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ABSTRACT

Multimodal large language models (MLLMs) play a pivotal role in advancing the
quest for general artificial intelligence. However, achieving unified target for mul-
timodal understanding and generation remains challenging due to optimization
conflicts and performance trade-offs. To effectively enhance generative perfor-
mance while preserving existing comprehension capabilities, we introduce STAR:
a STacked AutoRegressive scheme for task-progressive unified multimodal learn-
ing. This approach decomposes multimodal learning into multiple stages: under-
standing, generation, and editing. By freezing the parameters of the fundamental
autoregressive (AR) model and progressively stacking isomorphic AR modules, it
avoids cross-task interference while expanding the model’s capabilities. Concur-
rently, we introduce a high-capacity VQ to enhance the granularity of image rep-
resentations and employ an implicit reasoning mechanism to improve generation
quality under complex conditions. Experiments demonstrate that STAR achieves
state-of-the-art performance on GenEval (0.91), DPG-Bench (87.44), and ImgEdit
(4.34), validating its efficacy for unified multimodal learning.

1 INTRODUCTION

In recent years, the rapid advancement of multimodal large language models (MLLMs) has signifi-
cantly propelled the progress of artificial general intelligence (AGI) (Touvron et al., 2023; Bi et al.,
2024; OpenAI, 2024a; Team et al., 2023; DeepSeek-AI et al., 2025; Yang et al., 2025). Numerous
studies have focused on constructing unified models that use a single set of parameters to simultane-
ously handle different tasks, such as multimodal understanding and generation (Wang et al., 2024;
Chen et al., 2025c; Wang et al., 2025; Liao et al., 2025; Deng et al., 2025; Xie et al., 2025; OpenAI,
2025; Chen et al., 2025b). However, these from-scratch-trained models face a critical challenge: in-
herent conflicts exist between multimodal understanding and generation tasks in both optimization
objectives and feature spaces. This often results in joint training sacrificing performance in one or
more domains, thereby limiting the overall capability ceiling of unified models.

Against this backdrop, a fundamental research question emerges: Can we continuously enhance a
model’s image generation capabilities while fully preserving its multimodal understanding abilities?
Existing approaches, such as MetaQuery (Pan et al., 2025) and BLIP3-o (Chen et al., 2025a), adopt
a warm-started adaptation paradigm, which initializes from a pre-trained multimodal understand-
ing model and augments it with a diffusion-based generator to enhance generation while preserving
image-to-text capability. Yet, these approaches typically require constructing feature transforma-
tion bridges between autoregressive and diffusion models or designing complex loss functions,
significantly increasing training complexity. Thus, we face a critical challenge: How to extend a
single MLLM in the most streamlined manner possible, enabling it to progressively acquire more
sophisticated multimodal capabilities without compromising existing abilities?

To address the aforementioned challenge, we propose STAR (STacked AutoRegressive Scheme for
Unified Multimodal Learning), a novel unified learning method based on stacked autoregressive
(AR) paradigm that offers three key design advantages: (i) a task-progressive training strategy;
(ii) a stacked autoregressive model; and (iii) an implicit reasoning mechanism. Firstly, the task-
progressive training paradigm decomposes unified multimodal learning into an ordered curriculum:
understanding, generation, and editing, while freezing the fundamental AR backbone at each ex-
tension. This staged training paradigm simultaneously shields existing comprehension capabilities
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Text-to-Image Generation

Image Editing Knowledge Reasoning

Remove the tiger in the water.

Replace the bird in the image with a squirrel Change the autumn leaves to a sandy beach setting

“The weapon of Apollo in 
Greek mythology.”

“The Pyramids of Giza at 8 
PM Tokyo time.”

“The object used to find the 
heroine in Cinderella.” “The fastest land animal.”

Figure 1: STAR enables unified multimodal learning for understanding, text-to-image, image edit-
ing, and reasoning, with a diffusion decoder enhancing the granularity of image outputs.

from catastrophic degradation and equips the model with novel generative abilities. Secondly, the
stacked autoregressive model extends the frozen fundamental AR by appending a small set of iso-
morphic AR modules that share identical architecture and are initialized from the same parameter.
The generation and editing tasks can be optimized with the standard next-token prediction objective
without any auxiliary adapters or losses. This design is fundamentally distinct from MetaQuery and
BLIP3-o, which rely on external bridging modules and diffusion losses. Moreover, instead of learn-
able queries in MetaQuery, we encode the image as discrete VQ tokens and feed them into the AR
model. To furnish the token space with finer granularity, we concurrently introduce a high-capacity
vector quantizer from scratch whose codebook contains 65,536 entries of 512-d vectors, termed as
STAR-VQ. This tokenizer is jointly optimized with a 1B-parameter and is an order of magnitude
larger and denser than conventional counterparts, yielding markedly more precise visual tokens that
raise the generation ceiling without codebook collapse. Finally, an implicit reasoning mechanism is
introduced to harness the stacked architecture at decode time. Given a complex prompt, the fixed
AR first performs inference procedure to yield implicit latent tokens, which then serve as conditional
input to generate images. By explicitly separating semantic reasoning from pixel generation, this
pipeline markedly improves alignment accuracy in challenging compositional and world knowledge
scenarios without requiring additional parameters. Qualitative results are presented in the Figure 1.

Extensive experimental results demonstrate that the proposed STAR approach not only achieves
leading performance across a diverse set of multimodal understanding and generation tasks, but
also substantially reduces training complexity through minimal structural modifications. This high-
lights the advantages of progressive task expansion in unified multimodal training. We believe that
STAR provides an insightful technical pathway toward achieving interference-free, sustainably scal-
able unified multimodal models. The main contributions of this work can be summarized as follows:
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• We propose a task-progressive training paradigm that sequentially learns understanding,
generation and editing while freezing the fundamental AR backbone, thereby safeguarding
comprehension capabilities against catastrophic degradation.

• We present a stacked-isomorphic AR expansion that appends lightweight, same architec-
ture and initialization modules to the frozen AR model, enabling generation and editing
learning with the standard next-token pediction objective and no extra adapters or losses.

• During the inference phase, an implicit reasoning scheme first extracts semantic latent to-
kens from the frozen understanding AR and utilizes them to generate images, boosting
complex-prompt alignment with zero added parameters.

• STAR achieves state-of-the-art performance on multimodal benchmarks (e.g., GenEval
0.91, DPG-Bench 87.44, ImgEdit 4.34), validating its efficacy for unified learning.

2 ARCHITECTURE

We introduce STAR, as shown in Figure 2, a novel stacked autoregressive scheme for unified multi-
modal learning that jointly handles visual understanding, text-to-image generation, and image edit-
ing within a single framework. Its core components comprise: (i) a vision encoder that maps images
into fine-grained tokens; (ii) a stacked autoregressive model that in-place extends isomorphic layers
atop a frozen pre-trained vision-language transformer, ensuring rapid convergence with minimal ar-
chitecture; and (iii) a generative decoder that decodes from discrete tokens, supporting both native
VQ reconstruction and diffusion-enhanced refinement for improved visual fidelity. The following
subsections elaborate on the training procedure of these modules under hybrid-modality objectives.

2.1 VISION ENCODER

For visual input, a unified multimodal model necessitates the simultaneous incorporation of both
high-level semantic information and low-level pixel details. To this end, we adopt a dual-decoupled
visual representation approach to maximally preserve sufficiently fine-grained visual information
for supporting downstream multimodal tasks. On one hand, since STAR is warm-started from a well
pre-trained multimodal understanding model (Section 2.2), we directly employ the native-resolution
continuous visual representations from this model for high-level semantic encoding. These features
are flattened from a 2-D feature map into a 1-D token sequence, and an understanding adapter is
applied to align the continuous semantic representations with the input space of the following LLM.
On the other hand, for low-level pixel representations, we follow the architectural paradigm of VQ-
GAN (Esser et al., 2021) and scale the original model in two aspects, proposing a more expressive
vector quantizer named STAR-VQ. Specifically, the model size is scaled up to 1B parameters, with
the encoder comprising 0.4B parameters and the decoder 0.6B, while the codebook size and embed-
ding dimension are expanded to 65,536 and 512, respectively. After pre-training on a large-scale
dataset, the 16× downsampling VQ model achieves image reconstruction quality that rivals that of
continuous VAEs. Using the pre-trained STAR-VQ, the STAR model tokenizes raw images into
discrete codebook IDs. A generation adapter is then employed to realign the codebook embeddings
corresponding to each ID to the input space of the LLM. Finally, both high-level and low-level
representations are concatenated and fed into a autoregressive transformer for deep fusion.

2.2 STACKED AUTOREGRESSIVE MODEL

In this work, we introduce the stacked autoregressive paradigm, a principled approach that converts
a pure vision–language understanding model (e.g., Qwen2.5-VL (Bai et al., 2025)) into a unified
architecture for comprehension and image generation by stacking additional autoregressive layers
upon the base AR transformer, without introducing novel adapters, or external alignment losses.
The base multimodal autoregressive transformer remains intact, as each appended layer replicates
the self-attention and FFN topology, hidden dimension, and activation function of an existing layer
and is initialized by copying that layer’s parameters. Specifically, the parameters of the stacked
autoregressive transformer are initialized from the final N layers of the base autoregressive trans-
former, since these layers are closer to the output and therefore capture higher-level, task-relevant
representations. The resulting unified model is expressed as

Tfull = Tbase ⊕ Tstack, (1)
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Semantic Encoder

…

Pixel Encoder

…

STacked AutoRegressive Transformer

Embedding

Tokenizer

Gen.  Adapter Und.  Adapter

……

……

Multimodal AutoRegressive Transformer

Replica

Pixel Decoder

Prompt Token

Pixel Token

Semantic Token

Answer Token

De-Tokenizer

Figure 2: The overall architecture of STAR. The architecture integrates two visual encoder (pixel
and semantic), a multimodal autoregressive transformer, a stacked autoregressive transformer, and a
pixel decoder. The stacked AR is replicated from the last N layer of the multimodal AR.

where Tfull denotes the full autoregressive model, Tbase denotes the frozen base autoregressive trans-
former, Tstack denotes the newly appended layers, and ⊕ indicates parameter-preserving concate-
nation along the depth dimension. Consequently, textual, visual, and cross-modal representations
are mapped into a unified feature space, eliminating the 24-layer attentional adaptor used in Meta-
Query and the linear projection employed in BLIP3-o and reducing connector-related parameters
to exactly zero. This structural homogeneity, coupled with inherited warm-start initialisation, guar-
antees unimpeded gradient back-propagation and eliminates the feature discrepancy between the
autoregressive token space and the continuous noise manifold characteristic of diffusion models.
Optimization proceeds under a unified objective: visual inputs are quantized into the discrete token
vocabulary, enabling end-to-end training with a single next-token prediction loss,

LNTP = −
T∑

t=1

log pθ(xt | x<t,v), (2)

where xt denotes the target token at position t, v denotes the quantized visual tokens, and θ denotes
the parameters of the stacked transformer Tfull. This obviates the auxiliary diffusion losses required
by MetaQuery and the flow-matching objectives with their attendant task-balancing coefficients em-
ployed by BLIP3-o, yielding a succinct optimization regime with minimal hyper-parameter over-
head. The unified architecture ensures parameter compactness, the consistent feature space guaran-
tees lossless information flow, and the solitary optimisation objective delivers an efficient training
regime, collectively improving overall training efficiency.

2.3 GENERATION DECODER

After the stacked AR transformer outputs a sequence of discrete visual tokens, it can be directly fed
into the VQ decoder to decode the image. Aiming to enhance both generation quality and super-
resolution capability, an additional diffusion model building upon the Lumina2-Image (Qin et al.,
2025) framework is proposed to decode images from autoregressively predicted discrete tokens.

For the specific implementation of “AR+Diffusion”, we have established systematic conclusions
regarding the types of conditioning and their respective input strategies. Here, the predicted VQ
tokens and the target noisy latent are strictly spatially aligned at the pixel level. For low-level
tasks where pixel-wise alignment is critical, channel dimension concatenation is the common input
strategy (Li et al., 2025). Specifically, let zq ∈ RK×d denote the sequence of discrete VQ tokens
mapped to feature embeddings, where K is the number of tokens and d the embedding dimension.
After reshaping and bilinear resizing we obtain a 2-D feature map Evq ∈ Rh×w×d that matches
the spatial resolution of the noisy latent xt ∈ Rh×w×c. The conditioned input to the diffusion
transformer, denoted as xin, is then obtained by channel-wise concatenation:

xin = concat[xt, Evq] ∈ Rh×w×(c+d), (3)

where c is the original latent channel and d is the codebook dimension. The model then performs
super-resolution from 384 to 1024 to mitigate token explosion in AR high-resolution generation.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Multimodal-AR

Semantic Enc.Pixel Encoder

Gen. Adapter Und. Adapter

Stacked-AR

Semantic Enc.Pixel Encoder

Gen. Adapter Und. Adapter

Diffusion Decoder

Stacked-AR

Multimodal-AR

Stage-2 Stacked-AR T2I Pretraining Stage-3  AR-Diffusion Alignment Training Stage-4  Unified T2I&I2I Instruction Tuning

Codebook

Semantic Enc.Pixel Encoder

Gen. Adapter Und. Adapter

Diffusion Decoder

Stacked-AR

Multimodal-AR

VQ Output Head

VQ Encoder

VQ Decoder

Stage-1 VQ Training

Figure 3: The training stages of STAR comprise four task-progressive phases that successively
expand capability while preserving all previously acquired skills.

For image editing tasks, the source image VAE latent conditioning is designed to facilitate image
consistency. In substantial modifications scenarios, such as removing or adding a large object, spatial
alignment between the source image and the target noisy latent may not be strict, making sequence
dimension concatenation preferable due to its flexible control over channel concatenation (Huang
et al., 2025b; Guo & Lin, 2024). Thus, we choose to concatenate the VAE latent of the source image
with the noisy latent along the sequence dimension. Since there is no source image in text-to-image
generation, we introduce a zero latent as an unconditional placeholder, allowing joint training of both
image editing and text-to-image tasks with a shared diffusion decoder. Consequently, our diffusion
decoder accommodates three types of conditioning: text, resized VQ embeddings, and source image
VAE latent. Our experimental results consistently validate our theoretical analysis and systematic
findings about conditioning strategies.

3 TRAINING AND INFERENCE RECIPE

3.1 TRAINING RECIPE

To achieve multi-stage, incremental enhancement of multi-task capabilities, we adopt a four-stages
progressive training framework, whose workflow is illustrated in Figure 3.

Stage 1: Pixel-level Vector Quantization Pretraining. The objective of this stage is to train a
vector quantization model from scratch to achieve a higher-fidelity discrete representation of low-
level information of raw images. As introduced in Section 2.1, STAR-VQ is designed to reduce
quantization information loss by scaling up both model parameter size and codebook dimension.
However, such expansion often leads to increased training difficulty and decreased codebook uti-
lization, i.e., codebook collapse. To address this, we draw inspiration from (Chang et al., 2025)
and employ an additional codebook projector (2 DiT-blocks) during training, which compresses and
reconstructs the codebook, and then performes image reconstruction training based on the recon-
structed codebook. This stage involves training on a combined corpus of ImageNet (Deng et al.,
2009) and OpenImages (Kuznetsova et al., 2020) for 120 epochs.

Stage 2: Stacked AR Text-to-Image Pretraining. To endow the frozen multimodal backbone
with text-to-image generation, we stack isomorphically designed AR layers and train them exclu-
sively on 60M general plus 0.6M high-quality synthetic image–text pairs. The pretrained STAR-
VQ quantises images into discrete tokens; text and visual tokens are fed to both the base and the
stacked AR modules, and next-token cross-entropy loss updates only the newly added parameters,
preventing any semantic drift of the original understanding layers.

Stage 3: AR-Diffusion Alignment Training. In this stage, only the diffusion decoder is pre-
trained for decoding VQ embeddings, with all other modules frozen and the VQ decoder replaced
by the diffusion decoder. Images with a total pixel count close to 512×512 are used, and the training
data comprises a 10M-image subset from the text-to-image dataset.

Stage 4: Unified Text-to-Image and Edit Instruction Tuning. In this stage, the diffusion decoder
and Stacked-AR are jointly trained on both generation and editing data, aiming to let Stacked-
AR impart image editing capabilities while maintaining its text-to-image generation performance.
To prevent interference from the diffusion decoder’s loss on Stacked-AR training, a stop-gradient
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Table 1: Evaluation on multimodal understanding benchmarks.

Model #LLM MMB MMStar MathVista SEED MME-P MMMU OCRBench POPE DocVQA

Seed-X (Ge et al., 2024) 13B 70.1 - - 66.5 1457.0 35.6 - - -
EMU3 (Wang et al., 2024) 8B 58.5 - - 68.2 1243.8 31.6 68.7 85.2 -
MetaMorph (Tong et al., 2024) 8B 75.2 - - 71.8 - 41.8 - - -
Janus (Wu et al., 2024) 1.3B 75.5 - - 63.7 1338.0 30.5 - 87.0 -
Janus-Pro (Chen et al., 2025c) 7B 79.2 87.4 - 72.1 1567.1 41.0 - - -
BLIP3-o (Chen et al., 2025a) 8B 83.5 - - 77.5 1682.6 50.6 - - -
Show-o2 (Xie et al., 2025) 7B 79.3 56.6 - 69.8 1620.0 48.9 - - -
MetaQuery-XL (Pan et al., 2025) 7B 83.5 - - 76.9 1685.2 58.6 - - -
Bagel (Deng et al., 2025) 14B 85.0 - 73.1 - 1687.0 55.3 - - -
Ovis-U1 (Wang et al., 2025) 1.5B 77.8 - 69.4 - - 51.1 88.3 - -
ILLUME+ (Huang et al., 2025a) 3B 80.8 - - 73.3 1414.0 44.3 67.2 87.6 80.8
X-Omni (Geng et al., 2025) 7B 74.8 - - 74.1 - - 70.4 89.3 88.6

STAR-3B 3B 80.1 55.8 62.3 74.0 1592.3 53.1 79.7 85.9 93.9
STAR-7B 7B 83.9 63.9 68.1 77.0 1690.1 58.6 86.4 86.6 95.7

operation is applied when Stacked-AR outputs VQ embeddings. The training data consists of a
6M-image subset from the text-to-image dataset and a 4M-image subset from the editing dataset.

3.2 INFERENCE RECIPE

Upon completion of training, we evaluate the model on three families of tasks: multimodal under-
standing, text-to-image generation, and image editing, within a single forward pipeline. For under-
standing, the frozen base autoregressive transformer receives an image-text question and directly
emits the textual answer. For generation, the text prompt is processed sequentially by the base and
the stacked AR layers, which progressively predict the discrete image-token sequence. The resulting
tokens are fed to the generative decoder to reconstruct a image. For editing, the original image and
the textual instruction are concatenated and processed by the stacked AR model, yielding an edited
token sequence that is decoded into a semantically consistent result. When the prompt demands
external knowledge or complex reasoning, we invoke an implicit-token-reasoning mechanism: the
base AR first infers an intermediate latent-token sequence that encodes the required knowledge, and
this sequence is supplied as an conditioning signal to the stacked AR for image generation. Exper-
iments show that this strategy yields substantial gains on generation benchmarks that probe world
knowledge and compositional semantics.

4 EXPERIMENT

4.1 DATA COMPOSITION

Text-to-Image Generation Data. This dataset is primarily used for training text-to-image gen-
eration tasks. We collected publicly available text-image pairs and leveraged powerful generative
models such as FLUX (Labs, 2024), GPT-4o (OpenAI, 2025), and Midjourney. Ultimately, we
constructed a total of 60M text-to-image generation data.

Image Edit Data. In our experiments, we utilize a diverse set of pre-trained image editing datasets
to support both the Stage-3 and Stage-4 training. The publicly available image editing data com-
prises main sources from UltraEdit (Zhao et al., 2024), HQ-Edit (Hui et al., 2024), and Omni-
Edit (Wei et al., 2024), approximately 4M samples are selected. Also, we re-synthesized ground
truth images using the GPT-4o (OpenAI, 2025) on approximately 300K proprietary samples. This
combination of large-scale public and private datasets, along with high-fidelity ground truth synthe-
sis, ensures robust and comprehensive supervision for image editing task throughout training.

4.2 EVALUATION SETUP

Image Understanding Evaluation. We assess image-understanding capabilities on the nine stan-
dardized benchmarks: MMBench-EN(Liu et al., 2023), MMStar(Chen et al., 2024), MathVista (Lu
et al., 2023), SEEDBench (Li et al., 2023), MME (Fu et al., 2023), MMMU (Yue et al., 2024),
OCRBench (Liu et al., 2024), POPE (Yifan et al., 2023), and DocVQA (Mathew et al., 2021).
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Table 2: Comparison with state-of-the-art text-to-image generation methods on GenEval (Ghosh
et al., 2023) and DPG-Bench (Hu et al., 2024).

Method GenEval DPG-Bench
Single Two Count. Colors Pos. Color Attr. Overall Global Entity Attr. Relation Other Overall

Gen. Only Models
SDXL (Podell et al., 2024) 0.98 0.74 0.39 0.85 0.15 0.23 0.55 83.27 82.43 80.91 86.76 80.41 74.65
DALL-E (OpenAI, 2024b) 0.96 0.87 0.47 0.83 0.43 0.45 0.67 90.97 89.61 88.39 90.58 89.83 83.50
SD3-medium (Esser et al., 2024) 0.99 0.94 0.72 0.89 0.33 0.60 0.74 87.90 91.01 88.83 80.70 88.68 84.08
FLUX.1-dev (Labs, 2024) 0.98 0.93 0.75 0.93 0.68 0.65 0.82 82.10 89.50 88.70 91.10 89.40 84.00
OmniGen2 (Wu et al., 2025) 0.99 0.96 0.74 0.98 0.72 0.75 0.86 88.81 88.83 90.18 89.37 90.27 83.57

Unified Models
Emu3 (Wang et al., 2024) 0.99 0.81 0.42 0.80 0.49 0.45 0.66 85.21 86.68 86.84 90.22 83.15 80.60
ILLUME+ (Huang et al., 2025a) 0.99 0.88 0.62 0.84 0.42 0.53 0.72 - - - - - -
Janus-Pro (Chen et al., 2025c) 0.99 0.89 0.59 0.90 0.79 0.66 0.80 86.90 88.90 89.40 89.32 89.48 84.19
MetaQuery (Pan et al., 2025) - - - - - - 0.80 - - - - - 82.05
BLIP3-o (Chen et al., 2025a) - - - - - - 0.84 - - - - - 81.60
UniWorld-V1 (Lin et al., 2025) 0.99 0.93 0.81 0.89 0.74 0.71 0.84 83.64 88.39 88.44 89.27 87.22 81.38
Mogao (Liao et al., 2025) 1.00 0.97 0.83 0.93 0.84 0.80 0.89 82.37 90.03 88.26 93.18 85.40 84.33
BAGEL (Deng et al., 2025) 0.98 0.95 0.84 0.95 0.78 0.77 0.88 88.94 90.37 91.29 90.82 88.67 85.07
Show-o2 (Xie et al., 2025) 1.00 0.87 0.58 0.92 0.52 0.62 0.76 89.00 91.78 89.96 91.81 91.64 86.14
GPT-4o (OpenAI, 2025) 0.99 0.92 0.85 0.92 0.75 0.61 0.84 82.27 91.27 87.67 93.85 88.71 86.23
X-Omni (Geng et al., 2025) 0.98 0.95 0.75 0.91 0.71 0.68 0.83 84.80 92.59 90.63 94.75 84.20 87.65
Ovis-U1 (Wang et al., 2025) 0.98 0.98 0.90 0.92 0.79 0.75 0.89 82.37 90.08 88.68 93.35 85.20 83.72

STAR-3B 0.98 0.87 0.85 0.91 0.79 0.76 0.86 93.00 90.49 91.71 90.72 92.75 87.30
STAR-7B 0.98 0.94 0.90 0.92 0.91 0.80 0.91 94.97 92.91 91.62 94.30 83.82 87.44

Table 3: Comparison of world knowledge reasoning on WISE (Niu et al., 2025).

Methods Cultural Time Space Biology Physics Chemistry Overall

Gen. Only Models
SD-XL (Podell et al., 2024) 0.43 0.48 0.47 0.44 0.45 0.27 0.43
SD-3.5-large (Esser et al., 2024) 0.44 0.50 0.58 0.44 0.52 0.31 0.46
FLUX.1-dev (Labs, 2024) 0.48 0.58 0.62 0.42 0.51 0.35 0.50

Unified Models
Emu3 (Wang et al., 2024) 0.34 0.45 0.48 0.41 0.45 0.27 0.39
Janus-Pro-7B (Chen et al., 2025c) 0.30 0.37 0.49 0.36 0.42 0.26 0.35
MetaQuery-XL (Pan et al., 2025) 0.56 0.55 0.62 0.49 0.63 0.41 0.55
BLIP3-o (Chen et al., 2025a) - - - - - - 0.62
BAGEL (Deng et al., 2025) 0.76 0.69 0.75 0.65 0.75 0.58 0.70
GPT-4o (OpenAI, 2025) 0.94 0.64 0.98 0.93 0.98 0.95 0.89

STAR-3B 0.58 0.54 0.48 0.49 0.51 0.54 0.52
STAR-7B 0.61 0.67 0.61 0.74 0.69 0.66 0.66

Text-to-image Evaluation. This task evaluates semantic consistency on GenEval (Ghosh et al.,
2023) (553 prompts) and DPG-Bench (Hu et al., 2024) (1065 prompts), and world knowledge is
measured on WISEBench (Niu et al., 2025) (1000 prompts).

Image Editing Evaluation. Image-editing capability is assessed on MagicBrush (Zhang et al.,
2023) (1,000 pairs) and ImgEdit (Ye et al., 2025) (737 pairs), the latter covering object-level, back-
ground, style, action, and composite manipulations. For MagicBrush we report CLIP-I, DINO (con-
tent preservation), and L1 (pixel-level fidelity).

4.3 MAIN RESULTS

Image Understanding. Thanks to our task-progressive training regime, the proposed model family
can be grafted onto any state-of-the-art multimodal understanding backbone without impairing its
original capability. By freezing the comprehension parameters and augmenting capacity through
stacked autoregressive modules, we retain the full representational strength of the upstream encoder
while equipping it with high-fidelity generation. Consequently, our checkpoints inherit both the
semantic richness of the underlying understanding network (Bai et al., 2025) and the generative
power of contemporary SOTA architectures. As shown in Table 1, they achieve competitive or
leading results on a broad range of understanding benchmarks, including MMStar, SEED, MME
and OCRBench, demonstrating that task-progressive extension yields a unified system that excels
simultaneously in comprehension and generation.

Image Generation. We comprehensively evaluated the generative capability of our model on three
public benchmarks: GenEval and DPG-Bench for prompt–image alignment, and WISE for world-
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Table 4: Comparison of image editing performance on the MagicBrush (Zhang et al., 2023).

MagicBrush Instruct-Pix2Pix UltraEdit ICEdit OmniGen UniReal BAGEL STAR-3B STAR-7B

L1 ↓ 0.074 0.114 0.066 0.060 0.116 0.081 0.074 0.056 0.060
CLIP-I ↑ 0.908 0.851 0.904 0.928 0.863 0.903 0.914 0.934 0.931
DINO ↑ 0.847 0.744 0.852 0.853 0.821 0.837 0.827 0.857 0.853

Table 5: Comparison of image editing performance on ImgEdit-Bench (Ye et al., 2025).
Model Add Adjust Extract Replace Remove Background Style Hybrid Action Overall

Edit. Only Models
MagicBrush (Zhang et al., 2023) 2.84 1.58 1.51 1.97 1.58 1.75 2.38 1.62 1.22 1.90
Instruct-Pix2Pix (Brooks et al., 2023) 2.45 1.83 1.44 2.01 1.50 1.44 3.55 1.20 1.46 1.88
AnyEdit (Yu et al., 2025) 3.18 2.95 1.88 2.47 2.23 2.24 2.85 1.56 2.65 2.45
UltraEdit (Zhao et al., 2024) 3.44 2.81 2.13 2.96 1.45 2.83 3.76 1.91 2.98 2.70
Step1X-Edit (Liu et al., 2025) 3.88 3.14 1.76 3.40 2.41 3.16 4.63 2.64 2.52 3.06
ICEdit (Zhang et al., 2025) 3.58 3.39 1.73 3.15 2.93 3.08 3.84 2.04 3.68 3.05

Unified Models
GPT-4o (OpenAI, 2025) 4.61 4.33 2.90 4.35 3.66 4.57 4.93 3.96 4.89 4.20
OmniGen (Xiao et al., 2024) 3.47 3.04 1.71 2.94 2.43 3.21 4.19 2.24 3.38 2.96
BAGEL (Deng et al., 2025) 3.56 3.31 1.70 3.30 2.62 3.24 4.49 2.38 4.17 3.20
UniWorld-V1 (Lin et al., 2025) 3.82 3.64 2.27 3.47 3.24 2.99 4.21 2.96 2.74 3.26
OmniGen2 (Wu et al., 2025) 3.57 3.06 1.77 3.74 3.20 3.57 4.81 2.52 4.68 3.44
Ovis-U1 (Wang et al., 2025) 4.13 3.62 2.98 4.45 4.06 4.22 4.69 3.45 4.61 4.00

STAR-3B 4.26 4.06 3.78 4.46 4.34 4.19 4.53 3.29 4.38 4.14
STAR-7B 4.33 4.19 4.19 4.59 4.58 4.36 4.59 3.67 4.60 4.34
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Figure 4: (a) Qualitative comparison results. The proposed diffusion decoder yields sharper textures
and finer details than the VQ decoder, demonstrating its superior high-fidelity generation capability.
(b) Reasoning mode can utilize the world knowledge of MLLM for reasoning-based text-to-image.

knowledge reasoning. For the latter, we further activated the proposed implicit-reasoning pipeline
at inference to mitigate visual–semantic distributional shifts. As reported in Table 2, the model
establishes a new state-of-the-art on GenEval with 0.91 (2.0% over the prior best Ovis-U1), while
delivering competitive scores on DPG-Bench in Table 2. As shown in the Table 3, implicit inference
reasoning on WISE (Niu et al., 2025) attains a score of 0.66, confirming that latent-token mediation
significantly enhances compositional and knowledge-intensive generation as shown in Figure 4.

Image Editing. Tables 4 and 5 present the evaluation results for image editing capabilities on Mag-
icBrush and ImgEdit, respectively. On ImgEdit, we compare our model with existing unified models.
For the MagicBrush, in addition to unified models, we also include comparisons with specialized
image editing models such as Instruct-Pix2Pix, UltraEdit (Zhao et al., 2024), and ICEdit. The per-
formance of previous models on ImgEdit is referenced from Ovis-u1, while the MagicBrush results
are computed by us. Overall, our model achieves strong performance across both benchmarks.

4.4 ABLATION STUDIES

Different type of VQ tokenizer. To obtain higher-fidelity discrete image representations, we re-
placed the conventional VQGAN reconstruction tokenizer with the STAR-VQ. Table 6a compares
the two approaches under a controlled 3B architecture trained on 6M synthetic images and eval-
uated on GenEval. STAR-VQ raises the GenEval score from 0.414 to 0.439, confirming that its
larger and higher-dimensional codebook yields finer-grained visual tokens. The gain indicates that
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Table 6: Ablation studies of VQ and stacked AR.

(a) Different type of VQ tokenizer.
Size and Dim represent the code-
book size and dimension of token.

VQ Type Size Dim GenEval

VQGAN 16384 8 0.414
STAR-VQ 65536 512 0.439

(b) The number of layers.

Layer GenEval

8 0.347
16 0.439
32 0.410
36 0.394

(c) Ablation of initial of stacked
AR.

Init From GenEval

Rand 0.374
LLM 0.403
VLM 0.439

Table 7: Ablation studies of diffusion decoder. All results are obtained after stage 3 or 4 training.
(a) The impact of the diffusion decoder.

Stage Decoder Type Size GenEval

Stage 3 VQ Dec. 384 0.723
Stage 3 Diffusion 1024 0.756

Stage 4 VQ Dec. 384 0.858
Stage 4 Diffusion 1024 0.868

(b) The input way from AR to DiT.

Input of VQ emb GenEval

Text-wise Concat 0.703

Sequence-wise Concat 0.712

Channel-wise Concat 0.756

the augmented discrete vocabulary supplies the autoregressive generator with more precise spatial
and semantic cues, ultimately translating into superior synthesis quality.

The number of layers in the stacked AR. To identify the optimal depth of the stacked autoregres-
sive transformer, we perform layer-wise ablation on the STAR-3B model trained with 6M data and
evaluated on GenEval. As reported in Table 6b, accuracy increases with depth until 16 layers, which
attains the highest score of 0.439, and declines thereafter. This inverted-U profile indicates that
shallow stacks lack the capacity to model the target distribution, whereas deeper model suffer from
diminishing gradient signals that progressively weaken updates and ultimately degrade performance.

The initialization strategy of stacked AR.

To determine the optimal initialization for the stacked autoregressive modules, we train STAR-3B
model on 6 M generation data and evaluate on GenEval. As shown in Table 6c, VLM-based initial-
ization reaches 0.439, exceeding LLM-based initialization (0.403) and random initialization (0.374),
respectively. Initializing stacked AR layers with parameters homologous to the primary AR lever-
ages strong inherent feature-space alignment, thereby accelerating convergence and enhancing gen-
eration quality by eliminating re-alignment and directly exploiting learned representational priors.

The impact of Diffusion decoder. To elucidate the role of the diffusion decoder in autoregressive
text-to-image generation, we replace the vanilla VQ decoder with a diffusion decoder. As reported
in Table 7a, the switch yields consistent gains on GenEval (0.03 at stage3 and 0.01 at stage4),
corroborating that iterative denoising recovers high-frequency information lost during quantization.
Qualitative visualizations in Figure 4 further reveal markedly sharper textures, cleaner edges and
suppressed aliasing artifacts, validating that the diffusion translates coarse AR tokens into photo-
realistic outputs with enhanced pixel fidelity.

The input strategy of Diffusion decoder. We ablate three strategies for feeding AR tokens into the
diffusion decoder: (i) text-wise concatenation; (ii) sequence-wise concatenation; and (iii) channel-
wise concatenation after resizing. They are trained on a subset of the dataset. Table 7b shows
that strategy channel-wise concatenation after resizing achieves the highest GenEval score (0.756),
establishing it as the preferred interface.

5 CONCLUSION

In this work, we present STAR, a task-progressive framework that unifies multimodal understand-
ing, generation, and editing within a single MLLM without sacrificing any capability. By freezing
the original autoregressive model and incrementally stacking isomorphic AR layers, STAR elimi-
nates cross-task gradient interference. We further equip the generative AR with STAR-VQ, a high-
capacity tokenizer that boosts discrete-image fidelity, and an implicit inference mechanism that
leverages intermediate semantic tokens to handle complex prompts. Extensive experiments show
that STAR sets new state-of-the-art results on both comprehension and generation tasks. These
findings validate that orderly, interference-free expansion is a viable route toward scalable and sus-
tainable general-purpose multimodal systems.
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6 ETHICS STATEMENT

This study strictly follows the ICLR Code of Ethics. No human-subject or animal experimentation
was conducted. All datasets were obtained and used in accordance with their respective licenses
and privacy policies. We implemented measures to prevent discriminatory bias and did not collect
or process any personally identifiable information. No experimental procedures posed privacy or
security risks. Transparency and research integrity were maintained throughout the project.

7 REPRODUCIBILITY STATEMENT

The main paper describes the detailed design and training process of our method. The appendix
further provides detailed experimental hyperparameter settings, providing readers with all the infor-
mation necessary to reproduce the reported results. To ensure full reproducibility, we will release
the full source code, trained models, and configuration files immediately after review, so that the
community can reproduce our experiments and fully verify our findings.
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A RELATED WORK

Training Unified Multimodal Models from Scratch. Recent efforts toward unified multimodal
models typically begin with a pre-trained large language model (LLM) and fine-tune it on paired
understanding and image-generation objectives. SEED-X (Ge et al., 2024), Emu (Sun et al., 2023),
and MetaMorph (Tong et al., 2024) regress continuous image features. Chameleon (Team, 2024),
EMU3 (Wang et al., 2024), and the Janus family (Wu et al., 2024; Chen et al., 2025c) encode
images into discrete tokens and unify image and text token prediction under a single next-token
prediction objective. DreamLLM (Dong et al., 2023), Show-o (Xie et al., 2024), Show-o2 (Xie
et al., 2025), and Transfusion (Zhou et al., 2024) further combine diffusion and next-token losses
within one framework. An alternative line appends an external diffusion model after the LLM,
like Ovis-U1 (Wang et al., 2025), requires training an intermediate adapter. BAGEL (Deng et al.,
2025) and Mogao (Liao et al., 2025) introduce MoE or MoT routers to decouple parameters so
that distinct experts handle distinct tasks, while X-Omni (Geng et al., 2025) adds a reinforcement-
learning stage to boost generation quality. Despite their effectiveness, these approaches force the
backbone to master multiple generation targets, complicating multi-task balancing and motivating
our task-progressive alternative.

Training Unified Multimodal Models via Warm-Start Adaptation. An alternative line of re-
search freezes the large multimodal backbone and grafts on lightweight generative modules. LM-
Fusion (Shi et al., 2024) trains parallel FFN/QKV experts that share the frozen LLM topology, yet
every new backbone necessitates a complete set of newly trained generative parameters, raising
computational cost. MetaQuery (Pan et al., 2025) prepends learnable queries to the fixed MLLM
and feeds their outputs into a connector that drives a DiT generative model, whereas BLIP3-o (Chen
et al., 2025a) directly conditions a diffusion model on MLLM features and supervises the diffusion
output with a flow-matching loss against CLIP (Radford et al., 2021) image embeddings. Both ap-
proaches require a feature converter to map autoregressive outputs into the diffusion latent space
and introduce auxiliary objectives, e.g., diffusion or flow-matching losses, that create optimization
paths diverging from the original next-token prediction objective. These shortcomings motivate our
stacked-autoregressive task-progressive paradigm, which expands generation capacity while pre-
serving the fundamental comprehension ability.

B OVERALL ARCHITECTURAL PARAMETERS

Overall architectural parameters are summarised in Table 8, confirming the compactness of the
proposed design. STAR-3B extends the Qwen2.5-VL-3B (Bai et al., 2025) vision–language model
by appending a Stacked AR module that replicates the final 16 layers of the VLM for initialization,
contributing 1.5 B additional parameters. STAR-7B, built upon Qwen2.5-VL-7B (Bai et al., 2025),
mirrors the last 14 layers of the VLM, adding 3 B parameters. Both variants share an identical VQ
tokenizer and diffusion decoder.

Table 8: Overall architecture constituents and parameter counts.

Model VLM Pixel-Enc. Gen-Adapter Stacked-AR VQ-Dec. Diff-Dec.

STAR-3B Qwen2.5-VL-3B 0.4B 5M 1.2B (16 Layer) 0.6B 2.6B
STAR-7B Qwen2.5-VL-7B 0.4B 38M 3B (14 Layer) 0.6B 2.6B

C TRAINING STRATEGIES AT EACH STAGE

We also list the training strategies we used in each stage in Table 9.

D ABLATION OF REASONING

We have incorporated ablation experiments for the reasoning mechanism on STAR-7B. On the WISE
evaluation set, we compared performance before and after adding the reasoning mechanism. The
experimental results are shown in the Table 10. As can be seen from the table, adding the reasoning
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Table 9: Training strategies at each stage.

Hyper-Parameter Stage 1 Stage 2 Stage 3 Stage 4

Learning Rate 1e-4 1e-3 1e-4 1e-3
LR Scheduler cosine constant constant constant

Optimizer AdamW Adamw AdamW AdamW
Batch Size 256 4096 2048 4608

Training Steps 1406K 20K 4K 8K
VQ Image Res. 256×256 384×384 384×384 384×384
Diffusion Res. / / 512×512 1024×1024

Table 10: Ablation of reasoning strategy on WISE.

Method Cultural Time Space Biology Physics Chemistry Overall

w/o Reasoning 0.49 0.52 0.45 0.48 0.51 0.35 0.46
w/ Reasoning 0.61 0.67 0.61 0.74 0.69 0.66 0.66

mechanism yields noticeable improvements across every subtask in the WISE benchmark, ultimately
achieving a 0.2 increase in the overall metric. This improvement stems from our approach leveraging
the foundational reasoning capabilities of the VLM, which is extensively trained on broad world
knowledge. Consequently, when processing abstract textual prompts, such as “The fastest land
animal.”, the model first employs VLM to inference the specific target subject “Cheetah”. Following
this, the generation model produces images that most closely match the prompt.

E ABLATION OF MULTI-STAGE SEPARATE TRAINING

We compared single-stage joint training with multi-stage separate training paradigms to demon-
strate the advantages of the multi-stage approach. Single-stage joint training involves simultane-
ously training the stacked-AR module and diffusion decoder starting from the pre-training phase.
While multi-stage separate training refers to our main approach, where only the stacked-AR module
is trained during the pre-training phase, followed by training the diffusion decoder in the subsequent
stage. The experimental results are shown in the Table 11. As seen, on the same 3B base model,
the performance of single-stage joint training is significantly lower than that of multi-stage separate
training, with differences of 0.07 and 5.27 on GenEval and DPG-Bench, respectively. Our analy-
sis indicates that during the early stages of single-stage training, the stacked-AR module possesses
minimal ability to model images autoregressively. Consequently, its predicted token representations
become chaotic, negatively impacting the diffusion decoder’s inherent capabilities. This further
demonstrates that multi-stage separate training minimizes interference between module training,
ultimately yielding superior overall generation performance.

Table 11: Ablation of multi-stage separate training.

Method Model size GenEval DPG-Bench

Single-stage joint training 3B 0.79 82.03
Multi-stage separate training 3B 0.86 87.30

F LLM USAGE

We utilized Large Language Models (LLMs) to assist in language polishing and readability en-
hancement of the manuscript. The LLM contributed to tasks such as sentence rephrasing, grammar
correction, and improving textual flow, without involvement in research ideation, methodology, or
experimental design. All scientific content, analyses, and interpretations were exclusively developed
by the authors. We take full responsibility for the final content and confirm that LLM-assisted text
complies with ethical standards and does not introduce plagiarism or scientific misconduct.

G MORE QUALITATIVE RESULTS

We give more qualitative results on text-to-image generation (Figure 5 and 6) and image-editing
(Figure 7). We also presented some examples of failure in the Figure 8.
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Figure 5: More qualitative results on text-to-image generation
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Figure 6: More qualitative results on text-to-image generation
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Add a vintage car driving along the dirt path 
in the foreground of the image.

Add a coffee mug on the table in the foreground.

Add a small wooden cabin with a chimney near the 
edge of the forest on the right side of the image.

Add a person walking in the foreground near the broken 
wooden fence, dressed in winter clothing.

Change the stage background to a beach setting with 
palm trees and the ocean visible in the distance.

Replace the rocky background with a lush green forest 
setting, while keeping the mountain goat.

Change the background from the ocean to an urban 
cityscape with the yacht cruising down a river.

Extract the animal in the image, including its full body 
and fur details.

Remove the human child bending over the. Remove the rainbow paint and spot from the face.

Figure 7: More qualitative results on image editing
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Figure 8: Failure analysis to showcase some limitations of our method.
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