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Abstract
Pre-trained models have brought remarkable001
success on the text summarization task. For di-002
alogue summarization, the subdomain of text003
summarization, utterances are concatenated to004
flat text before being processed. As a result,005
existing summarization systems based on pre-006
trained models are unable to recognize the007
unique format of the speaker-utterance pair008
well in the dialogue. To investigate this is-009
sue, we conduct probing tests and manual anal-010
ysis, and find that the powerful pre-trained011
model can not identify different speakers well012
in the conversation, which leads to various013
factual errors. Moreover, we propose three014
speaker-aware supervised contrastive learning015
(SCL) tasks: Token-level SCL, Turn-level SCL,016
and Global-level SCL. Comprehensive exper-017
iments demonstrate that our methods achieve018
significant performance improvement on two019
mainstream dialogue summarization datasets.020
According to detailed human evaluations, pre-021
trained models equipped with SCL tasks effec-022
tively generate summaries with better factual023
consistency.024

1 Introduction025

Dialogue summarization aims to condense the es-026

sential information in the dialogue into a brief text.027

Compared with text summarization, the conversa-028

tions are semi-structured data and contain multiple029

participants who shall be distinguished (Gurevych030

and Strube, 2004; Feng et al., 2021a). Furthermore,031

dialogues combine features such as informal lan-032

guage, coreference, and repetition (Chen and Yang,033

2020). All of these bring new challenges to the034

existing text summarization methods.035

Although pre-trained models have achieved great036

success in text summarization (Liu and Lapata,037

2019; Lewis et al., 2020; Zhang et al., 2020), how038

to properly utilize them in dialogues with a spe-039

cial speaker-utterance structure is still an obstacle.040

A line of previous work utilizes pre-trained mod-041

els and deals with dialogue summarization as flat042

Dialogue Text

Jeff: Should we go to the village party? Lia: I’m too tired
after hiking. Mico: I’d like to go, there may be some hot boys!
Lia: I doubt Jim: like a real village boy? Jim: who doesn’t
even speak English? Mico: yes, the dummer, the better. Jim:
haha, stupid fucks good, they say. Mico: I confirm! Lia: not
my cup of tea. Mico: I’ll go there, who wants to join? Jeff:
I’ll go as well. Mico: wanna drive? Jeff: so you could drink?
Mico: would be nice, hahah. Jeff: not excited, but ok.

Gold Summary

Mico and Jeff will go to the village party. Jeff will drive.

Baseline Summary (by BART)

Jeff, Lia and Mico are going to the village party. Lia is too
tired to go. Mico will drive.

Our Summary

Jeff and Mico are going to the village party. Lia is too tired
after hiking. Jeff will drive.

Table 1: A dialogue example in the SAMSum dataset.
The summary generated by BART has two factual er-
rors: Lia is not going to the village party; it will be
Jeff driving instead of Mico. Our model can generate
factually correct summaries.

text. Chen and Yang (2020) segment dialogues 043

into blocks from multiple semantic views and pro- 044

cess them using BART. Feng et al. (2021b) use 045

DialoGPT (Zhang et al., 2019) as an unsupervised 046

annotator to help models understanding conversa- 047

tions. However, due to the gap with the pre-training 048

object, the pre-trained models are hard to capture 049

speaker information. To investigate these, we con- 050

duct a manual analysis on a popular dataset SAM- 051

Sum (Gliwa et al., 2019) and discover that, even 052

for the state-of-the-art model BART, 50% of the 053

generated summaries contain factual errors for di- 054

alogues with multiple speakers. Among them, up 055

to 68.4% are caused directly by speaker confusion 056

and speaker missing (see Section 3.2). As shown in 057

Table 1, the model’s inability to identify speakers 058

results in serious factual inconsistencies. 059

Another tributary of previous work (Zhao et al., 060

2019; Liu and Chen, 2019; Zhu et al., 2020; Lei 061
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et al., 2021) utilizes the hierarchical network in-062

stead of pre-trained models to leverage the dia-063

logue’s structural information. However, how to064

explicitly model the information of speakers in065

pre-trained sequence-to-sequence (seq2seq) mod-066

els remains unsolved. Zhu et al. (2020) intro-067

duces speaker embedding to distinguish speakers068

for meetings with fixed participants. However, in069

most cases, the number and identity of the partici-070

pants in the conversations are unknown. Thus the071

trained embedding is not a general solution.072

Intuitively, if the representation derived from the073

encoder has sufficient information to identify speak-074

ers, the decoder will produce superior summaries,075

especially for summaries that follow a pattern of076

someone does something as shown in Table 1. In077

this paper, we first conduct a probing experiment078

to show that the representation of the dialogue ob-079

tained from BART can not distinguish speakers080

well. To address this issue, we use contrastive learn-081

ing to improve the alignment of the representation082

derived from the encoder, i.e., to make the encoder083

output diverse hidden states based on correspond-084

ing speakers. We propose three speaker-aware su-085

pervised contrastive learning tasks: Token-level086

SCL, Turn-level SCL, and Global-level SCL. By087

jointly training these tasks in the fine-tuning stage,088

we can substantially improve the model’s ability to089

identify different speakers and further understand090

the content of the whole dialogue. Comprehensive091

experiments and human evaluations on SAMSum092

and AMI (McCowan et al., 2005) reveal that our093

models generate summaries with higher ROUGE094

scores and better factual consistency. Our main con-095

tributions include (a) this is the first work to give a096

detailed investigation of the speaker identification097

problem in dialogue summarization, (b) proposing098

speaker-aware SCL tasks to address the problem,099

and evaluating our methods with the experimental100

and manual examination.101

2 Method102

2.1 Probing Test103

To investigate how well pre-trained seq2seq mod-104

els can distinguish speakers, we conduct a simple105

probing experiment on SAMSum, a widely-used di-106

alogue summarization corpus. Concretely, we first107

encode the dialogue text with the BART (Lewis108

et al., 2020) encoder and randomly sample K to-109

kens to obtain their hidden states. Then, in pairs,110

we aggregate and feed these hidden states into111

MLP to determine whether they are from the same 112

speaker. We train the MLP layers on the SAM- 113

Sum training set (in other words, we freeze the pa- 114

rameters of the BART encoder during the training 115

stage) and then assess the classification accuracy 116

on the test set. For vanilla BART, the accuracy is 117

58.1%. After fine-tuning BART with the summa- 118

rization task on SAMSum before the probing test 119

(parameters are not frozen), the accuracy is still 120

only 60.2%1. Given the task’s simplicity, this re- 121

sult indicates that pre-trained seq2seq models can 122

not identify speakers well from flat dialogue text. 123

2.2 Supervised Contrastive Learning Tasks 124

To address the above problem, inspired by the re- 125

search about contrastive learning (Mikolov et al., 126

2013; Saunshi et al., 2019; He et al., 2020; Velick- 127

ovic et al., 2019), we introduce SCL tasks during 128

the fine-tuning stage to minimize the distance be- 129

tween representations of utterances from the same 130

speaker and vice versa. 131

Formally, a dialogue D = (t1, t2, · · · , tn) con- 132

sists of n turns, and each turn ti contains the ut- 133

terance ui and the corresponding speaker si, that 134

is, ti = (si, ui). Firstly, we use Transformer- 135

Encoder (Vaswani et al., 2017) to model the 136

dialogue-level contextual representation of each 137

tokens. 138

H = Transformer-Encoder(D), (1) 139

where the input sequence is the concatenation of all 140

turns. Then, we can generate the summary ŷ with 141

Transformer-Decoder. The generation loss Lgen is 142

cross-entropy loss between ŷ and gold summary y. 143

Incorporating Contrastive Loss To enable the 144

utterance representation to contain more speaker 145

information, we incorporate three levels of con- 146

trastive losses. 147

Generally, let (oi, si) denote a sampled token 148

or a sampled utterance and its associative speaker. 149

The contrastive loss Lctr for the SCL task is calcu- 150

lated as follows: 151

L+ =
∑si=sj

i,j − log(σ(oi · oj)), (2) 152

L− =
∑si 6=sj

i,j − log(1− σ(oi · oj)), (3) 153

Lctr = L+ + L−, (4) 154

where σ is logistic function that measures the sim- 155

ilarity between two representations and oi is the 156

1By jointly training the Global-level SCL task in fine-
tuning stage, the accuracy reaches 77.9%.
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Figure 1: Overview of our speak-aware SCL tasks. Token-level SCL and Turn-level SCL mean the model needs
to discriminate whether two tokens/turns are from the same speaker. Global-level SCL let the model choose what
the speaker might say in a particular turn when given all the utterances of this speaker. The representations are
obtained by inputting the whole dialogue into the encoder.

contextual representation of oi derived from H .157

The detailed definitions of oi are in Section 2.2.1158

∼ 2.2.3.159

The final loss L = λLctr + Lgen and λ is the160

weight coefficient to adjust the ratio of Lctr and161

Lgen in the final loss L. The model is supposed to162

maximize similarity among samples of the same163

speaker and vice versa while optimizing for the164

summary generation.165

2.2.1 Token-level SCL166

The first task is the Token-level SCL which means167

the model distinguishes whether two tokens are168

from the same speaker. As illustrated in Figure 1(a),169

we randomly sample m token-speaker pairs T =170

{(o1, s1), (o2, s2), ..., (om, sm)} from D, where oi171

is a token and si is the corresponding speaker. The172

hidden state of oi obtained through the encoder is173

used to represent the i-th sample.174

2.2.2 Turn-level SCL175

Compared with Token-level SCL, we increase the176

granularity of the input to fuse the semantic infor-177

mation of the context. As shown in Figure 1(b),178

we randomly sample two turns from D and mask179

the speaker names in text, denoted as (oi, si) and180

(oj , sj). Then we derive oi by taking the mean181

pooling of the hidden states of all tokens in oi.182

2.2.3 Global-level SCL183

To maximize the mutual information between ut-184

terances of the same speaker (Linsker, 1988; Kong185

et al., 2019), we extend the Turn-level SCL task to186

Global-level SCL by introducing global informa-187

tion. Intuitively, we can understand the speaking188

style of a specific person from all the words he189

or she has said. Therefore, we provide the model190

with all the utterances of a certain speaker and let it191

choose what this speaker might say in a particular192

turn (described in Figure 1(c)). Concretely, we first 193

mask all the speaker names and randomly sample a 194

speaker whose utterances set S̃i which has at least 195

two elements. Among S̃i, we randomly choose 196

a utterance (oi, si) as the positive sample, and 197

randomly choose another utterance (oj , sj) from 198

D − S̃i as the negative sample. Thus the global 199

utterance sample of this speaker is (S̃i − oi, si). 200

The model is supposed to maximize the mutual in- 201

formation between the representation of the global 202

sample and the positive sample, and vice versa. 203

The representations are derived from mean pool- 204

ing, the same as what we do in Turn-level SCL. 205

In contrast to Turn-level SCL, Global-level SCL 206

needs the model’s overall comprehension of the 207

dialogue-format context. 208

3 Experiment 209

In this section, we conduct experiments and human 210

evaluations on the popular datasets SAMSum and 211

AMI. More descriptions of the datasets and the im- 212

plementation details can be found in the Appendix. 213

3.1 Experimental Result and Analysis 214

We provide several latest strong seq2seq 215

models as baselines, including PGNet (See 216

et al., 2017), UniLM (Dong et al., 2019) and 217

BART+DialoGPT (Feng et al., 2021b) in the first 218

part of Table 2. Following previous settings (Gliwa 219

et al., 2019; Feng et al., 2021a), we use py-rouge2 220

package for evaluation on SAMsum and use 221

pyrouge3 on AMI. Experimentally, our models 222

obtain clear improvement on both two datasets 223

compared to the BART baseline, and achieve the 224

state-of-the-art result on SAMSum. 225

2https://pypi.org/project/py-rouge/
3https://github.com/bheinzerling/

pyrouge
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Model SAMSum AMI
R-1 R-2 R-L R-1 R-2 R-L

PGNet (See et al., 2017) 40.08 15.28 36.63 42.60 14.01 22.62
UniLM (Dong et al., 2019; Zhu et al., 2021) 50.00 26.03 42.34 50.61 19.33 25.06
Multi-view BART (Chen and Yang, 2020) 53.42 27.98 49.97 - - -
BART+DialoGPT (Feng et al., 2021b) 53.70 28.79 50.81 - - -
PGN+DialoGPT (Feng et al., 2021b) - - - 50.91 17.75 24.59

BART 53.01 28.05 49.89 50.67 17.18 24.96
BART + Token-level SCL task 53.85 29.21 50.94 51.03 17.23 25.21
BART + Turn-level SCL task 54.12 29.53 51.10 51.15 17.85 25.45
BART + Global-level SCL task 54.22 29.87 51.35 51.40 17.81 25.30

Table 2: Results on the test sets of SAMSum and AMI, and "R" is short for "ROUGE".

Specific to the three tasks, the improvement226

brought by Token-level SCL is relatively tiny. The227

reason may be that the utilization of positional in-228

formation is enough for BART to optimize the con-229

trastive loss for two tokens. For Turn-level SCL230

and Global-level SCL, the pooling layer reduces231

the impact of position embedding, thereby forcing232

the model to focus on the semantic information233

of the utterances. Therefore, the model can fur-234

ther capture the characteristics of the dialogue data.235

Global-level SCL performs best in both datasets,236

which illustrates that when the model has global237

perspectives for each speaker, it can enhance the238

model’s comprehension of the whole dialogue.239

3.2 Human Evaluation240

We also conduct human evaluations to investigate241

if our method leads to fewer factual errors. Au-242

tomatic metrics like FACTCC (Kryściński et al.,243

2019) are not used since the neural-model-based244

metrics perform poorly in dialogue data due to the245

significant domain gap. And most of the factual246

errors in the dialogue summarization are caused247

by misidentification of the speaker, which can not248

be reflected by automatic metrics. Here we use249

BART and BART with the Global-level SCL task250

for comparison.251

Error Types Firstly, we divide the factual errors252

into three categories manually:(a) Speaker Confu-253

sion: Model confuses speakers participating in a254

specific event; (b) Speaker Missing: A speaker is255

mentioned in the gold summary, while the model256

hits the event but misses this speaker. (c) Seman-257

tic Error: Errors caused by a misunderstanding of258

semantics, and they are not directly related to any259

speakers. More cases about the error types can be260

found in Appendix.261

Model BART BART + Global SCL

Speaker Confusion 9 5
Speaker Missing 30 20
Semantic Errors 18 16

Table 3: The number of factual errors for the baseline
model and our model on the SAMSum dataset.

Result We evaluate 100 dialogues from the test 262

set of SAMsum. For SAMSum, we choose dia- 263

logues with at least three speakers to explore the 264

model’s ability to understand multi-person interac- 265

tion, and the result is shown in Table 3. 50% of 266

the summaries generated by BART contain factual 267

errors, of which 68.4% are related to the Speaker 268

Confusion or Speaker Missing4. In comparison, 269

our model decreases the number of speaker-related 270

factual errors by 35.9%. The SCL task helps the 271

model to better distinguish the speakers and in- 272

tuitively reduce the confusion. Furthermore, in 273

many cases, speakers whose utterances account 274

for a small proportion will be missed by baseline 275

model. With our method, the representation of their 276

utterances are different from others, reducing the 277

missing error. The detailed human evaluation on 278

AMI is listed in Appendix. 279

4 Conclusion 280

In this paper, we focus on the speaker identifica- 281

tion problem in the dialogue summarization task. 282

Through the probing test and manual analysis, we 283

find that the existing pre-trained model can not 284

identify different speakers well in the conversation, 285

leading to factual errors. Therefore, we propose 286

three speaker-aware SCL tasks to address this prob- 287

lem. Experimental results and human evaluations 288

illustrate the effectiveness of our methods. 289

4Please note that there may be multiple types of errors in a
single sample.
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5 Ethical Considerations290

For human evaluation in section 3.2, we recruited291

two annotators to see if there are any factual incon-292

sistencies in generated summaries. The generators293

of all summaries are hidden from the annotators to294

avoid any subjective bias in our proposed methods.295

For the SAMsum dataset, we give more priority to296

dialogues with more speakers and adopt a random297

strategy when the numbers of speakers are same.298

Furthermore, both annotators were compensated299

fairly.300
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A Datasets442

We apply our methods on the large version of443

BART and evaluate our model on SAMSum and444

AMI datasets using ROUGE score (Lin and Och,445

2004). SAMSum consists of 16,369 samples with446

an average of 2.4 participants and 83.9 words. AMI447

consists of 137 meeting records of four fixed speak-448

ers, which have 4,757 words on average. Due to449

the limitation of our computing resources, all our 450

inputs are truncated to 1,024 tokens. We use the 451

same split as Gliwa et al. (2019) and Zhu et al. 452

(2020) for SAMSum and AMI, respectively. 453

B Implementation Details 454

Hyperparameters SAMSum AMI

Batch Size 8 24
Total Steps 10,000 600
Eval Steps 1,000 20
Learning Rate [2e-5,3e-5] [2e-5,3e-5]
Label Smoothing Factor 0.1 0
Warm-up Type linear linear
Warm-up Steps 0 100
Max Target Length 128 300

Table 4: Hyperparameters we used for fine-tuning
BART on SAMSum and AMI.

Some of our hyperparameters are listed in Ta- 455

ble 4. Other hyperparameters are the same as 456

the default of facebook/bart-large of transformers5. 457

The weight coefficient factor λ is searched from 458

{0.01, 0.001}. It takes up to 2 hours for one run on 459

SAMSum or AMI using one GeForce RTX 3090. 460

We use the validation set to select the best check- 461

point, and evaluate the checkpoint on the test set. 462

C Human Evaluation on AMI 463

Model BART BART + Global SCL

Speaker Confusion 3 3
Speaker Missing 3 0
Semantic Errors 18 14

Table 5: The number of factual errors for the baseline
model and our model on the AMI dataset.

For the AMI dataset, we evaluate all 20 sam- 464

ples of the test set, and the result is shown in Fig- 465

ure 5. All speakers in AMI are fixed, so the two 466

models rarely confuse them. However, as a result 467

of the truncation, some utterances are only left a 468

small part and become easily overlooked. With our 469

method, BART can better identify the correspond- 470

ing speakers. Due to the loss of input information, 471

both models have a large number of semantic er- 472

rors. Compared to the baseline model, our model 473

decreases the number by 22.2%. 474

5https://github.com/huggingface/
transformers
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D Case Study475

In order to better illustrate the three types of errors476

mentioned in Section 3.2, we provide more cases477

here. An example of confusing speakers is shown478

in Table 1 of the main paper. Examples of missing479

speakers and semantic errors are shown in Table 6.480

Dialogue Text 1

Ann: Congratulations!! Ann: You did great, both of you! Sue:
Thanks, Ann Julie: I’m glad it’s over! Julie: That’s co cute
of you, girl! Ann: Let’s have a little celebration tonight! Sue:
I’m in Julie: me too!!! aww

Gold Summary 1

Ann, Sue and Julie did a great job and they will have a little
celebration tonight.

Baseline Summary 1 by BART

Sue and Julie are going to celebrate their success tonight.

Our Summary 1

Ann, Sue and Julie are celebrating their wins.

Dialogue Text 2

Sarah: omg Laura! sorry you didn’t get any replies!!! Did
you manage? Laura: hahaha! Awksssss... no worries, I solved
it Sarah: awkward silence <crickets> Laura: hahaha no it’s all
good really!! Raf: Laura, I’m so sorry!!! been so swamped,
totally forgot to text you back! where are you?? Sarah: Exotic
little island called Linate :D Laura: Sarah which hotel are you
at??? I’m here too!!!

Gold Summary 2

Neither Raf nor Sarah remembered to reply to Laura but she
managed anyway. Both Sarah and Laura are in Linate.

Baseline Summary 2 by BART

Laura didn’t get any replies to Sarah’s messages.Laura is on
an island called Linate. Laura and Sarah are staying at the
same hotel.

Our Summary 2

Laura didn’t get any replies from Sarah and Raf. Sarah and
Laura are on an exotic little island called Linate.

Table 6: Sample 1 is an example about the speaker miss-
ing error. The summary generated by BART misses
Ann. The dialogue sample is from the SAMSum
dataset. Sample 2 is an example about the semantic
error and the speaker missing error. The summary gen-
erated by BART misses Raf (Speaker Missing Error),
and makes it out of thin air that Sarah and Laura are
staying at the same hotel (Semantic Error). All sam-
ples are from the SAMsum dataset.

481
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