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ABSTRACT

DETR is the first fully end-to-end detector that predicts a final set of predictions
without post-processing. However, it suffers from problems such as low perfor-
mance and slow convergence. A series of works aim to tackle these issues in
different ways, but the computational cost is yet expensive due to the sophisti-
cated encoder-decoder architecture. To alleviate this issue, we propose a decoder-
only detector called D?ETR. In the absence of encoder, the decoder directly at-
tends to the fine-fused feature maps generated by the Transformer backbone with
a novel computationally efficient cross-scale attention module. D’ETR demon-
strates low computational complexity and high detection accuracy in evaluations
on the COCO benchmark, outperforming DETR and its variants.

1 INTRODUCTION

Object detection is a computer vision task to predict category labels and bounding box locations
for all objects of interest in an image. Modern detectors (Redmon & Farhadi, 2018} [Tian et al.,
2019} [He et al, [2017) treat this set prediction task as regression and classification problems. They
optimize the predicted set with many hand-crafted components such as anchor generation, training
target assignment rule, and non-maximum suppression (NMS). These components complicate the
pipeline and the detectors are not end-to-end.

DETR (Carion et al.|, 2020) proposed to build the first fully end-to-end detector, featuring an encoder-
decoder Transformer architecture that predicts a final set of bounding boxes and category labels
without any well-designed anchor, heuristic assignment rule, and post-processing. The fancy design
of DETR has been receiving a lot of research attention. However, DETR suffers from many prob-
lems such as slow training convergence, low performance on small objects, and high computational
complexity. A bunch of works (Zheng et al., |2020; [Sun et al., 2020; Zhu et al.| [2020; |Yao et al.,
2021; Meng et al., 2021 |Gao et al.l 2021) aim to handle these critical issues. Many efforts have
been made to efficient cross-attention to accelerate the training convergence. Multi-scale feature
maps are also used to improve the accuracy of small objects. Though the works above have made
some progress, the problem of high computational complexity is left untouched.

In the field of Natural Language Processing (NLP), the OpenAl GPT series (Radford et al., 2019;
Brown et al.| [2020) adopt a decoder-only Transformer but show impressive ability on text gener-
ation. It implies that a rigorous encoder-decoder is not necessary in language modeling, which
motivates us to rethink the DETR architecture. In DETR, the decoder is the key for locating with
object queries, while the encoder, which produces self-attentive features, only plays as an assis-
tant for the subsequent decoder. To validate it, we re-examined the overall impact of encoder by
training Deformable DETR w/o encoder. We found that the encoder module brings 4.9 (+11%) AP
improvement but costs very large portion of computation, about 85 (+49%) GFLOPs. Such a low
computional efficiency of encoder prompts us to explore the possibility of removing the Transformer
encoder by integrating feature extraction and self-attention based fusion functions within a single
backbone, creating a simpler decoder-only detection pipeline.

In this paper, we propose Decoder-only DEtection TRansformer (D?)ETR), which achieves fast con-
vergency, high performance, and low computational cost with an easy architecture. To introduce the
interaction among features at different locations and scales, our method leverages the advantage of
Transformer backbones that providing a global receptive field of intra-scale, plus a novel module
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Figure 1: Visualization of the cross-attention on different scales. (a) Deformable DETR. (b) De-
formable D*’ETR. Check Appendixfor more visualizations.

Computationally Efficient Cross-scale Attention (CECA) that performing sparse feature interaction
of cross-scale via attention mechanism. By organizing the cross-attantion in which high-level feature
maps as query and the remained lower-level feature as key-value pairs, CECA captures the low-level
visual feature helpful for fine-grained location, but prevents the computation explosion when locat-
ing on low-level feature maps directly. With such a design, the decoder can directly attend to the
fine-fused feature maps generated by our backbone, without the aid of an encoder or other fusion
block to introduce more feature interactions.

The CECA module can easily replace the encoder and go with any type of decoder to form an
end-to-end detector flexiblely. We cooperate it with a decoder of standard multi-head attention
and a decoder of deformable attention, resulting in a vanilla D?ETR and a Deformable D2ETR.
Futhermore, we introduce two auxiliary losses: (i) token labeling loss, which helps improve the
accuracy by enhancing feature expression capabilities. (ii) loU-awareness loss, helps improve the
localization accuracy by adding constrains the predicted bounding boxes.

Figure [] visualizes the cross-attention on different scales. Deformable DETR focuses more on
low-level scales of high resolution, which requires carefully fine-fused and thus computationally
inefficient. Our method focuses more on the high-level scales, which have aggregated information
from all previous scales in a coarse-to-fine manner. In evaluation on the COCO 2017 detection
benchmark 2014), our proposed methods achieve competitive performance at low com-
putational complexity, e.g., 43.2 AP and 82 GFLOPs for D’ETR, 50.0 AP and 93 GFLOPs for
Deformable D’ETR.

2 RELATED WORK

End-to-end Object Detections. Conventional one-stage (Lin et al.l 2017b; Redmon & Farhadi
2018} [Tian et al.}[2019) and two-stage detectors (Ren et al.|[2015;|He et al., 2017;/Cai & Vasconcelos
2018) rely on anchor boxes or anchor centers. Due to the dense anchors, an intersection-over-unit
(IoU) based one-to-many assignment rule is usually applied to training, and a non-maximum sup-
pression (NMS) is used to resolve duplications during inference. Unlike aforementioned detectors,
end-to-end detectors eliminate the need for post-processing by learning to resolve the duplications.
DETR (Carion et all, 2020) initiatively applies an encoder-decoder Transformer architecture to a
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CNN backbone and builds an end-to-end detector. However, DETR has some issues such as slow
training convergence, limited feature spatial resolution, and low performance on small objects.

Many variants have been proposed to address these critical issues. ACT (Zheng et al., [2020) adap-
tively clusters similar query elements together. Deformable DETR (Zhu et al.,|2020) uses multi-scale
feature maps to help detect small objects. It introduces the deformable attention mechanism that
only focuses on a small fixed set of sampling points predicted from the feature of query elements.
This modification mitigates the issues of convergence and feature spatial. Conditional DETR (Meng
et al., [2021)) presents a conditional cross-attention mechanism. A spatial embedding is predicted
from each output of the previous decoder layer, and then fed to next cross-attention to make the con-
tent query localize distinct regions. SMCA (Gao et al.| 2021)) conducts location-constrained object
regression to accelerate the convergence by forcing co-attention responses to be high near initially
estimated bounding box locations. YOLOS (Fang et al.,|2021)) argues that object detection tasks can
be completed in a pure sequence-to-sequence manner. Similarly, Pix2Seq (Chen et al., [2021) treats
object detection as a language modeling task conditioned on pixel inputs.

Our proposed D’ETR focuses on removing the whole encoder at minimum cost to simplify the
pipeline and ease the high computation consumption.

Multi-scale Feature Fusion. A line of works have been done on feature fusion and prove that a
good spatial feature fusing scheme is necessary for conventional object detection, especially when
detecting small objects. FPN (Lin et al., 2017a) combines two adjacent feature maps and builds
a top-down feature pyramid. PAN (Liu et al.| [2018) adds an extra bottom-up path augmentation.
NAS-FPN (Ghiasi et al.,2019) utilizes neural architecture search to find an optimal feature pyramid
structure. In the field of end-to-end object detection, the encoder fuses feature maps via attention
mechanism, playing a similar role as the feature pyramid network. [Sun et al.| (2020) replaces the
decoder with a detection head and directly uses the outputs of encoder for object prediction, which
means the encoder is good at extract context features. |Yao et al.| (2021) conducts an experiment on
the effect of different numbers of encoder layers and decoder layers and claims that detectors based
on encoder-decoder architecture are more sensitive to the number of decoder layers, which implies
the encoder is less efficient.

These observations motivates us to seek a more economical way to exchange information on multi-
scale feature maps. Our computational efficient cross-scale attention allows the backbone to generate
fine-fused feature maps without the need for an encoder.

3 REVISITING ENCODER-DECODER ARCHITECTURE

The DETR family is based on the encoder-decoder Transformer architecture. Figure [2(a) show the
three major parts of an end-to-end detector: backbone, encoder, and decoder. The backbone extracts
feature maps € RE*H*W of the input image. Then the pixels in 2 attend to each other with
Transformer encoder layer, which consists of a Self-Attention (SA) and a Feed-Forward Network
(FFN). The standard self-attention module (Vaswani et al.,|2017) computes attention weights based
on the similarity between query-key pairs, and then compute a weighted sum over all key contents.
We can fomulate the encoder as:

T
SA(zq, Tk, ) = softmax (W) T, Wy (1)
FFN(Z‘) = O’((L’Wl + bl)WQ + b2 (2)

where x4, zx, x, = Flatten(z) in encoder, Flatten(-) is the operation that flatten x along spatial di-
mensions, and o(+) is the non-linear activation. The self-attentive features are subsequently fed into
decoder. The decoder has similar structures with an extra cross-attention module, which modifies
Tqas 04 € RN*C in Eq 04 1s the learned object queries.

We give a complexity analysis of encoder and decoder. For encoder whose input dimension is
H x W x C, the complexity can be calculated as O(H?W?2C + HW C?). Compared with encoder,
the decoder adopts IV object queries for cross-attention, which has the complexity of O(NHWC +
NC?). Generally, a relatively small number of object queries is sufficient for localization in end-
to-end methods. While the amount of elements in feature map, which always a large resolution,
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Figure 2: Illustration of (a) original DETR series, (b) D2ETR, (c) one layer of the i-th fusing stage.

is much greater than V. That is to say, the encoder have much larger computational complexity
compared to the decoder, especially when the size of input feature map is large.

4 DECODER-ONLY DETR

In essence, the encoder is a combination of intra-scale and cross-scale feature interaction. The self-
attention mechanism of Transformer naturally introduces intra-scale interaction to separate feature
maps. It motivates us to fill the missing cross-scale interaction and build a powerful Transformer
backbone to generate fine-fused features, and further take over the inefficient encoder.

To perform feature interaction across feature maps of all scales, a naive design is to apply a dense
connection to the model. Given z; as the original i-th feature map, z as the i-th feature map after j
times of fusions, H; as the Transformer block of i-th stage. At i-th stage, the feature map x; can be
formulated as H;([x1, 2, ..., x;—1]), where [-] denotes a concatenation of elements. Scales of each
stage are linearly projected and spatial-wisely concatenated to the next stage to generate new scale,
and do further cross-scale feature fusion. The fusing function is additional self-attention, denoted

as SA(zq, Ty, Tp), Where z, = z1, = z, = [7% 2572 ..., x;]. The final output of the backbone is
[z, xQS R xy], given the last S feature maps as the input of decoder. This dense architecture is

a combination of feature extraction and fusion. However, it makes no difference from the original
encoder because the low-level scales are of high-resolution and take part in almost all self-attention
operations, leading to expensive computation and a waste of cross-attention from decoder.

4.1 D2ETR ARCHITECTURE

Inspired by the dense connected Transformer in the previous section, we present a Computationally
Efficient Cross-scale Attention (CECA) and build a Decoder-only DETR (D?ETR), illustrated in
Figure 2[b). The architecture consists of two main components: a Transformer backbone and a
Transformer decoder. The backbone is the core of encoder-free. It contains two parallel streams,
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one for intra-scale interaction and another for cross-scale interaction. Transformers that have linear
computational complexity w.r.t. image size are preferred in object detection. By default, we borrow
the idea of Pyramid Vision Transformer (PVT) (Wang et al., 2021) to build our backbone. We will
show that D’ETR can cooperate with different Transformers in the ablation. A decoder can learn
to generate non-duplicated detections, which is the key that makes the detector end-to-end. Our
D?ETR can equip any type of Transformer decoder without encoder.

Computationally Efficient Cross-scale Attention The idea of dense fusion is promising for inte-
grating feature fusion to the backbone. As mentioned above, the main problem is the large number
of query elements in self-attention. To address this, we decouple the intra-scale and cross-scale
interaction and fuse the feature map in a sparse manner. In Figure 2[b), the backbone is divided
into four Transformer stages that produce feature maps of different scales. The scale of the output
feature maps progressively shrinks. All stages have a similar architecture which depends on the
basic block of the chosen Transformer. Following the PVT implementation, the stage consists of an
overlapping patch embedding and multiple successive Transformer layers built by spatial reduction
self-attention and convolutional feed-forward module. All the feature maps are a global content
aggregation within their own scale.

The flow in parallel is the fusing stages. The fusing stage is designed for cross-scale feature fusion.
Each desired scale enters a fusing stage as the query element (the feature map with red dashed line)
and all existing fused scales are densely connected to the same fusing stage as the key elements. A
modified spatial reduction operation is applied to key elements to alleviate the computational cost.
The query scale can eventually aggregate visual features at spatial locations of all previous scales.
The proposed CECA can be formulated as:

xz; = Hi(zi—1) 3)
x; = SA(2q, Tk, To) )
Tg=Ti, Tk =Ty =|T],L5,....;T;_1, L] 5)

where 2} stands for the the fused version of feature map x;. Given the last S feature maps as the
input of decoder, the final output of CECA would be [z], 23, ..., 5]

Figure [2c) details one layer of i-th fusing stage. It is composed of three parts: a linear spatial
reduction, a multi-head self-attention, and a feed-forward layer. x; stands for the feature map of
the query scale. [z7,z3,...,x} 4] stands for the feature maps of the key scales from preceding
dense connections. To prevent the query scale from losing its own high-level characteristics during
information exchange, we project it with the proper channel number and concatenate to the key
scales. To reduce the computational cost, the key elements are fed to linear spatial reduction, which
is an adaptive average pooling layer followed by 7 separate 1 x 1 convolutional layers and norm
layers for feature maps of each scale. In the multi-head attention module, x; as the query interacts
with [z}, 25, ..., 2}, ;] as the keys to extract context information. The FFN we consider is the
feed-forward with an additional depth-wise convolution. Same as the normal stage, this layer is
repeated multiple times. Details of fusing stage can be found in Appendix

Given h, w as the height and width of the last feature map z g at the last stage. For the naive dense
fusion, the complexity to compute self-attentionis O (4% ShwP2?C') where P is the adaptive pooling
size. The complexity is dominated by the S, in other words, sizes of the low-level feature maps.
Our CECA enjoys the cost-effective fusion emphasizing high-level feature maps. As a result, the
complexity is reduced to O(ShwP?C). More details can be found in Appendix

By applying Transformer to the backbone, we introduce intra-scale interaction to pixels on separate
feature maps. By adding extra fusing stages, we introduce cross-scale interaction to pixels on multi-
scale feature maps. D?ETR structure fusing stages with single query scale and densely connected
key elements. In this way, the number of query elements is greatly reduced, which allows us to
use deeper fusing stages. Meanwhile, the subtle visual feature of low-level scales is kept to the
Transformer decoder which helps to refine predictions, especially for small objects.

Vs. Transformer Encoder. In end-to-end object detectors, the Transformer encoder servers as
an independent feature refiner to fuse features after the backbone finished generating the very last
feature map. Spatial locations at feature maps of all scales are exchanging information as equal
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individuals. In contrast, our proposed CECA is affiliated to the backbone, which allows the backbone
to generate fine-fused feature maps. The feature interaction is split into intra-scale and cross-scale,
providing by Transformer stages and fusing stages, respectively. Pixels of different scales are not
symmetrical. Note that our backbone works as a whole so it is possible to get a better initialization
in downstream tasks if CECA joins the pre-train. Moreover, because the depth of fusing stages is
usually less than Transformer stages, we can further execute (i + 1)-th stage and i-th fusing stage
simultaneously to hide the latency introduced by the auxiliary structure. These optimizations are
impossible to the conventional encoder-decoder architecture.

4.2 Loss FUNCTION.

Our proposed CECA backbone can generate fine-fused features and go with any type of decoder to
form an end-to-end detector. The vanilla DETR decoder applies the standard multi-head attention
and uses only one feature map due to the high computational cost. The Deformable DETR decoder
employs deformable attention to extract context information from the multi-scale feature maps. To
validate the flexibility, we cooperate with the above two decoders and build D’ETR and Deformable
D?ETR, which use single-scale and multi-scale feature maps, respectively. Futhermore, we intro-
duce two auxiliary losses, token labeling loss and IoU-awareness loss, the total loss function can be
formulated as:

Etotal = Lcls + Ebboac + anr + Ltoken (6)

where L.;s denotes the classification loss, Lppo, denotes the regression loss, L4y, is the loss of
awareness branch, L., is the loss of token labeling.

IoU-awareness. Predicted bounding boxes of few overlaps with target objects tend to be of low
quality. To alleviate the mismatch between localization quality and detection confidence, we adopt
the loU-awareness loss proposed by [Wu et al.|(2020). Specifically, a new branch is added to the top
of all decoder layers, predicts the IoU between the predicted bounding box and the target one, and
then integrated with the classification score to suppress low-quality predictions. We formulate the
awareness loss term as:

B
1 R ~
Lawr = 3 ;BCE (FFN(g;) , IoU(b;, b)) @)

where B is the number of bounding boxes, y; is the output corresponding to i-th object query, and

passes through FFN and yields a predicted IoU. b;, b; represents the target and predicted bound-
ing box, respectively. The higher predicted IoU value, the higher possibility for the corresponding
bounding box to capture a real target. During inference, the output of classification branch is multi-
plied by the predicted IoU to filter low-quality results. Check Appendix for more details.

Token Labeling. Token labeling (Jiang et al., 2021)) is a novel training objective for Transformers
that performs patch-wise classifications in image classification task. We adopt token labeling to
the training phase of object detection. Specifically, we utilize mask annotations to supervise and
interpolate it to align with the resolution of feature map. Each pixel is assigned with a soft token
label and performs multiclass classification, which encourages the backbone to extract more strength
features. The loss term of token labeling can be defined as:

B N
1
Ltok:en = E Z Z Z Focal (FFN(xJ [p7 Q])a tj [pv QD (8)
i=1j=1 p,q
t; = Interpolate(M, SizeOf(x;)) )

where 2;[p, ¢] denotes the features at position (p, g) of j-th feature map from the backbone, ¢; is the
corresponding target soft token label, generated by interpolating the 0-1 mask annotation M to the
same size of ;. See Appendix for more details.
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Table 1: Comparison with modern end-to-end detectors on COCO 2017 validation set.

Method Backbone \ Epoch GFLOPs Params \ AP  APsg AP75; APs APy APp
DETR R50 500 86 41 420 624 442 205 458 6l.1
DETR PVT2 108 79 40 424 634 449 198 458 63.0
Conditional DETR R50 108 90 44 430 64.0 457 227 467 615
DETR DC5-R50 500 187 41 433 63.1 459 225 473 6l.1
Deformable DETR R50 50 173 40 445 63.6 487 271 47.6 596
Deformable DETR PVT2 50 163 34 483 67.6 529 305 51.6 638
TSP-RCNN R50 36 188 - 438 63.6 483 286 469 557
TSP-FCOS R50 36 189 - 43.1 623 470 266 468 559
Efficient DETR R50 36 159 32 442 622 48.0 284 475 56.6
SMCA R50 50 152 40 437 63,6 472 242 470 604
D*ETR PVT2 50 82 35 432 629 462 220 485 624
Deformable D’ETR  PVT2 50 93 40 50.0 679 541 317 534 66.7

0.50

0.45

0.40

% 0.35
0.30
—— D2ETR-PVT2
0.25 —— DETR-PVT2
DETR-DC5-R50
—— DETR-R50
0.20 — : ;
50 75 108 500
Epochs

Figure 3: Convergence curves. Results of DETR trained for 500 epochs are from DETR’s official
Github repository.

5 EXPERIMENTS

Dataset. We perform experiments on the COCO 2017 detection dataset (Lin et al., | 2014). We train
our models on the training set and evaluate on the validation set.

Implementation Details. We follow the implementation of PVT-v2-B2-linear (Wang et al., [2021).
Model pre-trained in ImageNet-1K (Deng et al.| |2009) is used to initialize the Transformer stages
of our backbone. All the fusing stages have a depth of 3, a channel number of 256, an expansion
ratio of 4. Other hyperparameters are kept the same with its nearest normal stage. We follow the
Deformable DETR training settings. The decoder has 6 layers, and the number of object queries is
300. For D’ETR, we use a single-scale feature map of stride 32. For Deformable D’ETR, two-stage
mode are enabled and we use multi-scale feature maps of strides 8, 16, 32, 64, where the last feature
map is obtained via a 3 x 3 convolution layer. The optimizer is an AdamW (Loshchilov & Hutter,
2017) with base learning rate of 2 x 1074, 3, = 0.9, 85 = 0.999, and weight decay of 1 x 10~%. By
default, we train our model for 50 epochs with a batch size of 32, and the learning rate is dropped by
a factor of 0.1 at epoch 40. Random crop and resize are used for data augmentation with the largest
side length set as 1333. Training and evaluation run on NVIDIA 2080Ti.
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Table 2: Comparison with DETR and Deformable DETR on COCO 2017 validation set.

Method Backbone  Dccoder-  Multi- Epoch GFLOPs Params | AP AP5y APrs
only? scale?
DETR R50 50 86 41 349 555 36.0
DETR R50 v 50 76 33 200 489 294
D?ETR R50 v 50 88 37 38.8 58.1 41.1
DETR PVT2 50 79 40 37.8 59.1 39.6
DETR PVT2 v 50 69 32 332 545 343
D?ETR PVT2 v 50 82 35 432 629 46.2
Deformable DETR R50 v 50 173 40 445 63.6 487
Deformable DETR R50 v v 50 88 35 306 599 428
Deformable DETR PVT2 v 50 163 34 483 676 529
Deformable DETR PVT2 v 50 78 30 435 642 473
Deformable D2ETR PVT2 v 50 93 40 50.0 679 54.1

5.1 RESULTS

As shown in Table[I] our method is compared with modern end-to-end detectors. We report GFLOPs
for first 100 images of the validation set.

Main Results. We observe that DETR requires 500 training epochs to converge and the perfor-
mance is relatively low. Conditional DETR boosts the convergency but the accuracy increment is
less than obvious. Variants such as Deformable DETR, Efficient DETR, and SMCA reach better per-
formances, yet the computational complexity remains at a high level. The proposed D’ETR achieves
a competitive 43.2 AP and the low computational complexity of 82 GFLOPs with 10x fewer train-
ing epochs w.r.t. original DETR. Detailed convergence curves can be found in Figure [3| we run 3
different training epochs 50, 75, 108 with learning rate drops at epoch 40, 60, 80, respectively. The
proposed Deformable D*ETR surpasses all end-to-end detector baselines with the highest detection
accuracy of 50.0 AP and a quite low computational complexity of 93 GFLOPs.

Effect of Backbone. Table [2] compares the proposed methods with DETR and Deformable DETR
after the same training epochs of 50. Transformer is not only a better feature extractor but also
an indispensable instrument for us to conduct feature fusion in separate scales. To understand the
influence of Transformer backbone, we try DETR and Deformable DETR with PVT2. It greatly
improves the performance, but the computational cost doesn’t change too much. Take Deformable
DETR-PVT2 as an example, it still demands a lot of effort (163 GFLOPs) on the encoder to refine the
low-level feature maps. In contrast, the proposed Deformable D’ETR-PVT2 make use of high-level
feature maps during cross-scale feature exchange, which delivering noticeable lower computational
cost (93 GFLOPs). We also try to cooperate D’ETR with the CNN backbone ResNet50. It enjoys
the benefits of cross-scale attention and improves the DETR-R50 baseline with 3.9 AP, yet lacking
adequate intra-scale attention and the performance is 4.4 AP lower than the proposed method. This
reveals the necessity of a Transformer backbone.

Effect of Encoder. Unlike other works using distinct attention schemes, we focus on removing
the whole encoder at minimum cost to simplify the pipeline. To analyze the impact of the absence
of encoder, we run DETR and Deformable DETR in the decoder-only mode, as shown in Table
We can see that the absence of encoder does alleviate the model complexity (up to 85 GFLOPs
reduction), yet leading to a huge slope of the accuracy as well (up to 5.9 AP reduction). Our proposed
approach prevents degradation with the computational efficient cross-scale attention and achieves
high detection accuracy.

Compare with Other Detection Frameworks. We study the proposed method compared with
other detection frameworks, cooperating with the popular Swin-Transformer (Liu et al., 2021). Ta-
ble [3] shows the result of state-of-the-art one-stage and two-stage detectors that use a Swin-Tiny
backbone. We construct a Deformable D*ETR-SwinT by following the implementation of Swin-
Tiny to build our normal stages. Observe that the one-stage and two-stage detectors either consume
too much computation or have too many parameters. Our method achieves comparable or even
higher performance with fewer computationals and comparable parameters, demonstrating a decent
generalization ability.
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Table 3: Cooperate with Swin-Tiny. GFLOPs is calculated under 1280x800.

Method Backbone | Epochs GFLOPs Params | AP AP5, APy
Cascade Mask RCNN  SwinT 36 745 86 50.5 693 549
ATSS SwinT 36 215 36 472 665 513
GFL SwinT 36 215 36 476 668 51.7
Sparse RCNN SwinT 36 172 110 479 673 523
Deformable D*ETR SwinT 50 127 46 49.1 676 533

Table 4: Roadmap of D’ETR and Deformable D*ETR.

Method | Epochs GFLOPs  Params | AP

DETR R50 baseline 50 86 41 34.9
+ decoder-only 50 76 (-10) 33 29.0 (-5.9)
+PVT2 50 69 (-17) 32 33.2 (-1.7)
+ CECA 50 82 (-4) 35 41.0 (+6.1)
+ JoU-awareness 50 82 (-4) 35 43.2 (+8.3)
+ token labeling 50 82 (-4) 35 43.2 (+8.3)

Deformable DETR R50 baseline 50 173 40 44.5
+ decoder-only 50 88 (-85) 35 39.6 (-4.9)
+PVT2 50 78 (-95) 30 43.5 (-1.0)
+ CECA 50 88 (-85) 39 45.3 (+0.8)
+ JoU-awareness 50 89 (-84) 39 46.8 (+2.3)
+ bbox refinement and two-stage 50 93 (-80) 40 49.6 (+5.1)
+ token labeling 50 93 (-80) 40 50.0 (+5.5)

5.2 ABLATIONS

We report the ablation study for the design choices in Table[d] The decoder-only architecture brings
a notable decrement to the computational complexity. The backbone changing to PVT improves the
performance, but cannot completely compensate for the absence of encoder. The proposed CECA
scheme increases the detection accuracy at very little cost, especially for the multi-scale detector.
With the auxiliary IoU-awareness loss, we improve the performance by enhancing localization qual-
ity. Because the object queries in the decoder are randomly initialized and irrelevant to the output
of backbone, adding token labeling loss will not improve the performance of D’ETR. Deformable
D?ETR with two-stage mode activated uses a set of optimal features from backbone to initialize
object queries and hence can make use of the token labeling enhanced features. With token labeling,
Deformable D?ETR earns some free accuracy gains.

6 CONCLUSION

To simplify the pipeline of end-to-end detectors at minimal cost, we present D>ETR, which is effi-
cient while maintaining high detection accuracy. The core is to build a Transformer that provides
both internal and cross-scale feature interaction. The output feature maps from the backbone are
fine-fused, thus eliminates the need for independent feature fusing phases. Our method decreases
computation consumption significantly and outperforms the original DETR and its variants. We
hope that our work will inspire the exploration of the potential of backbone in object detection. In
the future, we will investigate the neural architecture search of feature fusing stages.
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A APPENDIX

A.1 SPATIAL REDUCTION IN FUSING STAGE

Given z; as the feature map of the query scale, [z, 3, ...,x}_,] as the preceding feature maps of
the key scales. One layer of ¢-th fusing stage can be formulated as follows:

x} = FFN(Norm(A)) + A (10)
A= SA (i, SR({z} 1125 U {za}), SR({7 }i2h U {i})) + 2 (1)
SR({z;}) = Concat ({GELU(Norm;(Pool(z;)W;))}) (12)

where SR(-) refers to the spatial reduction operation which utilizes an adaptive poolling layer and
enjoys linear computational and memory costs. W; € RE*C are learnable weights of 1 x 1 convo-
lutional layer. Norm; refers to layer normalization.

A.2 COMPLEXITY FOR CECA

In Pyramid Vision Transformer, the linear spatial reduction attention applys an adaptive pool of a
fixed size P to the key elements to reduce computational cost. The complexity is O(HW P2C). For
a multi-scale detector that using S feature maps, suppose the downsampling stride is 2 and h, w are
the height and width of the last feature map xg. The complexity becomes O((hw + 4hw + ... +
405=Dhw)SP2C) so approximately we have O(4°ShwP?C). As for the CECA, only the latest
scale serves as the query elements so the complexity is of O(ShwP?C).
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A.3 TOU-AWARENESS

IoU-awareness means to align the predicted bounding box with the ground-truth. we use a param-
eters @ = (.5 to control its contribution to the classification score. The final classification score is
defined as:

Score = CLS ) x IoU® (13)

In the training phase, awareness branches are added to the output of the backbone, the intermediate
output and final output of decoder layers. In the inference phase, all the awareness branches are
removed except the one on the last decoder layer.

A.4 TOKEN LABELING

With token labeling, each patch token is associated with a location-specific supervision indicating
the presence of objects in the corresponding image area. It improves the object localization and
recognition capabilities of vision Transformers without computational cost. The token labeling head
will be excluded during inference. Figure ] visualizes the soft token label and predictions from our
detector trained with token labeling. Observe that the extracted feature maps are capable of token-
level classification.

Backbone

Scale 1 Scale 2 Scale 3 Scale 4

Figure 4: Visualization of token labeling.

A.5 MORE VISUALIZATION ON MULTI-SCALES

To better demonstrate which scale the decoder attends to, we visualize the cross-attention of the
decoder on different scales of Deformable DETR and Deformable D’ETR, as shown in Figure
The Transformer decoder has 6 decoder layers with one output per layer, we sum them up for
readability.

We also plot the average attention on different scales for different object sizes, as shown in Figure[6]
We use the first 100 images of the validation set. Following the definition of COCO 2017 benchmark,
objects whose pixel area is lower than 32 x 32, between 32 x 32 and 96 x 96, larger than 96 x 96 are
defined as small, medium, and large object, respectively. Notice that the Deformable DETR pays
more attention to the low-level scales and cares less about the high-level scales, especially for the
small and medium objects. Instead, the proposed Deformable D’ETR can make use of the high-level
scale, even when detecting small objects.
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(a) Deformable DETR

Figure 5: Visualization of cross-attention.

(b) Deformable D2ETR
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Figure 6: Cross-attention on different scales for different object sizes.
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I import torch
2> import torch.nn as nn

4 class PVIv2_CECA (nn.Module) :

5 def forward(self, x):

6 outs = []

7 for 1 in range(self.num_stages):
8 # normal stage

9 x = self.patch_embed[i] (x)
10 for blk in self.block[i]:

11 x = blk(x)

12 x = self.norm[i] (x)

13 # fusing stage

14 if i >= self.fuse_start_1lvl:

15 outs.append(self.fuse_proj[len(outs)] (x))
16 outs_g = outs[-1:]

17 outs_k = outs[:-1]

18 for blk in self.fuse_block[len(outs)]:

19 outs_g = blk(outs_qg, extra_key=outs_k)
20 outs_g = self.fuse_norm[len (outs)] (outs_q)
21 outs = outs_g + outs_k

22 return outs

24 class Block (nn.Module) :

25 def forward(self, x, extra_key=None):

26 x = x + self.drop_path(self.attn(self.norml (x), x + extra_key))
27 x = x + self.drop_path(self.mlp(self.norm2 (x)))

28 return x

30 class Attention (nn.Module) :
31 def forward(self, query, key):

32 Q = torch.cat ([self.g(x) for x in query])

33 KV = [self.kv(self.gelu(self.norm[i] (self.convlx1l[i] (self.pool (x)
)))) for i, x in enumerate (key) ]

34 K = torch.cat ([x[0] for x in KV])

35 V = torch.cat ([x[1] for x in KV])

36 attn = ((Q @ K) % self.scale).softmax ()

37 X = self.proj((attn @ V))

38 return X

Listing 1: Simplified PyTorch code of CECA based on PVTv2, details such as initialization and
reshaping are omitted for readability. The entire code will be made available.
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Table 5: Notations in the paper.

Notation Description

C Channel number of the input feature map

H Height of the input feature map

w Width of the input feature map

x Input feature map

Zq Input feature map as query

Tk Input feature map as key

Ty Input feature map as value

x] i-th input feature map after j times of fusions

i-th input feature map after fine-fused

0q Object query

o Activation function

H; Transformer block of i-th stage
Projection matrix for query

Projection matrix for key

Projection matrix for value

Adaptive pooling size of spatial reduction
Number of object queries

Number of feature map fed into the decoder
Number of bounding boxes

0-1 mask of segmentation annotation
Output of the ¢-th object query

i-th predicted bounding box

1-th target bounding box

Position (p, ¢) on i-th feature map
Position (p, ¢) on i-th soft token label
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=
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