitrarily small when solving the LPs numerically.
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A B
A 0.45 0.22
B 0.22 0.11

BC

A B
0.0 0.0
0.0 1.0

ICQ

A B
0.0 0.0
0.0 1.0
OMAR

A B
0.25 0.25
0.25 0.25
MADTKD

A B
0.25 0.25
0.25 0.25
OptiDICE

A B
0.0 1.0
0.0 0.0
AlberDICE

Table 1: Policy values after convergence for the Matrix Game in Figure 2 for D = {AA,AB,BA}

A direct implication from the construction of the AlberDICE algorithm, which is also utilized in the
proof of Theorem 4.2, is that the AlberDICE algorithm maintains during its execution and, thus, also
returns upon its termination, a factorizable policy, i.e., a policy that can be factorized.

Corollary 4.3. Let π∗ be the extracted joint policy that is returned from the AlberDICE algorithm.
Then, π∗ is factorizable, i.e., there exist individual policies, ⟨π∗

i ⟩i∈N , one for each agent, so that
π∗(a|s) =

∏
i∈N π∗

i (ai|s) for all a ∈ A, s ∈ S.

5 Experimental Results

We evaluate AlberDICE on a series of benchmarks, namely the Penalty XOR Game and Bridge [5],
as well as challenging high-dimensional domains such as Multi-Robot Warehouse (RWARE) [27],
Google Research Football (GRF) [12] and StarCraft Multi-Agent Challenge (SMAC) [31]. Our base-
lines include Behavioral Cloning (BC), ICQ [40], OMAR [25], MADTKD [35] and OptiDICE [14] 7.
For a fair comparison, all baseline algorithms use separate network parameters 8 for each agent and
the same policy structure. Further details on the dataset are provided in Appendix F.

5.1 Penalty XOR Game

We first evaluate AlberDICE on a 2 × 2 Matrix Game called Penalty XOR shown in Fig-
ure 2. We construct four different datasets: (a) {AB}, (b) {AB,BA}, (c) {AA,AB,BA},
(d) {AA,AB,BA,BB}. The full results showing the final joint policy values are
shown in Table 6 in the Appendix. We show the results for dataset (c) in Table 1.

A B
A 0 1
B 1 −2

Figure 2: Penalty XOR

AlberDICE is the only algorithm that converges to a deterministic optimal
policy, BA or AB for all datasets.

On the other hand, OptiDICE and MATDKD converges to a stochastic
policy where both agents choose A and B with equal probability. This
is expected for both algorithms which optimize over joint actions during
centralized training which can still lead to joint action OOD if the joint policy is not factorizable.
ICQ converges to AA for (b), (d) and BB for (c), which shows the tendency of the IGM constraint
and value factorization approaches to converge to OOD joint actions. These results also suggest that
the problem of joint action OOD becomes more severe when the dataset collection policy is diverse
and/or the environment has multiple global optima requiring higher levels of coordination.

5.2 Bridge

Bridge is a stateful extension of the XOR Game, where two agents must take turns crossing
a narrow bridge. We introduce a harder version (Figure 3) where both agents start “on the
bridge” rather than on the diagonal cells of the opponent goal states as in the original game.

Figure 3: Bridge (Hard)

This subtle change makes the task much harder because now there are only
two optimal actions: (Left, Left) and (Right, Right) at the initial state.
Conversely, the original game can be solved optimally as long as at least
one agent goes on the bridge.

The optimal dataset (500 trajectories) was constructed by a mixture of
deterministic optimal policies which randomizes between Agent 1 crossing the bridge first while
Agent 2 retreats, and vice-versa. The mix dataset further adds 500 trajectories by a uniform random
policy.

7OptiDICE can be naively extended to MARL by training a single ν(s) network and running Weighted BC
as the policy extraction procedure to learn factorized policies, which does not require learning a joint state-action
value function. Still, it has some issues (Appendix C).

8Fu et al. [5] showed that separating policy parameters are necessary for solving challenging coordination
tasks such as Bridge.
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Table 2: Mean return and standard error (over 5 random seeds) on the Bridge domain.
Dataset BC ICQ OMAR MADTKD OptiDICE AlberDICE

Optimal −1.26 −2.21 ± 0.90 −1.81 ± 0.12 −6.01 ± 0.00 −4.31 ± 0.27 −2.71 ± 0.69 −1.27 ± 0.03
Mix −4.56 −5.88 ± 0.49 −6.01 ± 0.00 −6.01 ± 0.00 −6.58 ± 0.26 −1.76 ± 0.17 −1.29 ± 0.00

(a) AlberDICE (i = 1) (b) AlberDICE (i = 2) (c) BC (i = 1) (d) BC (i = 2)

Figure 4: Visualization of learned policies at the initial state for (from Left to Right) AlberDICE (agent 1,
agent 2) and BC (agent 1, agent 2), for the Bridge (Hard) on the optimal dataset. The blue arrows indicate
agent 2’s policies when agent 1 is at • and red arrows indicate agent 1’s policy when agent 2 is at •.

Table 3: Mean performance and standard error (over 3 random seeds) on the Warehouse domain.
Tiny (11x11) Small (11x20)

(N = 2) (N = 4) (N = 6) (N = 2) (N = 4) (N = 6)

BC 8.80 ± 0.25 11.12 ± 0.19 14.06 ± 0.32 5.54 ± 0.06 7.88 ± 0.14 8.90 ± 0.13
ICQ 9.38 ± 0.75 12.13 ± 0.44 14.59 ± 0.16 5.43 ± 0.19 7.93 ± 0.19 8.87 ± 0.22

OMAR 6.77 ± 0.64 14.39 ± 0.91 16.13 ± 1.21 4.40 ± 0.34 7.12 ± 0.38 8.41 ± 0.49
MADTKD 6.24 ± 0.60 9.90 ± 0.21 13.06 ± 0.19 3.65 ± 0.34 6.85 ± 0.36 7.85 ± 0.52
OptiDICE 8.70 ± 0.06 11.13 ± 0.44 14.02 ± 0.36 4.84 ± 0.32 7.68 ± 0.09 8.47 ± 0.26
AlberDICE 11.15 ± 0.35 13.11 ± 0.32 15.72 ± 0.36 5.97 ± 0.11 8.18 ± 0.19 9.65 ± 0.13

Table 4: Mean success rate and standard error (over 5 random seeds) on GRF
RPS 3vs1 CA-Hard Corner

(N = 2) (N = 3) (N = 4) (N = 10)

BC 0.69 ± 0.08 0.44 ± 0.07 0.70 ± 0.07 0.24 ± 0.04
ICQ 0.53 ± 0.39 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00

OMAR 0.00 ± 0.01 0.01 ± 0.01 0.00 ± 0.00 0.07 ± 0.06
MADTKD 0.56 ± 0.16 0.56 ± 0.05 0.69 ± 0.05 0.32 ± 0.07
OptiDICE 0.71 ± 0.07 0.50 ± 0.05 0.67 ± 0.15 0.26 ± 0.04
AlberDICE 0.75 ± 0.12 0.59 ± 0.12 0.83 ± 0.04 0.36 ± 0.04

The performance results in Table 2 show that AlberDICE can stably perform near-optimally in both
the optimal and mix datasets. Also, the learned policy visualizations for the optimal dataset in Figure
4 show that AlberDICE is the only algorithm which converges to the optimal deterministic policy in
the initial state, similar to the results in the Matrix game. We also include similar policy visualization
results for all states and algorithms in Appendix H.

5.3 High-Dimensional MARL Benchmarks

We further evaluate AlberDICE on standard MARL benchmarks including RWARE [26], GRF [12]
and SMAC [31]. For RWARE and GRF, we train an autoregressive policy using Multi-Agent
Transformers (MAT) [37] in order to collect diverse trajectories for constructing offline datasets. For
SMAC, we use the public dataset provided by Meng et al. [19].

RWARE simulates a real-world warehouse in which robots move and deliver requested goods in a
partially observable environment (each agent can observe the 3× 3 square centered on the agent).
RWARE requires high levels of coordination, especially whenever the density of agents is high and
there are narrow pathways where only a single agent can pass through (similar to Bridge).

The results in Table 3 show that AlberDICE performs on-par with OMAR in the Tiny (11 × 11)
environment despite OMAR being a decentralized training algorithm. As shown in Figure 9(a)
of [26], a large portion of the Tiny map contains wide passageways where agents can move around
relatively freely without worrying about colliding with other agents. On the other hand, AlberDICE
outperforms baselines in the Small (11 × 20) environment (shown in Figure 9(b) of [26]), where
precise coordination among agents becomes more critical since there are more narrow pathways and
the probability of a collision is significantly higher. We also note that the performance gap between
AlberDICE and baselines is largest when there are more agents (N = 6) in the confined space. This
increases the probability of a collision, and thus, requires higher levels of coordination.
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Table 5: Mean success rate and standard error (over 5 random seeds) on SMAC
3s5z (Hard) 5m_vs_6m (Hard) Corridor (SH) 6hvs8z (SH) 8m_vs_9m (Hard) 3s5z_vs_3s6z (SH)
(N = 8) (N = 5) (N = 6) (N = 6) (N = 8) (N = 8)

BC 0.30 ± 0.05 0.23 ± 0.02 0.90 ± 0.02 0.11 ± 0.02 0.48 ± 0.05 0.45 ± 0.03
ICQ 0.18 ± 0.08 0.18 ± 0.10 0.78 ± 0.03 0.00 ± 0.00 0.12 ± 0.21 0.31 ± 0.04

OMAR 0.43 ± 0.04 0.18 ± 0.02 0.92 ± 0.02 0.15 ± 0.03 0.45 ± 0.05 0.60 ± 0.05
MADTKD 0.12 ± 0.02 0.19 ± 0.02 0.67 ± 0.01 0.09 ± 0.02 0.14 ± 0.04 0.18 ± 0.02
OptiDICE 0.28 ± 0.05 0.21 ± 0.02 0.91 ± 0.02 0.13 ± 0.00 0.47 ± 0.05 0.42 ± 0.04
AlberDICE 0.47 ± 0.03 0.24 ± 0.03 0.98 ± 0.00 0.21 ± 0.03 0.67 ± 0.06 0.63 ± 0.03
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(a) Histogram of uncertainty estimates
{U(s,a) : s ∈ D, a ∼ π(s)}.

8m_vs_9m 3s5z_vs_3s6z
(N = 8) (N = 8)

BC 0.1% 0.3%
ICQ 54.7% 26.2%

OMAR 16.5% 5.7%
MADTKD 1.7% 0.8%
OptiDICE 0.1% 0.3%
AlberDICE 4.8% 1.6%

(b) Percentage of selecting OOD joint actions.

Figure 5: Experimental results to see how effectively AlberDICE avoids OOD joint actions.

Our results for GRF and SMAC in Tables 4 and 5 show that AlberDICE performs consistently well
across all scenarios, and outperforms all baselines especially in the Super Hard maps, Corridor and
6h8z. The strong performance by AlberDICE corroborates the importance of avoiding OOD joint
actions in order to avoid performance degradation.

5.4 Does AlberDICE reduce OOD joint actions?

In order to evaluate how effectively AlberDICE prevents selecting OOD joint actions, we conducted
additional experiments on two SMAC domains (8m_vs_9m and 3s5z_vs_3s6z) as follows. First, we
trained an uncertainty estimator U(s,a) via fitting random prior [2] f : S ×A1 × · · · × AN → Rm

using the dataset D = {(s,a)k}|D|
k=1. Then, U(s,a) = ∥f(s,a) − h(s,a)∥2 outputs low values

for in-distribution (s,a) samples and outputs high values for out-of-distribution (s,a) samples.
Figure 5(a) shows a histogram of uncertainty estimates U(s, π1(s), . . . , πN (s)) for each s ∈ D and
the joint action selected by each method. We set the threshold τ for determining OOD samples to
99.9%-quantile of {U(s, a) : (s, a) ∈ D}. Figure 5(b) presents the percentage of selecting OOD
joint actions by each method. AlberDICE selects OOD joint actions significantly less often than ICQ
(IGM-based method) and OMAR (decentralized training method) while outperforming them in terms
of success rate (see Table 5).

6 Related Work

DICE for Offline RL Numerous recent works utilize the LP formulation of RL to derive DICE
algorithms for policy evaluation [20–22]. OptiDICE [14] was introduced as the first policy optimiza-
tion algorithm for DICE and as a stable offline RL algorithm which does not require value estimation
of OOD actions. While OptiDICE can be naively extended to offline MARL in principle, it can still
fail to avoid OOD joint actions since its primary focus is to optimize over the joint action space of the
MMDP and does not consider the factorizability of policies. We detail the shortcomings of a naive
extension of OptiDICE to multi-agent settings in Appendix C.

Value-Based MARL A popular method in cooperative MARL is (state-action) value decomposition.
This approach can be viewed as a way to model Q(s, a) implicitly by aggregating Qi in a specific
manner, e.g., sum [34], or weighted sum [30]. Thus, it avoids modelling Q(s, a) explicitly over the
joint action space. QTRAN [33] and QPLEX [36] further achieve full representativeness of IGM
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9. These approaches have been shown to perform well in high-dimensional complex environments
including SMAC [31]. However, the IGM assumption and the value decomposition structure have
been shown to perform poorly even in simple coordination tasks such as the XOR game [5].

Policy-Based MARL Recently, policy gradient methods such as MAPPO [41] have shown strong
performance on many complex benchmarks including SMAC and GRF. Fu et al. [5] showed that
independent policy gradient with separate parameters can solve the XOR game and the Bridge
environment by converging to a deterministic policy for one of the optimal joint actions. However, it
requires an autoregressive policy structure (centralized execution) to learn a stochastic optimal policy
which covers multiple optimal joint actions. These empirical findings are consistent with theoretical
results [15, 44] showing that running independent policy gradient can converge to a Nash policy in
cooperative MARL. On the downside, policy gradient methods are trained with on-policy samples
and thus, cannot be extended to the offline RL settings due to the distribution shift problem [16].

Offline MARL ICQ [40] was the first MARL algorithm applied to the offline setting. It proposed
an actor-critic approach to overcome the extrapolation error caused by the evaluation of unseen
state-action pairs, where the error is shown to grow exponentially with the number of agents. The
centralized critic here uses QMIX [30] and thus, it inherits some of the weaknesses associated with
value decomposition and IGM. OMAR [25] is a decentralized training algorithm where each agent
runs single-agent offline RL over the individual Q-functions and treats other agents as part of the
environment. As a consequence, it lacks theoretical motivation and convergence guaranteess in the
underlying MMDP or Dec-POMDP. MADTKD [35] extends Multi-Agent Decision Transformers [19]
to incorporate credit assignment across agents by distilling the teacher policy learned over the joint
action space to each agent (student). This approach can still lead to OOD joint actions since the
teacher policy learns a joint policy over the joint action space and the actions are distilled individually
to students.

7 Limitations

AlberDICE relies on Nash policy convergence which is a well-established solution concept in Game
Theory, especially in the general non-cooperative case where each agent may have conflicting reward
functions. One limitation of AlberDICE is that the Nash policy may not necessarily correspond to
the global optima in cooperative settings. The outcome of the iterative best response depends on
the starting point (region of attraction of each Nash policy) and is, thus, generally not guaranteed
to find the optimal Nash policy [1]. This is the notorious equilibrium selection problem which is
an open problem in games with multiple equilibria, even if they have common reward structure
(See Open Questions in [15]). Nonetheless, Nash policies have been used as a solution concept for
iterative update of each agents as a way to ensure convergence to factorized policies in Cooperative
MARL [10]. Furthermore, good equilibria tend to have larger regions of attraction and practical
performance is typically very good as demonstrated by our extensive experiments.

8 Conclusion

In this paper, we presented AlberDICE, a multi-agent RL algorithm which addresses the problem of
distribution shift in offline MARL by avoiding both OOD joint actions and the exponential nature of
the joint action space. AlberDICE leverages an alternating optimization procedure where each agent
computes the best response DICE while fixing the policies of other agents. Furthermore, it introduces
a regularization term over the stationary distribution of states and joint actions in the dataset. This
regularization term preserves the common reward structure of the environment and together with the
alternating optimization procedure, allows convergence to Nash policies. As a result, AlberDICE is
able to perform robustly across many offline MARL settings, even in complex environments where
agents can easily converge to sub-optimal policies and/or select OOD joint actions. As the first DICE
algorithm applied to offline MARL with a principled approach to curbing distribution shift, this work
provides a starting point for further applications of DICE in MARL and a promising perspective in
addressing the main problems of offline MARL.

9Details about IGM are provided in A.1
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[12] K. Kurach, A. Raichuk, P. Stańczyk, M. Zajac, O. Bachem, L. Espeholt, C. Riquelme, D. Vincent,
M. Michalski, O. Bousquet, and S. Gelly. Google research football: A novel reinforcement learning
environment, 2019.

[13] Sascha Lange, Thomas Gabel, and Martin Riedmiller. Batch Reinforcement Learning, pages 45–73.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2012.

[14] Jongmin Lee, Wonseok Jeon, Byungjun Lee, Joelle Pineau, and Kee-Eung Kim. OptiDICE: Offline policy
optimization via stationary distribution correction estimation. In Proceedings of the 38th International
Conference on Machine Learning, volume 139 of Proceedings of Machine Learning Research, pages
6120–6130. PMLR, 18–24 Jul 2021.

11



[15] Stefanos Leonardos, Will Overman, Ioannis Panageas, and Georgios Piliouras. Global Convergence
of Multi-Agent Policy Gradient in Markov Potential Games. In International Conference on Learning
Representations, 2022.

[16] Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning: Tutorial,
review, and perspectives on open problems, 2020.

[17] Ryan Lowe, YI WU, Aviv Tamar, Jean Harb, OpenAI Pieter Abbeel, and Igor Mordatch. Multi-agent actor-
critic for mixed cooperative-competitive environments. In I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach,
R. Fergus, S. Vishwanathan, and R. Garnett, editors, Advances in Neural Information Processing Systems,
volume 30. Curran Associates, Inc., 2017.

[18] Xueguang Lyu, Yuchen Xiao, Brett Daley, and Christopher Amato. Contrasting centralized and decentral-
ized critics in multi-agent reinforcement learning. In Proceedings of the 20th International Conference on
Autonomous Agents and MultiAgent Systems, AAMAS ’21, page 844–852. International Foundation for
Autonomous Agents and Multiagent Systems, 2021.

[19] Linghui Meng, Muning Wen, Yaodong Yang, chenyang le, Xi yun Li, Haifeng Zhang, Ying Wen, Weinan
Zhang, Jun Wang, and Bo XU. Offline pre-trained multi-agent decision transformer, 2022.

[20] Ofir Nachum and Bo Dai. Reinforcement learning via fenchel-rockafellar duality, 2020.

[21] Ofir Nachum, Yinlam Chow, Bo Dai, and Lihong Li. DualDICE: Behavior-agnostic estimation of
discounted stationary distribution corrections. In Advances in Neural Information Processing Systems,
volume 32. Curran Associates, Inc., 2019.

[22] Ofir Nachum, Bo Dai, Ilya Kostrikov, Yinlam Chow, Lihong Li, and Dale Schuurmans. AlgaeDICE: Policy
gradient from arbitrary experience. arXiv preprint arXiv:1912.02074, 2019.

[23] Allen Nie, Yannis Flet-Berliac, Deon R. Jordan, William Steenbergen, and Emma Brunskill. Data-efficient
pipeline for offline reinforcement learning with limited data, 2023.

[24] Frans A. Oliehoek and Christopher Amato. A Concise Introduction to Decentralized POMDPs. Springer
Publishing Company, Incorporated, 1st edition, 2016. ISBN 3319289276.

[25] Ling Pan, Longbo Huang, Tengyu Ma, and Huazhe Xu. Plan better amid conservatism: Offline multi-agent
reinforcement learning with actor rectification. In Proceedings of the 39th International Conference
on Machine Learning, volume 162 of Proceedings of Machine Learning Research, pages 17221–17237.
PMLR, 17–23 Jul 2022.

[26] Georgios Papoudakis, Filippos Christianos, Lukas Schäfer, and Stefano V Albrecht. Benchmarking multi-
agent deep reinforcement learning algorithms in cooperative tasks. In Thirty-fifth Conference on Neural
Information Processing Systems Datasets and Benchmarks Track (Round 1), 2021.

[27] Georgios Papoudakis, Filippos Christianos, Lukas Schäfer, and Stefano V. Albrecht. Benchmarking
multi-agent deep reinforcement learning algorithms in cooperative tasks. In Proceedings of the Neural
Information Processing Systems Track on Datasets and Benchmarks (NeurIPS), 2021.

[28] Bei Peng, Tabish Rashid, Christian Schroeder de Witt, Pierre-Alexandre Kamienny, Philip Torr, Wendelin
Boehmer, and Shimon Whiteson. FACMAC: Factored multi-agent centralised policy gradients. In
A. Beygelzimer, Y. Dauphin, P. Liang, and J. Wortman Vaughan, editors, Advances in Neural Information
Processing Systems, 2021.

[29] Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. Improving language understanding
by generative pre-training. 2018.

[30] Tabish Rashid, Mikayel Samvelyan, Christian Schroeder, Gregory Farquhar, Jakob Foerster, and Shimon
Whiteson. QMIX: Monotonic value function factorisation for deep multi-agent reinforcement learning.
In Proceedings of the 35th International Conference on Machine Learning, volume 80 of Proceedings of
Machine Learning Research, pages 4295–4304. PMLR, 10–15 Jul 2018.

[31] Mikayel Samvelyan, Tabish Rashid, Christian Schroeder de Witt, Gregory Farquhar, Nantas Nardelli, Tim
G. J. Rudner, Chia-Man Hung, Philip H. S. Torr, Jakob Foerster, and Shimon Whiteson. The starcraft
multi-agent challenge, 2019.

[32] Matthew Schlegel, Wesley Chung, Daniel Graves, Jian Qian, and Martha White. Importance resampling
for off-policy prediction. In Advances in Neural Information Processing Systems, volume 32. Curran
Associates, Inc., 2019.

12



[33] Kyunghwan Son, Daewoo Kim, Wan Ju Kang, David Earl Hostallero, and Yung Yi. QTRAN: Learning
to factorize with transformation for cooperative multi-agent reinforcement learning. In Proceedings of
the 36th International Conference on Machine Learning, volume 97 of Proceedings of Machine Learning
Research, pages 5887–5896. PMLR, 09–15 Jun 2019.

[34] Peter Sunehag, Guy Lever, Audrunas Gruslys, Wojciech Marian Czarnecki, Vinicius Zambaldi, Max
Jaderberg, Marc Lanctot, Nicolas Sonnerat, Joel Z Leibo, Karl Tuyls, et al. Value-decomposition networks
for cooperative multi-agent learning. arXiv preprint arXiv:1706.05296, 2017.

[35] Wei-Cheng Tseng, Tsun-Hsuan Wang, Yen-Chen Lin, and Phillip Isola. Offline multi-agent reinforcement
learning with knowledge distillation. In Advances in Neural Information Processing Systems, 2022.

[36] Jianhao Wang, Zhizhou Ren, Terry Liu, Yang Yu, and Chongjie Zhang. QPLEX: Duplex dueling multi-
agent q-learning. In International Conference on Learning Representations, 2021.

[37] Muning Wen, Jakub Grudzien Kuba, Runji Lin, Weinan Zhang, Ying Wen, Jun Wang, and Yaodong Yang.
Multi-agent reinforcement learning is a sequence modeling problem. In Advances in Neural Information
Processing Systems, 2022.

[38] C. S. D. Witt, Tarun Gupta, Denys Makoviichuk, Viktor Makoviychuk, Philip H. S. Torr, Mingfei Sun,
and Shimon Whiteson. Is independent learning all you need in the starcraft multi-agent challenge? ArXiv,
abs/2011.09533, 2020.

[39] Erfu Yang and Dongbing Gu. Multiagent reinforcement learning for multi-robot systems: A survey. 06
2004.

[40] Yiqin Yang, Xiaoteng Ma, Chenghao Li, Zewu Zheng, Qiyuan Zhang, Gao Huang, Jun Yang, and
Qianchuan Zhao. Believe what you see: Implicit constraint approach for offline multi-agent reinforcement
learning. In Advances in Neural Information Processing Systems, volume 34, pages 10299–10312. Curran
Associates, Inc., 2021.

[41] Chao Yu, Akash Velu, Eugene Vinitsky, Jiaxuan Gao, Yu Wang, Alexandre Bayen, and Yi Wu. The
surprising effectiveness of PPO in cooperative multi-agent games. In Thirty-sixth Conference on Neural
Information Processing Systems Datasets and Benchmarks Track, 2022.

[42] Tianhe Yu, Garrett Thomas, Lantao Yu, Stefano Ermon, James Zou, Sergey Levine, Chelsea Finn, and
Tengyu Ma. MOPO: Model-based offline policy optimization. In Advances in Neural Information
Processing Systems (NeurIPS), 2020.

[43] Michael R Zhang, Thomas Paine, Ofir Nachum, Cosmin Paduraru, George Tucker, ziyu wang, and
Mohammad Norouzi. Autoregressive dynamics models for offline policy evaluation and optimization. In
International Conference on Learning Representations, 2021.

[44] Runyu Zhang, Zhaolin Ren, and Na Li. Gradient play in stochastic games: stationary points, convergence,
and sample complexity, 2021.

13



A Individual-Global-Max (IGM) and its Limitations

Centralized Training with Decentralized Execution (CTDE) refers to a paradigm in MARL where the
training phase is permitted to utilize any global information such as the joint policy π = ⟨π1, . . . , πN ⟩
and global state s. Practical CTDE algorithms avoid the combinatorial nature of the joint action
space, and reduce the non-stationarity, which arises from agents’ simultaneous policy updates during
training.

However, an important challenge for CTDE algorithms is that during training they still need to learn
a joint policy that can be factorized into individual policies. During the execution phase, agents take
individual actions, ai, without conditioning on other agents’ actions, a−i, or policies, π−i. This
independence assumption poses a challenge for many pre-existing algorithms, especially for offline
MARL when the dataset is generated by a mixture of different data collection policies and/or the
environment contains multiple global optima.

One popular way to learn factorizable policies from centralized training is to impose an Individual-
Global-Max (IGM) assumption.
Definition A.1 (Individual-Global-Max (IGM) [30, 33]). Individual utility functions {Qi}Ni=1 satisfies
the IGM condition for a joint state-action value function Q : S ×A → R if the following condition
holds:

argmax
a

Q(s, a) = {argmaxQi(s, ai)}Ni=1 (17)

Intuitively, the IGM condition implies that the optimal Q-function Q∗ for a given task or environment
can be decomposed into individual utility functions which only condition on the individual actions ai.
This assumption results in a space of MARL tasks where decentralized policies (i.e. greedy policies
over Qi) can be learned to collectively act optimally. The decomposed utility functions Qi can then
be used for greedy action selection by individual agents [36].

It is easy to see that under the IGM assumption in Definition A.1, we cannot learn a set of individual
utility functions {Qi} which can accurately represent the optimal Q-functions of many tasks with
multiple global optima, including the XOR game. In fact, [5] showed formally that any algorithm
under the IGM constraint cannot represent the underlying optimal Q-function in the XOR game.
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B Proofs for AlberDICE

B.1 Proof of Proposition 3.1

Proposition 3.1. The closed-form solution for the inner-maximization in (12) for each x is given by

ŵ∗
νi(x) = exp

(
1
α êνi(x)− 1

)
(13)

Proof. Let

L(νi, wi) := Êx∈Dρi

[
wi(s, ai)

(
êνi(s, ai,a−i, s

′)− α logwi(s, ai)
)]

+ (1− γ)Ês0∈D0
[νi(s0)]

Note that L(νi, wi) is differentiable and strictly convex for wi. Therefore, we only need to find a
point where the gradient becomes zero. For any x ∈ Dρi ,

∂L(νi, wi)

∂wi(x)
= êνi(s, ai,a−i, s

′)− α logwi(x)− α = 0 (18)

⇐⇒ ŵ∗
i (x) = exp

(
1
α êνi(s, ai,a−i, s

′)− 1
)

(19)

B.2 Convexity of L(νi)

Proposition B.1. Let L(νi) be a function, defined as:

L(νi) := ρ̄iαÊx∈Dρi

[
exp

(
1
α êνi(s, ai,a−i, s

′)− 1
)]

+ (1− γ)Es0∼p0 [νi(s0)] (20)

Then, L (νi) is convex with respect to νi

Proof. For any functions νi, ν′i and constant λ ∈ [0, 1], we can derive the following equality:

ê(λνi+(1−λ)ν′
i)
(s, ai,a−i, s

′)

= r(s, ai,a−i)− α log π−i(a−i|s)
πD

−i(a−i|s,ai)
+ γ (λνi + (1− λ)ν′i) (s′)− (λνi + (1− λ)ν′i) (s)

= r(s, ai,a−i)− α log π−i(a−i|s)
πD

−i(a−i|s,ai)
+ γλνi(s

′)− λνi(s) + γ(1− λ)ν′i(s′)− (1− λ)ν′i(s)

= λr(s, ai,a−i)− λα log π−i(a−i|s)
πD

−i(a−i|s,ai)
+ γλνi(s

′)− λνi(s)

+ (1− λ)r(s, ai,a−i)− (1− λ)α log π−i(a−i|s)
πD

−i(a−i|s,ai)
+ γ(1− λ)ν′i(s′)− (1− λ)ν′i(s)

= λêνi(s, ai,a−i, s
′) + (1− λ)êν′

i
(s, ai,a−i, s

′).

Thus, eνi is the linear function with respect to νi. Furthermore, using the convexity of exp(·),

E(s,ai,a−i,s′)∼dD
[
π−i(a−i|s)
πD
−i(a−i|s)

exp
(
ê(λνi+(1−λ)ν′

i)
(s, ai,a−i, s

′)
)]

= E(s,ai,a−i,s′)∼dD
[
π−i(a−i|s)
πD
−i(a−i|s)

exp
(
λêνi(s, ai,a−i, s

′) + (1− λ)êν′
i
(s, ai,a−i, s

′)
)]

≤ λE(s,ai,a−i,s′)∼dD
[
π−i(a−i|s)
πD
−i(a−i|s)

exp (êνi(s, ai,a−i, s
′))

]
+ (1− λ)E(s,ai,a−i,s′)∼dD

[
π−i(a−i|s)
πD
−i(a−i|s)

exp
(
êν′

i
(s, ai,a−i, s

′)
)]

Therefore, L (νi) is convex function with respect to νi.

We also show that our practical algorithm minimizes the upper bound of the original optimization
problem in equation (7) restated here:

L(νi, wi) := (1− γ)Es0∼p0 [νi(s0)] + E(s,ai)∼dD
[
wi(s, ai)

(
eνi(s, ai)− α logwi(s, ai)

)]
(21)
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Corollary B.2. L(νi) is an upper bound of L (νi, w
∗
i ), where w∗

i = argmaxwi
L(νi, wi), i.e.,

L (νi, w
∗
i ) ≤ L(νi) always holds, where equality holds when the MDP transition and other agents’

policy π−i are deterministic.

Proof. We first note that the closed-form solution for argmaxwi
L(νi, wi) is as follows:

w∗
i (s, ai) = exp

(
1
αeνi(s, ai)− 1

)
. (22)

By plugging this into equation (7), we obtain

min
νi

αE(s,ai)∼dD
[
exp

(
1
αeνi(s, ai)− 1

)]
+ (1− γ)Es0∼p0 [νi(s0)] =: L (w∗

i , νi)

From Jensen’s inequality, we get

L (w∗
i , νi) = αE(s,ai)∼dD

[
exp

(
1
αeνi(s, ai)− 1

)]
+ (1− γ)Es0∼p0 [νi(s0)]

= αE(s,ai)∼dD
[
exp

(
1
αE a−i∼π−i

s′∼P (s,ai,a−i)
[êνi(s, ai,a−i, s

′)]− 1
)]

+ (1− γ)Es0∼p0 [νi(s0)]

≤ αE(s,ai,a−i,s
′)∼dD

[
π−i(a−i|s)
πD
−i(a−i|s)

exp
(

1
α êνi(s, ai,a−i, s

′)− 1
)]

+ (1− γ)Es0∼p0 [νi(s0)]

= L(νi) (23)

Also, the inequality becomes tight when the transition model and the opponent policies are determin-
istic, since exp

(
1
αE a−i∼π−i

s′∼P (s,ai,a−i)
[ê (s, ai,a−i, s

′)]
)
= E a−i∼π−i

s′∼P (s,ai,a−i)

[
exp

(
1
α ê (s, ai, a−i, s

′)
)]

should always hold for the deterministic transition P and opponent policies π−i.
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C Problems with Naive Extension of OptiDICE to Offline MARL

OptiDICE [14] is a (single-agent) offline policy optimization algorithm which is derived from the
regularized Linear Programming (LP) formulation for RL. For a given MDP ⟨S,A, P,R, γ⟩, the
derivation of OptiDICE starts with the regularized dual of the LP:

max
d≥0

∑
s,a

d(s, a)r(s, a)− αDKL(d||dD) (24)

s.t.
∑
a′

d(s′, a′) = (1− γ)p0(s′) + γ
∑
s,a

P (s′|s, a)d(s, a),∀s′. (25)

Here, d(s, a) should be a stationary distribution of some policy π by the Bellman flow constraints
(25) (dπ(s, a) := (1 − γ)

∑∞
t=0 γ

t Pr(st = s, at = a;π)), and dD is the dataset distribution. The
goal is to maximize the rewards while not deviating too much from the data distribution, following
the conservatism principle in offline RL. Without the regularization term DKL(d||dD), the optimal
solution of (24-25) is the stationary distribution for the optimal policy, d∗ = dπ

∗
.

One of the main contributions of OptiDICE is a tractable re-formulation of the dual LP problem
above into a single convex optimization problem,

min
ν

(1− γ)Es∼µ0
[ν(s)] + E(s,a)∼dD [w∗

ν(s, a)eν(s, a)− αw∗
ν(s, a) logw

∗
ν(s, a)] . (26)

where w∗
ν(s, a) := exp

(
1
α

(
r(s, a) + γEs′ [ν(s′)]− ν(s)

)
− 1

)
. (27)

Here, ν(s) ∈ R is the Lagrangian multiplier for the Bellman flow constraint (25), and it approaches
the optimal state value function V ∗(s) as α→ 0. Once we obtain the optimal solution of (26), ν∗, it
was shown that the stationary distribution corrections of the optimal policy is given by w∗

ν∗ :

w∗
ν∗(s, a) = exp

(
1
α

(
r(s, a) + γEs′ [ν∗(s′)]− ν∗(s)

)
− 1

)
=

d∗(s, a)

dD(s, a)
. (28)

However, its extension to MARL can cause a number of subtle issues. While solving (26) does not
suffer from the curse of dimensionality posed in MARL since ν(s) is a state-dependent function, ν∗
itself is not an executable policy. We therefore should extract a policy from it. However, once we try
to learn a parametric function for w(s, a), we encounter a combinatorial space of joint actions. We
thus should avoid learning any state-action dependent functions for policy extraction. One feasible
way to do so is to perform policy extraction via Weighted Behavior-cloning (WBC):

∀i, max
πi

E(s,ai,a−i,s′)∼dD
[
ŵ∗
ν∗(s, ai,a−i, s

′) log πi(ai|s)
]
≈ E(s,ai,a−i,s′)∼d∗ [log πi(ai|s)] (29)

s.t. ŵ∗
ν∗(s, ai,a−i, s

′) = exp
(
1
α

(
r(s, ai,a−i) + γν∗(s′)− ν∗(s)

)
− 1

)
, (30)

which corresponds to behavior-cloning of the factorized policy on the state-action visits by the optimal
(joint) policy. However, if the optimal joint policy (by ν∗) is a multi-modal distribution, this WBC
policy extraction step can result in an arbitrarily bad policy, selecting OOD joint actions. For example,
consider the XOR matrix game in Figure 1 with a dataset D = {(A,A), (A,B), (B,A)}, where the
optimal joint policy is given by π∗(a1 = A, a2 = B) = π∗(a1 = A, a2 = B) = 1

2 . In this situation,
WBC of OptiDICE (29) obtains the factorized policies of π1(a1 = A) = π1(a1 = B) = 1

2 and
π2(a2 = A) = π2(a2 = B) = 1

2 , which can select suboptimal (and OOD) joint actions:

π(a1 = A, a2 = A) = π1(a1 = A)π2(a2 = A) = 1
4

π(a1 = A, a2 = B) = π1(a1 = A)π2(a2 = B) = 1
4

π(a1 = B, a2 = A) = π1(a1 = B)π2(a2 = A) = 1
4

π(a1 = B, a2 = B) = π1(a1 = B)π2(a2 = B) = 1
4

This analysis is consistent with our experimental results in Section 5, which demonstrated the failure
of OptiDICE in solving the Penalty XOR Game as well as Bridge by converging to sub-optimal OOD
joint actions.
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D Proofs for Section 4

To prove Theorem 4.2, we first need to show that the regularized objective in the LP formulation of
AlberDICE, cf. equation (2), preserves the common reward structure of G.
Lemma 4.1. Consider a joint policy π = (πi)i∈N , with factorized individual policies, i.e., π(a|s) =∏
i∈N πi(ai|s) for all (s,a) ∈ S ×A with a = (ai)i∈N . Then, the regularized objective in the LP

formulation of AlberDICE, cf. equation (2), can be evaluated to∑
s,ai,a−i

dπi (s, ai)π−i(a−i|s)r̃(s, ai,a−i),

with r̃(s, ai,a−i) := r(s, ai,a−i) − α · log dπ(s)π(a|s)
dD(s,ai,a−i)

, for all (s,a) ∈ S × A. In particular, for
any joint policy, π = (π)i∈N , with factorized invdividual policies, the regularized objective in the
LP formulation of AlberDICE attains the same value for all agents i ∈ N .

Proof. Recall that the KL-divergence, DKL (p(x)∥q(x)), between probability distributions p and
q is defined as DKL (p(x)∥q(x)) :=

∑
x p(x) log

p(x)
q(x) . Thus, the DKL term in the objective of

equation (2) can be written as

DKL

(
dπi (s, ai)π−i(a−i|s)∥dD(s, ai,a−i)

)
=

∑
s,ai,a−i

dπi (s, ai)π−i(a−i|s) · log
dπi (s,ai)π−i(a−i|s)

dD(s,ai,a−i)
.

Since the π′
is are factorized by assumption, the decomposition dπi (s, ai) = dπ(s)πi(ai|s), implies

that the numerator in the log-term of the previous expression can be written as
dπi (s, ai)π−i(a−i|s) = dπ(s)πi(ai|s)π−i(a−i|s) = dπ(s)π(a|s).

Substituting back in the initial expression of the objective function, we obtain that∑
s,ai,a−i

dπi (s, ai)π−i(a−i|s)r(s, ai,a−i)− αDKL

(
dπi (s, ai)π−i(a−i|s)∥dD(s, ai,a−i)

)
=

∑
s,ai,a−i

dπi (s, ai)π−i(a−i|s)r(s, ai,a−i)− α
∑

s,ai,a−i

dπi (s, ai)π−i(a−i|s) · log
dπ(s)π(a|s)
dD(s,ai,a−i)

=
∑

s,ai,a−i

dπi (s, ai)π−i(a−i|s)
[
r(s, ai,a−i)− α log dπ(s)π(a|s)

dD(s,ai,a−i)

]
.

Thus, by setting r̃(s, ai,a−i) := r(s, ai,a−i) − α · log dπ(s)π(a|s)
dD(s,ai,a−i)

, for all (s,a) ∈ S × A, we
obtain the claim. The equality of the last expression for all i ∈ N follows now immediately from
application of the decomposition dπi (s, ai)π−i(a−i|d) = dπ(s)π(a|s), on the outer expectation for
all agent i ∈ N .

Remark D.1. In the LP formulation of AlberDICE, cf. equation (2) and (3), we used the notation
di(s, ai) rather than dπi (s, ai), since, in this case, the variables are di(s, ai) are decision variables
that are not a-priori related to any particular policy πi. However, once the di(s, ai)’s are fixed and
translated to a policy, e.g., through the relation πi(ai|s) = di(s,ai)∑

aj
di(s,aj)

that holds in tabular domains,

then, we can apply Lemma 4.1. For the purposes of the alternating optimization procedure of the
AlberDICE algorithm, Lemma 4.1 ensures that after each update by any agent i ∈ N , the value of the
objective function is the same for each agent. To evaluate the modified utilities, r̃(s, ai,a−i), during
training, agents need to know both the action, ai, and the policy, πi(a, s), from whichi this action
drawn for each agent i ∈ N . Thus, this regularization terms exploits to the fullest the knowledge
available to agents in the centralized training setting.

To proceed, we can define a modified game, G̃ = ⟨N,S,A, r̃, P, γ⟩ which is the same as the original
game in every respect, i.e., it has the same state space, agents, actions, transitions and discount factor,
except for the rewards, r, which are replaced by the modified rewards r̃ for any given value of the
regularization parameter, α > 0 (for α = 0, we simply have the rewards, r, of the original game, G).
Despite this modification, Lemma 4.1 implies that G̃ still has a common reward structure. This can
be used to prove that the AlberDICE algorithm has monotonic updates which eventually converge to
a Nash equilibrium of the modified game, G̃. For this part, we focus on tabular domains, in which the
policies, πi(ai | s), can be directly extracted from di(s, ai) as πi(ai | s) = di(s,ai)∑

aj
di(s,aj)

.
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Theorem 4.2. Given an MMDP, G, and a regularization parameter α ≥ 0, consider the modified
MMDP G̃ with rewards r̃ as defined in Lemma 4.1 and assume that each agent alternately solves the
regularized LP defined in equations (2-3). Then, the sequence of policy updates, (πt)t≥0, converges
to a Nash policy, π∗ = (π∗

i )i∈N , of G̃.

Proof of Theorem 4.2. Let π0 = ⟨π0
i ⟩i∈N denote the initial joint policy and let πt = ⟨πti⟩i∈N

denote the joint policy after iteration t ∈ N in an execution of the AlberDICE algorithm. For
i = 1, . . . , N , we will also write πt1:i to denote the joint policy at time t after players 1 to i have

updated their policies, i.e., πt1:i = (πt1, . . . , π
t
i , π

t−1
i+1 , . . . , π

t−1
N ). Let di(s, ai) := d

πt−1
1:i−1

i (s, ai)
denote the stationary distribution for agent i before the current optimization by player i, and let

d∗i (s, ai) := d
πt−1
1:i
i (s, ai), π

∗
i (ai | s) denote the stationary policy derived as the optimal solution of

the LP and the corresponding extracted policy for agent i, respectively, after the optimization by
agent i at time t. Then,

Ṽ π1:i
i (s) =

∑
s,ai,a−i

d∗i (s, ai)π−i(a−i | s)r̃(s, ai,a−i)

≥
∑

s,ai,a−i

di(s, ai)π−i(a−i | s)r̃(s, ai,a−i) = Ṽ
π1:i−1

i (s),

for each state s ∈ S, where we used Lemma 4.1 for the equality of the modified rewards among all
agents in N . The inequality is strict unless agent i is already using an optimal policy, πi, against
π−i. Letting Ṽ to denote the common value function, i.e., Ṽi ≡ Ṽ for all agents i ∈ N , then, the
previous inequality implies that after the update of agent i, all agents have a higher value with the
current policy πt1:i. Thus, the sequence, πt, of joint policies generated by the AlberDICE algorithm
results in monotonic updates (increases) in the joint modified value function Ṽ (s), s ∈ S. Since,
V is bounded (rewards are bounded and discounted by assumption), this implies that also Ṽ is
bounded and hence, at some point, the updates of the algorithm will reach a local maximum of V .
Let π∗ = (π∗

i , π
∗
−i) denote the extracted policy at that point. Then, for all agents i ∈ N and any πi,

it holds that Ṽ π
∗

i (s) = Ṽ π
∗ ≥ Ṽ (πi,π

∗
−i) = Ṽ

(πi,π
∗
−i)

i for all s ∈ S. Thus, π∗ is a Nash policy as
claimed.

An important property of the AlberDICE algorithm is that it maintains a sequence of factorizable
joint policies, πt = ⟨πki ⟩i∈N , for any t > 0. Thus, after termination of the algorithm, the agents are
guaranteed not only to reach an optimal state of the value function, but also an extracted joint policy
that will be factorizable. This eliminates the problem of learning correlated policies during centralized
training, which even if optimal, may not be useful during decentralized execution. This property of
the AlberDICE is formally stated of Corollary 4.3. Its proof is immediate by the construction of the
algorithm.
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E Detailed Description of Practical Algorithm

E.1 Numerically Stable Optimization

The practical issue in optimizing (14) is that it is unstable due to its inclusion of exp(·), often causing
exploding gradient problems:

L(νi) :=min
νi

ρ̄iαÊx∈Dρi

[
exp

(
1
α êνi(s, ai,a−i, s

′)− 1
)]

+ (1− γ)Es0∼p0 [νi(s0)]. (14)

where êνi(s, ai,a−i, s
′) := r(s, ai,a−i) − α log π−i(a−i|s)

πD
−i(a−i|s,ai)

+ γνi(s
′) − νi(s). To address this

issue, we use the following alternative, which can be optimized stably.

L̃(ν̃i) :=min
ν̃i

α log ρ̄iÊx∼Dρi

[
exp

(
1
α êν̃i(s, ai,a−i, s

′)
)]

+ (1− γ)Es0∼p0 [ν̃i(s0)] (31)

Note that the gradient∇x log Êx[exp(h(x))] is given by Êx

[
exp(h(x))

Êx′ [exp(h(x′))]
∇xh(x)

]
, which normal-

izes the value of exp(h(x)) and thus it is numerically stable by preventing the exploding gradient
issue. At first glance, it seems that optimizing (31) can result in a completely different solution to the
solution of (14). However, as we will show in the followings, their optimal objective function values
are the same and their optimal solutions only differ in a constant shift.

Proposition E.1. Let V ∗ = argminνi L(νi) and Ṽ ∗ = argminν̃i L̃(ν̃i) be the sets of optimal
solutions of (14) and (31). Then, L(ν∗i ) = L̃(ν̃∗i ) holds for any ν∗i ∈ V ∗ and ν̃∗i ∈ Ṽ ∗. Also, for any
ν∗i ∈ V and any C ∈ R, v∗i + C ∈ Ṽ ∗.

We follow the proof steps in DemoDICE [9]. First, note that for any constant C, the advantage for
νi + C is:

êνi+C(s, ai,a−i, s
′) = r(s, ai,a−i)− α log π−i(a−i|s)

πD
−i(a−i|s,ai)

+ γ(νi(s
′) + C)− (νi(s) + C)

= êνi(s, ai,a−i, s
′)− (1− γ)C (32)

Lemma E.2. For an arbitrary function νi and any constant C, the following equality holds,

L̃(νi) = L̃(νi + C).

Proof. From the definition of L̃(νi),

L̃(νi + C)

= (1− γ)Es0∼p0 [νi(s0) + C] + α log ρ̄iÊx∼Dρi

[
exp

(
1
α
êνi+C(s, ai,a−i, s

′)
)]

= (1− γ)Es0∼p0 [νi(s0) + C] + α log ρ̄iÊx∼Dρi

[
exp

(
1
α
êνi(s, ai,a−i, s

′)− 1
α
(1− γ)C

)]
(by (32))

= (1− γ)Es0∼p0 [νi(s0) + C] + α log
{
exp

(
− 1

α
(1− γ)C

)
ρ̄iÊx∼Dρi

[
exp

(
1
α
êνi(s, ai,a−i, s

′)
)]}

= (1− γ)Es0∼p0 [νi(s0) + C]− (1− γ)C + α log ρ̄iÊx∼Dρi

[
exp

(
1
α
êνi(s, ai,a−i, s

′)
)]

= (1− γ)Es0∼p0 [νi(s0)] + α log ρ̄iÊx∼Dρi

[
exp

(
1
α
êνi(s, ai,a−i, s

′)
)]

= L̃(νi)

Lemma E.3. For any function νi, the following inequality always holds:

L(νi) ≥ L̃(νi).

Equality holds if and only if

ρ̄iÊx∼Dρi

[
exp

(
1
α êνi(s, ai,a−i, s

′)
)]

= 1
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Proof. For any y ≥ 0
y − 1 ≥ log y

and equality holds if and only if y = 1. Thus,

ρ̄Êx∼Dρi

[
exp

(
1
α êνi(s, ai,a−i, s

′)
)]
− 1 ≥ log ρ̄iÊx∼Dρi

[
exp

(
1
α êνi(s, ai,a−i, s

′)
)]

and equality holds if and only if

ρ̄iÊx∼Dρi

[
exp

(
1
α êνi(s, ai,a−i, s

′)
)]

= 1.

Finally, we obtain the following results:

L̃(νi) = (1− γ)Es0∼p0 [νi(s0)] + ρ̄iαÊx∈Dρi

[
exp

(
1
α êνi(s, ai,a−i, s

′)− 1
)]

≥ (1− γ)Es0∼p0 [νi(s0)] + α log
{
ρ̄iÊx∈Dρi

[
exp

(
1
α êνi(s, ai,a−i, s

′)− 1
)]}

+ 1

≥ (1− γ)Es0∼p0 [νi(s0)] + α log
{
ρ̄iÊx∈Dρi

[
exp

(
1
α êνi(s, ai,a−i, s

′)− 1
)]

exp(1)
}

= (1− γ)Es0∼p0 [νi(s0)] + α log
{
ρ̄iÊx∈Dρi

[
exp

(
1
α êνi(s, ai,a−i, s

′)
)]}

=: L̃(νi)

Lemma E.4. For any optimal solution ν̃∗i = argminνi L̃(νi), there is a constant C such that ν̃∗i +C
is an optimal solution of minνi L(νi).

Proof. Let ν̃∗i be an optimal solution of argminνi L̃(νi) and

C∗ := α
1−γ log ρ̄iÊx∼Dρi

[
exp

(
1
α êνi(s, ai,a−i, s

′)
)]

Then, ν̂i := ν̃∗i + C∗ satisfies

ρ̄iÊx∼Dρi

[
exp

(
1
α êν̂i(s, ai,a−i, s

′)
)]

= ρ̄iÊx∼Dρi

[
exp

(
1
α êν̃∗

i +C
∗(s, ai,a−i, s

′)
)]

= ρ̄iÊx∼Dρi

[
exp

(
1
α êν̃∗

i
(s, ai,a−i, s

′)− 1−γ
α C∗

)]
= ρ̄iÊx∼Dρi

[
exp

(
1
α êν̃∗

i
(s, ai,a−i, s

′)
)
exp

(
− 1−γ

α C∗
)]

= 1.

Furthermore, ν̂i is also an optimal solution of minνi L̃(νi) by Lemma E.2 . Then, by the equality
condition in Lemma E.3 ,

L̃(ν̂i) = L̃(ν̂i) = min
νi
L̃(νi) ≤ min

νi
L̃(νi).

Thus, ν̂i is an optimal solution of minνi L(νi).

Lemma E.5. An optimal solution ν∗i = argminνi L (νi) is also an optimal solution of minνi L̃(νi)

Proof. From Lemma E.3 ,
min
νi

L (νi) = L (ν∗i ) ≥ L̃ (ν∗i ) .

From Lemma E.4, minνi L (νi) and minνi L̃ (νi) have the same minimum value, and thus,

L̃ (ν∗i ) ≤ L (ν∗i ) = min
νi

L (νi) = min
νi
L̃ (νi)

holds.
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The aforementioned Proposition E.1 can now be proved.

Proposition E.1. Let V ∗ = argminνi L(νi) and Ṽ ∗ = argminν̃i L̃(ν̃i) be the sets of optimal
solutions of (14) and (31). Then, L(ν∗i ) = L̃(ν̃∗i ) holds for any ν∗i ∈ V ∗ and ν̃∗i ∈ Ṽ ∗. Also, for any
ν∗i ∈ V and any C ∈ R, v∗i + C ∈ Ṽ ∗.

Proof. This holds from combining Lemma E.4 and Lemma E.5

E.2 Policy Extraction

Finally, our practical AlberDICE optimizes (31) that yields ν̃∗i . However, ν̃∗i itself is not a directly
executable policy, so we should extract a policy from it. To this end, first note that the optimal policy
π∗
i is encoded in w∗

i as a form of stationary distribution correction ratios:

w∗
i (s, a) =

dπ
∗
i (s, ai)

dD(s, ai)
(optimal solution of Eq. (8)) (33)

Then, w∗
i (s, a) can be represented in terms of ν̃∗i as follows:

w∗
i (s, a) = exp

(
1
αeν∗

i
(s, ai)− 1

)
(Eq. (22)) (34)

∝ exp
(
1
αeν̃∗

i
(s, ai)

)
(by Proposition E.1) (35)

where eν̃∗
i
(s, ai) = E a−i∼π−i(s)

s′∼P (s,ai,a−i)

[
êν̃∗

i
(s, ai,a−i, s

′)
]

and êν̃∗
i
(s, ai,a−i, s

′) = r(s, ai,a−i) −

α log π−i(a−i|s)
πD

−i(a−i|s,ai)
+ γν̃∗i (s

′)− ν̃∗i (s). Finally, we extract a policy from w∗
i via I-projection policy

extraction method introduced in equation (15).

min
πi

DKL

(
dD(s)πi(ai|s)π−i(a−i|s)||dD(s)π∗

i (ai|s)π−i(a−i|s)
)

(36)

= Ês∈D,ai∼πi,a−i∼π−i(a−i|s)

[
log dD(s)πi(ai|s)π−i(a−i|s)

dD(s)π∗
i (ai|s)π−i(a−i|s)

]
(37)

= Ês∼D,ai∼πi

[
log

dD(s)πD
i (ai|s)

dπ
∗
i (s)π∗

i (ai|s)
+ log πi(ai|s)

πD
i (ai|s)

+ log dπ
∗
i (s)

dD(s)︸ ︷︷ ︸
constant for πi

]
(38)

= Ês∈D,ai∼πi

[
log dD(s,ai)

dπ
∗
i (s,a)

+DKL

(
πi(ai|s)||πDi (ai|s)

)]
+ C1 (39)

= Ês∈D,ai∼πi

[
− logw∗

i (s, ai) + DKL

(
πi(ai|s)||πDi (ai|s)

)]
+ C1 (40)

= Ês∈D,ai∼πi

[
− 1

αeν̃∗
i
(s, ai) + DKL

(
πi(ai|s)||πDi (ai|s)

)]
+ C1 + C2 (by (35)) (41)

where C1 and C2 denote some constants. πDi (ai|s) is a data policy for i-th agent, which is pretrained
by maximizing the log-likelihood:

max
πD
i

Ê(s,ai)∈D
[
log πDi (ai|s)

]
(42)

Eq. (41) can be understood as KL-regularized policy optimization, where we aim to maximize
eν̃∗

i
(s, ai) (analogous to critic value) while not deviating too much from the data policy, whose

trade-off is controlled by the hyperparameter α. Finally, to enable eν̃∗
i

to be evaluated at every
action ai, we train an additional parametric function ei (implemented as an MLP that takes (s, ai)
as an input and outputs a scalar value) by minimizing the mean squared error with a conservative
regularization termR(ei) introduced in CQL [11] to penalize OOD action values:

min
ei

Ê(s,ai,a−i,s
′)∈Dρi

[(
ei(s, ai)− êν̃∗

i
(s, ai,a−i, s

′)
)2]

+RCQL(ei) (43)

where RCQL(ei) := αCQLÊ(s,ai)∼Dρi

[
log

∑
ai
exp

(
ei(s, ai)

)
− Eai∼πD

i
[ei(s, ai)]

]
. We used

αCQL = 0.1 for all experiments.
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E.3 Pseudocode of AlberDICE

To sum up, AlberDICE computes the best response of agent i by optimizing νi, which corresponds to
obtaining a stationary distribution correction ratios of the optimal policy. Then, we extract a policy
by training e-network and performing I-projection as described in Section E.2.

We assume πDi , πD−i, νi, ei, and πi are parameterized by βi, β−i, θi, ψi, and ϕi, respectively10.
Then, we optimize the parameters via stochastic gradient descent (SGD). The entire loss functions to
optimize the parameters are summarized in the following:

J(βi) :=− Ê(s,ai)∈D
[
log πDβi

(ai|s)
]

(44)

J(β−i) :=− Ê(s,ai,a−i)∈D

[ N∑
j=1,j ̸=i

log πDβ−i
(aj |s, ai, a<j)

]
(45)

J(θi) := α log ρ̄iÊx∼Dρi

[
exp

(
1
α êνθi (s, ai,a−i, s

′)
)]

+ (1− γ)Es0∼p0 [νθi(s0)] (46)

J(ψi) := Ê(s,ai,a−i,s
′)∈Dρi

[(
eψi(s, ai)− êν̃θi (s, ai,a−i, s

′)
)2]

(47)

+ αCQLÊs∈Dρi

[(
log

∑
ai

exp
(
eψi(s, ai)

)
− Eai∼πD

βi

[eψi(s, ai)]
)]

J(ϕi) := Ês∈D

[∑
ai

πϕi(ai|s)
(
− eψi(s, ai) + α log

πϕi
(ai|s)

πD
βi

(ai|s)

)]
(48)

The pseudocode of AlberDICE is presented in Algorithm 1.

Algorithm 1 AlberDICE

Input: A dataset D := {(s,a, r, s′)k}|D|
k=1, a set of initial states D0 := {s0,k}|D0|

k=1 , data policy
networks {(πDβi

,πDβ−i
)}Ni=1 with parameters {(βi, β−i)}Ni=1, ν-networks {νθi}Ni=1 with param-

eters {θi}Ni=1, e-networks {eψi}Ni=1 with parameters {ψi}Ni=1, policy networks {πϕi }Ni=1 with
parameters {ϕi}Ni=1, and a learning rate η

1: Pretrain (auto-regressive) data policies
{(
πDβi

(ai|s),πDβ−i
(a−i|s, ai)

)}N
i=1

by minimizing (44-
45).

2: for each iteration until convergence do
3: for each agent i ∈ N do
4: Sample mini-batches from s0 ∼ D0 and x ∼ D.

5: Compute the importance ratio ρi(x) =
∏

j ̸=i πϕj
(aj |s)

πD
β−i

(a−i|s,ai)
for each sample x. (Eq. (11))

6: Perform resampling with probability proportional to ρi(x), which constitutes the resampled
dataset Dρi .

7: Perform SGD updates using D0 and Dρi :

θi ← θi − η∇θiJ(θi) (Eq. (46))
ψi ← ψi − η∇ψi

J(ψi) (Eq. (47))
ϕi ← ϕi − η∇ϕi

J(ψi) (Eq. (48))

8: end for
9: end for

Output: Factorized policies {πϕi
(ai|s)}Ni=1

10To increase scalability, we use shared parameters and an additional agent ID input to train βi for πD
i in all

experiments.

23



F Dataset Details

F.1 Bridge

The optimal dataset (500 trajectories) was constructed by a hand-crafted (multi-modal) optimal policy
which randomizes between Agent 1 crossing the bridge first while Agent 2 retreats, and vice-versa.
The mix dataset is a mixture between 500 trajectories from the optimal dataset and 500 trajectories
generated by a uniform random policy.

F.2 Multi-Robot Warehouse (RWARE)

For the data collection policy used to construct the dataset, we train Multi-Agent Transformers
(MAT) [37] which takes an autoregressive policy structure and thus is able to generate diverse
behavior. We further train MAT over 3 random seeds, and generate a expert dataset with a mixture of
diverse behaviors.

F.3 Google Research Football

Similar to the dataset collection procedure in RWARE, we use MAT to generate a medium-expert
dataset in order to ensure that agents score goals in different ways. Similar to Bridge, we construct
a dataset of 2000 trajectories where 1000 trajectories have medium performance (roughly 60%
performance of the expert policies) and another 1000 from fully trained "expert" MAT policies.

F.4 SMAC

We use the public dataset provided by [31].
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G Matrix Game Results

In Table 6, we show results for the converged policies in the Matrix Game presented in Section 5 of
the main text and shown again in Figure 6.

A B
A 0 1
B 1 −2

Figure 6: XOR Game with Penalty

As expected, all algorithms converge to the optimal action AB for the dataset D(a). However,
AlberDICE is the only algorithm which can choose the optimal action deterministically for all 4
datasets, showing robustness even when the environment has multiple global optima and the dataset
is generated by a mixture of diverse policies. Here we can consider any dataset containing both AB
and BA as a mixture of diverse data collection policies where the two agents cooperate to select the
optimal actions but in different ways. For OMAR, we see that it is able to learn the optimal policy
for D(b). However, as discussed in the Introduction of the main text, OMAR degenerates to the
sub-optimal action BB for dataset D(c) because each agent acts independently and assumes the other
agent chooses the individual action A with a 2

3 probability. Finally, we also note that BC can fail and
converge to OOD joint actions even in D(b) where the dataset is optimal.

BC

A B
A 0.00 1.00
B 0.00 0.00

D(a)

A B
0.25 0.24
0.26 0.25
D(b)

A B
0.45 0.22
0.22 0.11
D(c)

A B
0.25 0.26
0.24 0.25
D(d)

ICQ

A B
A 0.00 1.00
B 0.00 0.00

D(a)

A B
1.00 0.00
0.00 0.00
D(b)

A B
0.00 0.00
0.00 1.00
D(c)

A B
1.00 0.00
0.00 0.00
D(d)

OMAR

A B
A 0.00 1.00
B 0.00 0.00

D(a)

A B
0.00 0.00
1.00 0.00
D(b)

A B
0.00 0.00
0.00 1.00
D(c)

A B
1.00 0.00
0.00 0.00
D(d)

MADTKD

A B
A 0.00 1.00
B 0.00 0.00

D(a)

A B
0.25 0.24
0.26 0.25
D(b)

A B
0.25 0.25
0.25 0.25
D(c)

A B
0.25 0.26
0.24 0.25
D(d)

OptiDICE

A B
A 0.00 1.00
B 0.00 0.00

D(a)

A B
0.25 0.24
0.26 0.25
D(b)

A B
0.25 0.25
0.25 0.25
D(c)

A B
0.25 0.26
0.24 0.25
D(d)

AlberDICE

A B
A 0.00 1.00
B 0.00 0.00

D(a)

A B
0.00 0.00
1.00 0.00
D(b)

A B
0.00 1.00
0.00 0.00
D(c)

A B
0.00 1.00
0.00 0.00
D(d)

Table 6: Policy values after convergence for the Matrix Game in Figure 2. The policy values are calcu-
lated by multiplying the individual policy values for each agent i.e. π = π1×π2. The datasets consist
of D(a) = {AB}, D(b) = {AB,BA}, D(c) = {AA,AB,BA}, D(d) = {AA,AB,BA,BB}.
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H Bridge Policy Visualizations

The visualizations for learned policies of AlberDICE, OptiDICE, ICQ, OMAR, BC, and MADTKD
are shown for all state possibilities. From Figure 7, it is clear that AlberDICE is the only algorithm
which reliably chooses a deterministic action (Left, Left) at the initial state. However, since the
visualizations are provided for the optimal dataset which has a small coverage of states, the policy
values may still be sub-optimal at OOD states. The results for OMAR in Figure 10 shows that the
agents are acting independently without regard for the other agents, and converges to (Left, Right) at
the initial state which results in a collision. Finally, we note that the visualizations for MADTKD
may not exactly correspond to the policy values used in the experimental results in Section 5. This is
because MADTKD uses a history-dependent Transformer policy and it is not clear how to visualize
the policy values depending on the history. The visualizations shown in Figure 11 assume that each
agent is at the given state in the initial timestep, which is different from encountering that state after
many timesteps. Nonetheless, the results for the true initial state shown in the central portions of the
figure are consistent with the quantitative results in Section 5.

Figure 7: Policy Visualizations for AlberDICE on the Bridge (Hard) environment for the optimal dataset where
the arrows show the probability of choosing a particular action given that the other agents are in • and • for
agents 1 and 2, respectively.
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Figure 8: Policy Visualizations for OptiDICE on the Bridge (Hard) environment for the optimal dataset where
the arrows show the probability of choosing a particular action given that the other agents are in • and • for
agents 1 and 2, respectively.

Figure 9: Policy Visualizations for ICQ on the Bridge (Hard) environment for the optimal dataset where the
arrows show the probability of choosing a particular action given that the other agents are in • and • for agents 1
and 2, respectively.
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Figure 10: Policy Visualizations for OMAR on the Bridge (Hard) environment for the optimal dataset where the
arrows show the probability of choosing a particular action given that the other agents are in • and • for agents 1
and 2, respectively.

Figure 11: Policy Visualizations for MADTKD on the Bridge (Hard) environment for the optimal dataset where
the arrows show the probability of choosing a particular action given that the other agents are in • and • for
agents 1 and 2, respectively.
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Figure 12: Policy Visualizations for BC on the Bridge (Hard) environment for the optimal dataset where the
arrows show the probability of choosing a particular action given that the other agents are in • and • for agents 1
and 2, respectively.
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I Additional Ablation Results

Here we show ablation results for hyperparameter α which controls the degree of conservatism.
Table 7 shows that AlberDICE is not too sensitive to the hyperparameter α as long as it is within a
reasonable range.

α 0.001 0.01 0.1 1 10 100 1000

CA-Hard (GRF) 0.00 ± 0.00 0.08 ± 0.11 0.82 ± 0.03 0.84 ± 0.06 0.78 ± 0.09 0.78 ± 0.11 0.79 ± 0.11(N = 4)
Corridor (SMAC) 0.00 ± 0.00 0.00 ± 0.00 0.92 ± 0.02 0.97 ± 0.01 0.95 ± 0.03 0.92 ± 0.03 0.91 ± 0.04(N = 8)

Table 7: Ablation Study for Conservatism Hyperparameter α (over 3 random seeds)

J Implementation Details

J.1 AlberDICE for Dec-POMDP

While our paper focuses on MMDPs, our experimental results show that we can extend AlberDICE to
Dec-POMDPsG = ⟨N ,S,A, r, P, p0, γ,Ω, O⟩ by using partial observations and a history-dependent
policy in place of a state-dependent policy for each agent. In Dec-POMDP, each agent i observes
individual observations oi ∈ Ω which is given by the observation function O : S × A → Ω. Each
agent makes decision based on the observation-action history τi ∈ (Ω × A)t−1 × Ω, where each
agent’s (decentralized) policy is represented as πi(ai|τi).
For the Matrix Game, Bridge and GRF, we used an MLP policy since the partial observations for
each agent correspond with the global state (i.e., each individual policy is conditioned only on its
current observation oi, rather than the entire history). For Warehouse, each individual policy uses the
partial observations as input, which is the 3x3 neighborhood surrounding each agent. We utilize a
Transformer-based policy in order for the agent to condition on the history of local observations and
actions, while speeding up training in comparison to Recurrent Neural Networks (RNNs). This same
Transformer-based policy is used for all baselines as well.

During centralized training, AlberDICE uses the global state s for training πDβ−i
(a−i|s, ai), νθi(s),

and eψi
(s, a) for all environments, where its training procedure is identical to the MMDP training

procedure described in Appendix E.3. Only the policy extraction step is different for Dec-POMDP,
where each agent’s history-dependent policies are trained by:

min
βi

−Ê(τi,ai)∈D
[
log πDβi

(ai|τi)
]

(49)

min
ϕi

Ê(s,ai,τi)∈D

[∑
ai

πϕi(ai|τi)
(
− eψi(s, ai) + α log

πϕi
(ai|τi)

πD
βi

(ai|τi)

)]
(50)

J.2 Hyperparameter Details

We conduct minimal hyperparameter tuning for all algorithms for fair comparisons. It is also worth
noting that in offline RL, it is important to develop algorithms which require minimal hyperparameter
tuning [23]. We chose the best values for α for both AlberDICE and OptiDICE between [0.1, 1, 5, 10]
on N=2 (Tiny) for RWARE and RPS (2 agents) for GRF. The best values were then used for all
scenarios thereafter. The final values used were α = 0.1 (GRF) and α = 1 (RWARE) for AlberDICE
and α = 1 (GRF, RWARE) for OptiDICE. We found that the performance gaps between different
hyperparameters were minimal as long as they were within a reasonable range where training is
numerically stable.

For ICQ [40], we found that the algorithm tends to become numerically unstable after a certain
number of training epochs even with sufficient hyperparameter tuning due to the exploding Q values,
especially in the GRF and SMAC environment.
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K Computational Resources

For Warehouse experiments, we utilized a single NVIDIA Geforce RTX 3090 graphics processing
unit (GPU). The experiments for running AlberDICE took 5H, 14H, and 29H for 2, 4, 6 agent
environments, respectively.
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