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Abstract
Despite the striking success of general protein
folding models such as AlphaFold2 (AF2, Jumper
et al. (2021)), the accurate computational mod-
eling of antibody-antigen complexes remains a
challenging task. In this paper, we first analyze
AF2’s primary loss function, known as the Frame
Aligned Point Error (FAPE), and raise a previ-
ously overlooked issue that FAPE tends to face
gradient vanishing problem on high-rotational-
error targets. To address this fundamental limi-
tation, we propose a novel geodesic loss called
Frame Aligned Frame Error (FAFE, denoted as
F2E to distinguish from FAPE), which enables the
model to better optimize both the rotational and
translational errors between two frames. We then
prove that F2E can be reformulated as a group-
aware geodesic loss, which translates the opti-
mization of the residue-to-residue error to optimiz-
ing group-to-group geodesic frame distance. By
fine-tuning AF2 with our proposed new loss func-
tion, we attain a correct rate of 52.3% (DockQ
> 0.23) on an evaluation set and 43.8% correct
rate on a subset with low homology, with substan-
tial improvement over AF2 by 182% and 100%
respectively. 1

1. Introduction
Protein structure modeling is a crucial field in computa-
tional biology and has been an important unsolved problem
for decades. Traditionally, structure biology researchers
relied on experimental methods such as X-ray crystallog-
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raphy and NMR spectroscopy (Wüthrich, 2001; Jaskolski
et al., 2014; Bai et al., 2015; Thompson et al., 2020) to
determine protein structures. However, these methods are
time-consuming, expensive, and highly reliant on the acces-
sibility to pure and stable samples of target proteins. As a
result, the range of protein monomers and complexes with
known structures (Burley et al., 2017) is far limited, es-
pecially considering the tremendous growth of discovered
protein sequences (Consortium, 2019; Richardson et al.,
2023) with the help of advancement in gene sequencing
technologies (Braslavsky et al., 2003; Harris et al., 2008;
Heather & Chain, 2016). This has led to an increasing
interest in computational methods for protein structure pre-
diction, which aim to predict the three-dimensional (3D)
structure of proteins based solely on their sequence informa-
tion.

AlphaFold2 (Jumper et al., 2021) is the most success-
ful protein structure prediction algorithm so far. It has
brought great progress in structure prediction accuracy at
CASP14 (Kryshtafovych et al., 2021), a well-known protein
structure modeling contest. AlphaFold2-Multimer (Evans
et al., 2021) was introduced subsequently by applying the
framework of AF2 to multi-chain proteins. AF2-Multimer
is designed to predict massive biological complexes, espe-
cially those with certain cross-chain genetic information.
However, for complexes whose cross-chain docking poses
can not be revealed by their genetic information, such as
immune complexes, there is still a large gap between their
predicted structures and experimental counterparts.

Immune complex modeling, which aims to model the 3D
structure of an antibody-antigen complex, has important im-
plications in antibody drug discovery (Kaczor et al., 2018).
Usually, the antibody part has an unknown structure as a
novel sequence, and the antigen part may or may not have a
corresponding experimentally determined structure, depend-
ing on different therapeutic targets. An alternative way to
this problem is using a loop modeling algorithm to predict
antibody structure, and applying a rigid docking algorithm
between two predicted components.

Many rigid docking algorithms (Pierce et al., 2014; Yan
et al., 2020; Desta et al., 2020; Ganea et al., 2021; Jin et al.,
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2022; Ketata et al., 2023; Wang et al., 2023) have been
proposed to address the antibody-antigen docking problem,
bringing significant progress in recent years. However, there
are several limitations to these approaches. First, the accu-
racy of such algorithms highly relies on good priors of
antibody and antigen structures. When no experimental
structure is provided and noises exist in its predicted substi-
tution, those algorithms can easily fail. At the same time,
rigid docking algorithms start with the unbound states of
antibodies and antigens, thus assume no changes at the epi-
topes and paratopes during docking, which is not true in the
real world. This lack of flexibility can introduce errors on
some targets.

To address these limitations, we tackle the immune com-
plex modeling problem directly from the primary sequences
of antibodies and antigens. We start by analyzing AF2-
Multimer as a baseline which uses FAPE loss as its main
structure loss. We show by derivations that cross-chain
FAPE loss equals to optimizing the chordal distance be-
tween ground truth and predicted group frames on SE(3).
The chordal distance measures the rotational error in its
chordal length, which can cause the gradient vanishing prob-
lem when the rotation angle is larger than π

2 . This gives us
insights into why a portion of AF2-Multimer predictions
are “stuck” at wrong docking positions with large rotational
errors.

With the observation above, we propose to use Frame
Aligned Frame Error (F2E) which not only measures the
translational errors but also the rotational errors of local
frames. By adding a correcting term, F2E can be modified to
approximate the geodesic distance of group frames. We then
conduct extensive experiments to show the effectiveness of
F2E. Overall, this paper has the following contributions:

• We point out that the original FAPE loss approximates
the chordal distance loss on group frames, which can
cause the gradient vanishing problem.

• We propose a novel geodesic distance loss F2E which
can address the problem mentioned above.

• Our experiments show that the new loss can improve
the antibody-antigen complex modeling performance
by a large margin.

2. Background
In this section, we will make a brief introduction of the basic
concepts and notations of protein residue frames, as well as
widely used metrics to measure the distance on SO(3) and
SE(3). We will then introduce the basic formula of FAPE
loss.

2.1. Frames of protein residues

Proteins are polypeptides composed of amino acid residues.
These amino acids are linked by so-called peptide bonds.
Once the protein is folded, both the relative translation and
rotation will be constrained by the structure to a great ex-
tent. These geometric constraints come from chemical and
biological mechanisms during the formation of proteins and
are crucial for proteins to function properly in organisms.

With the limited number of amino acid types, it is possible to
model the structure of each amino acid residue with a certain
degree of freedom, for example, adopted in the structure
module of AF2 (Jumper et al., 2021), through several frames
built upon certain atoms of these residues.

Definition 2.1. A frame T = (R, t⃗) ∈ SE(3) is a tuple of
rotation matrix R ∈ R3×3 and translation vector t⃗ ∈ R3.

SE(3) is the 3D Special Euclidean Group representing all
the rigid transformations, i.e., frames expressed in homoge-
neous coordinates. Specifically, the rotation part R belongs
to 3D Special Orthogonal Group SO(3) = {R ∈ R3×3 :
R⊤R = I3, det(R) = +1}, which represents the group of
all 3D rotation matrices.

2.2. Metrics on SO(3) and SE(3)

To measure how “close” two frames are, we need to first de-
fine the distance metric on SO(3) and SE(3). We introduce
two commonly used metrics (Huynh, 2009; Hartley et al.,
2013; Carlone et al., 2022), chordal and geodesic distances.

Definition 2.2. Given two rotations Ri and Rj , their
chordal distance is defined as

distc(Ri, Rj) = ∥Ri −Rj∥F = ∥R⊤
i Rj − I∥F , (1)

where ∥ · ∥F denotes the Frobenius norm.

Definition 2.3. Given two rotations Ri and Rj , their
geodesic distance (or angular distance) is defined as

distθ(Ri, Rj) =

∣∣∣∣arccos( tr(R⊤
i Rj)− 1

2

)∣∣∣∣ , (2)

in which tr(·) denotes the matrix trace.

A straightforward way to define distance metrics on SE(3)
is to treat it as the Cartesian product of SO(3) and R3.

Definition 2.4. Given two frames Ti = (Ri, t⃗i) and
Tj = (Rj , t⃗j), their chordal distance is defined as

distc(Ti, Tj ;α) =

√
distc(Ri, Rj)

2
+

∥∥∥∥ t⃗j − t⃗i
α

∥∥∥∥2 (3)

in which α is an axis scaling factor.
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Figure 1. Problem and method overview. (a) An example from PDB 7XJF, the gray structure is predicted by AF2, and the green structure
is the experimental ground truth. We can see there is a large rotation error. (b) Statistics of rotational errors in AF2.3 predictions on our
evaluation set. Most of the predictions have a rotation error larger than π

2
. (c) The comparison between FAPE (left) and F2E (right). FAPE

calculates point-wise Euclidean distance error after alignment to local frames, while F2E calculates frame-wise geodesic distance error
after the same alignment.

Definition 2.5. Given two frames Ti = (Ri, t⃗i) and
Tj = (Rj , t⃗j), their geodesic distance (or double geodesic
distance) is defined as

distθ(Ti, Tj ;α) =

√
distθ(Ri, Rj)

2
+

∥∥∥∥ t⃗j − t⃗i
α

∥∥∥∥2. (4)

Notice that in the following sections, we do not distinguish
the term “frame” from “pose”, but there are cases where this
difference matters, which are discussed in Appendix A.4,
We also would like to mention that many other valid dis-
tance metrics can be defined on SO(3) and SE(3). Some
meaningful discussions are provided in Appendix A.3.

2.3. FAPE loss on a parameterized complex

As the standard parameterization used in AF2 (Jumper et al.,
2021), proteins are modeled as a collection of N amino acid
residues. Each of these residues have a backbone frame T
which is built upon N, Cα and C atoms from its backbone
parts. The main atom coordinates can be calculated from
the frame

[N,C,Cα] = T ◦ [N∗, C∗, C∗
α], (5)

in which N∗, C∗, C∗
α are the canonical coordinates of these

atoms on the residue structure, and the transform T is ap-
plied to individual coordinates. Note C∗

α = (0, 0, 0)⊤,
which means the global position of Cα is equal to the trans-
lation t from T = (R, t). These three atoms, joined with
an O atom connected to C atom, constitute the basic re-
peating unit of proteins. The protein backbone can thus be
parameterized as

T = [T1, T2, ..., TN ] ∈ SE(3)
N
. (6)

The sidechain part, which contains at most 10 heavy atoms

and several hydrogen atoms, can also be parameterized us-
ing several sidechain frames per residue. In the paper, when
we refer to residue frames, we are mentioning backbone
frames if not specified. However, we do hope to point out
that any geometric derivations with backbone frames are
also applicable to sidechain frames, as there is no difference
between them from a pure geometric perspective.

Specifically, a protein complex is a collection of multiple
protein chains, usually denoted in capital letters [A,B,C...].
A protein chain is a collection of residues sequentially con-
nected by peptide bonds. A protein complex can therefore
be parameterized as

T = [TA,TB ,TC , ...], (7)

in which TA represents the collection of all backbone
frames on protein chain A.

FAPE is a loss function originally proposed by AF2 (Jumper
et al., 2021). Its basic principle is to estimate the point-wise
error after alignment of each local frame of the proteins, as
shown in Figure 1 (c). FAPE loss allows the calculation
of residue-atom pairwise error with the good property of
SE(3) invariance, that is, the loss function is invariant to
transformations of predicted or ground truth structure.

Definition 2.6. Given a ground truth complex structure
T = [T1, T2, ...TN ] ∈ SE(3)

N and its predicted counterpart
T̂ = [T̂1, T̂2, ...T̂N ] ∈ SE(3)

N , The backbone FAPE loss is
defined as

LFAPE(T, T̂) =
1

(N − 1)N
× (8)∑

i,j∈[1,N ],i̸=j

∥∥∥T̂i
−1

◦ ˆ⃗tj − Ti
−1 ◦ t⃗j

∥∥∥
F
, (9)

in which Tj = (Rj , t⃗j) and T̂j = (R̂j ,
ˆ⃗tj).
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Definition 2.7. Given a ground truth two-chain complex
structure T = [TA,TB ] and its predicted counterpart T̂ =

[T̂A, T̂B ], the inter-chain backbone FAPE loss is defined as

LFAPE(T, T̂) =
1

NANB
× (10)∑

i∈[1,NA]
j∈[NA+1,NA+NB ]

∥T̂i
−1

◦ ˆ⃗tj − Ti
−1 ◦ t⃗j∥F , (11)

in which residues [1, NA] belong to chain A and [NA +
1, NA + NB ] belong to chain B. The definition on more
than 2 chains is trivial by weighted averaging over all chain
pairs.

For notation simplicity, in the following words, we use
LFAPE(i, j) to denote the term ∥T̂i

−1
◦ ˆ⃗tj − Ti

−1 ◦ t⃗j∥F .
We also use notation i ∈ {chainA} and j ∈ {chainB} to
indicate residue i belongs to chain A and residue j belongs
to chain B, and operator chain(·) to indicate finding the
chain of the given residue.

A detailed introduction of FAPE is in Appendix B.

3. FAPE is a chordal distance estimation of
group frames

With the defined metrics above, in this section, we discuss
the properties of the original FAPE loss adopted in AF2
and AF2-Multimer (Jumper et al., 2021; Evans et al., 2021).
We show that with small modifications, FAPE loss can be
regarded as a chordal distance estimation of group frames.

3.1. Definition of group frame and its distance

First of all, we need to define the group frame and its metric.
This is important because when we work on complex mod-
eling, we care more about inter-chain errors than intra-chain
errors. The inter-chain errors, which we will show in the
discussions below, mainly come from the incorrect relative
pose estimation of different chains.

However, defining a group frame on a non-rigid protein
group is not a trivial problem. In this paper, we avoid dealing
with this problem directly. Instead, we consider defining the
frame differences rather than the frames themselves.

Inspired by the approach in ligand RMSD (Méndez et al.,
2003), we can define the distance of frames between pre-
dicted structures and ground-truth ones by superposition.
Definition 3.1. Given any frame T in the protein struc-
ture and its predicted counterpart T̂ , T, T̂ ∈ SE(3), their
distance is defined as

dist(T̂−1, T−1) = f(T̂ T−1) = f(T align), (12)

in which f(·) is the chordal or geodesic distance function

and T align is defined as the rigid transformation calculated
for superposition of atoms on the frame. The proof for the
equation is given in A.1.

The definition above allows us to calculate the group frame
difference when the group is non-rigid, which is important in
immune complex modeling without ground truth structures.
Next, we can calculate the relative pose error of two chains
in the form of “diff-diff-frame”.
Definition 3.2. Given any frame TA and TB on the protein
structure, we have TA, TB , T̂A, T̂B ∈ SE(3), we define their
relative pose distance error as

error(A,B;α) = dist(T̂−1
A T̂B , TA

−1TB ;α)

= dist(T̂B , T
align
A TB ;α).

(13)

The distance could either be chordal distance or geodesic
distance. See detailed discussion in Appendix A.4.

The definition above makes sure that the relative pose error
only relies on the superposition of two chains separately
regardless of any specific definition of group frames them-
selves.

3.2. Group-aware FAPE

In this part, we are going to show that by modifying the
original FAPE loss, we can obtain a group-aware version of
FAPE, which we shorten by G-FAPE. We show that apply-
ing G-FAPE on residue-point pairwise constraints between
groups is equivalent to directly optimizing the chordal dis-
tance between rigid group frames.

For i ∈ {chainA} and j ∈ {chainB}, we denote TA and
TB as the group frame of chain A and B, x⃗i,local as the local
position of the C-alpha atom i at TA. Specifically, we build
TA with its origin at the Euclidean average of all points
x⃗i, i ∈ {chainA}, which implies∑

i∈{chainA}

x⃗i,local = 0. (14)

In addition, for the predicted structures, we assume a Gaus-
sian noise ϵ⃗i added to each x⃗i,local. It is then straightforward
to write the FAPE loss as

LFAPE(i, j) = ∥(Tj
−1TA) ◦ x⃗i,local

− (T̂−1
j T̂A) ◦ (x⃗i,local + ϵ⃗i)∥F .

(15)

Define Tj,local = TATj , in which TA is the group frame of
chain A. We then introduce the near-rigid condition, that
is, the local frame error is relatively small compared to the
group frame error, and can be ignored. Empirically, we can
see from Figure 1 (a) that most local frames satisfy this
condition. So we have

T̂−1
j T̂A =T̂−1

j,local(T̂
−1
B T̂A)

≈Tj,local
−1(T̂−1

B T̂A).
(16)
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This helps us to simplify FAPE loss as

LFAPE(i, j) = ∥(TB
−1TA) ◦ x⃗i,local

− (T̂−1
B T̂A) ◦ (x⃗i,local + ϵ⃗i)∥F .

(17)

To further simplify, we denote (R∆, t⃗∆) = T∆ = T−1
B TA.

Now we are ready to introduce G-FAPE, which is simply
the quadratic mean of FAPE loss over i ∈ {chainA}.

LG−FAPE(j) =

√ ∑
i∈{chainA}

L2
FAPE(i, j)

=

[ ∑
i∈{chainA}

ϵ⃗⊤i ϵ⃗i

+
( ∑

i∈{chainA}

x⃗⊤
i,localx⃗i,local

)
∥R∆ − R̂∆∥

2

F

+ n∥t⃗∆ − ˆ⃗t∆∥
2

F

] 1
2

=

√ ∑
i∈{chainA}

ϵ⃗⊤i ϵ⃗i + k2 · dist2c(T̂∆, T∆;α),

(18)

in which k2 =
∑

i∈{chainA}
x⃗⊤
i,localx⃗i,local and α2 =

k2

n , n = card({C-alpha atoms on chain A}). The term∑
i∈{chainA}

ϵ⃗⊤i ϵ⃗i represents the intra-chain noises that the

inter-chain loss can not optimize. Thus, we can conclude
that optimizing G-FAPE is equivalent to optimizing the
chordal error of predicted and ground truth T∆.

3.3. Gradient vanishing problem in G-FAPE

The chordal distance is a valid metric in many circumstances,
but it can cause problems in complex modeling problems.
As the Figure 1 (a, b) show, most of the AF2 predictions on
our evaluation set have a high rotation error (larger than π

2 ).

To understand this phenomenon, in Figure 2 we draw the
loss curve of chordal distance to the angle θ of rotation error,
which is calculated according to Definition 2.3. We can see
the gradient of chordal distance loss is gradually decreasing
when θ approaches π. As a result, models trained with FAPE
loss will overly concentrate on samples with a small rotation
error at the start–for example, samples whose MSAs provide
enough contact information to determine the docking pose
roughly. Harder samples, like antibody-antigen pairs, are
relatively under-trained.

4. Using F2E to estimate geodesic distance of
group frames

With the gradient vanishing problem mentioned above, we
propose to develop new loss functions to address it. One

Figure 2. The loss value regarding rotation angle (difference be-
tween predicted and groundtruth) for chordal and geodesic distance.
The gradient of chordal distance tends to vanish when the rotation
angle approaches π, while the geodesic distance provides a stable
gradient from 0 to π.

straightforward idea is to directly optimize distθ(T∆, T̂∆).
However, this leads to several difficulties. First of all, ac-
cording to Definition 3.1 and Definition 3.2, the calculation
of T∆ and T̂∆ relies on superposition, which means we need
to calculate the gradient of Singular Value Decomposition
(SVD), which is numerically unstable. Indeed, when chains
are nearly rigid, the singular values will get close and make
the gradient unstable. Another potential approach is to esti-
mate T∆ directly through a separate neural network. We do
not use this approach because we want our methods to be
compatible with the existing architecture of AF2.

4.1. From FAPE to F2E

We propose to transform the original FAPE loss into a
geodesic loss that can keep the gradients stable throughout
different rotation angles. To achieve this, we propose Frame
Aligned Frame Error (F2E), which measure the geodesic
distance between two aligned frames.

Definition 4.1. Given any residue frame i and any residue
frame j on the protein structure, we have T̂i, Ti, T̂j , Tj ∈
SE(3), the F2E loss is defined as

LF2E(i, j;α) = distθ(T̂
−1
i T̂j , Ti

−1Tj ;α), (19)

in which distθ(·) denotes the geodesic distance defined in
Definition 2.5.

With denotion (Ri→j , ti→j) = Ti→j = T−1
i Tj , we further

show that F2E loss can degenerate to FAPE loss, as

L2
F2E(i, j;α) = dist2θ(R̂i→j , Ri→j)+

L2
FAPE(i, j)

α2
. (20)
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4.2. Group-aware F2E

We first look into what will happen if we apply F2E in
Definition 4.1. With Equation (18) and Equation (20), we
can get ∑

i∈{chainA}

L2
F2E(i, j)

=
L2
G−FAPE(j)

α2
+

∑
i∈{chainA}

dist2θ(R̂i→j , Ri→j)

≈
L2
G−FAPE(j)

α2
+ n · dist2θ(R̂∆, R∆)

=

∑
i∈{chainA}

ϵ⃗⊤i ϵ⃗i + k2 · dist2c(T̂∆, T∆;
k√
n
)

α2

+ n · dist2θ(R̂∆, R∆)

=

∑
i∈{chainA}

ϵ⃗⊤i ϵ⃗i

α2
+

n

α2

∥∥∥ˆ⃗t∆ − t⃗∆

∥∥∥2
+

k2

α2
· dist2c(R̂∆, R∆) + n · dist2θ(R̂∆, R∆).

(21)

Notice that we get both geodesic and chordal distance error
in the result. Fortunately, the chordal error can be inferred
from the geodesic error.
Lemma 4.2. Given two rotations Ri and Rj ∈ SO(3), we
have

dc(Ri, Rj) = 2
√
2 sin(

dθ(Ri, Rj)

2
), (22)

in which dc(·) denotes the chordal distance defined in Defi-
nition 2.2 and dθ(·) denotes the geodesic distance defined
in Definition 2.3. The proof is provided in Appendix A.2.

So we can actually ”cancel” the chordal error term by intro-
ducing group-aware F2E (G-F2E) as
Definition 4.3. Given any residue frame i and any residue
frame j on the protein structure, chain(i) ̸= chain(j),
G-F2E loss is defined as

LG−F2E(i, j;α) =

[
L2
FAPE(i, j)

α2

+ θ2 −
8x⃗⊤

i,localx⃗i,local

α2
· sin2 θ

2

] 1
2

,

(23)

in which θ = distθ(R̂i→j , Ri→j), and x⃗i,local is the coor-
dinates at the group frame on chain(i). We repeat that the
group frame is built with its origin at the Euclidean average
point of all C-alpha atoms, and without assumptions about
its rotation.

5. Experiments
We analyze the effectiveness of our proposed loss by fine-
tuning from original AF2-Multimer weights.

5.1. Parameter-efficient fine-tuning of AF2-Multimer

We conduct experiments by fine-tuning the original AF2
weights. The fine-tuning dataset is collected from The
Structural Antibody Database (SabDab) (Dunbar et al.,
2014), which provides annotations on the original PDB
database (Burley et al., 2017) raw structures. The training
set only includes samples released before September 30th,
2021, which is the same cut off for AF2.3 training set. More
data preparation details are available in Appendix C.1.

In the early version of F2E, we tried both to finetune the
full model and to only finetune the structure module. Fine-
tuning the full model leads to a severe overfitting problem,
where we find the accuracy of training samples arise fast
while the evaluation performance drops very soon after a
small rise, especially on LDDT, which suggests a memory
loss of the intra-chain structure information. while the struc-
ture modules finetuning only leads to a small increase in
performance. We therefore introduce an intermediate so-
lution with Low-Rank Adaption (LoRA) (Hu et al., 2022).
Note that we use LoRA not because of the computational
resources exceed our capacity, but because it provides a
natural path to avoid catastrophic forgetting.

We search and discover a relatively good LoRA setting for
fine-tuning AF2, where the LoRA layers are only added
to 48-layer evoformer, with other weights freezed. All the
weights before the evoformer like template embedder and
extra MSA stack are freezed, and all the weights after the
evoformer including the structure module and all the predic-
tion heads are fully trainable. More training details can be
found in Appendix C.2.

Following the standard AF2 settings, we fine-tune 5 models
and report the performance of top1 prediction with iptm as
the confidence score. A discussion of inference details is
provided in Appendix C.3.

5.2. Results

In Figure 3 we show the experimental results on two held
evaluation datasets. Our protocol follows in principle that
in AlphaFold-latest (AF3) (DeepMind, 2023). We first fil-
ter a full evaluation dataset with all the samples after the
training cut off, getting 693 unique samples. We use MM-
seqs2 (Steinegger & Söding, 2017) to cluster all the antigen
sequences from both training and evaluation set. For the
full evaluation set, we select all the cluster centers. For low
homology evaluation set, we discard all the data samples
whose antigens belong to a cluster with training samples.

All the results reported in Figure 3 are top1 predictions
across 5 models plus 5 seeds with iptm as the confidence
score. We use DockQ (Basu & Wallner, 2016) as the eval-
uation metric for antibody-antigen complex modeling. As
commonly suggested (DeepMind, 2023), DockQ>0.23 is
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Figure 3. Comparison of F2E with AF2.3 on two held evaluation sets. (a) The evaluation results on full evaluation set. For columns
“DockQ>0.23” and “DockQ>0.8” the percentage is reported, and average DockQ is reported in the last column. (b) The evaluation
results on low homology set with novel antigens.

considered accurate predictions, while DockQ>0.8 is con-
sider high accuracy. The experimental results show that
F2E is able to increase the accuracy in the definition of
DockQ>0.23 by a large margin, bringing 182% increase
on the full evaluation set and 100% increase on the low
homology set. In addition, our fine-tuned model is able
to predict a number of samples in high accuracy, which is
rare for original AF2.3 predictions. We notice the impres-
sive performance of AF3 (DeepMind, 2023), but we can
not build a fair benchmark with it because AF3 predicts
the structure of the whole complex with the help of small
molecules, peptides and other protein chains. We expect to
extend our results on newer protein foundation models with
full-atom prediction ability in the future.

5.3. Ablation tests

To further analyze the effectiveness of different components
of our approach, we conduct ablation tests for different set-
tings with results shown in Table 1. All results in the table is
reported by fine-tuning the same AF2 model and inference
with 5 random seeds. The only exception is the top row with
ensemble on, which suggests the most-confident result of
5 models from the same protocol in Figure 3. The bottom
baseline is to inference with the original model weights.
We also add the baseline of AF2sample (Wallner, 2023).
AF2sample is an agressive sampling protocol using AF2.1
and AF2.2 with multiple strategies, including removing tem-
plates, re-sampling MSAs, increasing the recycling rounds
and adding dropout during inference time. More than 200
samples are proposed for each target. We think AF2sample
represents the full potential of AF2 without fine-tuning.

We can see that single-model F2E is able to reach the same
performance of AF2sample, and a simple ensemble with 25
samples in total already surpasses it, suggesting a non-trivial
improvement. Additionally we can conclude from Table 1:

1) group-aware adaptation of FAPE is not only theoretically
sound, but also brings an increase in performance. 2) F2E
further increases DockQ compared to G-FAPE, suggesting
the effectiveness of stablizing the gradient across rotation
errors. 3) The ensemble technique mainly improves the
average DockQ (from 0.210 to 0.279) of existing successful
predicitions but does not improve the percentage of success
as much (from 0.375 to 0.438). Moreover We find that the
best predictions according to ground truth DockQ can reach
a high accuracy rate of 0.59. This suggests necessity for
further improvement in the confidence score.

Table 1. Ablations study. The loss with ”AF2” means no fine-
tuning, ”AF2S” means AF2sample. ”G-aware” indicates whether
to use the group-aware version of the loss and ”ensemble” means
top1 prediction across 5 models with iptm as the confidence score.

Loss LoRA G-aware Ensemble DockQ > 0.23

F2E
√ √ √

0.438
F2E

√ √
× 0.375

FAPE
√ √

× 0.313
FAPE

√
× × 0.250

FAPE × × × 0.219

AF2S × × × 0.375
AF2 × × × 0.188

5.4. Case study and error analysis

In Figure 4 (a) we show the change of rotation error distribu-
tions before and after fine-tuning with F2E. We can see that
the rotation error is dramatically reduced with many data
points drop below π

4 . In Figure 4 (b) and (c) we show the
predictions results of AF2.3 and F2E on 7Y1B and 8GPT.
By correcting the rotation error, F2E helps the model the
make correct predictions. Notice that in (b) the alignment
is conducted on antibody structures, and no translational
error can be observed in this way. In (c) the alignment
is conducted on antigen structures, and the pose error not

7
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Figure 4. (a) The visualization of rotational errors for AF2.3 and F2E. (b) The predicted structures of PDB 7Y1B against ground truth.
The grey structure is the experimental ground truth, the green structure by AF2.3 and the red structure by model tuned with F2E. We show
in red arrows how to rotate from the wrong prediction to the ground truth. (c) The predicted structures of 8GPT against ground truth.

only introduces rotational error but also translational error.
Nevertheless, such kind of error can be corrected by only ro-
tating the antigen alone the axis shown in the left image. A
meaningful discussion about calculating relative pose error
from different perspectives is provided in Appendix A.4.

6. Related work
Protein structure prediction The success of AF2 (Jumper
et al., 2021) has brought an increasing interest in developing
new protein structure prediction models. Some of these
efforts (Baek et al., 2021; Wu et al., 2022; Lin et al., 2022;
Baek et al., 2023a) try to improve the inference speed of
AF2 either by speeding up the neural network or reduc-
ing the demand for MSA searching. Evans et al. (2021),
Gao et al. (2022) and Baek et al. (2023a) are later devel-
oped to predict complex structures. Recently, several new
models (Baek et al., 2023b; Krishna et al., 2023; DeepMind,
2023) further extend their ability to small molecules, nucleic
acids and other hetero components. Several papers (Wallner,
2023; Bryant & Noe, 2023; Yin & Pierce, 2023; Gaudreault
et al., 2023) propose to apply or enhance AF2 on immune
complex modeling. However, those methods mainly focus
on inference-time enhancement.

Protein rigid docking Many algorithms are designed to
solve the problem of rigid docking problem from two known
structures. There have been many efforts (Pierce et al.,
2014; Yan et al., 2020; Desta et al., 2020) taken with grid-
search-based or template-based approaches. Recently, deep
learning based docking (Ganea et al., 2021; Jin et al., 2022;
Wang et al., 2023; Ketata et al., 2023) gains more and more
attention. Our setting is different from rigid docking with
no known structures as input.

Parameter efficient fine-tuning We use LoRA (Hu et al.,
2022) in our work as the parameter-efficient finetuning
method selected among a wealth of recently proposed meth-
ods (Lester et al., 2021; He et al., 2022; Dettmers et al., 2023;
Xia et al., 2024) for its simplicity and speed. These meth-
ods reduce the cost of fine-tuning large models by training
either additional or a subset of parameters and often reach
comparable performance with full-parameter finetuning.

7. Conclusion
Computational immune complex modeling is a challenging
task which is important to downstream applications in anti-
body drug design. In this paper, we propose F2E, a geodesic
distance loss that can solve the gradient vanishing problem
in the original FAPE loss from AF2 (Gao et al., 2022). We
introduce a theoretically sound way to correct inter-chain
FAPE loss as Group-aware FAPE loss, which becomes a
chordal distance loss for relative pose errors of nearly-rigid
groups defined on protein chains. The similar derivation can
help us find a way to correct inter-chain F2E as Group-aware
F2E loss. We conduct extensive experiments and analysis
to show the effectiveness of our approach.

For future directions, we expect to extend our loss to dif-
ferent complex modeling problems, including those with
non-protein components. Indeed, the implicit definition of
group frame indicates that F2E can be easily adapted to
these components regardless of their inner geometry. Even
though our experiments are conducted by fine-tuning AF2,
we expect F2E can be also beneficial during pre-training
stage of protein foundation models. We really expect to
apply F2E to multiple scenarios to test its generalizability.

8
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A. SO(3) and SE(3) distance metrics
A.1. The distance of two frames can be calculated by their composition

Definition 3.1 relies on the proof that the distance of two frames can be calculated by their composition. Here we provide a
brief proof for it.

Proof. According to Definition 2.4 and Definition 2.5, we have
dist(T̂ , T ) = f(R̂⊤R, t⃗− ˆ⃗t),
in which dist(·) denotes either chordal or geodesic distance.

And we know that the composition of T̂−1T equals to (R̂⊤R, R̂⊤(⃗t− ˆ⃗t)),

since f(R̂R⊤, t− t̂) = f(R̂R⊤, R̂⊤(⃗t− ˆ⃗t)),
we have dist(T̂ , T ) = f(T̂−1T ).
So we have dist(T̂−1, T−1) = f(T̂ T−1).

A.2. Relationship of SO(3) chordal and geodesic distance

Proposition A.1. Given two rotations Ri and Rj ∈ SO(3), we have

dc(Ri, Rj) = 2
√
2sin(

dθ(Ri, Rj)

2
), (24)

in which dc(∗) denotes the chordal distance defined in Definition 2.2 and dθ(∗) denotes the geodesic distance defined in
Definition 2.3.

Proof.
dc(Ri, Rj) = ∥Ri −Rj∥F

= ∥R⊤
i Rj − I∥F

= 2(sin2(dθ(Ri, Rj)) + (1− cos(dθ(Ri, Rj)))
2) (Rodrigues′ formula)

= 2
√
2 sin(

dθ(Ri, Rj)

2
)

(25)

A.3. Validation of metrics

Many excellent reviews (Huynh, 2009; Hartley et al., 2013; Carlone et al., 2022) have discussed the distance metrics on
SO(3) and SE(3). Here we only provide brief proof that the metrics introduced in 2.2 are valid. A valid distance dist(a, b)
between two generic elements “a” and “b” must satisfy the following properties.

dist(a, b) ≥ 0 (non− negativity) (26)
dist(a, b) = 0 ⇐⇒ a = b (identity) (27)
dist(a, b) = dist(b, a) (symmetry) (28)
dist(a, c) ≤ dist(a, b) + dist(b, c) (triangle inequality) (29)

We prove the chordal distance on SO(3) defined in Definition 2.2 satisfies the properties above.
Proposition A.2. Given two rotations Ri and Rj ∈ SO(3), their chordal distance defined as

distc(Ri, Rj) = ∥Ri −Rj∥F = ∥R⊤
i Rj − I∥F (30)

is a valid distance metric.

Proof. The proof for the first three properties is straightforward. Thus we only prove the triangle inequality.

distc(Ra, Rc) ≤ distc(Ra, Rb) + distc(Rb, Rc)

⇐⇒ ∥Ra −Rc∥F ≤ ∥Ra −Rb∥F + ∥Rb −Rc∥F
⇐⇒ ∥ vec(Ra)− vec(Rc)∥F ≤ ∥ vec(Ra)− vec(Rb)∥F + ∥ vec(Rb)− vec(Rc)∥F ,

(31)
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which can be implied from triangle inequation for vectors.

The validation of geodesic distance on SO(3) is by definition, as the geodesic distance equals the shortest path between two
points on the manifold. The validation of metrics on SE(3) defined in Definition 2.4 and Definition 2.5 are also trivial, as
they treat SE(3) as the Cartesian product of SO(3) and R3.

A.4. Relative pose error

Chordal distance and geodesic distance on SE(3) are left-invariant only. This means usually we have

dist(T̂−1
A T̂B , TA

−1TB) ̸= dist(T̂−1
A TA, T̂

−1
B TB) (32)

dist(T̂−1
A T̂B , TA

−1TB) ̸= dist(T̂−1
B T̂A, TB

−1TA), (33)

which means there can be multiple inequivalent approaches to optimize relative pose error depending on the definition.
However, the good news is that chordal distance and geodesic distance on SO(3) are left-invariant and right-invariant, so
their rotation errors are the same. Their optimization destination is the same too, because once the rotation error is reduced
to zero, their translation errors become equivalent. We prove that the rotation errors on both sides in Inequation 32 are
equivalent.

Proposition A.3.
distc(R̂

⊤
i Ri, R̂

⊤
j Rj) = distc(R̂

⊤
i R̂j , Ri

⊤Rj) (34)

Proof.

distc(R̂
⊤
i Ri, R̂

⊤
j Rj)

= ∥R̂i
⊤
Ri − R̂⊤

j Rj∥F
= ∥R̂jR̂i

⊤
Ri −Rj∥F

= ∥R̂jR̂i
⊤
−RjRi

⊤∥F
= ∥R̂⊤

i R̂j −Ri
⊤Rj∥F

= distc(R̂
⊤
i R̂j , Ri

⊤Rj)

(35)

Proposition A.4.
distθ(R̂

⊤
i Ri, R̂

⊤
j Rj) = distθ(R̂

⊤
i R̂j , Ri

⊤Rj) (36)

Proof.

distθ(R̂
⊤
i Ri, R̂

⊤
j Rj)

= | arccos(
tr((R̂⊤

i Ri)
⊤
R̂⊤

j Rj)− 1

2
)|

= | arccos( tr((R̂
⊤
i R̂j)

⊤
Ri

⊤Rj)− 1

2
)|

= distθ(R̂
⊤
i R̂j , Ri

⊤Rj)

(37)

The rotation error of Inequation 33 can be proved in the same way.
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B. FAPE loss and F2E loss details
B.1. FAPE loss details

In the original AF2 (Jumper et al., 2021) paper, There are two places where FAPE loss is applied. One is called auxiliary
FAPE loss which is calculated in the intermediate backbone prediction of each cycle in the structure module. The other is
called full FAPE loss which is calculated in the final full-atom prediction from the last cycle, which is reconstructed from
backbone frames and sidechain torsion angles predicted. We denote the FAPE loss on different cycles as

Definition B.1. Given any residue frame i and any atom j on the protein structure, we have T̂i, Ti ∈ SE(3) and ˆ⃗xj , x⃗j ∈ R3,
the FAPE loss on the predicted structure on cycle c ∈ [0, Ncycle − 1] is defined as

LFAPE(i, j, c) = ∥T̂−1
i,c ◦ ˆ⃗xj,c − Ti,c

−1 ◦ x⃗j,c∥F , (38)

in which ∥ ∗ ∥F denotes the Frobenius norm.

The FAPE loss applied to monomers can then be written as

L = LFull FAPE + LAuxiliary FAPE (39)

LFull FAPE =
1

Npair

∑
i∈{full frames},j∈{full atoms}

LFAPE(i, j, c = N − 1) (40)

LAuxiliary FAPE =
1

NcycleNpair

N−1∑
c=0

∑
i∈{backbone frames},j∈{C-alpha atoms}

LFAPE(i, j, c), (41)

in which Npair is determined per summation notation. The FAPE loss applied to multimers can be written as

L = LFull FAPE + LIntra-chain auxiliary FAPE + LInter-chain auxiliary FAPE (42)

LFull FAPE =
1

Npair

∑
i∈{full frames},j∈{full atoms}

LFAPE(i, j, c = N − 1) (43)

LIntra-chain auxiliary FAPE =
1

NcycleNpair

N−1∑
c=0

∑
i∈{backbone frames},j∈{C-alpha atoms},chain(i)=chain(j)

LFAPE(i, j, c) (44)

LInter-chain auxiliary FAPE =
1

NcycleNpair

N−1∑
c=0

∑
i∈{backbone frames},j∈{C-alpha atoms},chain(i) ̸=chain(j)

LFAPE(i, j, c) (45)

(46)

When using the group-aware version of FAPE, we only change the inter-chain part as

LInter-chain auxiliary FAPE, group-aware =
1

NcycleNpair

N−1∑
c=0

√ ∑
i∈{backbone frames},j∈{C-alpha atoms},chain(i) ̸=chain(j)

LFAPE(i, j, c)2. (47)

Remind that from the derivations in Section 3.2, only the quadratic mean over j is required, But for implementation
simplicity, we apply it to both i and j. This works well empirically.

B.2. F2E loss details

We denote the F2E loss on different cycles as

Definition B.2. Given any residue frame i and any frame j on the protein structure, we have T̂i, Ti, T̂j , Tj ∈ SE(3), the
F2E loss on the predicted structure on cycle c ∈ [0, N − 1] is defined as

LF2E(i, j, c;α) = distθ(T̂
−1
i,c T̂j,c, Ti,c

−1Tj,c;α), (48)

in which distθ(∗) denotes the geodesic distance defined in Definition 2.5.
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When we instead use the loss of F2E, we apply F2E to all terms in 42. So we get

L = LFull F2E + LIntra-chain auxiliary F2E + LInter-chain auxiliary F2E (49)

LFull F2E =
1

Npair

∑
i∈{full frames},j∈{full frames}

LF2E(i, j, c = N − 1) (50)

LIntra-chain auxiliary F2E =
1

NcycleNpair

N−1∑
c=0

∑
i∈{backbone frames},j∈{backbone frames},chain(i)=chain(j)

LF2E(i, j, c) (51)

LInter-chain auxiliary F2E =
1

NcycleNpair

N−1∑
c=0

∑
i∈{backbone frames},j∈{backbone frames},chain(i) ̸=chain(j)

LF2E(i, j, c) (52)

(53)

When using the group-aware version of F2E, we only change the inter-chain part as

LInter-chain auxiliary F2E, group-aware =
1

NcycleNpair

N−1∑
c=0

√ ∑
i∈{backbone frames},j∈{backbone frames},chain(i)̸=chain(j)

LF2E, group-aware(i, j, c)2.

(54)

B.3. Clamping Details

The original FAPE loss is applied with clamping. Specifically, for some samples the loss is only applied to residue pairs
within certain distance. In the early version of F2E, we apply the same restriction to the R(3) part of the loss. However,
later experiments show that removing the gradients of the SO(3) at the same time can stabilize and accelerate the training
procedure.

B.4. Pytorch implementation of F2E

We provide an example implementation of F2E in PyTorch 2.0.1.

import torch
import einops
from typing import TypeAlias, Callable, Any

Tensor: TypeAlias = torch.Tensor

def invert_rigid(R: Tensor, t: Tensor):
"""Invert rigid transformation.

Args:
R: Rotation matrices, (..., 3, 3).
t: Translation, (..., 3).

Returns:
R_inv: Inverted rotation matrices, (..., 3, 3).
t_inv: Inverted translation, (..., 3).

"""
R_inv = R.transpose(-1, -2)
t_inv = -torch.einsum("... r t , ... t -> ... r", R_inv, t)
return R_inv, t_inv

def node2pair(t1: Tensor, t2: Tensor, sequence_dim: int, op: Callable[[Tensor, Tensor],
Tensor]) -> Tensor:

"""
Create a pair tensor from a single tensor

Args:
t1: The first tensor to be converted to pair tensor
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t2: The second tensor to be converted to pair tensor
sequence_dim: The dimension of the sequence
op: The operation to be applied to the pair tensor

Returns:
Tensor: The pair tensor

"""
# convert to positive if necessary
if sequence_dim < 0:

sequence_dim = t1.ndim + sequence_dim
if t1.ndim != t2.ndim:

raise ValueError(f"t1 and t2 must have the same number of dimensions, got {t1.ndim
} and {t2.ndim}")

t1 = t1.unsqueeze(sequence_dim + 1)
t2 = t2.unsqueeze(sequence_dim)
return op(t1, t2)

def compose_rotation_and_translation(
R1: Tensor,
t1: Tensor,
R2: Tensor,
t2: Tensor,

) -> tuple[Tensor, Tensor]:
"""Compose two frame updates.

Ref AlphaFold2 Suppl 1.8 for details.

Args:
R1: Rotation of the first frames, (..., 3, 3).
t1: Translation of the first frames, (..., 3).
R2: Rotation of the second frames, (..., 3, 3).
t2: Translation of the second frames, (..., 3).

Returns:
A tuple of new rotation and translation, (R_new, t_new).
R_new: R1R2, (..., 3, 3).
t_new: R1t2 + t1, (..., 3).

"""
R_new = einops.einsum(R1, R2, "... r1 r2, ... r2 r3 -> ... r1 r3") # (..., 3, 3)
t_new = (

einops.einsum(
R1,
t2,
"... r t, ... t->... r",

)
+ t1

) # (..., 3)

return R_new, t_new

def masked_quadratic_mean(
value: Tensor,
mask: Tensor,
dim: int | tuple[int, ...] | list[int] = -1,
eps: float = 1e-10,

) -> Tensor | tuple[Tensor, Tensor]:
"""Compute quadratic mean value for tensor with mask.

Args:
value: Tensor to compute quadratic mean.
mask: Mask of value, the same shape as ‘value‘.
dim: Dimension along which to compute quadratic mean.
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eps: Small number for numerical safety.
return_masked: Whether to return masked value.

Returns:
Masked quadratic mean of ‘value‘.
[Optional] Masked value, the same shape as ‘value‘.

"""
return torch.sqrt((value * mask).sum(dim) / (mask.sum(dim) + eps))

def frame_aligned_frame_error_loss(
R_pred: Tensor,
t_pred: Tensor,
R_gt: Tensor,
t_gt: Tensor,
frame_mask: Tensor,
rotate_scale: float = 1.0,
axis_scale: float = 20.0,
eps_so3: float = 1e-7,
eps_r3: float = 1e-4,
dist_clamp: float | None = None,
pair_mask: Tensor | None = None,

):
"""Compute frame aligned frame error loss with double geodesic metric.

Args:
R_pred: Predicted rotation matrices of frames, (..., N, 3, 3).
t_pred: Predicted translations of frames, (..., N, 3).
R_gt: Ground truth rotation matrices of frames, (..., N, 3, 3).
t_gt: Ground truth translations of frames, (..., N, 3).
frame_mask: Existing masks of ground truth frames, (..., N).
axis_scale: Scale by which the Rˆ3 part of loss is divided.
eps_so3: Small number for numeric safety for arccos.
eps_r3: Small number for numeric safety for sqrt.
dist_clamp: Cutoff above which distance errors are disregarded.
pair_mask: Additional pair masks of pairs which should be calculated, (..., N, M)

or None.
pair_mask=True, the FAPE loss is calculated; vice not calculated.
If None, all pairs are calculated.

Returns:
Dict of (B) FAFE losses. Contains "fafe", "fafe_so3", "fafe_r3".

"""
N = R_pred.shape[-3]

def _diff_frame(R: Tensor, t: Tensor) -> Tensor:
R_inv, t_inv = invert_rigid(

R=einops.repeat(R, "... i r1 r2 -> ... (i j) r1 r2", j=N),
t=einops.repeat(t, "... i t -> ... (i j) t", j=N),

)
R_j = einops.repeat(R, "... j r1 r2 -> ... (i j) r1 r2", i=N)
t_j = einops.repeat(t, "... j t -> ... (i j) t", i=N)

return compose_rotation_and_translation(R_inv, t_inv, R_j, t_j)

frame_mask = node2pair(frame_mask, frame_mask, -1, torch.logical_and)
if pair_mask is not None:

frame_mask = pair_mask * frame_mask
frame_mask = einops.rearrange(frame_mask, "... i j -> ... (i j)")

losses = compute_double_geodesic_error(
*_diff_frame(R_pred, t_pred),
*_diff_frame(R_gt, t_gt),
frame_mask=frame_mask,
rotate_scale=rotate_scale,
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axis_scale=axis_scale,
dist_clamp=dist_clamp,
eps_so3=eps_so3,
eps_r3=eps_r3,

)
return losses

def compute_double_geodesic_error(
R_pred: Tensor,
t_pred: Tensor,
R_gt: Tensor,
t_gt: Tensor,
frame_mask: Tensor,
rotate_scale: float = 1.0,
axis_scale: float = 20.0,
dist_clamp: float | None = None,
eps_so3: float = 1e-7,
eps_r3: float = 1e-4,

):
"""Compute frame-wise error with double geodesic metric.

d_se3(T_pred, T_gt) = sqrt(d_so3(R_pred, R_gt)ˆ2 + (d_r3(t_pred, t_gt) / axis_scale)ˆ2
)

d_so3(R_pred, R_gt) range [0, pi]
d_r3(t_pred, t_gt) / axis_scale) range [0, 1.5] when clamping

Args:
R_pred: Predicted rotation matrices of T, (..., N, 3, 3).
t_pred: Predicted translations of T, (..., N, 3).
R_gt: Ground truth rotation matrices of T, (..., N, 3, 3).
t_gt: Ground truth translations of T, (..., N, 3).
frame_mask: Existing masks of ground truth T, (..., N).
rotate_scale: Scale by which the SO3 part of loss is divided.
axis_scale: Scale by which the Rˆ3 part of loss is divided.
dist_clamp: Cutoff above which distance errors are disregarded.
eps_so3: Small number for numeric safety for arccos.

Refer to https://github.com/pytorch/pytorch/issues/8069
ep3_r3: Small number for numeric safety for sqrt.

Returns:
Dict of (B) FAFE losses. Contains "fafe", "fafe_so3", "fafe_r3".

Note:
so3 loss/error presented in scaled form [0, pi/rotate_scale].
r3 loss/error presented in scaled form [0, dist_clamp/axis_scale].

"""
if dist_clamp is None:

dist_clamp = 1e9

# SO3 loss
R_diff = einops.rearrange(R_pred, "... i j -> ... j i") @ R_gt
R_diff_trace = R_diff.diagonal(dim1=-2, dim2=-1).sum(-1)
so3_dist = torch.acos(torch.clamp((R_diff_trace - 1) / 2, -1 + eps_so3, 1 - eps_so3))

/ rotate_scale # (..., N)
so3_loss = masked_quadratic_mean(so3_dist, frame_mask, dim=(-1))

# R3 loss
r3_dist = torch.sqrt(torch.sum((t_pred - t_gt) ** 2, dim=-1) + eps_r3) # (..., N)
r3_dist = r3_dist.clamp(max=dist_clamp) / axis_scale # (..., N)
r3_loss = masked_quadratic_mean(r3_dist, frame_mask, dim=(-1))

# double geodesic loss
se3_dist = torch.sqrt(so3_dist**2 + r3_dist**2) # (..., N)
se3_loss = masked_quadratic_mean(se3_dist, frame_mask, dim=(-1))
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losses = {
"fafe": se3_loss, # Note se3_loss = sqrt((so3_loss/rotate_scale)ˆ2 + (r3_loss/

axis_scale)ˆ2)
"fafe_so3": so3_loss,
"fafe_r3": r3_loss,

}

return losses

C. Experiment details
C.1. Data preparation details

We crop the detected heavy/light chain and protein-type antigen from the full pdb structure. MSA is searched against these
cropped structures. Next, we use ANARCI (Dunbar & Deane, 2016) to annotate the loop region on VH/VL chains and
further crop the antibody along with its MSA. We also notice there is a number of antigens with a very long sequence but
only a limited region of ground-truth structures, so we crop the antigen to the longest sub-sequence that includes all the
residues with experimental ground truth.

After cropping, multiple filters are applied to clean data. SabDab entries without antigens or with non-protein antigens are
discarded. All the chains are renamed according to the annotation by ANARCI, and samples with multiple H chains or
multiple L chains detected are also discarded. There are also two special types of entries, nanobodies and Single-chain
variable fragments (scFv). The nanobody is commonly annotated as a H-chain-only antibody, and scFvs are treated as two
chains.

For both evaluation sets, targets with small molecules, peptides or nucleic acids near the docking interface are removed. For
low homology evaluation set, We further restrict to a subset of all the structures after January 12th, 2023, and manually check
them in PDB website. Invalid targets like those with only partial antigen structure are removed. For full evaluation set, the
total number is too large for manual checking, so we only check the cluster centers and find 12 invalid samples, 8 of which
are either partial complex from a multiple-antigen or multiple-antibody assembly in which non-trivial interactions exist, 4 of
which include unfolded chains in the experimental structure. Finally, for both evaluation sets, targets with full-complex
sequence length larger than 1500 after cropping are removed for evaluation speed considerations.

C.2. Training details

For LoRA experiments, we apply LoRA only on 48-layer evoformer. All the parameters used before the evoformer are
frozen. Structure module and all the prediction heads are trainable. In one version of our code we freeze the linear layer
from node representations to single representations, which seems to harm the performance.

As the original paper (Hu et al., 2022) suggests, we set LoRA α the same value as LoRA, and make a hyper parameter
search for LoRA rank in [1, 4, 16, 32], and we found setting to 16 outperforms other values. The LoRA is added to all the
linear layers in the evoformer, and for Q, K, V linear in attention, we add separate LoRA weights for each linear, despite
their being fused during forwarding.

The training loss is set basically the same as original AF2. The batch size is set to 32, which we find is the minimal batch
size to improve AF2 performance during fine-tuning. Training with larger batch size may improve performance, but we did
not investigate it due to computing resource constraints. The cropping strategy is slightly different to original AF2 setting
that during spatial cropping, only interface between antibody and antigen is considered. The crop length is set to 384 at max.
The number of MSA cluster center is restricted to 128 for training efficiency. Cross-chain uniprot MSAs and templates
are not provided, since we want to simplify our protocol and in theory antibody-antigen docking does not rely on these
information. Finally, we use early stopping to avoid overfitting on training samples, which is a severe problem we have
encountered in the early rounds of experiments.

C.3. Inference details

During the inference, the random seed is set to 0 which will be applied to all data transformations. This means for all the
model the MSA clustering results for the same recycle in different models will be controlled as same. We think this is a

19



FAFE: Immune Complex Modeling with Geodesic Distance Loss on Noisy Group Frames

more reasonable settings than randomly sampling MSAs for different models, because we observe the sampling procedure
can introduce large bias, sometimes making a sample rotates to correct poses from wrong ones for the same model.

D. Additional results

Figure 5. The predicted structures of PDB 8DB4 against ground truth. The grey structure is the experimental ground truth, the green
structure by AF2.3 and the red structure by model tuned with F2E.

Figure 6. The predicted structures of PDB 8D9Y against ground truth. The grey structure is the experimental ground truth, the green
structure by AF2.3 and the red structure by model tuned with F2E.
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Figure 7. The predicted structures of PDB 7QUH against ground truth. The grey structure is the experimental ground truth, the green
structure by AF2.3 and the red structure by model tuned with F2E.

Figure 8. The predicted structures of PDB 8GQ1 against ground truth. The grey structure is the experimental ground truth, the green
structure by AF2.3 and the red structure by model tuned with F2E.

21


