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Abstract

In reinforcement learning, agents often need to decide between selecting actions
that are familiar and have previously yielded positive results (exploitation), and
seeking new information that could allow them to uncover more effective actions
(exploration). Understanding the specific kinds of heuristics and strategies that
humans employ to solve this problem over the course of their development remains
an open question in cognitive science and AI. In this study we develop an “observe
or bet" task that separates “pure exploration” from “pure exploitation.” Participants
have the option to either observe an instance of an outcome and receive no reward,
or to bet on an action that is eventually rewarding, but offers no immediate feed-
back. We collected data from 56 five-to-seven-year-old children who completed
the task at one of three different probability levels. We compared how children
performed against both approximate solutions to the partially-observable Markov
decision process and meta-RL models that were meta trained on the same decision
making task across different probability levels. We found that the children observe
significantly more than the two classes of algorithms. We then quantified how
children’s policies differ between the different probability levels by fitting prob-
abilistic programming models and by calculating the likelihood of the children’s
actions under the task-driven model. The fitted parameters of the behavioral model
as well as the direction of the deviation from neural network policies demonstrate
that the primary way children change the frequency with which they bet on the
door for which they have less evidence. This suggests both that children model the
causal structure of the environment and that they produce a “hedging behavior” that
would be impossible to detect in standard bandit tasks, and that reduces variance
in overall rewards. The results shed light on how children reason about reward
and information, providing a developmental benchmark that can help shape our
understanding of both human behavior and RL neural network models.

1 Introduction

From hunting and foraging to achieving complex skills and tasks, agents need to autonomously search
through a vast space of possible actions. As a result, an agent must strike a fine balance between the
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exploration of different options or opportunities and the exploitation of rewards (1, 2). This balance
is commonly referred to as the exploration-exploitation trade-off.

Researchers have long argued that children are active and exploratory information seekers (e.g.,
3, 4, 5). However, previous studies used environments in which the reward and information that
participants receive on each trial are confounded (e.g., 6, 7, 8, 9). In these experiments, exploratory
actions lead to reward and exploitative moves result in information gain, which obscures interpretation
of the two concepts. In our study, we investigated the behavior of children in a setting where "pure
exploration" (i.e. actions that do supply any reward at all) was juxtaposed with "pure exploitation"
(i.e. actions that do not supply any information at all). Previous work has shown that adults in
similar versions of this task initially also observe more than is optimal 10, but can learn near-optimal
exploratory behavior over several repetitions in the task (11). Moving beyond these studies, we use
child participants and we also consider the two kinds of betting actions, those that correspond to the
one that the participant has received the strongest evidence for so far (which would be chosen to
maximize the expected value of reward) and the one that goes against the current evidence (which we
call “hedging"; if this arm has been chosen less frequently so far, it reduces the variance in rewards).
The study is the first of its kind to disambiguate the motives underlying exploratory and exploitative
behavior in children.

2 Methods

Child Experiment Following the structure of the observe or bet task (10), we presented 56 five- to
seven-year-old children with a game featuring a rewarding character and a non-rewarding character.
We target this age group as a large amount of existing literature suggests that it is not until the age
of 4 that children begin to reliably understand and reasonably act on uncertainty and counterfactual
possibilities in the physical world where feedback is not immediately provided (as in our case of
"bet" actions) (e.g., 12, 13, 14, 15, 16, 17). Moreover, our pilot study suggested that only children
aged 5 and above could reliably comprehend the complexity of the task. In this game, each character
hid behind separate doors. Children received one coin if they found the rewarding character and did
not gain or lose anything if they found the other non-rewarding character. In every trial, children were
then given the option of either observing which doors the characters were hiding behind, or placing
a bet on one of two probabilistically rewarding doors, without receiving feedback until the end of
the experiment (Figure 1A). Exactly one of the two actions paid out on every trial. Children played
games of 12 trials, during which the underlying payout probabilities remained constant. However, we
varied the payout probabilities between participants. In this ongoing study, we randomly assigned 19
children to the setting where the payout probability ρ of the higher-paying door was ρ = 1.0, 19 to
ρ = 0.75, and 18 to ρ = 0.5. While children were not given the exact probability of the environment,
the experimenter gave a clue by describing their assigned environment as "always the same" (ρ = 1.0),
having a preferably higher-paying door even though it might "sometimes change" (ρ = 0.75), and
"always changing, no one can tell" which option was higher-paying (ρ = 0.5). Children had to pass
all of the comprehension checks before they could proceed in the study. 2 additional participants who
failed to pass were excluded from the final participant pool (n = 56). Next, children played four
practice trials to familiarize themselves with the setup and received feedback on the reward they had
accumulated at the end of the practice. They then proceeded to play the actual game which they were
told had the same probability structure as the practice game. The game at test involved characters
(a kind princess and a mean thief) that were visually different from the practice games (a kind elf
and a mean monster). At the end of the test trials, children were asked to quantitatively express their
perceived probability of receiving a reward from the left door versus the right using a slider. The
results indicated that they recognized the differences between levels (see Figure 1B). The study was
preregistered here: https://aspredicted.org/blind.php?x=TG5_Q8B.

Computational Modelling In order to quantify optimal performance on the task, we first formulated
the problem as a partially-observable Markov decision process (POMDP, 18, 19). This POMDP
is defined in Supplementary Section S1.1. As an upper bound of performance, we calculated the
reward-maximizing policy for an agent aware of the probability structure of the task by using the
JuliaPOMDP framework (20) to calculate successive approximations of the reachable state under
optimal policies (SARSOP, 21), a state-of-the-art solver for problems that require active information
gathering (22, 23). This allowed us to calculate for every trial the belief threshold at which one
should switch from observing to betting for each probability setting (Figure 1C). We then compared
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children’s behavior across different probability levels with the SARSOP solutions. We also compared
both the children and the SARSOP solution to the solution of deep RL meta-agents which were
trained on different probability levels of the same task and thus were unsure of the payout probability
(following 24, see Supplementary Section S1.2 for architecture and training procedure).We ran five
instantiations of the RL neural networks, which learned to perform near-optimally on the task (see
Supplementary Figure S1 for the learning curve). Finally, we fitted parameters from the model for
human behavior from 11 to the child data in order to analyze differences in child behavior between
the different probability settings.

3 Results

3.1 Children over-explore and do not modulate observations according to probability levels

High probability values for the high-paying door (i.e.., ρ closer to 1.0) in the environment mean that
one should be more certain which is the correct door before switching from observing to betting.
Since the difference in payout rates between the two doors is bigger, the benefit from choosing the
correct door is greater. However, because a higher probability level also corresponds to a greater
belief update when observing, the optimal behavior in this task across probability levels, calculated
using SARSOP, is to make one observation at the beginning when ρ = 1.0 or ρ = 0.75, and to not
make any observations when the probability is evenly split, i.e. ρ = 0.5.Neural networks that are
meta-trained across all probability levels (and therefore simulate an agent which does not start out
with any information as to which probability level it is operating under) observe exactly once at the
beginning of every episode (Figure 1D). While children on average did not observe significantly more
than once in ρ = 1.0 and ρ = 0.75 conditions, they observed significantly more than the optimal
solution in the ρ = 0.5 condition (Figure 1D): out of 12 trials, participants in the p = 1.0 condition
made an average of 2.32 observations (SE = 0.31) when the optimal solution was 1 observation,
t(9) = 1.54, p = 0.14; those in the p = 0.75 condition made an average of 1.58 observations
(SE = 0.27) when the optimal solution was 1 observation, t(18) = 1.78, p = 0.25; the rest in the
p = 0.5 condition made an average of 2.11 observations (SE = 0.31) when the optimal solution was
0 observation, t(17) = 3.43, p < 0.01. 24 out of 56 children strictly chose to bet and did not observe
at all (n=8 in ρ = 1.0, n=9 in ρ = 0.75, n=7 in ρ = 0.5). 2 children in ρ = 1.0 strictly chose to
observe and did not bet at all.

Like the neural networks (which start the task without information on the task), children did not
significantly modulate their observation rates based on the probability structure in a one-way ANOVA
test (F (2, 53) = 0.33, p = 0.72); a generalized mixed-effect model with observation as a binary
outcome did not yield a main effect of probability - this is further supported in the three pairwise
comparisons of estimated marginal means in the three probability structures via Tukey’s HSD
test (p = 0.81, p = .99, p = 0.74 respectively). Aggregating across all probabilities, we found
that children on average make 2.0 observations (SE = 0.38), which is significantly more than 1
observation, t(55) = 2.61, p < 0.05.

Contrary to the optimal solution determined by the SARSOP model and the neural network solutions,
children sampled their observations more throughout the episode (Figure 1C). This is different than
adult behavior in similar versions of the task: Although adults also observe at greater-than-optimal
rates (11), they attenuate their observation rate strongly across the course of an episode, whereas
children continue to observe until the end of the episode. This means that only few children front-load
their observations (i.e., only choosing to observe at the start of a task, see Figure 1E). That said,
children generally reduced their observation behavior as trial number increased in a generalized linear
mixed-effects model (β = −0.07,z = −1.88, p = 0.06).

3.2 Children modulate their betting policy based on the probability structure of the
environment

While children neither significantly differ in how much they observe between probability structures
nor systematically alter how much they observe throughout an episode, we find evidence of betting
behavior that is sensitive to the payout structure of the environment in children’s observe actions.
Children were most likely to place their bets on the most-recently-observed rewarding door in high-
probability settings (p = 1.0), i.e., they preferentially bet on the action that they had accumulated
the most evidence for (see Figure 1F), µ = 0.91, SE = 0.06. We quantify the arm that they had
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Figure 1: (A) On every trial, participants have the choice between “observing," when they see which
door contains a princess and which contains a thief, or “betting," in which case receive reward (with
feedback delayed) if they pick the door with the princess. (B) Children’s perceived likelihood that the
rewarding door provides reward measured after they completed all 12 test trials. Error bars signify SD.
(C) The solution to the partially-observable Markov decision process approximated using SARSOP
for the three different probability levels. The colorbar indicates the minimum belief in the doors for
which betting is optimal (with observing optimal below that threshold). For the 1 and 0.75 probability
levels, the threshold corresponds to one observation; for the 0.5 probability level, to zero. (D) (left)
the reinforcement-learning neural network agents and (right) the children for upper probabilities of
(green) 1, (orange) 0.75 and (blue) 0.5. Error bars for neural networks signify SEMand for children
represent the 95% Bayesian credible intervals for an unknown proportion under a Jeffreys prior. (E)
Proportion of children who front-load their observations exactly for three different probability settings.
Error bars represent the 95% Bayesian credible intervals for an unknown proportion under a Jeffreys
prior. (F) Probability of betting on the recently-observed rewarding door (as opposed to the other
one) for (left) RL neural network models and (right) children. Error bars for neural networks signify
SEMand for children the 95% Bayesian credible intervals for an unknown proportion under a Jeffreys
prior. (G) Likelihood of the fitted process model (from Navarro et al., 2016) for different probability
levels. Error bars represent SD. (H) Mean posterior parameter values for (left) forgetfulness and
(right) stochasticity parameters for the fitted process model. Error bars represent SD.
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accumulated the most evidence for as the one that they have observed paying out more often, with a tie
(following at least two observations) going to the most-recently-observed arm to account for recency
effects. In episodes where the payout probabilities are more even, however, children distributed their
bets more evenly across the two doors, (µ = 0.51, SE = 0.07 for ρ = 0.75 structure and µ = 0.52,
SE = 0.05 for ρ = 0.5 structure). A generalized linear mixed-effects model with bet based on the
most-recently-observed door as a binary outcome reveals a statistically significant effect of ρ = 1.0
relative to ρ = 0.5, β = 2.28, z = 5.05, p < 0.001. Further pairwise comparisons via Tukey’s HSD
test show that children are significantly more likely to be on the most-recently-observed door in
the ρ = 1.0 condition compared to the ρ = 0.5 condition (z = 2.28, p < 0.001) and the ρ = 0.75
condition (z = 2.06, p < 0.001).

To validate this difference in behavior, we fit the computational process model from Navarro et al.
to behavior (11). This model has been shown to be the best out of 4 candidate models for an adult
version of the task and has been established in subsequent work (25). In this model, behavior can
vary based on an evidence decay parameter, a decision threshold, and a stochasticity term. The
model performs better than chance at predicting child performance, although it explains the child
data best in the ρ = 1.0 setting (Figure 1G). The parameters related to decision threshold do not
vary systematically between probability levels (see Supplementary Figure 3). However, both the
evidence decay parameter α and the stochasticity term σ are higher for more even probability levels,
corresponding to higher probabilities for taking the unobserved door (Figure 1G).

4 Discussion

This study provides a developmental benchmark for integrating reinforcement learning, observation
(exploration) and betting (exploitation) behaviors in both the cognitive science and AI communities.
Our findings corroborate with existing work that children are sensitive to and make anticipatory
responses to uncertainties in the physical world (e.g., 13, 15). Furthermore, we show that when they
are given the opportunity to get information about the uncertainty by observing outcomes, 5-to-7-
year-olds opt to observe at similar frequencies across all uncertainty levels. They do not modulate
how much they observe, but rather diversify their bets to address high uncertainties. Supplementary
Section S1.4 describes how this reduction in variance in the reward space can be described as trading
off against both information gain of the transition structure as well as the expected value of reward.
This strategy is effective in contexts in which it is necessary to make decisions under uncertainty
as diverse as evolution [26, 27] and financial markets [28]. This could be one explanation for (or
realization of) the counterfactual behavior that has previously been described by others. To our
knowledge, this study is the first to show that from a young age, humans’ desire to “hedge bets” in
the face of uncertain environments could be a driving force for modulations of exploratory behavior
in standard bandit tasks, and could play a wider role in the use of higher-order moments in RL [29].
In next steps, we plan to compare children’s performance with that of adults performing the same
task and to model the results with RL models of developmental learning.
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S1 Supplementary Material

S1.1 Formulation of the partially-observable Markov decision process

A POMDP is a 7-tuple ⟨S,A,Ω,O, T, r, γ⟩, where S is the (finite) non-empty state space, A is the
(finite) non-empty action space, Ω is the (finite) non-empty observation space, O : S → P(Ω) is the
observation function, T : S ×A → P(S) is the probabilistic state-transition function, r : S ×A →
P(R) is a bounded reward function, and 0 ≤ γ ≤ 1 is the discount factor. We formalize the observe
or bet task for use with the solver by defining the set of states as the product space given by the
number of steps along with the two possibilities for which is the high-paying door. The set of actions
is to observe, to bet on the left door, or to bet on the right door. The set of observations are given by
the product of the set of the number of steps and the possible observations per step, no observation,
observing a payout on the left door, and observing a payout on the right door. The observation,
transition, and reward functions that correspond to the regular observe-or-bet rules, and we set γ := 1.

This formulation of the POMDP takes the perspective of an agent who knows what the overall
probability level is, but does not know the assignment to a particular door. This is the formulation that
we use for the POMDP solver. In contrast, the neural networks are meta-trained across all probability
levels, which means they start an episode with a uniform prior about the probability level. Because
we only give participants general indication of probability ranges rather than an exact estimate, we
can assume that they are and in any case start the trial without information about which arm is the
higher-paying one, we can assume that the participants operate with some uncertainty as to the exact
transition structure of the environment and therefore are operating under the POMDP described
above.
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S1.2 Neural network architecture and training procedure

The neural networks we trained had a standard architecture with an input layer, followed by an LSTM
layer of 48 units, a fully connected layer of 24 units, and a softmax output layer of 3 units that
correspond to the three possible actions. We used ReLU activation functions for the hidden layers.
The state encoding at the input contained the following elements: One-hot encoding of the action
chosen on the previous time step, the time remaining in the trial (scaled between 1 and 0, with 1
corresponding to the first time step in an episode), zero-to-one-hot feedback corresponding to the
observation on the two doors (1 indicating that the princess was observed at the door on the previous
time step and 0 either that the agent did not observe or that the agent observed but this door did not
contain the princess), and then a flag indicating the start of a new episode as well as that showed the
feedback tally for the reward received on the previous episode on the first step of a new episode, and
that showed 0 otherwise.

We train the neural network using the REINFORCE algorithm [30] with a baseline of 1/3 (cor-
responding to the expected value of a random action) following the meta-reinforcement learning
procedure [31, 32, 33] in which we train the not only on a single payout probability level but vary
the probability level between different episodes. (In essence, we meta-train the networks across the
distribution of POMDPs defined by sampling ρ ∼ U [0.5, 1]. In order to avoid biasing in a particular
direction for comparing with the human data, we do not hold out any area of the training region.) We
train the networks for 500000 episodes using a batch size of 50. The recurrent units of the LSTM
layer are reset to 0 at the start of a new episode. We use the Adam optimizer with a learning rate
of 1e-3. We start training with entropy regularization with coefficient 5, which we annealed to 0
geometrically over the course of 150000 episodes. These values were determined based on being
reasonable as well as a very limited amount of manual trial and error. No further hyperparameter
optimization was conducted. The remaining parameters were left at their default values.

S1.3 Behavioral analyses

Figure S1: Learning curves for the task-driven RL neural network models for (faint) each of the
individual models and (thick) aggregated over all five, smoothed using a moving average window
over 1000 episodes.

S1.4 Explanation of information gain and reduction in variance

An actor in the POMDP described in Supplementary Section S1.1 will on every step face the choice
between three different actions, each of which maximizes a different quantity. Here we assume that
participants are operating under the same POMDP as the solver and interpret the qualitative labels of
different probability levels given at the start of a trial to indicate the probability values of 0.5, 0.75,
and 1 exactly.

Information gain Because we assume that the participant starts knowing the probability level but
not the exact reward allocation to a particular door, we can describe the information state of the
participant at every point of time as a Bernoulli distribution with parameter b describing the belief that
the dominant door is the left one. Every time the agent chooses to observe, b is updated corresponding
to the Bayesian update rule.
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A B C

Figure S2: Fitted parameters for the Navarro model corresponding to the decision threshold. (A)
The initial decision threshold d0 for different payout probability levels. Error bars represent standard
deviation. (B) Same as A, except showing the final decision threshold d1. (C) Same as B, except
showing the fraction of trials after which the decision threshold starts to decrease linearly from d0 to
d1.

bt+1 =
ρ× bt

ρ× bt + (1− ρ)× (1− bt)
(1)

where bt corresponds to the previous belief on the step at time t and bt+1 corresponds to the belief
after the observation has been taken into account on the next step at time t+ 1.

If Bt corresponds to the Bernoulli distribution describing the participants’ belief state at time t and
Bt+1 at time t+ 1, the information gain is then given by the KL-divergence between the two states:

DKL(Bt||Bt+1) = bt × log

(
bt

bt+1

)
+ (1− bt)× log

(
1− bt

1− bt+1

)
(2)

This quantity is maximized by taking an observe action.

Reward Exploitation Betting on one of the doors yields the opportunity of receiving reward. We
define Rt(a) as the random variable corresponding to the reward yielded by taking action a at time
step t. If bt corresponds to the belief that the chosen door is the higher-paying one (corresponding to
the notation above, we can assume without loss of generality that the participant is choosing the left
door as we can temporarily set b← 1− b otherwise), then from the perspective of the participant the
expected value of betting on that door is given by

E[Rt(a)] = bt × ρ+ (1− bt)× (1− ρ) (3)

since we have two sources of uncertainty, the epistemic uncertainty described by the agent’s belief
Bt at time t and the aleatoric uncertainty given by uncertainty which door will reveal the princess
under the assumption that a certain door is the dominant one given by the payout probability level
ρ. This quantity is maximized by betting on the door that has been observed most frequently so far
(since bt is greater than 0.5 for this one and ρ ≥ 0.5.)

Reduction of Variance Continuing this formulation of the random variable Rt(at) describing the
reward for taking a given action a at time t based on the two sources of uncertainty, the total variance
for a series of actions (at)Tt=1 is described by

Var

(
T∑

t=1

Rt

)
=

T∑
t=1

Var(Rt) + 2

T∑
t<s

Cov(Rt, Rs) (4)

where T is the total number of time steps (12 in this experiment) and we write Rt to describe the
reward for the chosen action at for simplicity. We consider cases where p ̸= 0.5 since otherwise
the agent’s choices won’t have any impact on its expected reward or reward variance. To illustrate
how the variance in rewards is minimized by spreading bets between the different doors, consider a
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sequence of n betting actions uninterrupted by observe actions (at)t0+n
t=t0 . Since the participants’ belief

does not change over the course of the sequence, the Rt all have the same expected value and variance
equal to E[Rt0 ] and Var(Rt0) respectively. However, because the participants’ belief state would
have updated between taking different actions if the participant had been able to observe the outcome,
the events are not independent and therefore the covariance for payouts of actions at any two times t
and s Cov(Rt, Rs) is not zero. Specifically, betting twice on the same door yields Cov(Rt, Rs) > 0
since receiving reward for betting on a door once increases the likelihood of receiving it a second
time, and betting on two different doors yields Cov(Rt, Rs) < 0 by the same logic. (As an example,
consider the case of ρ = 1 where the door that contains the princess is unknown, where betting on
two different doors yields an expected value of 1 with variance 0.) Therefore, assuming that the
majority of the participant’s betting actions up to a given point have been placed on the door for
which it has the highest belief, the participant will maximize their reduction of variance by placing
the subsequent bet on the other arm. Furthermore, the participant will maximize their reduction of
variance over a course of a series of actions by spreading their bets evenly between the two doors.
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