
Can Physics Informed Neural Operators Self Improve?

Ritam Majumdar
TCS Research

ritam.majumdar@tcs.com

Amey Varhade
IIT Guwahati

varhade@alumni.iitg.ac.in

Shirish Karande
TCS Research

shirish.karande@tcs.com

Lovekesh Vig
TCS Research

lovekesh.vig@tcs.com

Abstract

Self-training techniques have shown remarkable value across many deep learning
models and tasks. However, such techniques remain largely unexplored when
considered in the context of learning fast solvers for systems of partial differential
equations (Eg: Neural Operators). In this work, we explore the use of self-training
for Fourier Neural Operators (FNO). Neural Operators emerged as a data driven
technique, however, data from experiments or traditional solvers is not always read-
ily available. Physics Informed Neural Operators (PINO) overcome this constraint
by utilizing a physics loss for the training, however the accuracy of PINO trained
without data does not match the performance obtained by training with data. In
this work we show that self-training can be used to close this gap in performance.
We examine canonical examples, namely the 1D-Burgers and 2D-Darcy PDEs, to
showcase the efficacy of self-training. Specifically, FNOs, when trained exclusively
with physics loss through self-training, approach 1.07× for Burgers and 1.02× for
Darcy, compared to FNOs trained with both data and physics loss. Furthermore,
we discover that pseudo-labels can be used for self-training without necessarily
training to convergence in each iteration. A consequence of this is that we are able
to discover self-training schedules that improve upon the baseline performance of
PINO in terms of accuracy as well as time.

1 Introduction

In recent years, the development of rapid solvers for Partial Differential Equations (PDEs) has
garnered substantial interest. Various Neural Operators [1–4] have notably been harnessed to expedite
PDE solvers, among which Fourier Neural Operators (FNO) [1] have gained significant popularity.
These have found applications in a myriad of fields including fluid flow, climate change [5], and mate-
rial modeling [6]. However, Neural Operators, predominantly trained via data-driven methodologies,
often confront challenges related to data availability. Physics-Informed Neural Operators (PINO)
[7], address this by utilizing an physics-informed loss, based on governing PDEs. Nevertheless, a
noticeable disparity in performance is evident when comparing PINOs trained with supervisory loss
based on ground truth labels to those trained without.

Self-training, a semi-supervised learning approach, initiates by utilizing a model to generate labels
for unlabeled instances. Subsequent to predictions, these instances are amalgamated with the labeled
dataset, facilitating further model training. Through repeated iterations, this cycle aims to improve
the model’s predictive capabilities. Self-training has found utility in varied applications including
sentiment analysis [8], text classification [9], Natural Language Processing [10], object detection [11],
medical image classification [12], human action recognition [13], facial expression identification
[14], Speech Recognition [15, 16], Anomaly Detection [17], as well as Genomics and proteomics

DLDE-III Workshop in the 37th Conference on Neural Information Processing Systems (NeurIPS 2023).

[18]. Intriguingly, self-training approaches have scarcely been explored to expedite PDE solvers.
The closest work which resembles using self-training for PDE solvers is [19], wherein the authors
use self-training for Physics-informed Neural Networks. More specifically, the authors add the most
confident collocation points as pseudo-labels to improve the performance of surrogate PINN for
single PDE instance. In this work however, we are performing self-training to generalize over entire
function-spaces of PDE tasks rather than a single instance of a PDE, and use PINOs instead of PINNs.

In this work, we make two important contributions: (1) We show that self-training can be used along
with PINO to close the gap in performance between PINO trained with just physics loss v/s the
performance obtained by including physics + data loss. We illustrate the efficacy of self-training on
the 1D-Burgers and 2D-Darcy PDEs. The performance ratio in terms of the L2 error of PINOs trained
in term of just physics loss against PINOs trained with physics + data loss is 39.48 for 1D-Burgers
and 1.16 for 2D Darcy. We show that self-training improves this ratio to 1.07 and 1.02. (2) We
also explore the utility of self-training and pseudo-labels in reducing the training time of PINOs. In
particular we observed that one can follow an early stopping schedule while training a PINO with
physics loss and subsequently with physics + pseudo-labels loss . We observe that some schedules
are able to obtain an accuracy greater than PINO while utilizing time lesser than that required to train
a PINO to convergence on the basis of physics loss.

The remainder of the paper is structured as follows: Section 2 outlines the Methodology used for self-
training, the results and observations are discussed in Section 3 and we highlight the key conclusions
in Section 4.

2 Methodology

Algorithm 1 Methodology for Self-training of PINO
Input: Parametric PDE N , Domain Discretization, Train tasks Ttrain (A)
Output: Trained Fourier Neural Operator Gθfinal

Method:
1: Initialize Fourier Neural Operator Gθ1

2: Train Gθ1 using Physics-loss over Ttrain until StoppingCriteria
3: for i (self-train iterations) = 1 to MAX do
4: Use Gθi to generate data labels for Ttrain as Dlabels
5: Initialize a new Neural Operator Gθi+1 with Gθi

6: Train Gθi+1 using Physics-loss and Supervised-loss over Dlabels until StoppingCriteria
7: if |Error(Gθi+1)− Error(Gθi)| < ϵ then
8: break
9: end if

10: end for
11: return Gθfinal

Fourier Neural Operators Gθ aim to learn a mapping between two Banach spaces Gθ : A → U ,
where A typically refers to parameterized initial conditions, boundary conditions, or coefficients of
the PDE, while U refers to the final solution of the PDE. Algorithm 2 describes the methodology for
self-training a physics-informed Neural Operator (PINO). We initialize a Fourier Neural Operator,
denoted as Gθ1 and train it on input functions A exclusively using physics-loss. Here, parameterized
input functions A refer to our train-tasks Ttrain. The physics-loss is defined using the governing
equations of the Partial Differential Equation N . Leveraging the trained FNO from each prior
iteration, we deduce pseudo-labels for our training tasks. These pseudo-labels subsequently function
as annotated data points, facilitating supervised fine-tuning in the following iterations. In every
iteration, we initialize Gθi+1

using its predecessor Gθi , where i is the current self-train iteration.
This FNO is then trained on Ttrain, drawing upon both the physics-loss and a supervised-loss on the
aforegenerated pseudo-labels. This iterative loop of pseudo-label inference and operator enhancement
is sustained until the absolute difference of two consecutive iterations of FNOs Gθi+1 and Gθi falls
below a threshold ϵ or maximum number of self-train iterations is completed. Stopping Criteria for
training a FNO is met when there is no improvement in the train-loss for 100 consecutive epochs or
pre-defined number of epochs are completed.

2

Self-train Iterations Benchmarks
0 (B0) 1 2 3 4 5 6 B1 B2

1D-Burger’s Data (1e−4) 74.22 3.28 2.75 2.19 2.11 2.03 2.02 1.88 16.26
Phy. (1e−6) 8.22 6.96 5.42 4.84 4.00 3.66 3.83 2.65 547

2D-Darcy Data (1e−2) 1.15 1.09 1.07 1.03 1.02 1.01 1.01 0.99 2.36
Phy. (1e−2) 3.22 1.72 1.45 1.22 1.15 0.98 0.97 0.85 107

Table 1: Self-training experiments. Benchmark B1 refers to training PINOs using ground-truth
data, while Benchmark B2 refers to training FNOs solely on ground-truth data without physics-loss.
Benchmark B0 refers to the FNO trained with just physics-informed loss. Quantities in parenthesis
denote the order of the errors. Data refers to test-task L2 errors, while Phy. refers to test-task PDE
Mean-squared errors.

3 Results and Observations

3.1 Self-training with PINOs trained to convergence

Let us consider three baselines. B0 (or PINO), FNOs trained with just physics-informed loss,
B1, FNOs trained with both physics-informed and actual ground-truth data loss, and B2, FNOs
trained solely on ground-truth labels. Table 1 has the performance results for all these baselines
and significant performance gap can be observed between training a PINO with ground-truth data
and PINO without ground-truth data. For example, in case of 1D Burger’s B0 has an L2 error of
7.42e−3, while B1 has an error of 1.88e−4. Infact, the performance of PINO is even worse than
the conventional FNO in case of 1D-Burger’s i.e. B2, 1.63e−3. Meanwhile, in case of 2D-Darcy,
even though the accuracy of PINO (B0) is greater than that of FNO (1.15e−2 v/s 2.36e−2), it pales
significantly in comparison of PINO with data loss (9.91e−3).

Table 1 demonstrates the result of self-training a PINO. In this experiment the convergence is not
defined in terms of epochs, rather in terms of saturation of reduction in error. We notice that even
single iteration of self training can provide significant gains. A self-trained PINO is not only able to
easily beat the performance of an FNO but can almost match the performance of PINO trained with
data. Our results show that the self-training approach, despite lacking access to true ground-truth,
significantly outperforms B2 in both data (Burger’s: 8.61, Darcy: 2.33) and physics-loss (Burger’s:
206, Darcy: 125). Compared to B1, it only exhibits slightly higher errors, specifically [(1.07×,1.02×)
for data L2 error and (1.45×,1.15×) for physics-loss MSE for Burger’s and Darcy respectively.

3.2 Self-training with PINOs not-trained to convergence

Why and when does self-training improve performance? Will models that are not trained to con-
vergence improve more or less with self-training? Poor training will induce noisy pseudo-labels
possibly leading to error amplification, however, if the training is just good enough then we might
save some epochs of training, without any recognizable loss in inducing pseudo-labels, thus possibly
reducing the overall training time. We sought to investigate this possibility. Therefore we trained
the models for a fixed number of epochs in each iteration. Indeed a strong self-improvement trend
was observed in most cases, until we reach threshold where the models could start diverging. One
can observe Figure 1 closely. In the Burger’s equation, PINO without labels has a data L2-error of
7.42e−3, while taking 18:37 (18 mins and 37 sec) to converge. We observe, self-training for 250
epochs gives us a performance improvement (2.5e−3) in the 2nd iteration itself, with a time advantage
(14:12), while self-training for 100 epochs on 3rd iteration itself gives us a performance (5.2e−3)
and time improvement (8:36). Similarly, for Darcy flow, PINO without labels has a data L2-error
of 1.15e−2, while taking (3:10:00) 3 hrs 10 mins to converge. Self-training for 500 epochs for 5
iterations gives us a performance 1.11e−2 and time improvement (1:58:22), while self-training for
250 epochs at 6th iteration gives us a performance 1.14e−2 and time improvement (1:05:13). In
Figure 1, the highlighted point (in red) represents the benchmark B0. All points belonging to the third
quadrant with benchmark B0 indicate Pareto-points wherein self-training iterations are both better
in performance and time, compared to the benchmark B0. We further provide detailed numerical
tabulations of these experiments in the Appendix 2,3. Thus, we infer that using number of epochs as
a hyper-parameter can outperform traditional PINO in terms of error while reducing training time.

3

Figure 1: Self-training experiments with PINOs trained prematurely. Top: Burger’s equation, Bottom:
Darcy flow. We study the trend of Data L2-error against cumulative time on a log-log scale. The
highlighted point (in red) represents the benchmark B0, i.e. Training a PINO without data-labels.

4 Conclusion

Self-training has been largely unexplored while employing machine learning in numerical methods.
In this paper we have successfully shown that self-training with pseudo-label and physics loss can
substantially improve the performance of FNOs without the need of any training data. Furthermore we
have demonstrated that one can observe the phenomenon of self-improvement through self-training
even with noisier FNOs. We have observed that one can stop training early in each iteration of
self-training to obtain improvement in accuracy without exceeding the time-budget consumed for
training a PINO. We believe that this issue needs further investigation in future.

5 Broader Impact

Creation of training data for solvers can consume a lot of compute. We believe this has been one
of the reasons that a lot of data for solved systems does not exist in public domain. This in turn has
meant that the current trend of foundational models which can be used for a broad number of tasks,
has not extended to emergence of instruction tuned foundational models for fast solvers. We believe
that if we can train models through self-improvement, even when they are initially noisy, we can
potentially scale the breadth of tasks on which a single model gets trained. This has the potential to
pave a path towards building a foundational model for a broad set of PDE tasks.

4

References
[1] Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya,

Andrew Stuart, and Anima Anandkumar. Fourier neural operator for parametric partial differen-
tial equations, 2021.

[2] Tapas Tripura and Souvik Chakraborty. Wavelet neural operator: a neural operator for parametric
partial differential equations. arXiv preprint arXiv:2205.02191, 2022.

[3] Ritam Majumdar, Shirish Karande, and Lovekesh Vig. How important are specialized transforms
in neural operators? arXiv preprint arXiv:2308.09293, 2023.

[4] Gaurav Gupta, Xiongye Xiao, and Paul Bogdan. Multiwavelet-based operator learning for
differential equations. Advances in neural information processing systems, 34:24048–24062,
2021.

[5] Jaideep Pathak, Shashank Subramanian, Peter Harrington, Sanjeev Raja, Ashesh Chattopadhyay,
Morteza Mardani, Thorsten Kurth, David Hall, Zongyi Li, Kamyar Azizzadenesheli, et al.
Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural
operators. arXiv preprint arXiv:2202.11214, 2022.

[6] Huaiqian You, Quinn Zhang, Colton J Ross, Chung-Hao Lee, and Yue Yu. Learning deep
implicit fourier neural operators (ifnos) with applications to heterogeneous material modeling.
Computer Methods in Applied Mechanics and Engineering, 398:115296, 2022.

[7] Zongyi Li, Hongkai Zheng, Nikola Kovachki, David Jin, Haoxuan Chen, Burigede Liu, Kamyar
Azizzadenesheli, and Anima Anandkumar. Physics-informed neural operator for learning partial
differential equations. arXiv preprint arXiv:2111.03794, 2021.

[8] Akshat Gupta, Sargam Menghani, Sai Krishna Rallabandi, and Alan W Black. Unsupervised
self-training for sentiment analysis of code-switched data, 2021.

[9] Yu Meng, Yunyi Zhang, Jiaxin Huang, Chenyan Xiong, Heng Ji, Chao Zhang, and Jiawei Han.
Text classification using label names only: A language model self-training approach. In Proceed-
ings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP),
pages 9006–9017, Online, November 2020. Association for Computational Linguistics.

[10] Seniz Demir, Jan Raab, Nils Reiter, Marketa Lopatkova, and Tomek Strzalkowski, editors. Pro-
ceedings of the ACL 2010 Student Research Workshop, Uppsala, Sweden, July 2010. Association
for Computational Linguistics.

[11] Gang Li, Xiang Li, Yujie Wang, Yichao Wu, Ding Liang, and Shanshan Zhang. Dtg-ssod:
Dense teacher guidance for semi-supervised object detection, 2022.

[12] Zhen Peng, Dezhi Zhang, Shengwei Tian, Weidong Wu, Long Yu, Shaofeng Zhou, and Shanhang
Huang. Faxmatch: Multi-curriculum pseudo-labeling for semi-supervised medical image
classification. Medical Physics, 50(5):3210–3222, 2023.

[13] Chenxi Wang, Jingzhou Luo, Xing Luo, Haoran Qi, and Zhi Jin. V-dixmatch: A semi-supervised
learning method for human action recognition in night video sensing. IEEE Sensors Journal,
pages 1–1, 2023.

[14] Nazir Shabbir and Ranjeet Kumar Rout. Fgbcnn: A unified bilinear architecture for learning a
fine-grained feature representation in facial expression recognition. Image and Vision Computing,
137:104770, 2023.

[15] Alexei Baevski, Henry Zhou, Abdelrahman Mohamed, and Michael Auli. wav2vec 2.0: A
framework for self-supervised learning of speech representations, 2020.

[16] Mozhdeh Gheini, Tatiana Likhomanenko, Matthias Sperber, and Hendra Setiawan. Joint speech
transcription and translation: Pseudo-labeling with out-of-distribution data. In Findings of the
Association for Computational Linguistics: ACL 2023, pages 7637–7650, Toronto, Canada, July
2023. Association for Computational Linguistics.

5

[17] Jia-Chang Feng, Fa-Ting Hong, and Wei-Shi Zheng. Mist: Multiple instance self-training
framework for video anomaly detection, 2021.

[18] Zhuohan Yu, Yanchi Su, Yifu Lu, Yuning Yang, Fuzhou Wang, Shixiong Zhang, Yi Chang,
Ka-Chun Wong, and Xiangtao Li. Topological identification and interpretation for single-cell
gene regulation elucidation across multiple platforms using scmgca. Nature communications.,
14(1), 2023-12-25.

[19] Junjun Yan, Xinhai Chen, Zhichao Wang, Enqiang Zhoui, and Jie Liu. St-pinn: A self-training
physics-informed neural network for partial differential equations, 2023.

A Appendix

A.1 PDE information

A.1.1 Burgers’ Equation

We consider the 1D Burgers’ equation, a non-linear PDE with periodic boundary conditions. The
governing equations are defined as follows:

∂tu(x, t) + ∂x
(
u2(x, t)/2

)
= ν∂xxu(x, t), x ∈ (0, 1), t ∈ (0, 1]

u(x, 0) = u0(x), x ∈ (0, 1)

Here u0 is the initial condition and ν = 1e−2 is the viscosity coefficient. We aim to learn the operator
mapping the initial condition u0 to the entire solution at u|[0,1].

A.1.2 2D Darcy Flow

2D Darcy Flow is a linear steady-state second-order elliptic PDE. We consider a flow in a unit box,
whose governing equations are given by:

−∇ · (a(x)∇u(x)) = f(x), x ∈ (0, 1)2

u(x) = 0, x ∈ ∂ (0, 1)2

Here a is the piecewise constant diffusion coefficient and f = 1 is the forcing function. The objective
is to learn the operator mapping the diffusion coefficient a(x) to the solution u(x).

A.2 Training and Hyperparameter Details

As our base architecture, we consider a FNO stacked with 4 layers with 15,12,9,9 fourier modes in
every layer, using GeLU as our activation function to model non-linearities. We consider 800 train
and 200 test examples in Burger’s equation, while we consider 1000 train and 500 test examples in
Darcy equation respectively. The prediction gridsize of [x, t] → [128, 101] for Burger’s equation,
while for Darcy equation it’s [x, y] → [61, 61]. All experiments were conducted on Nvidia P100
GPU with 16 GB GPU Memory and 1.32 GHz GPU Memory clock using Pytorch framework. In our
benchmark experiments B1, B2 and for self-training experiments trained till convergence, we start
with a learning rate of 1e−3, with a patience of 100 and tolerance of 1e−5 for the total train error,
until the minimum learning rate of 1e−6 is obtained. In the self-training experiments wherein the
Neural Operators are trained for 250, 100 and 50 epochs (not till convergence): We start with a base
learning rate of 1e−3, and reduce the learning rate by a factor of 0.1 when there is no-improvement in
the test error at start of every iteration. The physics-informed loss is evaluated using Finite Difference
Method in the spectral domain. In benchmark experiments B0 and B1, the dataset is generated using
Finite-Difference Method in the spectral domain with input conditions generated using Gaussian
Random Fields.

A.3 Tabulated Results of Self-training experiments

6

Table 2: 1D Burger’s equation results

Iteration Conv. 500 epochs 250 epochs 100 epochs 50 epochs
Data L2-error 7.42e−3 8.26e−3 9.65e−3 1.05e−2 2.23e−2

0 Physics MSE 8.22e−6 9.81e−6 5.33e−5 7.48e−5 6.58e−4

Cum. time 18:37 13:22 7:06 2:52 1:26
Data L2-error 3.28e−4 8.25e−4 2.56e−3 7.24e−3 8.26e−3

1 Physics MSE 6.96e−6 1.17e−5 1.06e−5 3.06e−5 8.01e−4

Cum. time 47:53 26:44 14:12 5:44 2:52
Data L2-error 2.75e−4 5.69e−4 1.28e−3 5.21e−3 8.91e−3

2 Physics MSE 5.42e−6 7.62e−6 6.97e−6 3.57e−5 7.29e−4

Cum. time 1:06:30 40:06 21:18 8:36 4:18
Data L2-error 2.19e−4 2.45e−4 3.34e−4 5.73e−4 1.32e−3

3 Physics MSE 4.84e−6 4.66e−6 5.01e−6 3.85e−5 4.10e−4

Cum. time 1:26:24 53:28 28:24 11:28 5:44
Data L2-error 2.11e−4 2.07e−4 3.22e−4 7.92e−4 1.42e−3

4 Physics MSE 4.00e−6 3.90e−6 4.43e−6 1.05e−5 4.10e−4

Cum. time 1:41:06 1:06:50 35:30 14:20 7:10
Data L2-error 2.03e−4 2.05e−4 2.73e−4 7.42e−4 1.17e−3

5 Physics MSE 3.66e−6 3.85e−6 4.16e−6 8.95e−6 4.05e−4

Cum. time 1:59:00 1:20:12 42:35 17:12 8:36
Data L2-error 2.02e−4 2.02e−4 2.64e−4 5.25e−4 1.15e−3

6 Physics MSE 3.83e−6 3.83e−6 3.91e−6 8.15e−6 3.97e−4

Cum. time 2:13:49 1:33:34 49:40 20:04 10:02
Data L2-error 2.62e−4 8.36e−4 1.08e−3

7 Physics MSE 3.84e−6 7.55e−6 3.97e−4

Cum. time 56:45 22:56 11:28
Data L2-error 2.61e−4 3.95e−4 1.08e−3

8 Physics MSE 3.82e−6 7.39e−6 3.96e−4

Cum. time 1:03:50 25:48 12:54
Data L2-error 2.62e−4 3.91e−4

9 Physics MSE 3.81e−6 7.39e−6

Cum. time 1:10:55 28:40
Data L2-error 3.68e−4

10 Physics MSE 7.39e−6

Cum. time 31:32
Data L2-error 3.72e−4

11 Physics MSE 7.38e−6

Cum. time 34:24

7

Table 3: 2D Darcy flow results

Iteration Conv. 500 epochs 250 epochs 100 epochs 50 epochs
Data L2-error 1.15e−2 1.26e−2 1.63e−2 3.22e−2 6.96e−2

0 Physics MSE 3.22e−2 5.46e−2 8.71e−2 1.21e−1 1.72e−1

Cum. time 3:10:00 18:24 9:41 4:02 2:13
Data L2-error 1.09e−2 1.13e−2 2.19e−2 1.61e−2 2.92e−2

1 Physics MSE 1.72e−2 2.20e−2 7.78e−2 1.02e−1 1.35e−1

Cum. time 5:03:37 45:22 18:38 7:46 4:08
Data L2-error 1.07e−2 1.12e−2 1.18e−2 1.33e−2 3.18e−2

2 Physics MSE 1.45e−2 1.84e−2 3.41e−2 7.98e−2 1.21e−1

Cum. time 6:52:59 1:10:06 29:18 11:21 6:01
Data L2-error 1.03e−2 1.15e−2 1.21e−2 1.38e−2 1.64e−2

3 Physics MSE 1.22e−2 1.60e−2 2.91e−2 7.76e−2 5.51e−2

Cum. time 8:57:20 1:34:37 38:46 14:18 8:39
Data L2-error 1.02e−2 1.11e−2 1.16e−2 1.29e−2 1.47e−2

4 Physics MSE 1.15e−2 1.44e−2 1.88e−2 3.36e−2 4.72e−2

Cum. time 9:48:42 2:00:22 52:13 18:42 10:49
Data L2-error 1.01e−2 1.09e−2 1.14e−2 1.27e−2 1.37e−2

5 Physics MSE 9.81e−3 1.32e−2 1.72e−2 3.26e−2 4.63e−2

Cum. time 10:33:56 2:25:56 1:05:23 22:38 12:51
Data L2-error 1.01e−2 1.09e−2 1.14e−2 1.21e−2 1.31e−2

6 Physics MSE 9.79e−3 1.30e−2 1.63e−2 3.15e−2 4.85e−2

Cum. time 11:22:17 2:52:25 1:18:21 26:23 14:45
Data L2-error 1.08e−2 1.13e−2 1.21e−2 1.31e−2

7 Physics MSE 1.28e−2 1.56e−2 2.93e−2 4.46e−2

Cum. time 3:18:54 1:31:18 30:28 16:35
Data L2-error 1.08e−2 1.12e−2 1.18e−2 1.28e−2

8 Physics MSE 1.27e−2 1.51e−2 2.14e−2 3.27e−2

Cum. time 3:45:16 1:43:31 35:47 19:17
Data L2-error 1.12e−2 1.21e−2 1.28e−2

9 Physics MSE 1.36e−2 1.99e−2 3.12e−2

Cum. time 1:56:34 41:06 21:51
Data L2-error 1.23e−2 1.27e−2

10 Physics MSE 1.89e−2 3.09e−2

Cum. time 46:25 24:30

8

	Introduction
	Methodology
	Results and Observations
	Self-training with PINOs trained to convergence
	Self-training with PINOs not-trained to convergence

	Conclusion
	Broader Impact
	Appendix
	PDE information
	Burgers' Equation
	2D Darcy Flow

	Training and Hyperparameter Details
	Tabulated Results of Self-training experiments

