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Abstract
Detecting out-of-distribution (OOD) inputs is crit-
ical for safely deploying deep learning models
in real-world scenarios. In recent years, many
OOD detectors have been developed, and even
the benchmarking has been standardized, i.e.
OpenOOD. The number of post-hoc detectors is
growing fast and showing an option to protect a
pre-trained classifier against natural distribution
shifts, claiming to be ready for real-world scenar-
ios. However, its efficacy in handling adversarial
examples has been neglected in the majority of
studies. This paper investigates the adversarial
robustness of the 16 post-hoc detectors on several
evasion attacks and discuss a roadmap towards
adversarial defense in OOD detectors.

1. INTRODUCTION
Adversarial robustness in the context of out-of-distribution
(OOD) detection refers to the ability of a detector to cor-
rectly identify OOD samples even when they have been ad-
versarial perturbed to evade a deep neural network (DNN).
Evasion attacks, e.g. PGD (Madry et al., 2017), which are
designed to fool deep learning classifiers, are difficult to
spot as an outlier for OOD detectors. To prevent errors in
real-world applications, it is crucial to detect OOD cases,
not only for natural distribution shifts (Taori et al., 2020) but
also for adversarial examples (Sehwag et al., 2019a) without
degrading the generalizability of the underlying pre-trained
classifier (Yang et al., 2021).

Current standardized benchmarks such as OpenOOD
(Zhang et al., 2023) and RoboDepth (Kong et al., 2024)
merely focus on natural distribution shifts and corruptions
(Hendrycks & Dietterich, 2019). Especially OpenOOD aims
to make a fair comparison across methods initially devel-
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Table 1. Post-hoc OOD detectors architecture comparison: I) Fea-
tures: output of layers before the last layer. II) Logits: raw output
of the last layer. III) Probabilities: normalized output of the last
layer. IV) Adversarial robust against evasive attacks (see Sec-
tion 2.3 and Table 3). The ‘∼’ means that the detector only partly
fulfills a certain property. All methods are in the OpenOOD bench-
mark suite (Zhang et al., 2023).

Detector Venue Detector Architecture Adversarial
Features Logits Probs Robust

SCALE ICLR’24 ✓ ✓

NNGUIDE NeurIPS’23 ✓ ✓

GEN CVPR’23 ✓

ASH ICLR’23 ✓

DICE ECCV’22 ✓

KNN ICML’22 ✓

VIM CVPR’22 ✓ ✓

KLM ICML22 ✓

MLS ICML22 ✓

REACT NeurIPS’21 ✓

RMDS ARXIV’21 ✓ ✓ ∼

GRAM ICML’20 ✓

EBO NeurIPS’20 ✓

ODIN ICLR’18 ✓

MDS NeurIPS’18 ✓ ∼

MSP ICLR’17 ✓

oped for anomaly detection, model uncertainty, open set
recognition, and OOD detection methods.

OpenOOD benchmark suite (Yang et al., 2021) evaluates
methods on semantic shift (e.g., samples that are seman-
tically different from the training data, representing truly
novel or unseen concepts.) (Hendrycks & Gimpel, 2016)
and covariate shift (e.g. samples that come from a different
distribution than the training data, but still belong to the
same semantic categories). Current OOD detection meth-
ods, as some listed in Table 1, achieve outstanding results
on prominent OOD benchmarks, such as the OpenImage-O
(Wang et al., 2022), ImageNet-O (Hendrycks et al., 2021),
Texture (Cimpoi et al., 2014), and iNaturalist (Huang &
Li, 2021; Van Horn et al., 2018). OOD detection is a very
quickly growing field due to the number of methods added
to OpenOOD. More specific post-hoc methods with their
plug-and-play capabilities on pre-trained classifiers are more
flexible and scalable compared to methods that require full
retraining on new OOD data (Yang et al., 2022a; Cong &
Prakash, 2022). Simple post-hoc methods like KNN (Sun
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et al., 2022) are highlighted maintaining good performance
on toy-datasets (e.g. MNIST (Deng, 2012), CIFAR-10 or
CIAR-100 (Krizhevsky et al., 2009), and also show out-
standing performance on the more realistic dataset like Ima-
geNet (Deng et al., 2009) according to (Yang et al., 2022a).
These experiments do neglect the adversarial robustness of
“state-of-the-art” detectors and the real-world capabilities
are questionable as past studies had shown (Sehwag et al.,
2019a; Song et al., 2020; Chen et al., 2020; Salehi et al.,
2021). Adversarial examples remain challenging because
they share the same semantics as the training data, but aim
to modify the classifier’s output.

In this study, we investigate the adversarial robustness of
post-hoc ODD detectors. Our contributions can be summa-
rized as follows:

• We revise the definition of adversarial OOD regard-
ing post-hoc OOD methods to finally have a common
understanding of robust adversarial OOD detection.

• We examine 16 post-hoc OOD detectors by delving
into their current ability to detect adversarial examples
— an aspect that has been disregarded.

• We expand the OpenOOD framework with eva-
sive attacks and provide adversarial OOD datasets:
github.com/adverML/AdvOpenOOD.

2. RELATED WORK
2.1. Evasion Attacks Crafting Inliers

The objective of evasion attacks is to generate adversarial
examples that will result in the misclassification of inputs
at deep learning models (Biggio et al., 2013). It is possi-
ble to distinguish between two types of attack: black-box
attacks (Zheng et al., 2023), where the classifier is queried,
and white-box attacks (Carlini & Wagner, 2017b), where
the network is under the attacker’s complete control. A
white-box threat model is strictly stronger. They try to find
the smallest possible perturbation, often imperceptible to
humans, to manipulate the model’s decision boundaries.

More formally, for an input x with the ground-truth label
y, an adversarial example x′ is crafted by adding small
noise δ to x such that the predictor model loss J(x′, y) is
maximized. The Lp norm of the adversarial noise should
be less than a specified value ϵ, i.e., ∥x −x′∥ ≤ ϵ, e.g.,
ϵ = 8/255 (Croce et al., 2020), to ensure that the im-
age does not change semantically. The attack method
Fast Gradient Sign Method (FGSM) by (Goodfellow et al.,
2014) maximizes the loss function in a single step by tak-
ing a step towards the sign of the gradient of J(x, y)
w.r.t. to x: x′ = x + ϵsign(∇xJ(x

′, y)), where the noise
meets the L∞ norm bound ϵ. Furthermore, this approach
can be applied iteratively, as shown by (Kurakin et al.,
2018), using a reduced step size α: x′0 = x, x′t+1 =

x′t +αϵsign(∇xJ(x
′

t, y)), where in each step, the perturba-
tion should be constrained within the L∞ ball of radius ϵ.
This constraint is a characteristic of the Projected Gradient
Descent (PGD) attack proposed by (Madry et al., 2017),
which is commonly considered a standard attack for the
evaluation of model robustness (Liu et al., 2023a). Masked
PGD (mPGD) (Xu et al., 2023b) is a variant of the PGD
attack that restricts perturbations to a specific region within
an image. The PGD attack is extended towards a patch:
x′t+1 = Clipx′ (x

′

t + α ⋅ sign(∇xJ(x
′

t, y,θ)[patch]), ϵ) .
In this context, the term “patch” refers to the region spec-
ified as [x ∶ x + h, y ∶ y + w], where [x, y, h,w] are the
provided patch’s coordinates and dimensions.

Lastly, DeepFool (DF) (Moosavi-Dezfooli et al., 2016) as-
sumes that the network’s decision boundary is linear, even
though in reality, it may not be. It aims to find the minimal
perturbation, corresponding to the orthogonal projection
onto the hyperplane.

2.2. Advantages of Post-Hoc OOD Detectors

Post-hoc OOD detection methods, which make use of spe-
cific layers of the pre-trained classifier, have been demon-
strated to outperform retraining-based approaches, thereby
underscoring their empirical efficacy (Zhang et al., 2023).
Their plug-and-play nature allows seamless integration with
pre-trained models, without necessitating alterations to the
training procedure or access to original training data (Zhang
et al., 2023). In Table 1 are 16 post-hoc detectors listed,
which also shows if a method uses features, logits, or the
probabilities of the pre-trained model. Post-hoc methods
underline their simplicity to outperform others on natural
distribution shifts datasets by being as lightweight as possi-
ble. The latest post-hoc OOD detector in Table 1 is SCALE
(Xu et al., 2023a). In contrast to the previous activation
shaping method, ASH (Djurisic et al., 2022), that involves
pruning and scaling of activations, SCALE demonstrates
state-of-the-art results are solely derived from scaling.

OOD detection has a more expansive scope when com-
pared to anomaly detection or open-set recognition (OSR)
(Scheirer et al., 2012). Anomaly detection is concerned with
the identification of rare deviations within a single distribu-
tion. OSR addresses the issue of unknown classes during
inference. OOD detection methods aim to identify any
test sample that deviates from the training data distribution
(Zhang et al., 2023).

Moreover, post-hoc OOD methods can be augmented with
other techniques, such as those employed in OSR (Gillert
& von Lukas, 2021) or uncertainty estimation (Schwaiger
et al., 2020). Combining different techniques means also
the post-hoc methods become more complex and thus the
attack surface might become larger, i.e. attacks against
uncertainty estimation (Ledda et al., 2023) differ from the

2

https://github.com/adverML/AdvOpenOOD


ICML 2024 Workshop on the Next Generation of AI Safety

evasion attacks. It is not necessarily the case that a post-
hoc method must be combined with other techniques. This
demonstrates SAFE (Wilson et al., 2023).

2.3. OOD Adversarial Detection

Ensuring the protection of deployed DL models is the aim
of OOD detectors, but the task of providing comprehen-
sive defense (Carlini et al., 2019) against unknown threats
is challenging. Every defense mechanism can be circum-
vented at some point (Carlini & Wagner, 2017a). Many
OOD detectors can be easily evaded by slightly perturbing
benign OOD inputs, creating OOD adversarial examples
that reveal a severe limitation of current open-world learn-
ing frameworks (Sehwag et al., 2019b; Azizmalayeri et al.,
2022). Even adversarial training-based defense methods, ef-
fective against ID adversarial attacks, struggle against OOD
adversarial examples (Azizmalayeri et al., 2022). In the
past years, various defensive techniques (Wu et al., 2023)
and combinations of them have surfaced to combat threats
such as adversarial training (Madry et al., 2017; Wang et al.,
2023; Bai et al., 2024), gradient masking for obfuscation
(Papernot et al., 2017), input transformations such as input
purification (Nie et al., 2022; Lin et al., 2024). However,
attackers consistently adapt their adversarial attacks to the
specific defense mechanisms (Tramer et al., 2020). Ac-
cording to (Croce et al., 2022), optimization-based defenses
could be a promising future, because they can adapt during
test-time towards the input.

OOD detectors have benefited from insights in the adversar-
ial machine learning (AML) field, but still lack comprehen-
sive defense against unknown threats. There are adversarial
training based methods, e.g. ALOE (Chen et al., 2020),
OSAD (Shao et al., 2020), or ATOM (Chen et al., 2021).
A discriminator-based method, ADT (Azizmalayeri et al.,
2022), significantly outperforms previous methods by ad-
dressing their vulnerabilities to strong adversarial attacks.
More recently, the post-hoc method SAFE (Wilson et al.,
2023) leverages the most sensitive layers in a pre-trained
classifier through targeted input-level adversarial perturba-
tions. To this end, “adversarial robust” OOD detection meth-
ods lag, being a comprehensive defense against unknown
and adaptive threats remains an intricate challenge.

3. ROBUSTNESS DEFINITION
The robustness definition in the field of OOD detectors
has been ambiguous when it comes to attack methods.
There are two categories of adversarial examples. The
first one merely attacks the underlying pre-trained clas-
sifier and the second one aims to fool the OOD detector
itself. Adversarial robustness can be considered in a clas-
sifier (Unified Robustness) or the OOD detector (Robust
OOD Detection) according to (Karunanayake et al., 2024).

In this work, we focus on unified robustness, which be-
long to the covariate shift. For image classification, a
dataset D = {(xi, yi);xi ∈ X , yi ∈ Y} sample from a
training distribution P̂data(x, y) is used to train some clas-
sifier C ∶ X → Y . In real-world deployments, distribu-
tion shift occurs when classifier C receives data from test
distribution P̂test(x, y) where P̂data(x, y) ≠ P̂test(x, y)
(Moreno-Torres et al., 2012). An OOD detector is a scor-
ing function s that maps an image x to a real number R
such that some threshold τ arrives at the detection rule
f(x) ∶ ID if s(x) ≥ τ , OOD otherwise. Table 4 in Ap-
pendix A gives an overview of several detectors as well as
considered ID and OOD datasets and model architectures.
The ImageNet-1K dataset together with ResNet-50 archi-
tecture has become standard for ID. Popular OD datasets
are iNaturalist, SUN, Places, and Textures. Some OOD
detectors, such as ALOE, OSAD, ADT, ATOM (see Sec-
tion 2.3), aim to be adversarial robust. They usually take
evading attacks (see Section 2.1) such as FGSM or PGD as
OOD. These computationally expensive methods only show
empirical results on the small-scale CIFAR-10. A robust
OOD detector is built to distinguish whether a perturbed in-
put is OOD. Standardized OOD benchmark frameworks, i.e.
OpenOOD (Zhang et al., 2023) or RoboDepth (Kong et al.,
2024) do not include unified robustness in their benchmarks
at the moment. Consequently, both frameworks, give a false
sense of encompassing open-world capabilities. They focus
on natural distribution (Hendrycks et al., 2021), where OOD
detection in large-scale semantic space has attracted increas-
ing attention (Hendrycks et al., 2019), see Appendix A.
Some OOD datasets have issues, where ID classes are part
of the OD dataset (Bitterwolf et al., 2023). Recently, (Yang
et al., 2023) found a clean semantic shift dataset that mini-
mizes the interference of covariate shift. The experiments
show that state-of-the-art OOD detectors are more sensi-
tive to covariate shift and the advances in semantic shift
detection are minimal. The investigation of adversarial ex-
amples could gain insights into understanding the covariate
shift and towards a generalized OOD detection (Yang et al.,
2021). The difference between benign x and the attacked
counterpart x′ is the different attention of the pre-trained
classifier C per sample. Let’s define an attention map A
(Guo et al., 2022): The input image is passed through a clas-
sifier C to obtain a feature map F . A possible tool could be
Grad-CAM (Selvaraju et al., 2017) to investigate the atten-
tion change between benign x and adversarial example x′

on F (Rieger & Hansen, 2020).

4. EXPERIMENTS
Experiment Setup We extend the OpenOOD framework
(Zhang et al., 2023) to consider adversarial attacks. We at-
tack the pre-trained classifiers on the corresponding test
sets and evaluate 16 post-hoc OOD detectors. As at-
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tack methods, we choose FGSM(-L∞), PGD(-L∞), DF(-
L2) from FoolBox (Rauber et al., 2017); and the mPGD-
(L∞). The attacked models are ResNet-18 (He et al.,
2016a), ResNet-50 (He et al., 2016a), and Swin-T (Liu
et al., 2021). The datasets are CIFAR-10 & CIFAR-
100 (Krizhevsky et al., 2009), ImageNet-1K (Deng et al.,
2009) and its variant ImageNet-200 with just 200 classes.

Table 2. Setup. The attack success rate
(ASR) from various attacks on different
models and datasets. Astd refers to the
standard accuracy of the pre-trained clas-
sifier.

Dataset Arch Astd (%) Attack ASR (%)
CIFAR-10 ResNet-18 95.32 PGD 99.88

FGSM 59.21
DF 100
mPGD 68.06

CIFAR-100 ResNet-18 77.19 PGD 100
FGSM 91.99
DF 100
mPGD 88.14

ImageNet-200 ResNet-18 86.27 PGD 99.9
FGSM 95.46
DF 100
mPGD 96.53

ImageNet-1K ResNet-50 76.19 PGD 99.97
FGSM 93.33
DF 100
mPGD 98.48

Swin-T 95.99 PGD 99.99
FGSM 75.09
DF 100
mPGD 98.84

The efficacy of the
attacks is not ab-
solute and depends
on a multitude of
factors, including
the hyperparame-
ters, model archi-
tecture, and the
dataset. The attack
success rate (ASR)
is presented in Ta-
ble 2. The attacks
PGD and FGSM
do have an epsilon
size, we use an ep-
silon size of 8/255
for CIFAR-10/100
and 4/255 for the
ImageNet. The
mPGD randomly attacks an area of the image (8 × 8 px
for CIFAR-10/100 and 60×60 px for the ImageNet) without
an epsilon constraint, leading to perceptible perturbations.

We utilize two metrics to assess the OOD detection perfor-
mance, elaborated as follows: 1) FPR95↓ stands for false
positive rate measured when true positive rate (TPR) sits at
95%. Intuitively, FPR95 measures the portion of samples
that are falsely recognized as ID data. 2) AUROC↑ refers
to the area under the receiver operating characteristic curve,
for binary classification problems like OOD detection.

4.1. DISCUSSION

All methods do not show sufficient results, when evaluating
16 post-hoc methods as unveiled in the Table 3. Only two
of them - Mahalanobis distance-based methods - (Lee et al.,
2018; Ren et al., 2021) show partly detection capabilities
against the FGSM, PGD, and mPGD attacks on ResNet-50
with ImageNet-1K. The Mahalanobis distance’s robustness
has been thoroughly studied (Kamoi & Kobayashi, 2020;
Eustratiadis et al., 2021; Yang et al., 2022b; Anthony &
Kamnitsas, 2023), and its adversarial robustness is attributed
to its covariance structure consideration (Eustratiadis et al.,
2021). This highlights the conflict between AML and OOD
detection, where detectors often excel in either adversarial
or natural distributions, but not both. High detection rates
on OOD samples are the fundament for further defense
mechanisms.

Level of Adversarial Robustness - From Detectors to-
wards Defenses A defense is more sophisticated than de-
tectors to mitigate the attacker’s efforts to fool a classifier.
A step towards adversarial defense could be to improve
adversarial robustness in OOD detectors. We suggest a pos-
sible roadmap to evaluate detectors and lift them toward an
adversarial defense:

1. Evaluate on strong attacks (Carlini & Wagner, 2017a)
and avoid hyperparameters that weaken the strength of
the attack’s effect. The FGSM is not recommended
because it performs a single step to find the adversarial
perturbation, making it less effective than PGD (Li et al.,
2020). Furthermore, the attack hyperparameter space is
huge (Cinà et al., 2024) and could mitigate the attacks’
strength.

2. Use different models and other datasets than the sim-
ple ResNet-18 trained on CIFAR-10. We suggest using
ImageNet-1K because its complexity in terms of resolu-
tion and objects is more closely to real-world scenarios.

3. Elaborate your strategy to countermeasure the attack as
demonstrated in (Sehwag et al., 2019b). New defense
mechanisms have often been broken quickly again (Car-
lini & Wagner, 2017a). For example, a differentiable
OOD detector can be easily fooled if the attacker approx-
imates the gradients of the network during the backward
pass in a differentiable manner, known as BPDA (Atha-
lye et al., 2018).

4. Let your method fail against sophisticated attacks, such
as adaptive attacks (Athalye et al., 2018; Croce et al.,
2022) or design OOD adversarial examples that convert
OD to ID samples (Sehwag et al., 2019a). Adversarial
robustness is an iterative process, where defenses are pro-
posed, evaluated, and then improved upon in response
to new attacks or discovered vulnerabilities.

5. CONCLUSION
In this study, we assess the performance of the 16 post-
hoc OOD detectors in their ability to detect various evasive
attacks. We conducted prominent white-box adversarial
attacks, such as PGD and DeepFool, on the CIFAR-10 and
ImageNet-1K datasets. Our discovery indicates that current
post-hoc methods are not ready for real-world applications
as long as they are vulnerable against well-known threat —
adversarial examples. We hope that our experiments give a
baseline for further research by improving post-hoc methods
towards robustness and will find a place as a standardized
benchmark, such as OpenOOD.
Future Work We propose to extend the experiments to-
wards transferability because adversarial examples transfer
effectively across different datasets (Alhamoud et al., 2022)
and models (Gu et al., 2023). Finally, we would suggest
using black-box attacks for a realistic open-world scenario.
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Table 3. Results. We evaluate the post-hoc OOD detectors using the metrics FPR95↓ (%) and AUROC↑ (%). The norm-bounded attacks
PGD and FGSM do have an epsilon size of 8/255 for CIFAR-10/100 and 4/255 for the ImageNet.

Detector Attacks
CIFAR-10 CIFAR-100 ImageNet-200 ImageNet-1K

ResNet-18 ResNet-50 Swin-T
FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC

SCALE

PGD 99.67 34.53 99.97 16.18 95.49 35.14 100.00 0.20 95.49 35.14
FGSM 85.74 77.50 49.69 85.64 79.75 76.88 89.75 66.28 79.75 76.88
DF 67.07 81.73 69.22 68.69 79.75 76.88 87.82 57.77 79.75 76.88
mPGD 88.50 70.69 85.58 59.67 93.24 42.17 100.00 6.90 93.24 42.17

NNGUIDE

PGD 99.39 30.29 98.85 17.07 96.44 33.60 100.00 0.12 96.44 33.60
FGSM 93.10 53.01 68.14 77.62 83.21 75.13 85.27 73.53 83.21 75.13
DF 92.08 63.25 85.36 64.14 83.21 75.13 82.19 62.81 83.21 75.13
mPGD 92.94 58.90 90.98 57.26 94.30 42.87 99.99 9.52 94.30 42.87

GEN

PGD 99.51 41.75 99.90 26.03 89.17 40.03 100.00 0.21 89.17 40.03
FGSM 70.14 81.29 45.66 87.10 72.06 79.00 83.63 73.28 72.06 79.00
DF 44.32 85.98 71.38 65.82 72.06 79.00 80.01 62.96 72.06 79.00
mPGD 83.65 74.35 75.59 66.56 88.10 47.17 99.96 12.40 88.10 47.17

ASH

PGD 99.67 31.23 99.96 24.49 97.06 32.97 100.00 0.19 97.06 32.97
FGSM 86.94 70.60 42.86 88.14 83.81 74.57 85.61 69.99 83.81 74.57
DF 77.10 74.62 74.98 65.44 83.81 74.57 83.29 60.88 83.81 74.57
mPGD 90.75 64.35 78.87 66.61 95.20 40.17 100.00 8.49 95.20 40.17

DICE

PGD 96.65 36.09 99.93 23.45 95.03 34.24 100.00 0.11 95.03 34.24
FGSM 75.86 72.65 46.27 86.51 75.62 78.73 86.99 71.20 75.62 78.73
DF 68.84 73.44 76.73 65.46 75.62 78.73 84.72 62.92 75.62 78.73
mPGD 89.46 66.25 80.48 66.68 91.60 42.99 99.99 8.63 91.60 42.99

KNN

PGD 64.91 69.18 90.06 43.07 85.23 55.53 78.63 55.74 85.23 55.53
FGSM 61.23 82.08 47.81 84.69 76.88 73.23 75.89 68.43 76.88 73.23
DF 38.78 85.84 78.54 63.06 76.88 73.23 86.65 58.09 76.88 73.23
mPGD 76.02 75.02 78.93 64.03 88.63 54.44 87.09 48.40 88.63 54.44

VIM

PGD 92.45 56.83 98.16 42.79 89.17 46.44 100.00 5.16 89.17 46.44
FGSM 54.89 84.43 54.72 74.75 71.60 69.44 75.28 71.31 71.60 69.44
DF 43.92 84.92 78.57 61.75 71.60 69.44 82.95 59.88 71.60 69.44
mPGD 80.70 74.35 80.56 60.01 90.16 50.71 99.86 24.51 90.16 50.71

KLM

PGD 91.43 60.91 91.94 45.75 90.87 54.58 95.49 40.77 90.87 54.58
FGSM 96.90 66.02 72.31 80.83 80.71 74.44 80.54 71.56 80.71 74.44
DF 80.84 71.64 91.38 59.58 80.71 74.44 85.48 59.30 80.71 74.44
mPGD 97.52 62.26 89.69 61.30 91.96 55.14 94.81 41.19 91.96 55.14

MLS

PGD 99.58 39.65 99.96 24.43 94.43 35.64 100.00 0.12 94.43 35.64
FGSM 75.61 80.97 43.04 87.63 74.47 79.06 85.30 74.16 74.47 79.06
DF 51.12 84.89 74.91 65.41 74.47 79.06 81.44 63.37 74.47 79.06
mPGD 85.11 73.78 78.81 66.41 90.90 44.19 99.97 10.65 90.90 44.19

REACT

PGD 98.84 45.19 99.89 25.13 94.49 35.90 100.00 4.15 94.49 35.90
FGSM 79.55 79.84 42.83 88.27 76.12 78.15 80.31 74.14 76.12 78.15
DF 54.80 84.16 74.99 65.49 76.12 78.15 79.97 62.88 76.12 78.15
mPGD 85.32 73.19 78.70 66.52 91.26 44.59 99.71 20.13 91.26 44.59

GRAM

PGD 99.82 22.50 99.94 17.12 98.75 25.92 100.00 0.07 98.75 25.92
FGSM 94.77 56.54 79.42 79.23 91.60 69.07 96.06 59.67 91.60 69.07
DF 88.14 60.87 90.78 58.04 91.60 69.07 93.66 55.04 91.60 69.07
mPGD 93.21 55.56 91.49 58.72 97.83 34.92 100.00 4.36 97.83 34.92

RMDS

PGD 49.03 82.70 66.28 77.08 53.69 76.40 37.47 95.23 53.69 76.40
FGSM 68.03 80.66 76.00 79.46 67.10 76.26 71.65 73.33 67.10 76.26
DF 43.26 85.75 64.52 80.96 67.10 76.26 73.74 65.11 67.10 76.26
mPGD 77.05 75.84 84.46 74.74 79.37 63.99 90.78 50.99 79.37 63.99

EBO

PGD 99.58 39.61 99.96 24.49 94.47 35.41 100.00 0.12 94.47 35.41
FGSM 75.62 81.04 42.86 88.14 74.58 79.17 85.35 74.42 74.58 79.17
DF 51.23 84.71 74.99 65.44 74.58 79.17 81.63 63.79 74.58 79.17
mPGD 85.11 73.80 78.87 66.61 91.00 44.10 99.97 10.64 91.00 44.10

MDS

PGD 47.81 84.48 50.82 84.18 57.34 76.11 0.05 99.95 57.34 76.11
FGSM 64.24 79.22 86.06 51.31 91.41 49.61 90.61 52.93 91.41 49.61
DF 54.04 79.60 89.76 52.53 91.41 49.61 93.19 49.18 91.41 49.61
mPGD 78.25 69.86 91.87 50.63 83.81 65.37 51.74 89.98 83.81 65.37

ODIN

PGD 99.73 33.25 99.97 17.58 97.20 31.19 100.00 0.91 97.20 31.19
FGSM 73.56 83.16 39.74 90.19 77.39 76.38 85.44 72.56 77.39 76.38
DF 60.16 83.99 72.94 68.00 77.39 76.38 82.00 65.46 77.39 76.38
mPGD 86.49 74.11 85.66 62.09 91.72 45.12 99.90 15.89 91.72 45.12

MSP

PGD 99.34 43.62 100.00 27.04 87.66 42.60 100.00 4.08 87.66 42.60
FGSM 67.16 81.14 47.87 85.08 72.12 77.77 80.39 70.45 72.12 77.77
DF 39.78 86.85 70.63 65.92 72.12 77.77 72.65 60.76 72.12 77.77
mPGD 82.76 74.68 75.03 66.23 87.48 49.07 100.00 22.21 87.48 49.07
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A. OOD Definition per Method
This section extends the Section 3. In Table 4, we compare the chosen ID and OOD datasets of each OOD detector. In
this comparison, we pick those experiments with largest dimensioned available datasets. Furthermore, we extend this
comparison by appending the adversarial robust OOD detectors from the related work in Section 2.3. It can be observed that
the more recent post-hoc detectors tend to have ImageNet-1K as standard ID datasets. In contrast, the adversarial robust
OOD detectors are benchmarked more likely on the smaller and less complex CIFAR-10 dataset.

Following attacks, models, and datasets are used to heuristically evaluate OOD samples (more details in Table 4):

Attacks: FGSM (Goodfellow et al., 2014), PGD (Madry et al., 2017)

Model Architectures:

• ResNet-18/ResNet-50 (He et al., 2016a), ResNetv2-101 (He et al., 2016b), ResNet-50-D (Touvron et al., 2019),
TResNet-M (Ridnik et al., 2021b), WideResNet (Zagoruyko & Komodakis, 2016)

• BiT (Kolesnikov et al., 2020), VIT-B-16 (Dosovitskiy et al., 2020), ViT (Touvron et al., 2021), DeiT (Touvron et al.,
2021), Swin-T (Liu et al., 2021)

• DenseNet-121 & DenseNet-101 (Huang et al., 2017)
• MobileNet (Howard et al., 2017), MobileNetV2 (Sandler et al., 2018)
• RegNet & RegNetX4.0 (Radosavovic et al., 2020)
• RepVGG (Ding et al., 2021)
• Mixer-B-16 (Tolstikhin et al., 2021)
• CLIP (Radford et al., 2021)

Datasets: CIFAR-10/CIFAR-100 (Krizhevsky et al., 2009), BDD-Anomaly (Hendrycks et al., 2019), DeepDrive (Wu et al.,
2022) ImageNet-1K (Deng et al., 2009), ImageNet-21K (Ridnik et al., 2021a), ImageNet-O (Hendrycks & Dietterich, 2019),
iNaturalist (Van Horn et al., 2018), ISUN (Quattoni & Torralba, 2009), GSTRB (Stallkamp et al., 2012), LSUN (Yu et al.,
2015), NINCO (Bitterwolf et al., 2023), OpenImage-O (Wang et al., 2022), Pascal-VOC (Hoiem et al., 2009), Places
(Zhou et al., 2017), Textures (Cimpoi et al., 2014), TinyImageNet (Le & Yang, 2015), Species (Van Horn et al., 2015),
StreetHazards (Hendrycks et al., 2019), SSB-hard (Vaze et al., 2021), SVHN (Netzer et al., 2011), SUN (Xiao et al., 2010).
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Table 4. Overview of ID and OOD definition from several OOD detectors. The detectors are divided into the following categories (Zhang
et al., 2023): Classifiction-based , Density-based , Distance-based . We also mark: Supervised and Adversarial Robust .

Methods ID OOD Model Architectures
PostHoc Methods

SCALE
(Xu et al.,
2023a)

ImageNet-1K Near-OOD: NINCO, SSB-hard; Far-
OOD: iNaturalist, OpenImage-O,
Textures

ResNet-50

NNGuide
(Park et al.,
2023)

ImageNet-1K Near-OOD: iNaturalist, OpenImage-
O; Far-OOD: Textures; Overlapping:
SUN and Places

MobileNet, RegNet, ResNet-50, ViT

GEN (Liu
et al.,
2023b)

ImageNet-1K ImageNet-O, iNaturalist,
OpenImage-O, Texture,

BiT, DeiT, RepVGG, ResNet-50,
ResNet-50-D, Swin-T, ViT

ASH
(Djurisic
et al., 2022)

ImageNet-1K iNaturalist, Places, SUN, Textures MobileNetV2, ResNet-50

DICE (Sun
& Li, 2022)

ImageNet-1K iNaturalist, Places, SUN, Textures DenseNet-101

KNN (Sun
et al., 2022)

ImageNet-1K iNaturalist, Places, SUN, Textures ResNet-50

VIM (Wang
et al., 2022)

ImageNet-1K ImageNet-O, iNaturalist,
OpenImage-O, Texture

BiT-S, DeiT, RepVGG, ResNet-50,
ResNet-50-D, Swin-T, VIT-B-16

KLM; MLS
(Hendrycks
et al., 2019)

ImageNet-21K;
ImageNet-1K, Places

Species (categories); BDD-Anomaly,
StreetHazards (segmentation)

Mixer-B-16; ResNet-50, TResNet-M,
ViTB-16

REACT
(Sun et al.,
2021)

ImageNet-1K iNaturalist, Places, SUN, Textures MobileNet, ResNet

GRAM
(Huang
et al., 2021)

ImageNet-1K iNaturalist, SUN, Places, Textures DenseNet-121, ResNetv2-101

RMDS (Ren
et al., 2021)

CIFAR-10, CIFAR-100 CIFAR-10, CIFAR-100 BiT, CLIP, VIT-B-16

EBO (Liu
et al., 2020)

CIFAR-10 ISUN, Places, Texture, SVHN,
LSUN

WideResNet

MDS (Lee
et al., 2018)

CIFAR-10 SVHN, TinyImageNet, LSUN, Ad-
versarial Examples

DenseNet, ResNet

ODIN
(Liang et al.,
2017)

CIFAR-10 LSUN, SVHN, TinyImageNet DenseNet, ResNet

MSP
(Hendrycks
& Gimpel,
2016)

CIFAR-10 SUN (Gaussian) WideResNet 40-4

OOD Detectors for Adversarial Robustness
ALOE
(Chen et al.,
2020)

CIFAR-10, CIFAR-100,
GSTRB

PGD attack DenseNet

OSAD
(Shao et al.,
2020)

CIFAR-10, SVHN, Tiny-
ImageNet

FGSM, PGD attack ResNet-18

ADT (Az-
izmalayeri
et al., 2022)

CIFAR-10, CIFAR-100 FGSM, PGD attack ViT

ATOM
(Chen et al.,
2021)

CIFAR-10, CIFAR-100,
SVHN

PGD attack WideResNet

SAFE (Wil-
son et al.,
2023)

PASCAL-VOC, Deep-
Drive

FGSM attack RegNetX4.0, ResNet-50
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