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Abstract

Pre-trained models have brought remarkable
success on the text summarization task. For di-
alogue summarization, the subdomain of text
summarization, utterances are concatenated to
flat text before being processed. As a result,
existing summarization systems based on pre-
trained models are unable to recognize the
unique format of the speaker-utterance pair
well in the dialogue. To investigate this is-
sue, we conduct probing tests and manual anal-
ysis, and find that the powerful pre-trained
model can not identify different speakers well
in the conversation, which leads to various
factual errors. Moreover, we propose three
speaker-aware supervised contrastive learning
(SCL) tasks: Token-level SCL, Turn-level SCL,
and Global-level SCL. Comprehensive exper-
iments demonstrate that our methods achieve
significant performance improvement on two
mainstream dialogue summarization datasets.
According to detailed human evaluations, pre-
trained models equipped with SCL tasks effec-
tively generate summaries with better factual
consistency.

1 Introduction

Dialogue summarization aims to condense the es-
sential information in the dialogue into a brief text.
Compared with text summarization, the conversa-
tions are semi-structured data and contain multiple
participants who shall be distinguished (Gurevych
and Strube, 2004; Feng et al., 2021a). Furthermore,
dialogues combine features such as informal lan-
guage, coreference, and repetition (Chen and Yang,
2020). All of these bring new challenges to the
existing text summarization methods.

Although pre-trained models have achieved great
success in text summarization (Liu and Lapata,
2019; Lewis et al., 2020; Zhang et al., 2020), how
to properly utilize them in dialogues with a spe-
cial speaker-utterance structure is still an obstacle.
A line of previous work utilizes pre-trained mod-
els and deals with dialogue summarization as flat

Dialogue Text

Jeff: Should we go to the village party? Lia: I'm too tired
after hiking. Mico: I'd like to go, there may be some hot boys!
Lia: I doubt Jim: like a real village boy? Jim: who doesn’t
even speak English? Mico: yes, the dummer, the better. Jim:
haha, stupid fucks good, they say. Mico: I confirm! Lia: not
my cup of tea. Mico: I'll go there, who wants to join? Jeft:
I’ll go as well. Mico: wanna drive? Jeff: so you could drink?
Mico: would be nice, hahah. Jeff: not excited, but ok.

Gold Summary

Mico and Jeff will go to the village party. Jeff will drive.
Baseline Summary (by BART)

Jeff, Lia and Mico are going to the village party. Lia is too
tired to go. Mico will drive.

Our Summary

Jeff and Mico are going to the village party. Lia is too tired
after hiking. Jeff will drive.

Table 1: A dialogue example in the SAMSum dataset.
The summary generated by BART has two factual er-
rors: Lia is not going to the village party; it will be
Jeff driving instead of Mico. Our model can generate
factually correct summaries.

text. Chen and Yang (2020) segment dialogues
into blocks from multiple semantic views and pro-
cess them using BART. Feng et al. (2021b) use
DialoGPT (Zhang et al., 2019) as an unsupervised
annotator to help models understanding conversa-
tions. However, due to the gap with the pre-training
object, the pre-trained models are hard to capture
speaker information. To investigate these, we con-
duct a manual analysis on a popular dataset SAM-
Sum (Gliwa et al., 2019) and discover that, even
for the state-of-the-art model BART, 50% of the
generated summaries contain factual errors for di-
alogues with multiple speakers. Among them, up
to 68.4% are caused directly by speaker confusion
and speaker missing (see Section 3.2). As shown in
Table 1, the model’s inability to identify speakers
results in serious factual inconsistencies.

Another tributary of previous work (Zhao et al.,
2019; Liu and Chen, 2019; Zhu et al., 2020; Lei



et al., 2021) utilizes the hierarchical network in-
stead of pre-trained models to leverage the dia-
logue’s structural information. However, how to
explicitly model the information of speakers in
pre-trained sequence-to-sequence (seq2seq) mod-
els remains unsolved. Zhu et al. (2020) intro-
duces speaker embedding to distinguish speakers
for meetings with fixed participants. However, in
most cases, the number and identity of the partici-
pants in the conversations are unknown. Thus the
trained embedding is not a general solution.

Intuitively, if the representation derived from the
encoder has sufficient information to identify speak-
ers, the decoder will produce superior summaries,
especially for summaries that follow a pattern of
someone does something as shown in Table 1. In
this paper, we first conduct a probing experiment
to show that the representation of the dialogue ob-
tained from BART can not distinguish speakers
well. To address this issue, we use contrastive learn-
ing to improve the alignment of the representation
derived from the encoder, i.e., to make the encoder
output diverse hidden states based on correspond-
ing speakers. We propose three speaker-aware su-
pervised contrastive learning tasks: Token-level
SCL, Turn-level SCL, and Global-level SCL. By
jointly training these tasks in the fine-tuning stage,
we can substantially improve the model’s ability to
identify different speakers and further understand
the content of the whole dialogue. Comprehensive
experiments and human evaluations on SAMSum
and AMI (McCowan et al., 2005) reveal that our
models generate summaries with higher ROUGE
scores and better factual consistency. Our main con-
tributions include (a) this is the first work to give a
detailed investigation of the speaker identification
problem in dialogue summarization, (b) proposing
speaker-aware SCL tasks to address the problem,
and evaluating our methods with the experimental
and manual examination.

2 Method
2.1 Probing Test

To investigate how well pre-trained seq2seq mod-
els can distinguish speakers, we conduct a simple
probing experiment on SAMSum, a widely-used di-
alogue summarization corpus. Concretely, we first
encode the dialogue text with the BART (Lewis
et al., 2020) encoder and randomly sample K to-
kens to obtain their hidden states. Then, in pairs,
we aggregate and feed these hidden states into

MLP to determine whether they are from the same
speaker. We train the MLP layers on the SAM-
Sum training set (in other words, we freeze the pa-
rameters of the BART encoder during the training
stage) and then assess the classification accuracy
on the test set. For vanilla BART, the accuracy is
58.1%. After fine-tuning BART with the summa-
rization task on SAMSum before the probing test
(parameters are not frozen), the accuracy is still
only 60.2%'. Given the task’s simplicity, this re-
sult indicates that pre-trained seq2seq models can
not identify speakers well from flat dialogue text.

2.2 Supervised Contrastive Learning Tasks

To address the above problem, inspired by the re-
search about contrastive learning (Mikolov et al.,
2013; Saunshi et al., 2019; He et al., 2020; Velick-
ovic et al., 2019), we introduce SCL tasks during
the fine-tuning stage to minimize the distance be-
tween representations of utterances from the same
speaker and vice versa.

Formally, a dialogue D = (t1,t2,--- ,t,) con-
sists of n turns, and each turn ¢; contains the ut-
terance u; and the corresponding speaker s;, that
is, t; = (s;,u;). Firstly, we use Transformer-
Encoder (Vaswani et al., 2017) to model the
dialogue-level contextual representation of each
tokens.

H = Transformer-Encoder(D), €))

where the input sequence is the concatenation of all
turns. Then, we can generate the summary ¢ with
Transformer-Decoder. The generation loss Ly, is
cross-entropy loss between g and gold summary .

Incorporating Contrastive Loss To enable the
utterance representation to contain more speaker
information, we incorporate three levels of con-
trastive losses.

Generally, let (0;, s;) denote a sampled token
or a sampled utterance and its associative speaker.
The contrastive loss L., for the SCL task is calcu-
lated as follows:

Ly=37" —log(a(o;-0y)), 2)
Lo=Y07 log(l—o(0i-05), ()
Letr = £+ + £—7 4

where o is logistic function that measures the sim-
ilarity between two representations and o; is the

'By jointly training the Global-level SCL task in fine-
tuning stage, the accuracy reaches 77.9%.
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Figure 1: Overview of our speak-aware SCL tasks. Token-level SCL and Turn-level SCL mean the model needs
to discriminate whether two tokens/turns are from the same speaker. Global-level SCL let the model choose what
the speaker might say in a particular turn when given all the utterances of this speaker. The representations are

obtained by inputting the whole dialogue into the encoder.

contextual representation of o; derived from H.
The detailed definitions of o; are in Section 2.2.1
~223.

The final loss £ = ALy + Lgen and A is the
weight coefficient to adjust the ratio of L, and
L gen in the final loss £. The model is supposed to
maximize similarity among samples of the same
speaker and vice versa while optimizing for the
summary generation.

2.2.1 Token-level SCL

The first task is the Token-level SCL which means
the model distinguishes whether two tokens are
from the same speaker. As illustrated in Figure 1(a),
we randomly sample m token-speaker pairs 7' =
{(01, 1), (02, 52), ..., (Om, Sm) } from D, where o;
is a token and s; is the corresponding speaker. The
hidden state of 0; obtained through the encoder is
used to represent the ¢-th sample.

2.2.2 Turn-level SCL

Compared with Token-level SCL, we increase the
granularity of the input to fuse the semantic infor-
mation of the context. As shown in Figure 1(b),
we randomly sample two turns from D and mask
the speaker names in text, denoted as (0;, s;) and
(0j,sj). Then we derive o; by taking the mean
pooling of the hidden states of all tokens in o;.

2.2.3 Global-level SCL

To maximize the mutual information between ut-
terances of the same speaker (Linsker, 1988; Kong
et al., 2019), we extend the Turn-level SCL task to
Global-level SCL by introducing global informa-
tion. Intuitively, we can understand the speaking
style of a specific person from all the words he
or she has said. Therefore, we provide the model
with all the utterances of a certain speaker and let it
choose what this speaker might say in a particular

turn (described in Figure 1(c)). Concretely, we first
mask all the speaker names and randomly sample a
speaker whose utterances set S; which has at least
two elements. Among S'i, we randomly choose
a utterance (o;,s;) as the positive sample, and
randomly choose another utterance (o5, s;) from
D — S; as the negative sample. Thus the global
utterance sample of this speaker is (5’Z — 0, 8;).
The model is supposed to maximize the mutual in-
formation between the representation of the global
sample and the positive sample, and vice versa.
The representations are derived from mean pool-
ing, the same as what we do in Turn-level SCL.
In contrast to Turn-level SCL, Global-level SCL
needs the model’s overall comprehension of the
dialogue-format context.

3 Experiment

In this section, we conduct experiments and human
evaluations on the popular datasets SAMSum and
AMI. More descriptions of the datasets and the im-
plementation details can be found in the Appendix.

3.1 Experimental Result and Analysis

We provide several latest strong seq2seq
models as baselines, including PGNet (See
et al., 2017), UniLM (Dong et al., 2019) and
BART+DialoGPT (Feng et al., 2021b) in the first
part of Table 2. Following previous settings (Gliwa
et al., 2019; Feng et al., 2021a), we use py-rouge”
package for evaluation on SAMsum and use
pyrouge® on AMI. Experimentally, our models
obtain clear improvement on both two datasets
compared to the BART baseline, and achieve the
state-of-the-art result on SAMSum.

https://pypi.org/project/py-rouge/
‘https://github.com/bheinzerling/
pyrouge
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Model SAMSum AMI

R-1 R-2 R-L R-1 R-2 R-L
PGNet (See et al., 2017) 40.08 15.28 36.63 42.60 14.01 22.62
UniLM (Dong et al., 2019; Zhu et al., 2021) 50.00 26.03 42.34 50.61 19.33 25.06
Multi-view BART (Chen and Yang, 2020) 53.42 27.98 49.97 - - -
BART+DialoGPT (Feng et al., 2021b) 53.70 28.79 50.81 - - -
PGN+DialoGPT (Feng et al., 2021b) - - - 50.91 17.75 24.59
BART 53.01 28.05 49.89 50.67 17.18 24.96
BART + Token-level SCL task 53.85 29.21 50.94 51.03 17.23 25.21
BART + Turn-level SCL task 54.12 29.53 51.10 51.15 17.85 2545
BART + Global-level SCL task 54.22 29.87 51.35 51.40 17.81 25.30

Table 2: Results on the test sets of SAMSum and AMI, and "R" is short for "ROUGE".

Specific to the three tasks, the improvement
brought by Token-level SCL is relatively tiny. The
reason may be that the utilization of positional in-
formation is enough for BART to optimize the con-
trastive loss for two tokens. For Turn-level SCL
and Global-level SCL, the pooling layer reduces
the impact of position embedding, thereby forcing
the model to focus on the semantic information
of the utterances. Therefore, the model can fur-
ther capture the characteristics of the dialogue data.
Global-level SCL performs best in both datasets,
which illustrates that when the model has global
perspectives for each speaker, it can enhance the
model’s comprehension of the whole dialogue.

3.2 Human Evaluation

We also conduct human evaluations to investigate
if our method leads to fewer factual errors. Au-
tomatic metrics like FACTCC (Kryscinski et al.,
2019) are not used since the neural-model-based
metrics perform poorly in dialogue data due to the
significant domain gap. And most of the factual
errors in the dialogue summarization are caused
by misidentification of the speaker, which can not
be reflected by automatic metrics. Here we use
BART and BART with the Global-level SCL task
for comparison.

Error Types Firstly, we divide the factual errors
into three categories manually:(a) Speaker Confu-
sion: Model confuses speakers participating in a
specific event; (b) Speaker Missing: A speaker is
mentioned in the gold summary, while the model
hits the event but misses this speaker. (c) Seman-
tic Error: Errors caused by a misunderstanding of
semantics, and they are not directly related to any
speakers. More cases about the error types can be
found in Appendix.

Model BART BART + Global SCL
Speaker Confusion 9 5
Speaker Missing 30 20
Semantic Errors 18 16

Table 3: The number of factual errors for the baseline
model and our model on the SAMSum dataset.

Result We evaluate 100 dialogues from the test
set of SAMsum. For SAMSum, we choose dia-
logues with at least three speakers to explore the
model’s ability to understand multi-person interac-
tion, and the result is shown in Table 3. 50% of
the summaries generated by BART contain factual
errors, of which 68.4% are related to the Speaker
Confusion or Speaker Missing*. In comparison,
our model decreases the number of speaker-related
factual errors by 35.9%. The SCL task helps the
model to better distinguish the speakers and in-
tuitively reduce the confusion. Furthermore, in
many cases, speakers whose utterances account
for a small proportion will be missed by baseline
model. With our method, the representation of their
utterances are different from others, reducing the
missing error. The detailed human evaluation on
AMI is listed in Appendix.

4 Conclusion

In this paper, we focus on the speaker identifica-
tion problem in the dialogue summarization task.
Through the probing test and manual analysis, we
find that the existing pre-trained model can not
identify different speakers well in the conversation,
leading to factual errors. Therefore, we propose
three speaker-aware SCL tasks to address this prob-
lem. Experimental results and human evaluations
illustrate the effectiveness of our methods.

4Please note that there may be multiple types of errors in a
single sample.



5 Ethical Considerations

For human evaluation in section 3.2, we recruited
two annotators to see if there are any factual incon-
sistencies in generated summaries. The generators
of all summaries are hidden from the annotators to
avoid any subjective bias in our proposed methods.
For the SAMsum dataset, we give more priority to
dialogues with more speakers and adopt a random
strategy when the numbers of speakers are same.
Furthermore, both annotators were compensated
fairly.
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A Datasets

We apply our methods on the large version of
BART and evaluate our model on SAMSum and
AMI datasets using ROUGE score (Lin and Och,
2004). SAMSum consists of 16,369 samples with
an average of 2.4 participants and 83.9 words. AMI
consists of 137 meeting records of four fixed speak-
ers, which have 4,757 words on average. Due to

the limitation of our computing resources, all our
inputs are truncated to 1,024 tokens. We use the
same split as Gliwa et al. (2019) and Zhu et al.
(2020) for SAMSum and AMI, respectively.

B Implementation Details

Hyperparameters SAMSum AMI
Batch Size 8 24
Total Steps 10,000 600
Eval Steps 1,000 20
Learning Rate [2e-5,3e-5] [2e-5,3e-5]
Label Smoothing Factor 0.1 0
Warm-up Type linear linear
Warm-up Steps 0 100
Max Target Length 128 300

Table 4: Hyperparameters we used for fine-tuning
BART on SAMSum and AMI.

Some of our hyperparameters are listed in Ta-
ble 4. Other hyperparameters are the same as
the default of facebook/bart-large of transformers>.
The weight coefficient factor A is searched from
{0.01,0.001}. It takes up to 2 hours for one run on
SAMSum or AMI using one GeForce RTX 3090.

We use the validation set to select the best check-

point, and evaluate the checkpoint on the test set.

C Human Evaluation on AMI

Model BART BART + Global SCL
Speaker Confusion 3 3
Speaker Missing 3 0
Semantic Errors 18 14

Table 5: The number of factual errors for the baseline
model and our model on the AMI dataset.

For the AMI dataset, we evaluate all 20 sam-
ples of the test set, and the result is shown in Fig-
ure 5. All speakers in AMI are fixed, so the two
models rarely confuse them. However, as a result
of the truncation, some utterances are only left a
small part and become easily overlooked. With our
method, BART can better identify the correspond-
ing speakers. Due to the loss of input information,
both models have a large number of semantic er-
rors. Compared to the baseline model, our model
decreases the number by 22.2%.

Shttps://github.com/huggingface/
transformers
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D Case Study

In order to better illustrate the three types of errors
mentioned in Section 3.2, we provide more cases
here. An example of confusing speakers is shown
in Table 1 of the main paper. Examples of missing
speakers and semantic errors are shown in Table 6.

Dialogue Text 1

Ann: Congratulations!! Ann: You did great, both of you! Sue:
Thanks, Ann Julie: I'm glad it’s over! Julie: That’s co cute
of you, girl! Ann: Let’s have a little celebration tonight! Sue:
I’'m in Julie: me too!!! aww

Gold Summary 1

Ann, Sue and Julie did a great job and they will have a little
celebration tonight.

Baseline Summary 1 by BART

Sue and Julie are going to celebrate their success tonight.

Our Summary 1

Ann, Sue and Julie are celebrating their wins.

Dialogue Text 2

Sarah: omg Laura! sorry you didn’t get any replies!!! Did
you manage? Laura: hahaha! Awksssss... no worries, I solved
it Sarah: awkward silence <crickets> Laura: hahaha no it’s all
good really!! Raf: Laura, I'm so sorry!!! been so swamped,
totally forgot to text you back! where are you?? Sarah: Exotic
little island called Linate :D Laura: Sarah which hotel are you
at??? I'm here too!!!

Gold Summary 2

Neither Raf nor Sarah remembered to reply to Laura but she
managed anyway. Both Sarah and Laura are in Linate.

Baseline Summary 2 by BART

Laura didn’t get any replies to Sarah’s messages.Laura is on
an island called Linate. Laura and Sarah are staying at the
same hotel.

Our Summary 2

Laura didn’t get any replies from Sarah and Raf. Sarah and
Laura are on an exotic little island called Linate.

Table 6: Sample 1 is an example about the speaker miss-
ing error. The summary generated by BART misses
Ann. The dialogue sample is from the SAMSum
dataset. Sample 2 is an example about the semantic
error and the speaker missing error. The summary gen-
erated by BART misses Raf (Speaker Missing Error),
and makes it out of thin air that Sarah and Laura are
staying at the same hotel (Semantic Error). All sam-
ples are from the SAMsum dataset.



