

000
001 **STAR: STACKED AUTOREGRESSIVE SCHEME FOR**
002 **UNIFIED MULTIMODAL LEARNING**
003
004

005 **Anonymous authors**
006 Paper under double-blind review
007
008
009

010 **ABSTRACT**
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026

Multimodal large language models (MLLMs) play a pivotal role in advancing the quest for general artificial intelligence. However, achieving unified target for multimodal understanding and generation remains challenging due to optimization conflicts and performance trade-offs. To effectively enhance generative performance while preserving existing comprehension capabilities, we introduce **STAR**: *a STacked AutoRegressive scheme for task-progressive unified multimodal learning*. This approach decomposes multimodal learning into multiple stages: understanding, generation, and editing. By freezing the parameters of the fundamental autoregressive (AR) model and progressively stacking isomorphic AR modules, it avoids cross-task interference while expanding the model’s capabilities. Concurrently, we introduce a high-capacity VQ to enhance the granularity of image representations and employ an implicit reasoning mechanism to improve generation quality under complex conditions. Experiments demonstrate that **STAR** achieves state-of-the-art performance on GenEval (**0.91**), DPG-Bench (**87.44**), and ImgEdit (**4.34**), validating its efficacy for unified multimodal learning.

027 **1 INTRODUCTION**
028
029

In recent years, the rapid advancement of multimodal large language models (MLLMs) has significantly propelled the progress of artificial general intelligence (AGI) (Touvron et al., 2023; Bi et al., 2024; OpenAI, 2024a; Team et al., 2023; DeepSeek-AI et al., 2025; Yang et al., 2025). Numerous studies have focused on constructing unified models that use a single set of parameters to simultaneously handle different tasks, such as multimodal understanding and generation (Wang et al., 2024; Chen et al., 2025c; Wang et al., 2025; Liao et al., 2025; Deng et al., 2025; Xie et al., 2025; OpenAI, 2025; Chen et al., 2025b). However, these from-scratch-trained models face a critical challenge: *inherent conflicts exist between multimodal understanding and generation tasks in both optimization objectives and feature spaces*. This often results in joint training sacrificing performance in one or more domains, thereby limiting the overall capability ceiling of unified models.

Against this backdrop, a fundamental research question emerges: *Can we continuously enhance a model’s image generation capabilities while fully preserving its multimodal understanding abilities?* Existing approaches, such as MetaQuery (Pan et al., 2025) and BLIP3-o (Chen et al., 2025a), adopt a warm-started adaptation paradigm, which initializes from a pre-trained multimodal understanding model and augments it with a diffusion-based generator to enhance generation while preserving image-to-text capability. Yet, these approaches typically require *constructing feature transformation bridges* between autoregressive and diffusion models or *designing complex loss functions*, significantly increasing training complexity. Thus, we face a critical challenge: *How to extend a single MLLM in the most streamlined manner possible, enabling it to progressively acquire more sophisticated multimodal capabilities without compromising existing abilities?*

To address the aforementioned challenge, we propose **STAR** (*ST*acked *A*uto*R*egressive *S*cheme for *U*nified *M*ultimodal *L*earning), a novel unified learning method based on stacked autoregressive (AR) paradigm that offers three key design advantages: (i) **a task-progressive training strategy**; (ii) **a stacked autoregressive model**; and (iii) **an implicit reasoning mechanism**. Firstly, the task-progressive training paradigm decomposes unified multimodal learning into an ordered curriculum: understanding, generation, and editing, while freezing the fundamental AR backbone at each extension. This staged training paradigm simultaneously shields existing comprehension capabilities

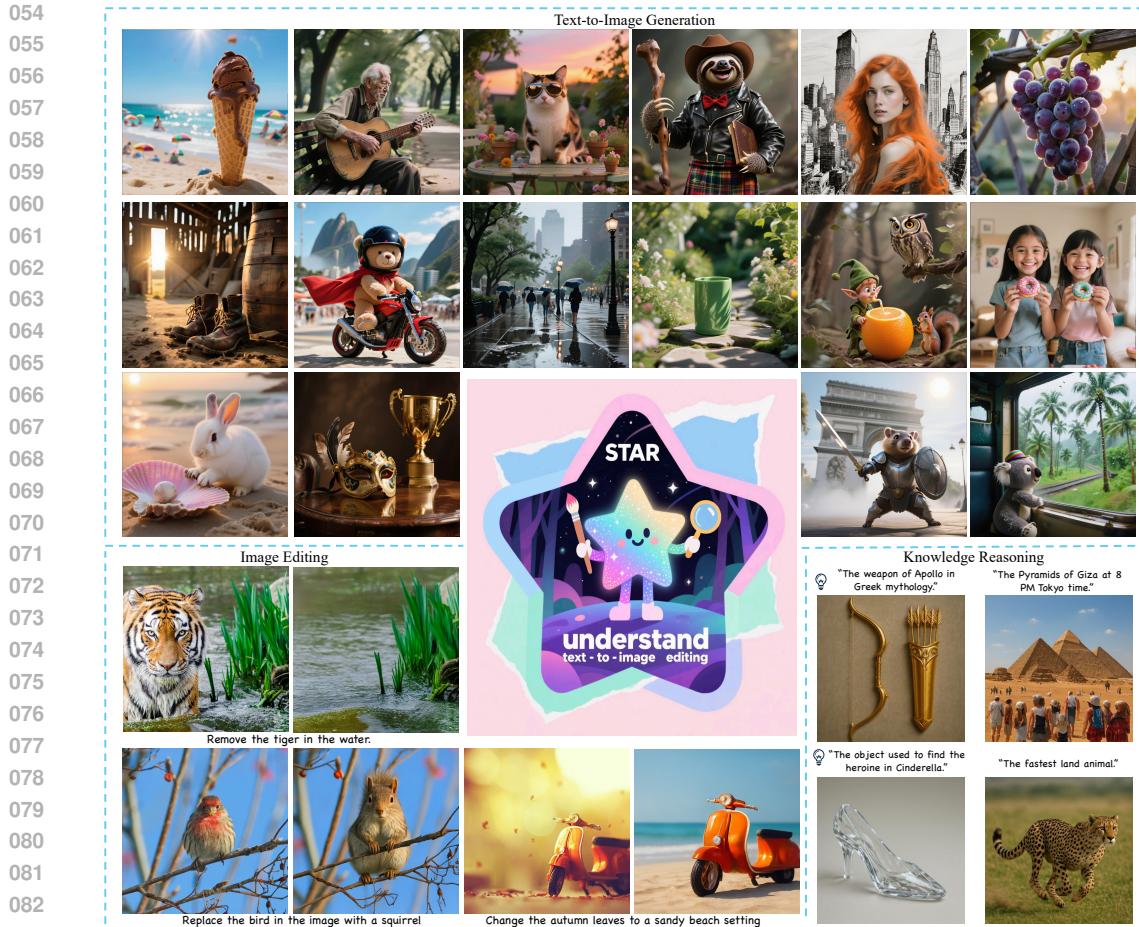


Figure 1: **STAR** enables unified multimodal learning for understanding, text-to-image, image editing, and reasoning, with a diffusion decoder enhancing the granularity of image outputs.

from catastrophic degradation and equips the model with novel generative abilities. Secondly, the stacked autoregressive model extends the frozen fundamental AR by appending a small set of isomorphic AR modules that share identical architecture and are initialized from the same parameter. The generation and editing tasks can be optimized with the standard next-token prediction objective without any auxiliary adapters or losses. This design is fundamentally distinct from MetaQuery and BLIP3-o, which rely on external bridging modules and diffusion losses. Moreover, instead of learnable queries in MetaQuery, we encode the image as discrete VQ tokens and feed them into the AR model. To furnish the token space with finer granularity, we concurrently introduce a high-capacity vector quantizer from scratch whose codebook contains 65,536 entries of 512-d vectors, termed as **STAR-VQ**. This tokenizer is jointly optimized with a 1B-parameter and is an order of magnitude larger and denser than conventional counterparts, yielding markedly more precise visual tokens that raise the generation ceiling without codebook collapse. Finally, an implicit reasoning mechanism is introduced to harness the stacked architecture at decode time. Given a complex prompt, the fixed AR first performs inference procedure to yield implicit latent tokens, which then serve as conditional input to generate images. By explicitly separating semantic reasoning from pixel generation, this pipeline markedly improves alignment accuracy in challenging compositional and world knowledge scenarios without requiring additional parameters. Qualitative results are presented in the Figure 1.

Extensive experimental results demonstrate that the proposed **STAR** approach not only achieves leading performance across a diverse set of multimodal understanding and generation tasks, but also substantially reduces training complexity through minimal structural modifications. This highlights the advantages of progressive task expansion in unified multimodal training. We believe that **STAR** provides an insightful technical pathway toward achieving interference-free, sustainably scalable unified multimodal models. The main contributions of this work can be summarized as follows:

- 108 • We propose a task-progressive training paradigm that sequentially learns understanding,
109 generation and editing while freezing the fundamental AR backbone, thereby safeguarding
110 comprehension capabilities against catastrophic degradation.
- 111 • We present a stacked-isomorphic AR expansion that appends lightweight, same architecture
112 and initialization modules to the frozen AR model, enabling generation and editing
113 learning with the standard next-token prediction objective and no extra adapters or losses.
- 114 • During the inference phase, an implicit reasoning scheme first extracts semantic latent to-
115 kens from the frozen understanding AR and utilizes them to generate images, boosting
116 complex-prompt alignment with zero added parameters.
- 117 • **STAR** achieves state-of-the-art performance on multimodal benchmarks (*e.g.*, GenEval
118 **0.91**, DPG-Bench **87.44**, ImgEdit **4.34**), validating its efficacy for unified learning.

120 2 ARCHITECTURE

123 We introduce **STAR**, as shown in Figure 2, a novel stacked autoregressive scheme for unified multi-
124 modal learning that jointly handles visual understanding, text-to-image generation, and image edit-
125 ing within a single framework. Its core components comprise: (i) a vision encoder that maps images
126 into fine-grained tokens; (ii) a stacked autoregressive model that in-place extends isomorphic layers
127 atop a frozen pre-trained vision-language transformer, ensuring rapid convergence with minimal ar-
128 chitecture; and (iii) a generative decoder that decodes from discrete tokens, supporting both native
129 VQ reconstruction and diffusion-enhanced refinement for improved visual fidelity. The following
130 subsections elaborate on the training procedure of these modules under hybrid-modality objectives.

131 2.1 VISION ENCODER

133 For visual input, a unified multimodal model necessitates the simultaneous incorporation of both
134 high-level semantic information and low-level pixel details. To this end, we adopt a dual-decoupled
135 visual representation approach to maximally preserve sufficiently fine-grained visual information
136 for supporting downstream multimodal tasks. On one hand, since **STAR** is warm-started from a well
137 pre-trained multimodal understanding model (Section 2.2), we directly employ the native-resolution
138 continuous visual representations from this model for high-level semantic encoding. These features
139 are flattened from a 2-D feature map into a 1-D token sequence, and an understanding adapter is
140 applied to align the continuous semantic representations with the input space of the following LLM.
141 On the other hand, for low-level pixel representations, we follow the architectural paradigm of VQ-
142 GAN (Esser et al., 2021) and scale the original model in two aspects, proposing a more expressive
143 vector quantizer named **STAR-VQ**. Specifically, the model size is scaled up to *1B* parameters, with
144 the encoder comprising *0.4B* parameters and the decoder *0.6B*, while the codebook size and embed-
145 ding dimension are expanded to *65,536* and *512*, respectively. After pre-training on a large-scale
146 dataset, the $16 \times$ downsampling VQ model achieves image reconstruction quality that rivals that of
147 continuous VAEs. Using the pre-trained **STAR-VQ**, the **STAR** model tokenizes raw images into
148 discrete codebook IDs. A generation adapter is then employed to realign the codebook embeddings
149 corresponding to each ID to the input space of the LLM. Finally, both high-level and low-level
150 representations are concatenated and fed into a autoregressive transformer for deep fusion.

151 2.2 STACKED AUTOREGRESSIVE MODEL

152 In this work, we introduce the stacked autoregressive paradigm, a principled approach that converts
153 a pure vision-language understanding model (*e.g.*, Qwen2.5-VL (Bai et al., 2025)) into a unified
154 architecture for comprehension and image generation by stacking additional autoregressive layers
155 upon the base AR transformer, without introducing novel adapters, or external alignment losses.
156 The base multimodal autoregressive transformer remains intact, as each appended layer replicates
157 the self-attention and FFN topology, hidden dimension, and activation function of an existing layer
158 and is initialized by copying that layer’s parameters. Specifically, the parameters of the stacked
159 autoregressive transformer are initialized from the final N layers of the base autoregressive trans-
160 former, since these layers are closer to the output and therefore capture higher-level, task-relevant
161 representations. The resulting unified model is expressed as

$$\mathcal{T}_{\text{full}} = \mathcal{T}_{\text{base}} \oplus \mathcal{T}_{\text{stack}}, \quad (1)$$

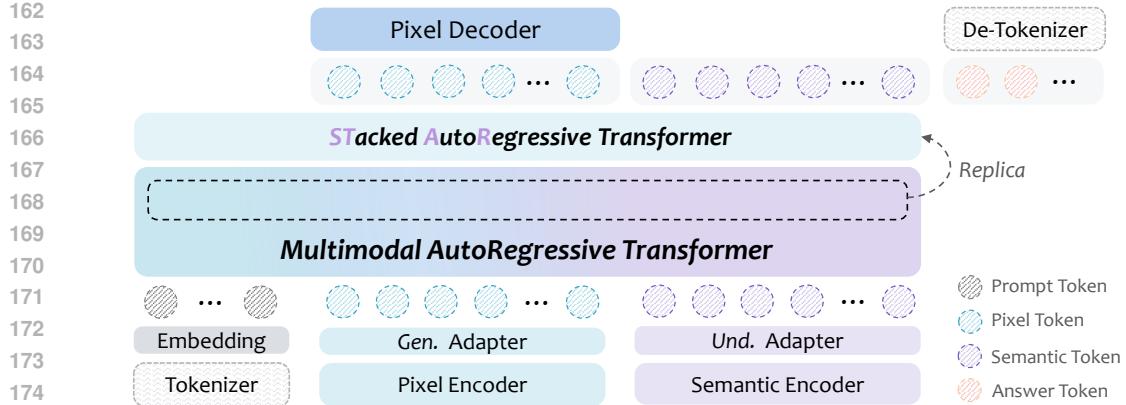


Figure 2: The overall architecture of **STAR**. The architecture integrates two visual encoder (pixel and semantic), a multimodal autoregressive transformer, a stacked autoregressive transformer, and a pixel decoder. The stacked AR is replicated from the last N layer of the multimodal AR.

where $\mathcal{T}_{\text{full}}$ denotes the full autoregressive model, $\mathcal{T}_{\text{base}}$ denotes the frozen base autoregressive transformer, $\mathcal{T}_{\text{stack}}$ denotes the newly appended layers, and \oplus indicates parameter-preserving concatenation along the depth dimension. Consequently, textual, visual, and cross-modal representations are mapped into a unified feature space, eliminating the 24-layer attentional adaptor used in MetaQuery and the linear projection employed in BLIP3-o and reducing connector-related parameters to exactly zero. This structural homogeneity, coupled with inherited warm-start initialisation, guarantees unimpeded gradient back-propagation and eliminates the feature discrepancy between the autoregressive token space and the continuous noise manifold characteristic of diffusion models. Optimization proceeds under a unified objective: visual inputs are quantized into the discrete token vocabulary, enabling end-to-end training with a single next-token prediction loss,

$$\mathcal{L}_{\text{NTP}} = - \sum_{t=1}^T \log p_{\theta}(x_t \mid x_{<t}, \mathbf{v}), \quad (2)$$

where x_t denotes the target token at position t , \mathbf{v} denotes the quantized visual tokens, and θ denotes the parameters of the stacked transformer $\mathcal{T}_{\text{full}}$. This obviates the auxiliary diffusion losses required by MetaQuery and the flow-matching objectives with their attendant task-balancing coefficients employed by BLIP3-o, yielding a succinct optimization regime with minimal hyper-parameter overhead. The unified architecture ensures parameter compactness, the consistent feature space guarantees lossless information flow, and the solitary optimisation objective delivers an efficient training regime, collectively improving overall training efficiency.

2.3 GENERATION DECODER

After the stacked AR transformer outputs a sequence of discrete visual tokens, it can be directly fed into the VQ decoder to decode the image. Aiming to enhance both generation quality and super-resolution capability, an additional diffusion model building upon the Lumina2-Image (Qin et al., 2025) framework is proposed to decode images from autoregressively predicted discrete tokens.

For the specific implementation of “AR+Diffusion”, we have established systematic conclusions regarding the types of conditioning and their respective input strategies. Here, the predicted VQ tokens and the target noisy latent are strictly spatially aligned at the pixel level. For low-level tasks where pixel-wise alignment is critical, channel dimension concatenation is the common input strategy (Li et al., 2025). Specifically, let $\mathbf{z}_q \in \mathbb{R}^{K \times d}$ denote the sequence of discrete VQ tokens mapped to feature embeddings, where K is the number of tokens and d the embedding dimension. After reshaping and bilinear resizing we obtain a 2-D feature map $\mathbf{E}_{\text{vq}} \in \mathbb{R}^{h \times w \times d}$ that matches the spatial resolution of the noisy latent $\mathbf{x}_t \in \mathbb{R}^{h \times w \times c}$. The conditioned input to the diffusion transformer, denoted as \mathbf{x}_{in} , is then obtained by channel-wise concatenation:

$$\mathbf{x}_{\text{in}} = \text{concat}[\mathbf{x}_t, \mathbf{E}_{\text{vq}}] \in \mathbb{R}^{h \times w \times (c+d)}, \quad (3)$$

where c is the original latent channel and d is the codebook dimension. The model then performs super-resolution from 384 to 1024 to mitigate token explosion in AR high-resolution generation.

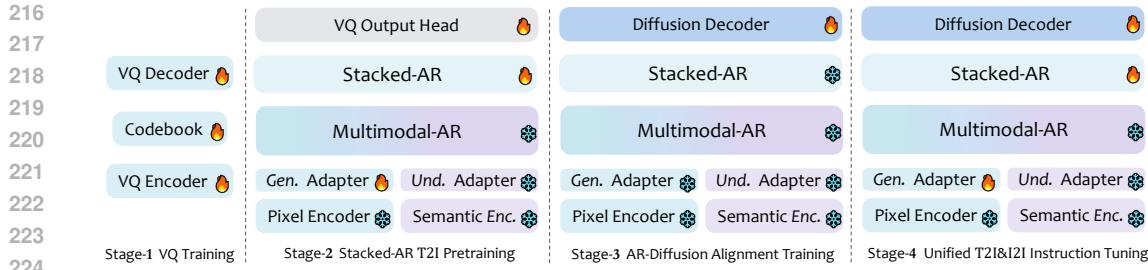


Figure 3: The training stages of **STAR** comprise four task-progressive phases that successively expand capability while preserving all previously acquired skills.

For image editing tasks, the source image VAE latent conditioning is designed to facilitate image consistency. In substantial modifications scenarios, such as removing or adding a large object, spatial alignment between the source image and the target noisy latent may not be strict, making sequence dimension concatenation preferable due to its flexible control over channel concatenation (Huang et al., 2025b; Guo & Lin, 2024). Thus, we choose to concatenate the VAE latent of the source image with the noisy latent along the sequence dimension. Since there is no source image in text-to-image generation, we introduce a zero latent as an unconditional placeholder, allowing joint training of both image editing and text-to-image tasks with a shared diffusion decoder. Consequently, our diffusion decoder accommodates three types of conditioning: text, resized VQ embeddings, and source image VAE latent. Our experimental results consistently validate our theoretical analysis and systematic findings about conditioning strategies.

3 TRAINING AND INFERENCE RECIPE

3.1 TRAINING RECIPE

To achieve multi-stage, incremental enhancement of multi-task capabilities, we adopt a four-stages progressive training framework, whose workflow is illustrated in Figure 3.

Stage 1: Pixel-level Vector Quantization Pretraining. The objective of this stage is to train a vector quantization model from scratch to achieve a higher-fidelity discrete representation of low-level information of raw images. As introduced in Section 2.1, **STAR-VQ** is designed to reduce quantization information loss by scaling up both model parameter size and codebook dimension. However, such expansion often leads to increased training difficulty and decreased codebook utilization, *i.e.*, codebook collapse. To address this, we draw inspiration from (Chang et al., 2025) and employ an additional codebook projector (2 DiT-blocks) during training, which compresses and reconstructs the codebook, and then performs image reconstruction training based on the reconstructed codebook. This stage involves training on a combined corpus of ImageNet (Deng et al., 2009) and OpenImages (Kuznetsova et al., 2020) for 120 epochs.

Stage 2: Stacked AR Text-to-Image Pretraining. To endow the frozen multimodal backbone with text-to-image generation, we stack isomorphically designed AR layers and train them exclusively on 60M general plus 0.6M high-quality synthetic image–text pairs. The pretrained **STAR-VQ** quantises images into discrete tokens; text and visual tokens are fed to both the base and the stacked AR modules, and next-token cross-entropy loss updates only the newly added parameters, preventing any semantic drift of the original understanding layers.

Stage 3: AR-Diffusion Alignment Training. In this stage, only the diffusion decoder is pre-trained for decoding VQ embeddings, with all other modules frozen and the VQ decoder replaced by the diffusion decoder. Images with a total pixel count close to 512×512 are used, and the training data comprises a 10M-image subset from the text-to-image dataset.

Stage 4: Unified Text-to-Image and Edit Instruction Tuning. In this stage, the diffusion decoder and Stacked-AR are jointly trained on both generation and editing data, aiming to let Stacked-AR impart image editing capabilities while maintaining its text-to-image generation performance. To prevent interference from the diffusion decoder’s loss on Stacked-AR training, a stop-gradient

270 Table 1: Evaluation on multimodal understanding benchmarks.
271

Model	#LLM	MMB	MMStar	MathVista	SEED	MME-P	MMMU	OCRBench	POPE	DocVQA
Seed-X (Ge et al., 2024)	13B	70.1	-	-	66.5	1457.0	35.6	-	-	-
EMU3 (Wang et al., 2024)	8B	58.5	-	-	68.2	1243.8	31.6	68.7	85.2	-
MetaMorph (Tong et al., 2024)	8B	75.2	-	-	71.8	-	41.8	-	-	-
Janus (Wu et al., 2024)	1.3B	75.5	-	-	63.7	1338.0	30.5	-	87.0	-
Janus-Pro (Chen et al., 2025c)	7B	79.2	87.4	-	72.1	1567.1	41.0	-	-	-
BLIP3-o (Chen et al., 2025a)	8B	83.5	-	-	77.5	1682.6	50.6	-	-	-
Show-o2 (Xie et al., 2025)	7B	79.3	56.6	-	69.8	1620.0	48.9	-	-	-
MetaQuery-XL (Pan et al., 2025)	7B	83.5	-	-	76.9	1685.2	58.6	-	-	-
Bagel (Deng et al., 2025)	14B	85.0	-	73.1	-	1687.0	55.3	-	-	-
Ovis-U1 (Wang et al., 2025)	1.5B	77.8	-	69.4	-	-	51.1	88.3	-	-
ILLUME+ (Huang et al., 2025a)	3B	80.8	-	-	73.3	1414.0	44.3	67.2	87.6	80.8
X-Omni (Geng et al., 2025)	7B	74.8	-	-	74.1	-	-	70.4	89.3	88.6
STAR-3B	3B	80.1	55.8	62.3	74.0	1592.3	53.1	79.7	85.9	93.9
STAR-7B	7B	83.9	63.9	68.1	77.0	1690.1	58.6	86.4	86.6	95.7

284 operation is applied when Stacked-AR outputs VQ embeddings. The training data consists of a
285 6M-image subset from the text-to-image dataset and a 4M-image subset from the editing dataset.
286

287 3.2 INFERENCE RECIPE

289 Upon completion of training, we evaluate the model on three families of tasks: multimodal under-
290 standing, text-to-image generation, and image editing, within a single forward pipeline. For under-
291 standing, the frozen base autoregressive transformer receives an image-text question and directly
292 emits the textual answer. For generation, the text prompt is processed sequentially by the base and
293 the stacked AR layers, which progressively predict the discrete image-token sequence. The resulting
294 tokens are fed to the generative decoder to reconstruct a image. For editing, the original image and
295 the textual instruction are concatenated and processed by the stacked AR model, yielding an edited
296 token sequence that is decoded into a semantically consistent result. When the prompt demands
297 external knowledge or complex reasoning, we invoke an *implicit-token-reasoning* mechanism: the
298 base AR first infers an intermediate latent-token sequence that encodes the required knowledge, and
299 this sequence is supplied as an conditioning signal to the stacked AR for image generation. Experi-
300 ments show that this strategy yields substantial gains on generation benchmarks that probe world
301 knowledge and compositional semantics.

302 4 EXPERIMENT

303 4.1 DATA COMPOSITION

307 **Text-to-Image Generation Data.** This dataset is primarily used for training text-to-image gen-
308 eration tasks. We collected publicly available text-image pairs and leveraged powerful generative
309 models such as FLUX (Labs, 2024), GPT-4o (OpenAI, 2025), and Midjourney. Ultimately, we
310 constructed a total of 60M text-to-image generation data.

311 **Image Edit Data.** In our experiments, we utilize a diverse set of pre-trained image editing datasets
312 to support both the Stage-3 and Stage-4 training. The publicly available image editing data com-
313 prises main sources from UltraEdit (Zhao et al., 2024), HQ-Edit (Hui et al., 2024), and Omni-
314 Edit (Wei et al., 2024), approximately 4M samples are selected. Also, we re-synthesized ground
315 truth images using the GPT-4o (OpenAI, 2025) on approximately 300K proprietary samples. This
316 combination of large-scale public and private datasets, along with high-fidelity ground truth syn-
317 thesis, ensures robust and comprehensive supervision for image editing task throughout training.

318 4.2 EVALUATION SETUP

321 **Image Understanding Evaluation.** We assess image-understanding capabilities on the nine stan-
322 dardized benchmarks: MMBench-EN (Liu et al., 2023), MMStar (Chen et al., 2024), MathVista (Lu
323 et al., 2023), SEEDBench (Li et al., 2023), MME (Fu et al., 2023), MMMU (Yue et al., 2024),
OCRBench (Liu et al., 2024), POPE (Yifan et al., 2023), and DocVQA (Mathew et al., 2021).

Table 2: Comparison with state-of-the-art text-to-image generation methods on GenEval (Ghosh et al., 2023) and DPG-Bench (Hu et al., 2024).

Method	GenEval							DPG-Bench						
	Single	Two	Count.	Colors	Pos.	Color	Attr.	Overall	Global	Entity	Attr.	Relation	Other	Overall
<i>Gen. Only Models</i>														
SDXL (Podell et al., 2024)	0.98	0.74	0.39	0.85	0.15	0.23	0.55	83.27	82.43	80.91	86.76	80.41	74.65	
DALL-E (OpenAI, 2024b)	0.96	0.87	0.47	0.83	0.43	0.45	0.67	90.97	89.61	88.39	90.58	89.83	83.50	
SD3-medium (Esser et al., 2024)	0.99	0.94	0.72	0.89	0.33	0.60	0.74	87.90	91.01	88.83	80.70	88.68	84.08	
FLUX-1-dev (Labs, 2024)	0.98	0.93	0.75	0.93	0.68	0.65	0.82	82.10	89.50	88.70	91.10	89.40	84.00	
OmniGen2 (Wu et al., 2025)	0.99	0.96	0.74	0.98	0.72	0.75	0.86	88.81	88.83	90.18	89.37	90.27	83.57	
<i>Unified Models</i>														
Emu3 (Wang et al., 2024)	0.99	0.81	0.42	0.80	0.49	0.45	0.66	85.21	86.68	86.84	90.22	83.15	80.60	
ILLUME+ (Huang et al., 2025a)	0.99	0.88	0.62	0.84	0.42	0.53	0.72	-	-	-	-	-	-	
Janus-Pro (Chen et al., 2025c)	0.99	0.89	0.59	0.90	0.79	0.66	0.80	86.90	88.90	89.40	89.32	89.48	84.19	
MetaQuery (Pan et al., 2025)	-	-	-	-	-	-	0.80	-	-	-	-	-	82.05	
BLIP3-o (Chen et al., 2025a)	-	-	-	-	-	-	0.84	-	-	-	-	-	81.60	
UniWorld-V1 (Lin et al., 2025)	0.99	0.93	0.81	0.89	0.74	0.71	0.84	83.64	88.39	88.44	89.27	87.22	81.38	
Mogao (Liao et al., 2025)	1.00	0.97	0.83	0.93	0.84	0.80	0.89	82.37	90.03	88.26	93.18	85.40	84.33	
BAGEL (Deng et al., 2025)	0.98	0.95	0.84	0.95	0.78	0.77	0.88	88.94	90.37	91.29	90.82	88.67	85.07	
Show-o2 (Xie et al., 2025)	1.00	0.87	0.58	0.92	0.52	0.62	0.76	89.00	91.78	89.96	91.81	91.64	86.14	
GPT-4o (OpenAI, 2025)	0.99	0.92	0.85	0.92	0.75	0.61	0.84	82.27	91.27	87.67	93.85	88.71	86.23	
X-Omni (Geng et al., 2025)	0.98	0.95	0.75	0.91	0.71	0.68	0.83	84.80	92.59	90.63	94.75	84.20	87.65	
Ovis-U1 (Wang et al., 2025)	0.98	0.98	0.90	0.92	0.79	0.75	0.89	82.37	90.08	88.68	93.35	85.20	83.72	
STAR-3B	0.98	0.87	0.85	0.91	0.79	0.76	0.86	93.00	90.49	91.71	90.72	92.75	87.30	
STAR-7B	0.98	0.94	0.90	0.92	0.91	0.80	0.91	94.97	92.91	91.62	94.30	83.82	87.44	

Table 3: Comparison of world knowledge reasoning on WISE (Niu et al., 2025).

Methods	Cultural	Time	Space	Biology	Physics	Chemistry	Overall
<i>Gen. Only Models</i>							
SD-XL (Podell et al., 2024)	0.43	0.48	0.47	0.44	0.45	0.27	0.43
SD-3.5-large (Esser et al., 2024)	0.44	0.50	0.58	0.44	0.52	0.31	0.46
FLUX.1-dev (Labs, 2024)	0.48	0.58	0.62	0.42	0.51	0.35	0.50
<i>Unified Models</i>							
Emu3 (Wang et al., 2024)	0.34	0.45	0.48	0.41	0.45	0.27	0.39
Janus-Pro-7B (Chen et al., 2025c)	0.30	0.37	0.49	0.36	0.42	0.26	0.35
MetaQuery-XL (Pan et al., 2025)	0.56	0.55	0.62	0.49	0.63	0.41	0.55
BLIP3-o (Chen et al., 2025a)	-	-	-	-	-	-	0.62
BAGEL (Deng et al., 2025)	0.76	0.69	0.75	0.65	0.75	0.58	0.70
GPT-4o (OpenAI, 2025)	0.94	0.64	0.98	0.93	0.98	0.95	0.89
STAR-3B	0.58	0.54	0.48	0.49	0.51	0.54	0.52
STAR-7B	0.61	0.67	0.61	0.74	0.69	0.66	0.66

Text-to-image Evaluation. This task evaluates semantic consistency on GenEval (Ghosh et al., 2023) (553 prompts) and DPG-Bench (Hu et al., 2024) (1065 prompts), and world knowledge is measured on WISEBench (Niu et al., 2025) (1000 prompts).

Image Editing Evaluation. Image-editing capability is assessed on MagicBrush (Zhang et al., 2023) (1,000 pairs) and ImgEdit (Ye et al., 2025) (737 pairs), the latter covering object-level, background, style, action, and composite manipulations. For MagicBrush we report CLIP-I, DINO (content preservation), and L1 (pixel-level fidelity).

4.3 MAIN RESULTS

Image Understanding. Thanks to our task-progressive training regime, the proposed model family can be grafted onto any state-of-the-art multimodal understanding backbone without impairing its original capability. By freezing the comprehension parameters and augmenting capacity through stacked autoregressive modules, we retain the full representational strength of the upstream encoder while equipping it with high-fidelity generation. Consequently, our checkpoints inherit both the semantic richness of the underlying understanding network (Bai et al., 2025) and the generative power of contemporary SOTA architectures. As shown in Table 1, they achieve competitive or leading results on a broad range of understanding benchmarks, including MMStar, SEED, MME and OCRBench, demonstrating that task-progressive extension yields a unified system that excels simultaneously in comprehension and generation.

Image Generation. We comprehensively evaluated the generative capability of our model on three public benchmarks: GenEval and DPG-Bench for prompt–image alignment, and WISE for world-

378

Table 4: Comparison of image editing performance on the MagicBrush (Zhang et al., 2023).

379

	MagicBrush	Instruct-Pix2Pix	UltraEdit	ICEdit	OmniGen	UniReal	BAGEL	STAR-3B	STAR-7B
L1 ↓	0.074	0.114	0.066	0.060	0.116	0.081	0.074	0.056	0.060
CLIP-I ↑	0.908	0.851	0.904	0.928	0.863	0.903	0.914	0.934	0.931
DINO ↑	0.847	0.744	0.852	0.853	0.821	0.837	0.827	0.857	0.853

383

Table 5: Comparison of image editing performance on ImgEdit-Bench (Ye et al., 2025).

384

Model	Add	Adjust	Extract	Replace	Remove	Background	Style	Hybrid	Action	Overall
<i>Edit. Only Models</i>										
<i>Unified Models</i>										
MagicBrush (Zhang et al., 2023)	2.84	1.58	1.51	1.97	1.58	1.75	2.38	1.62	1.22	1.90
Instruct-Pix2Pix (Brooks et al., 2023)	2.45	1.83	1.44	2.01	1.50	1.44	3.55	1.20	1.46	1.88
AnyEdit (Yu et al., 2025)	3.18	2.95	1.88	2.47	2.23	2.24	2.85	1.56	2.65	2.45
UltraEdit (Zhao et al., 2024)	3.44	2.81	2.13	2.96	1.45	2.83	3.76	1.91	2.98	2.70
StepIX-Edit (Liu et al., 2025)	3.88	3.14	1.76	3.40	2.41	3.16	4.63	2.64	2.52	3.06
ICEdit (Zhang et al., 2025)	3.58	3.39	1.73	3.15	2.93	3.08	3.84	2.04	3.68	3.05
STAR-3B	4.26	4.06	3.78	4.46	4.34	4.19	4.53	3.29	4.38	4.14
STAR-7B	4.33	4.19	4.19	4.59	4.58	4.36	4.59	3.67	4.60	4.34

390

397

Figure 4: (a) Qualitative comparison results. The proposed diffusion decoder yields sharper textures and finer details than the VQ decoder, demonstrating its superior high-fidelity generation capability. (b) Reasoning mode can utilize the world knowledge of MLLM for reasoning-based text-to-image.

400

knowledge reasoning. For the latter, we further activated the proposed implicit reasoning pipeline at inference to mitigate visual–semantic distributional shifts. As reported in Table 2, the model establishes a new state-of-the-art on GenEval with 0.91 (2.0% over the prior best Ovis-U1), while delivering competitive scores on DPG-Bench in Table 2. As shown in the Table 3, implicit inference reasoning on WISE (Niu et al., 2025) attains a score of 0.66, confirming that latent-token mediation significantly enhances compositional and knowledge-intensive generation as shown in Figure 4.

403

Image Editing. Tables 4 and 5 present the evaluation results for image editing capabilities on MagicBrush and ImgEdit, respectively. On ImgEdit, we compare our model with existing unified models. For the MagicBrush, in addition to unified models, we also include comparisons with specialized image editing models such as Instruct-Pix2Pix, UltraEdit (Zhao et al., 2024), and ICEdit. The performance of previous models on ImgEdit is referenced from Ovis-u1, while the MagicBrush results are computed by us. Overall, our model achieves strong performance across both benchmarks.

406

4.4 ABLATION STUDIES

409

Different type of VQ tokenizer. To obtain higher-fidelity discrete image representations, we replaced the conventional VQGAN reconstruction tokenizer with the **STAR-VQ**. Table 6a compares the two approaches under a controlled 3B architecture trained on 6M synthetic images and evaluated on GenEval. **STAR-VQ** raises the GenEval score from 0.414 to 0.439, confirming that its larger and higher-dimensional codebook yields finer-grained visual tokens. The gain indicates that

432
433 Table 6: Ablation studies of VQ and stacked AR.
434
435
436(a) Different type of VQ tokenizer.
434 Size and Dim represent the code-
435 book size and dimension of token.
436

VQ Type	Size	Dim	GenEval
VQGAN	16384	8	0.414
STAR-VQ	65536	512	0.439

(b) The number of layers.
437

Layer	GenEval
8	0.347
16	0.439
32	0.410
36	0.394

(c) Ablation of initial of stacked
438 AR.
439

Init From	GenEval
Rand	0.374
LLM	0.403
VLM	0.439

440 Table 7: Ablation studies of diffusion decoder. All results are obtained after stage 3 or 4 training.
441(a) The impact of the diffusion decoder.
442

Stage	Decoder Type	Size	GenEval
Stage 3	VQ Dec.	384	0.723
Stage 3	Diffusion	1024	0.756
Stage 4	VQ Dec.	384	0.858
Stage 4	Diffusion	1024	0.868

(b) The input way from AR to DiT.
443

Input of VQ emb	GenEval
Text-wise Concat	0.703
Sequence-wise Concat	0.712
Channel-wise Concat	0.756

444 the augmented discrete vocabulary supplies the autoregressive generator with more precise spatial
445 and semantic cues, ultimately translating into superior synthesis quality.
446447 **The number of layers in the stacked AR.** To identify the optimal depth of the stacked autoregressive
448 transformer, we perform layer-wise ablation on the **STAR-3B** model trained with 6M data and
449 evaluated on GenEval. As reported in Table 6b, accuracy increases with depth until 16 layers, which
450 attains the highest score of 0.439, and declines thereafter. This inverted-U profile indicates that
451 shallow stacks lack the capacity to model the target distribution, whereas deeper model suffer from
452 diminishing gradient signals that progressively weaken updates and ultimately degrade performance.
453454 **The initialization strategy of stacked AR.**
455456 To determine the optimal initialization for the stacked autoregressive modules, we train **STAR-3B**
457 model on 6 M generation data and evaluate on GenEval. As shown in Table 6c, VLM-based initial-
458 ization reaches 0.439, exceeding LLM-based initialization (0.403) and random initialization (0.374),
459 respectively. Initializing stacked AR layers with parameters homologous to the primary AR lever-
460 ages strong inherent feature-space alignment, thereby accelerating convergence and enhancing gen-
461 eration quality by eliminating re-alignment and directly exploiting learned representational priors.
462463 **The impact of Diffusion decoder.** To elucidate the role of the diffusion decoder in autoregressive
464 text-to-image generation, we replace the vanilla VQ decoder with a diffusion decoder. As reported
465 in Table 7a, the switch yields consistent gains on GenEval (0.03 at stage3 and 0.01 at stage4),
466 corroborating that iterative denoising recovers high-frequency information lost during quantization.
467 Qualitative visualizations in Figure 4 further reveal markedly sharper textures, cleaner edges and
468 suppressed aliasing artifacts, validating that the diffusion translates coarse AR tokens into photo-
469 realistic outputs with enhanced pixel fidelity.
470471 **The input strategy of Diffusion decoder.** We ablate three strategies for feeding AR tokens into the
472 diffusion decoder: (i) text-wise concatenation; (ii) sequence-wise concatenation; and (iii) channel-
473 wise concatenation after resizing. They are trained on a subset of the dataset. Table 7b shows
474 that strategy channel-wise concatenation after resizing achieves the highest GenEval score (0.756),
475 establishing it as the preferred interface.
476477

5 CONCLUSION

478 In this work, we present **STAR**, a task-progressive framework that unifies multimodal under-
479 standing, generation, and editing within a single MLLM without sacrificing any capability. By freezing
480 the original autoregressive model and incrementally stacking isomorphic AR layers, **STAR** elimi-
481 nates cross-task gradient interference. We further equip the generative AR with **STAR-VQ**, a high-
482 capacity tokenizer that boosts discrete-image fidelity, and an implicit inference mechanism that
483 leverages intermediate semantic tokens to handle complex prompts. Extensive experiments show
484 that **STAR** sets new state-of-the-art results on both comprehension and generation tasks. These
485 findings validate that orderly, interference-free expansion is a viable route toward scalable and sus-
486 tainable general-purpose multimodal systems.
487

486 6 ETHICS STATEMENT
487488 This study strictly follows the ICLR Code of Ethics. No human-subject or animal experimentation
489 was conducted. All datasets were obtained and used in accordance with their respective licenses
490 and privacy policies. We implemented measures to prevent discriminatory bias and did not collect
491 or process any personally identifiable information. No experimental procedures posed privacy or
492 security risks. Transparency and research integrity were maintained throughout the project.
493494 7 REPRODUCIBILITY STATEMENT
495496 The main paper describes the detailed design and training process of our method. The appendix
497 further provides detailed experimental hyperparameter settings, providing readers with all the infor-
498 mation necessary to reproduce the reported results. To ensure full reproducibility, we will release
499 the full source code, trained models, and configuration files immediately after review, so that the
500 community can reproduce our experiments and fully verify our findings.
501502 REFERENCES
503504 Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
505 Shijie Wang, Jun Tang, Humen Zhong, Yuanzhi Zhu, Mingkun Yang, Zhaohai Li, Jianqiang Wan,
506 Pengfei Wang, Wei Ding, Zheren Fu, Yiheng Xu, Jiabo Ye, Xi Zhang, Tianbao Xie, Zesen Cheng,
507 Hang Zhang, Zhibo Yang, Haiyang Xu, and Junyang Lin. Qwen2.5-vl technical report. *arXiv*
508 preprint [arXiv:2502.13923](https://arxiv.org/abs/2502.13923), 2025.509 Xiao Bi, Deli Chen, Guanting Chen, Shanhua Chen, Damai Dai, Chengqi Deng, Honghui Ding,
510 Kai Dong, Qiushi Du, Zhe Fu, et al. Deepseek llm: Scaling open-source language models with
511 longtermism. *arXiv preprint arXiv:2401.02954*, 2024.
512513 Tim Brooks, Aleksander Holynski, and Alexei A Efros. Instructpix2pix: Learning to follow image
514 editing instructions. In *Proceedings of the IEEE/CVF conference on computer vision and pattern*
515 *recognition*, pp. 18392–18402, 2023.516 Yifan Chang, Jie Qin, Limeng Qiao, Xiaofeng Wang, Zheng Zhu, Lin Ma, and Xingang Wang.
517 Scalable training for vector-quantized networks with 100% codebook utilization. *arXiv preprint*
518 *arXiv:2509.10140*, 2025.
519520 Juhai Chen, Zhiyang Xu, Xichen Pan, Yushi Hu, Can Qin, Tom Goldstein, Lifu Huang, Tianyi
521 Zhou, Saining Xie, Silvio Savarese, et al. Blip3-o: A family of fully open unified multimodal
522 models-architecture, training and dataset. *arXiv preprint arXiv:2505.09568*, 2025a.
523524 Lin Chen, Jinsong Li, Xiaoyi Dong, Pan Zhang, Yuhang Zang, Zehui Chen, Haodong Duan, Jiaqi
525 Wang, Yu Qiao, Dahua Lin, et al. Are we on the right way for evaluating large vision-language
526 models? *Advances in Neural Information Processing Systems*, 37:27056–27087, 2024.527 Sixiang Chen, Jinbin Bai, Zhuoran Zhao, Tian Ye, Qingyu Shi, Donghao Zhou, Wenhao Chai, Xin
528 Lin, Jianzong Wu, Chao Tang, et al. An empirical study of gpt-4o image generation capabilities.
529 *arXiv preprint arXiv:2504.05979*, 2025b.
530531 Xiaokang Chen, Zhiyu Wu, Xingchao Liu, Zizheng Pan, Wen Liu, Zhenda Xie, Xingkai Yu, and
532 Chong Ruan. Janus-pro: Unified multimodal understanding and generation with data and model
533 scaling. *arXiv preprint arXiv:2501.17811*, 2025c.
534535 DeepSeek-AI, Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Cheng-
536 gang Zhao, Chengqi Deng, Chenyu Zhang, and et al. Deepseek-v3 technical report, 2025. URL
537 <https://arxiv.org/abs/2412.19437>.
538539 Chaorui Deng, Deyao Zhu, Kunchang Li, Chenhui Gou, Feng Li, Zeyu Wang, Shu Zhong, Wei-
540 hao Yu, Xiaonan Nie, Ziang Song, Guang Shi, and Haoqi Fan. Emerging properties in unified
541 multimodal pretraining. *arXiv preprint arXiv:2505.14683*, 2025.

540 Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hi-
 541 erarchical image database. In *2009 IEEE conference on computer vision and pattern recognition*,
 542 pp. 248–255. Ieee, 2009.

543

544 Runpei Dong, Chunrui Han, Yuang Peng, Zekun Qi, Zheng Ge, Jinrong Yang, Liang Zhao, Jianjian
 545 Sun, Hongyu Zhou, Haoran Wei, et al. Dreamllm: Synergistic multimodal comprehension and
 546 creation. *arXiv preprint arXiv:2309.11499*, 2023.

547

548 Patrick Esser, Robin Rombach, and Bjorn Ommer. Taming transformers for high-resolution image
 549 synthesis. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recogni-*
 550 *tion*, pp. 12873–12883, 2021.

551

552 Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim Entezari, Jonas Müller, Harry Saini, Yam
 553 Levi, Dominik Lorenz, Axel Sauer, Frederic Boesel, et al. Scaling rectified flow transformers
 554 for high-resolution image synthesis. In *Forty-first international conference on machine learning*,
 555 2024.

556

557 Chaoyou Fu, Peixian Chen, Yunhang Shen, Yulei Qin, Mengdan Zhang, Xu Lin, Jinrui Yang, Xiawu
 558 Zheng, Ke Li, Xing Sun, Yunsheng Wu, and Rongrong Ji. Mme: A comprehensive evaluation
 559 benchmark for multimodal large language models. *arXiv preprint arXiv:2306.13394*, 2023.

560

561 Yuying Ge, Sijie Zhao, Jinguo Zhu, Yixiao Ge, Kun Yi, Lin Song, Chen Li, Xiaohan Ding, and Ying
 562 Shan. Seed-x: Multimodal models with unified multi-granularity comprehension and generation.
 563 *arXiv preprint arXiv:2404.14396*, 2024.

564

565 Zigang Geng, Yibing Wang, Yeyao Ma, Chen Li, Yongming Rao, Shuyang Gu, Zhao Zhong, Qinglin
 566 Lu, Han Hu, Xiaosong Zhang, et al. X-omni: Reinforcement learning makes discrete autoregres-
 567 sive image generative models great again. *arXiv preprint arXiv:2507.22058*, 2025.

568

569 Dhruba Ghosh, Hannaneh Hajishirzi, and Ludwig Schmidt. Geneval: An object-focused framework
 570 for evaluating text-to-image alignment. *Advances in Neural Information Processing Systems*, 36:
 571 52132–52152, 2023.

572

573 Qin Guo and Tianwei Lin. Focus on your instruction: Fine-grained and multi-instruction image
 574 editing by attention modulation. In *Proceedings of the IEEE/CVF Conference on Computer Vision
 575 and Pattern Recognition*, pp. 6986–6996, 2024.

576

577 Xiwei Hu, Rui Wang, Yixiao Fang, Bin Fu, Pei Cheng, and Gang Yu. Ella: Equip diffusion models
 578 with llm for enhanced semantic alignment. *CoRR*, 2024.

579

580 Runhui Huang, Chunwei Wang, Junwei Yang, Guansong Lu, Yunlong Yuan, Jianhua Han, Lu Hou,
 581 Wei Zhang, Lanqing Hong, Hengshuang Zhao, et al. Illume+: Illuminating unified mllm with
 582 dual visual tokenization and diffusion refinement. *arXiv preprint arXiv:2504.01934*, 2025a.

583

584 Yi Huang, Jiancheng Huang, Yifan Liu, Mingfu Yan, Jiaxi Lv, Jianzhuang Liu, Wei Xiong,
 585 He Zhang, Liangliang Cao, and Shifeng Chen. Diffusion model-based image editing: A survey.
 586 *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 2025b.

587

588 Mude Hui, Siwei Yang, Bingchen Zhao, Yichun Shi, Heng Wang, Peng Wang, Yuyin Zhou, and
 589 Cihang Xie. Hq-edit: A high-quality dataset for instruction-based image editing. *arXiv preprint
 590 arXiv:2404.09990*, 2024.

591

592 Alina Kuznetsova, Hassan Rom, Neil Alldrin, Jasper Uijlings, Ivan Krasin, Jordi Pont-Tuset, Sha-
 593 hab Kamali, Stefan Popov, Matteo Malloci, Alexander Kolesnikov, et al. The open images dataset
 594 v4: Unified image classification, object detection, and visual relationship detection at scale. *In-*
 595 *ternational journal of computer vision*, 128(7):1956–1981, 2020.

596

597 Black Forest Labs. Flux. <https://github.com/black-forest-labs/flux>, 2024.

598

599 Bohao Li, Rui Wang, Guangzhi Wang, Yuying Ge, Yixiao Ge, and Ying Shan. Seed-bench: Bench-
 600 marking multimodal llms with generative comprehension. *arXiv preprint arXiv:2307.16125*,
 601 2023.

594 Xin Li, Yulin Ren, Xin Jin, Cuiling Lan, Xingrui Wang, Wenjun Zeng, Xinchao Wang, and Zhibo
 595 Chen. Diffusion models for image restoration and enhancement: a comprehensive survey. *International
 596 Journal of Computer Vision*, pp. 1–31, 2025.

597 Chao Liao, Liyang Liu, Xun Wang, Zhengxiong Luo, Xinyu Zhang, Wenliang Zhao, Jie Wu, Liang
 598 Li, Zhi Tian, and Weilin Huang. Mogao: An omni foundation model for interleaved multi-modal
 599 generation. *arXiv preprint arXiv:2505.05472*, 2025.

600 Bin Lin, Zongjian Li, Xinhua Cheng, Yuwei Niu, Yang Ye, Xianyi He, Shenghai Yuan, Wangbo Yu,
 601 Shaodong Wang, Yunyang Ge, et al. Uniworld: High-resolution semantic encoders for unified
 602 visual understanding and generation. *arXiv preprint arXiv:2506.03147*, 2025.

603 Shiyu Liu, Yucheng Han, Peng Xing, Fukun Yin, Rui Wang, Wei Cheng, Jiaqi Liao, Yingming
 604 Wang, Honghao Fu, Chunrui Han, et al. Step1x-edit: A practical framework for general image
 605 editing. *arXiv preprint arXiv:2504.17761*, 2025.

606 Yuan Liu, Haodong Duan, Yuanhan Zhang, Bo Li, Songyang Zhang, Wangbo Zhao, Yike Yuan,
 607 Jiaqi Wang, Conghui He, Ziwei Liu, et al. Mmbench: Is your multi-modal model an all-around
 608 player? *arXiv preprint arXiv:2307.06281*, 2023.

609 Yuliang Liu, Zhang Li, Mingxin Huang, Biao Yang, Wenwen Yu, Chunyuan Li, Xu-Cheng Yin,
 610 Cheng-Lin Liu, Lianwen Jin, and Xiang Bai. Ocrbench: on the hidden mystery of ocr in large
 611 multimodal models. *Science China Information Sciences*, 67(12):220102, 2024.

612 Pan Lu, Hritik Bansal, Tony Xia, Jiacheng Liu, Chunyuan Li, Hannaneh Hajishirzi, Hao Cheng, Kai-
 613 Wei Chang, Michel Galley, and Jianfeng Gao. Mathvista: Evaluating mathematical reasoning of
 614 foundation models in visual contexts. *arXiv preprint arXiv:2310.02255*, 2023.

615 Minesh Mathew, Dimosthenis Karatzas, and CV Jawahar. Docvqa: A dataset for vqa on document
 616 images. In *Proceedings of the IEEE/CVF winter conference on applications of computer vision*,
 617 pp. 2200–2209, 2021.

618 Yuwei Niu, Munan Ning, Mengren Zheng, Weiyang Jin, Bin Lin, Peng Jin, Jiaqi Liao, Chaoran
 619 Feng, Kunpeng Ning, Bin Zhu, et al. Wise: A world knowledge-informed semantic evaluation
 620 for text-to-image generation. *arXiv preprint arXiv:2503.07265*, 2025.

621 OpenAI. Hello gpt-4o, 2024a. URL <https://openai.com/index/hello-gpt-4o>.

622 OpenAI. Dall-e 3. <https://openai.com/index/dall-e-3/>, 2024b.

623 OpenAI. Addendum to gpt-4o system card: 4o image generation, 2025. Accessed: April 2, 2025.

624 Xichen Pan, Satya Narayan Shukla, Aashu Singh, Zhuokai Zhao, Shlok Kumar Mishra, Jialiang
 625 Wang, Zhiyang Xu, Juhai Chen, Kunpeng Li, Felix Juefei-Xu, et al. Transfer between modalities
 626 with metaqueries. *arXiv preprint arXiv:2504.06256*, 2025.

627 Dustin Podell, Zion English, Kyle Lacey, Andreas Blattmann, Tim Dockhorn, Jonas Müller, Joe
 628 Penna, and Robin Rombach. Sdxl: Improving latent diffusion models for high-resolution image
 629 synthesis. In *The Twelfth International Conference on Learning Representations*, 2024.

630 Qi Qin, Le Zhuo, Yi Xin, Ruoyi Du, Zhen Li, Bin Fu, Yiting Lu, Jiakang Yuan, Xinyue Li, Dongyang
 631 Liu, et al. Lumina-image 2.0: A unified and efficient image generative framework. *arXiv preprint
 632 arXiv:2503.21758*, 2025.

633 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
 634 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
 635 models from natural language supervision. In *ICML*, pp. 8748–8763, 2021.

636 Weijia Shi, Xiaochuang Han, Chunting Zhou, Weixin Liang, Xi Victoria Lin, Luke Zettlemoyer,
 637 and Lili Yu. Lmfusion: Adapting pretrained language models for multimodal generation. *arXiv
 638 preprint arXiv:2412.15188*, 2024.

639 Quan Sun, Qiying Yu, Yufeng Cui, Fan Zhang, Xiaosong Zhang, Yueze Wang, Hongcheng Gao,
 640 Jingjing Liu, Tiejun Huang, and Xinlong Wang. Generative pretraining in multimodality.
 641 *arXiv:2307.05222*, 2023.

648 Chameleon Team. Chameleon: Mixed-modal early-fusion foundation models. *arXiv preprint*
 649 *arXiv:2405.09818*, 2024.

650

651 Gemini Team, Rohan Anil, Sebastian Borgeaud, Yonghui Wu, Jean-Baptiste Alayrac, Jiahui Yu,
 652 Radu Soricut, Johan Schalkwyk, Andrew M Dai, Anja Hauth, et al. Gemini: a family of highly
 653 capable multimodal models. *arXiv preprint arXiv:2312.11805*, 2023.

654

655 Shengbang Tong, David Fan, Jiachen Zhu, Yunyang Xiong, Xinlei Chen, Koustuv Sinha, Michael
 656 Rabbat, Yann LeCun, Saining Xie, and Zhuang Liu. Metamorph: Multimodal understanding and
 657 generation via instruction tuning. *arXiv preprint arXiv:2412.14164*, 2024.

658

659 Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
 660 Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
 661 efficient foundation language models. *arXiv preprint arXiv:2302.13971*, 2023.

662

663 Guo-Hua Wang, Shanshan Zhao, Xinjie Zhang, Liangfu Cao, Pengxin Zhan, Lunhao Duan, Shiyin
 664 Lu, Minghao Fu, Jianshan Zhao, Yang Li, and Qing-Guo Chen. Ovis-u1 technical report. *arXiv*
 665 *preprint arXiv:2506.23044*, 2025.

666

667 Xinlong Wang, Xiaosong Zhang, Zhengxiong Luo, Quan Sun, Yufeng Cui, Jinsheng Wang, Fan
 668 Zhang, Yueze Wang, Zhen Li, Qiying Yu, et al. Emu3: Next-token prediction is all you need.
 669 *arXiv preprint arXiv:2409.18869*, 2024.

670

671 Cong Wei, Zheyang Xiong, Weiming Ren, Xinrun Du, Ge Zhang, and Wenhui Chen. Om-
 672 nedit: Building image editing generalist models through specialist supervision. *arXiv preprint*
 673 *arXiv:2411.07199*, 2024.

674

675 Chengyue Wu, Xiaokang Chen, Zhiyu Wu, Yiyang Ma, Xingchao Liu, Zizheng Pan, Wen Liu,
 676 Zhenda Xie, Xingkai Yu, Chong Ruan, et al. Janus: Decoupling visual encoding for unified
 677 multimodal understanding and generation. *arXiv preprint arXiv:2410.13848*, 2024.

678

679 Chenyuan Wu, Pengfei Zheng, Ruitao Yan, Shitao Xiao, Xin Luo, Yueze Wang, Wanli Li, Xiyan
 680 Jiang, Yexin Liu, Junjie Zhou, Ze Liu, Ziyi Xia, Chaofan Li, Haoge Deng, Jiahao Wang, Kun
 681 Luo, Bo Zhang, Defu Lian, Xinlong Wang, Zhongyuan Wang, Tiejun Huang, and Zheng Liu.
 682 Omnigen2: Exploration to advanced multimodal generation. *arXiv preprint arXiv:2506.18871*,
 683 2025.

684

685 Shitao Xiao, Yueze Wang, Junjie Zhou, Huaying Yuan, Xingrun Xing, Ruitao Yan, Shuteng
 686 Wang, Tiejun Huang, and Zheng Liu. Omnigen: Unified image generation. *arXiv preprint*
 687 *arXiv:2409.11340*, 2024.

688

689 Jinheng Xie, Weijia Mao, Zechen Bai, David Junhao Zhang, Weihao Wang, Kevin Qinghong Lin,
 690 Yuchao Gu, Zhijie Chen, Zhenheng Yang, and Mike Zheng Shou. Show-o: One single transformer
 691 to unify multimodal understanding and generation. *arXiv preprint arXiv:2408.12528*, 2024.

692

693 Jinheng Xie, Zhenheng Yang, and Mike Zheng Shou. Show-o2: Improved native unified multimodal
 694 models. *arXiv preprint arXiv:2506.15564*, 2025.

695

696 An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang
 697 Gao, Chengan Huang, Chenxu Lv, Chujie Zheng, Dayiheng Liu, Fan Zhou, Fei Huang, Feng Hu,
 698 Hao Ge, Haoran Wei, Huan Lin, Jialong Tang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin
 699 Yang, Jiaxi Yang, Jing Zhou, Jingren Zhou, Junyang Lin, Kai Dang, Keqin Bao, Kexin Yang,
 700 Le Yu, Lianghao Deng, Mei Li, Mingfeng Xue, Mingze Li, Pei Zhang, Peng Wang, Qin Zhu, Rui
 701 Men, Ruize Gao, Shixuan Liu, Shuang Luo, Tianhao Li, Tianyi Tang, Wenbiao Yin, Xingzhang
 702 Ren, Xinyu Wang, Xinyu Zhang, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yinger
 703 Zhang, Yu Wan, Yuqiong Liu, Zekun Wang, Zeyu Cui, Zhenru Zhang, Zhipeng Zhou, and Zihan
 704 Qiu. Qwen3 technical report, 2025. URL <https://arxiv.org/abs/2505.09388>.

705

706 Yang Ye, Xianyi He, Zongjian Li, Bin Lin, Shenghai Yuan, Zhiyuan Yan, Bohan Hou, and Li Yuan.
 707 Imgedit: A unified image editing dataset and benchmark. *arXiv preprint arXiv:2505.20275*, 2025.

702 Li Yifan, Du Yifan, Zhou Kun, Wang Jinpeng, XinZhao Wayne, and Wen Ji-Rong. Evaluating object
 703 hallucination in large vision-language models. In *The 2023 Conference on Empirical Methods*
 704 in *Natural Language Processing*, 2023. URL <https://openreview.net/forum?id=xozJw0kZXf>.

705

706 Qifan Yu, Wei Chow, Zhongqi Yue, Kaihang Pan, Yang Wu, Xiaoyang Wan, Juncheng Li, Siliang
 707 Tang, Hanwang Zhang, and Yueting Zhuang. Anyedit: Mastering unified high-quality image
 708 editing for any idea. In *Proceedings of the Computer Vision and Pattern Recognition Conference*,
 709 pp. 26125–26135, 2025.

710

711 Xiang Yue, Yuansheng Ni, Kai Zhang, Tianyu Zheng, Ruoqi Liu, Ge Zhang, Samuel Stevens,
 712 Dongfu Jiang, Weiming Ren, Yuxuan Sun, et al. Mmmu: A massive multi-discipline multi-
 713 modal understanding and reasoning benchmark for expert agi. In *Proceedings of the IEEE/CVF*
 714 *Conference on Computer Vision and Pattern Recognition*, pp. 9556–9567, 2024.

715

716 Kai Zhang, Lingbo Mo, Wenhui Chen, Huan Sun, and Yu Su. Magicbrush: A manually annotated
 717 dataset for instruction-guided image editing. *Advances in Neural Information Processing Systems*,
 718 36:31428–31449, 2023.

719

720 Zechuan Zhang, Ji Xie, Yu Lu, Zongxin Yang, and Yi Yang. In-context edit: Enabling instructional
 721 image editing with in-context generation in large scale diffusion transformer. *arXiv preprint*
 722 *arXiv:2504.20690*, 2025.

723

724 Haozhe Zhao, Xiaojian Shawn Ma, Liang Chen, Shuzheng Si, Rujie Wu, Kaikai An, Peiyu Yu,
 725 Minjia Zhang, Qing Li, and Baobao Chang. Ultraedit: Instruction-based fine-grained image
 726 editing at scale. *Advances in Neural Information Processing Systems*, 37:3058–3093, 2024.

727

728 Chunting Zhou, Lili Yu, Arun Babu, Kushal Tirumala, Michihiro Yasunaga, Leonid Shamis, Jacob
 729 Kahn, Xuezhe Ma, Luke Zettlemoyer, and Omer Levy. Transfusion: Predict the next token and
 730 diffuse images with one multi-modal model. *arXiv preprint arXiv:2408.11039*, 2024.

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

A RELATED WORK

757

758 **Training Unified Multimodal Models from Scratch.** Recent efforts toward unified multimodal
 759 models typically begin with a pre-trained large language model (LLM) and fine-tune it on paired
 760 understanding and image-generation objectives. SEED-X (Ge et al., 2024), Emu (Sun et al., 2023),
 761 and MetaMorph (Tong et al., 2024) regress continuous image features. Chameleon (Team, 2024),
 762 EMU3 (Wang et al., 2024), and the Janus family (Wu et al., 2024; Chen et al., 2025c) encode
 763 images into discrete tokens and unify image and text token prediction under a single next-token
 764 prediction objective. DreamLLM (Dong et al., 2023), Show-o (Xie et al., 2024), Show-o2 (Xie
 765 et al., 2025), and Transfusion (Zhou et al., 2024) further combine diffusion and next-token losses
 766 within one framework. An alternative line appends an external diffusion model after the LLM,
 767 like Ovis-U1 (Wang et al., 2025), requires training an intermediate adapter. BAGEL (Deng et al.,
 768 2025) and Mogao (Liao et al., 2025) introduce MoE or MoT routers to decouple parameters so
 769 that distinct experts handle distinct tasks, while X-Omni (Geng et al., 2025) adds a reinforcement-
 770 learning stage to boost generation quality. Despite their effectiveness, these approaches force the
 771 backbone to master multiple generation targets, complicating multi-task balancing and motivating
 772 our task-progressive alternative.

773 **Training Unified Multimodal Models via Warm-Start Adaptation.** An alternative line of re-
 774 search freezes the large multimodal backbone and grafts on lightweight generative modules. LM-
 775 Fusion (Shi et al., 2024) trains parallel FFN/QKV experts that share the frozen LLM topology, yet
 776 every new backbone necessitates a complete set of newly trained generative parameters, raising
 777 computational cost. MetaQuery (Pan et al., 2025) prepends learnable queries to the fixed MLLM
 778 and feeds their outputs into a connector that drives a DiT generative model, whereas BLIP3-o (Chen
 779 et al., 2025a) directly conditions a diffusion model on MLLM features and supervises the diffusion
 780 output with a flow-matching loss against CLIP (Radford et al., 2021) image embeddings. Both ap-
 781 proaches require a feature converter to map autoregressive outputs into the diffusion latent space
 782 and introduce auxiliary objectives, *e.g.*, diffusion or flow-matching losses, that create optimization
 783 paths diverging from the original next-token prediction objective. These shortcomings motivate our
 784 stacked-autoregressive task-progressive paradigm, which expands generation capacity while pre-
 785 serving the fundamental comprehension ability.

786

B OVERALL ARCHITECTURAL PARAMETERS

787 Overall architectural parameters are summarised in Table 8, confirming the compactness of the
 788 proposed design. **STAR-3B** extends the Qwen2.5-VL-3B (Bai et al., 2025) vision–language model
 789 by appending a Stacked AR module that replicates the final 16 layers of the VLM for initialization,
 790 contributing 1.5 B additional parameters. **STAR-7B**, built upon Qwen2.5-VL-7B (Bai et al., 2025),
 791 mirrors the last 14 layers of the VLM, adding 3 B parameters. Both variants share an identical VQ
 792 tokenizer and diffusion decoder.

793 Table 8: Overall architecture constituents and parameter counts.

Model	VLM	Pixel-Enc.	Gen-Adapter	Stacked-AR	VQ-Dec.	Diff-Dec.
STAR-3B	Qwen2.5-VL-3B	0.4B	5M	1.2B (16 Layer)	0.6B	2.6B
STAR-7B	Qwen2.5-VL-7B	0.4B	38M	3B (14 Layer)	0.6B	2.6B

801

C TRAINING STRATEGIES AT EACH STAGE

802 We also list the training strategies we used in each stage in Table 9.

803

D ABLATION OF REASONING

804 We have incorporated ablation experiments for the reasoning mechanism on **STAR-7B**. On the WISE
 805 evaluation set, we compared performance before and after adding the reasoning mechanism. The
 806 experimental results are shown in the Table 10. As can be seen from the table, adding the reasoning

810
811
812
813
814
815
816
817
818
Table 9: Training strategies at each stage.

Hyper-Parameter	Stage 1	Stage 2	Stage 3	Stage 4
Learning Rate	1e-4	1e-3	1e-4	1e-3
LR Scheduler	cosine	constant	constant	constant
Optimizer	AdamW	Adamw	AdamW	AdamW
Batch Size	256	4096	2048	4608
Training Steps	1406K	20K	4K	8K
VQ Image Res.	256×256	384×384	384×384	384×384
Diffusion Res.	/	/	512×512	1024×1024

819
820
821
822
823
Table 10: Ablation of reasoning strategy on WISE.

Method	Cultural	Time	Space	Biology	Physics	Chemistry	Overall
w/o Reasoning	0.49	0.52	0.45	0.48	0.51	0.35	0.46
w/ Reasoning	0.61	0.67	0.61	0.74	0.69	0.66	0.66

824
825 mechanism yields noticeable improvements across every subtask in the WISE benchmark, ultimately
826 achieving a 0.2 increase in the overall metric. This improvement stems from our approach leveraging
827 the foundational reasoning capabilities of the VLM, which is extensively trained on broad world
828 knowledge. Consequently, when processing abstract textual prompts, such as “The fastest land
829 animal.”, the model first employs VLM to inference the specific target subject “Cheetah”. Following
830 this, the generation model produces images that most closely match the prompt.

831 832 E ABLATION OF MULTI-STAGE SEPARATE TRAINING

833
834 We compared single-stage joint training with multi-stage separate training paradigms to demon-
835 strate the advantages of the multi-stage approach. Single-stage joint training involves simultane-
836 ously training the stacked-AR module and diffusion decoder starting from the pre-training phase.
837 While multi-stage separate training refers to our main approach, where only the stacked-AR module
838 is trained during the pre-training phase, followed by training the diffusion decoder in the subsequent
839 stage. The experimental results are shown in the Table 11. As seen, on the same 3B base model,
840 the performance of single-stage joint training is significantly lower than that of multi-stage separate
841 training, with differences of 0.07 and 5.27 on GenEval and DPG-Bench, respectively. Our analy-
842 sis indicates that during the early stages of single-stage training, the stacked-AR module possesses
843 minimal ability to model images autoregressively. Consequently, its predicted token representations
844 become chaotic, negatively impacting the diffusion decoder’s inherent capabilities. This further
845 demonstrates that multi-stage separate training minimizes interference between module training,
846 ultimately yielding superior overall generation performance.

847
848 Table 11: Ablation of multi-stage separate training.

Method	Model size	GenEval	DPG-Bench
Single-stage joint training	3B	0.79	82.03
Multi-stage separate training	3B	0.86	87.30

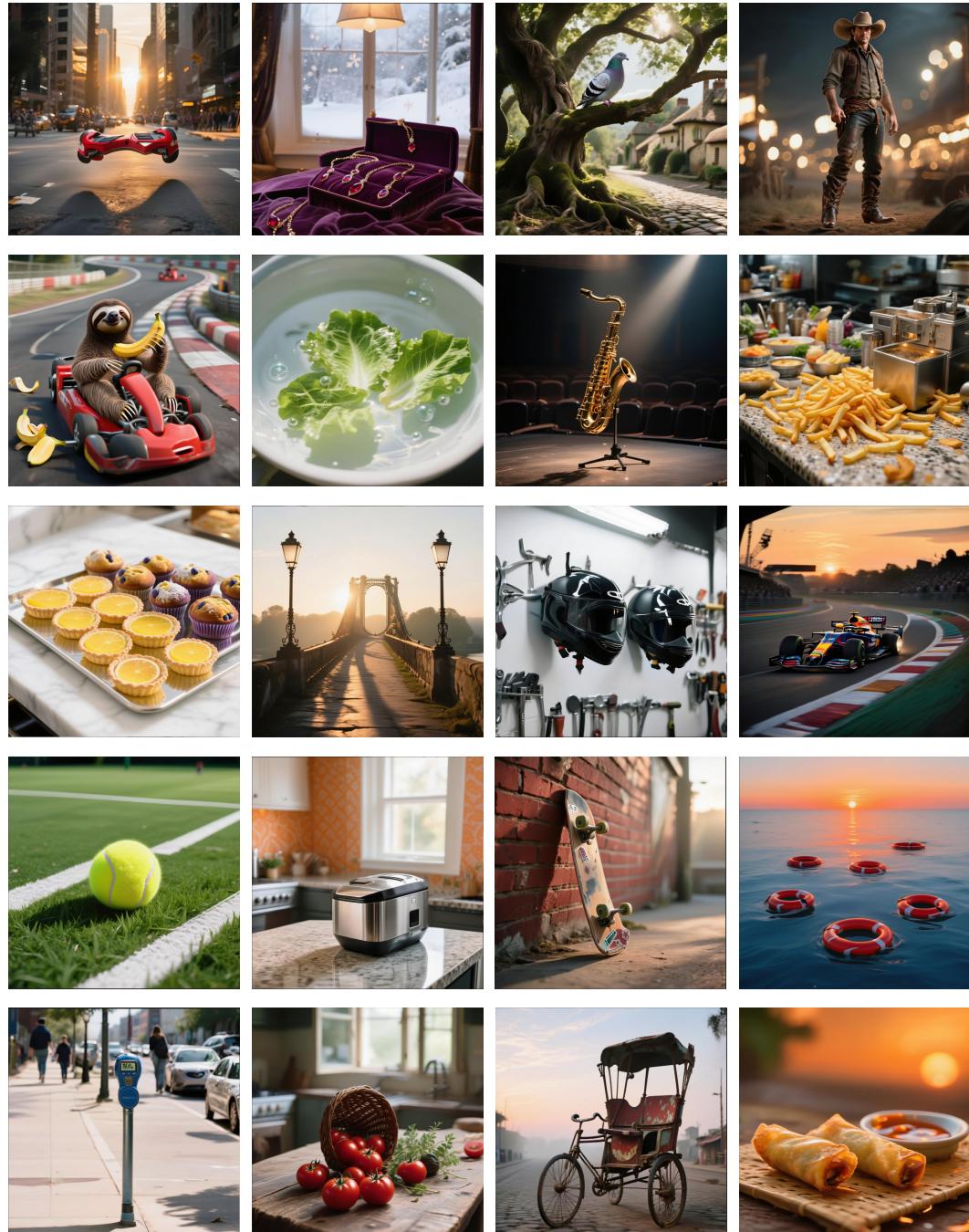
851 852 F LLM USAGE

853
854 We utilized Large Language Models (LLMs) to assist in language polishing and readability en-
855 hancement of the manuscript. The LLM contributed to tasks such as sentence rephrasing, grammar
856 correction, and improving textual flow, without involvement in research ideation, methodology, or
857 experimental design. All scientific content, analyses, and interpretations were exclusively developed
858 by the authors. We take full responsibility for the final content and confirm that LLM-assisted text
859 complies with ethical standards and does not introduce plagiarism or scientific misconduct.

860 861 G MORE QUALITATIVE RESULTS

862
863 We give more qualitative results on text-to-image generation (Figure 5 and 6) and image-editing
(Figure 7). We also presented some examples of failure in the Figure 8.

864
865
866
867
868



912
913
914
915
916
917

Figure 5: More qualitative results on text-to-image generation

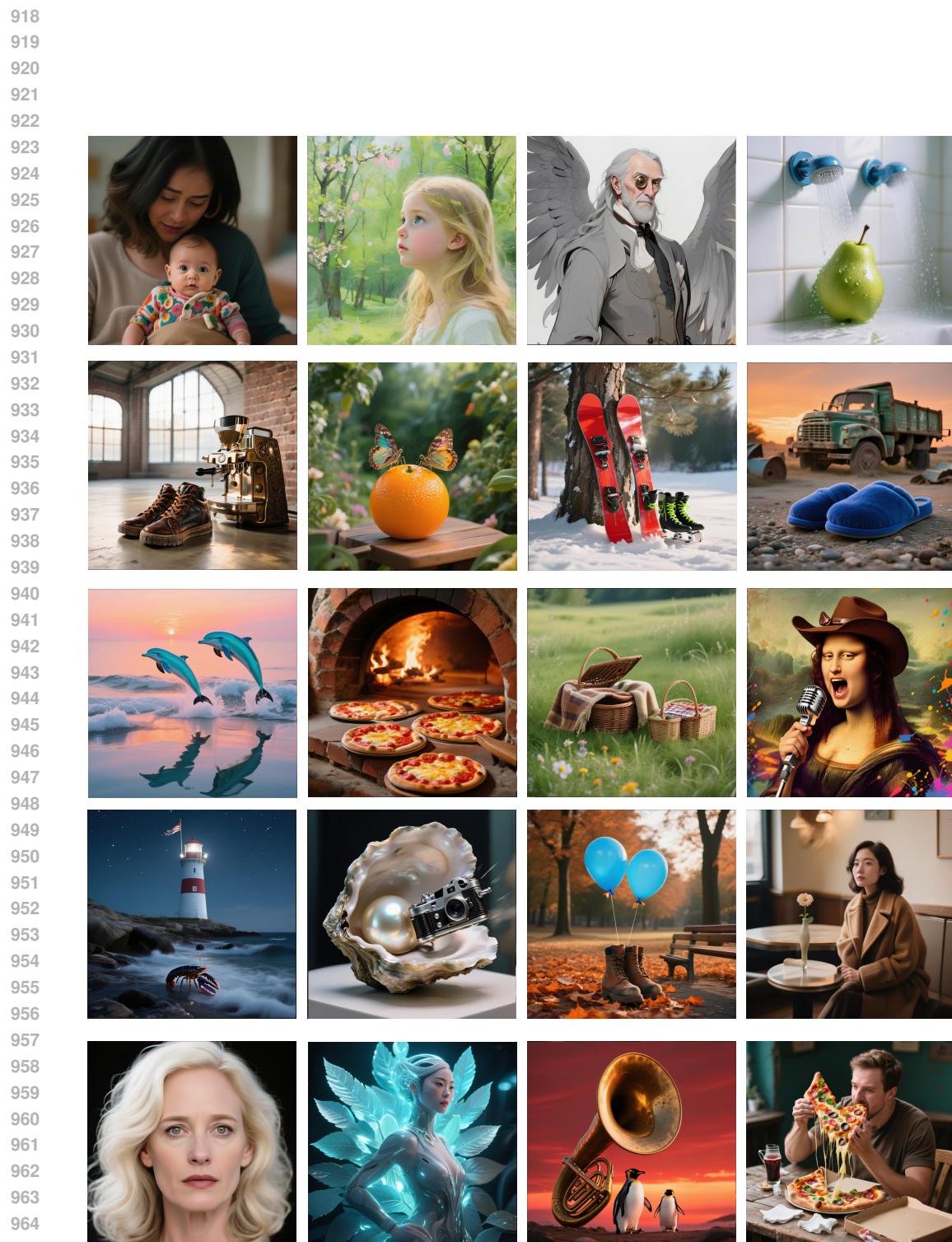


Figure 6: More qualitative results on text-to-image generation

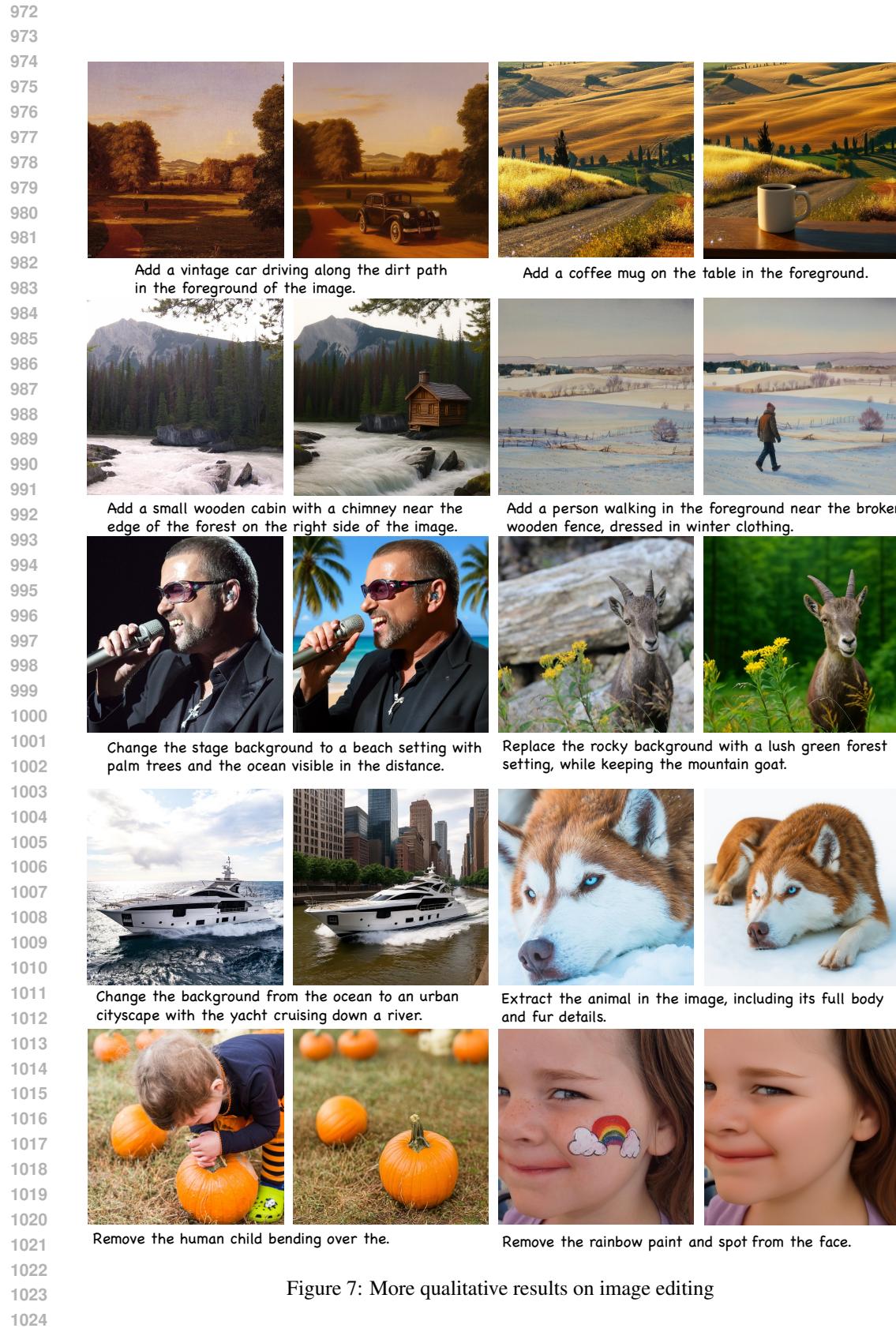


Figure 7: More qualitative results on image editing

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

A scenic trail where a group of riders are mounted on their horses ...

Ten School Resource Officers are set to serve in seven local school districts, as part of the School Resource Officer (SRO) Program ...

On a stark white wall, the phrase "Art is never finished, only abandoned" comes to life through an array of dynamic paint splatters ...

An individual is captured in a dynamic pose with their body leaning forward, their right arm bent at a 90-degree angle in front of them ...

Figure 8: Failure analysis to showcase some limitations of our method.