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ABSTRACT

Relation classification is a fundamental NLP task that involves identifying the se-
mantic relations between entity pairs in a given text. While pre-trained language
models have advanced this area, effectively integrating local entity information
with global context remains a key challenge. Large Language Models offer rich
world knowledge, but their generative use often suffers from hallucinations, lim-
iting reliability. To address these issues, we propose a Point–Line–Plane fusion
framework for discriminative relation classification with LLM embeddings. En-
tity spans are modeled as local point representations, the end of sequence token
provides a global plane representation, and an attention-based line representation
aligns the two. This discriminative paradigm avoids hallucinations while fully ex-
ploiting LLM representations. Our method achieves new SOTA performance on
TACRED, TACREV, and RE-TACRED benchmarks, outperforming both discrim-
inative and generative baselines. Ablation studies provide further evidence for the
effectiveness of our design in achieving context-aware relation classification.

1 INTRODUCTION

Entity Relation Extraction (RE) is one of the fundamental tasks in natural language processing
(NLP), which aims to identify entities from unstructured text and determine the semantic relations
among them, ultimately producing structured triples in the form of (subject, relation, object) (Zhao
et al. (2024)). RE is essential for numerous downstream applications, including knowledge graph
construction, question answering, information retrieval, and graph-augmented generation. Within
this context, relation classification plays a central role, as it determines the semantic relation between
entity pairs and directly impacts the accuracy and completeness of the extracted triples. Hence, its
effectiveness is critical for the reliability of downstream applications and the overall utility of RE
(Han et al. (2025)).

The evolution of relation classification reflects a systematic shift in modeling entities and their con-
texts. Early approaches relied on rule-based (Kambhatla (2004)) and feature-engineering methods
, leveraging syntactic templates and statistical co-occurrence patterns. These methods, however,
depended heavily on expert knowledge and domain-specific linguistic resources, limiting their gen-
eralization and portability. The advent of representation learning marked a paradigm shift. Neural
networks enabled more effective modeling of semantic interactions between entities and context
through distributed embeddings. This approach was further advanced by pre-trained language mod-
els (PLMs) based on the Transformer architecture, such as BERT (Devlin et al. (2019)) and its vari-
ants, which produce rich contextualized representations and achieve strong performance. Despite
their success, even models like SpanBert (Joshi et al. (2020))struggle with long-range dependencies
and discourse-level reasoning required for cross-sentence relation extraction.

In recent years, large language models (LLMs) (Wang et al. (2022)) and frameworks such as
retrieval-augmented generation (RAG) (Efeoglu & Paschke (2024)) have been introduced to han-
dle complex relational structures and challenges like long-tail relations, semantic ambiguity, and
relation overlap. Despite their notable progress, these approaches also introduce new issues, includ-
ing high computational costs and a strong susceptibility to hallucination (Huang et al. (2025)). Due
to the inherent limitations of generative paradigms, existing generation-based methods struggle to
effectively leverage LLM knowledge for relation classification without triggering hallucination.
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Meanwhile, although BERT and LLMs still exhibit fundamental limitations in capturing global con-
textual semantics. These limitations arise from their distinct pre-training objectives—Masked Lan-
guage Modeling for BERT and next-token prediction for LLMs—and are further exacerbated in
LLMs by causal attention, which restricts access to full bidirectional context (Yin et al. (2024)).
Consequently, the token representations often lack the holistic semantic structure required for rela-
tion classification and other complex semantic understanding tasks.

These limitations undermine the robustness and generalizability of relation classification systems.
To address these challenges, we propose a unified framework that integrates discriminative model-
ing, a geometry-inspired contextual fusion mechanism, and prompt-based instruction enhancement:

• Discriminative Model Based on LLMs: We leverage the comprehensive and domain-specific
knowledge of LLMs to overcome the limitations of traditional models. To prevent hallucination,
we utilize LLMs as powerful feature encoders within a discriminative framework, ensuring both
broad knowledge coverage and reliable output.

• ‘Point–Line–Plane’ Contextual Fusion Mechanism: We conceptualize the model in terms of
a geometric analogue: tokens are treated as points, their relationships as lines (as captured by
attention weights), and the entire context as a plane embodied by the [EOS] token.

• Instruction-Enhanced Method Based on Prompt Learning: We augment the model’s ability
to capture task-aware semantics by appending carefully designed natural language instructions to
the input sequence. These instructions explicitly guide the model toward relation classification,
strengthening the representation of the [EOS] token as a global contextual anchor.

Taken together, our framework provides a principled and robust solution to relation classification,
offering improved interpretability and generalization, and achieves new state-of-the-art performance
among discriminative approaches on TACRED, TACREV, and RE-TACRED.

2 RELATED WORK

2.1 RELATION CLASSIFICATION

Relation extraction (RE) is a core task in information extraction, aiming to identify entities (e.g.,
persons, locations, organizations) and the semantic relations between them. Early approaches such
as SpanBert (Joshi et al. (2020)) leverage PLMs to encode spans and adopt discriminative methods
for relation classification, achieving strong performance. Subsequent methods (Lyu & Chen (2021))
further incorporate entity type information to constrain candidate relations, improving classifica-
tion accuracy. However, these approaches primarily rely on point or span-based representations, or
additional constraints, without fully exploiting contextual cues and the knowledge encoded in pre-
trained models. More recently, LLM-based generative methods, such as DeepStruct (Wang et al.
(2022)), pretrain on large-scale task-agnostic corpora and perform zero-shot inference, achieving
state-of-the-art results but at the cost of massive training resources, high inference overhead, and
increased hallucination risk. Retrieval-augmented approaches such as RAGRE (Efeoglu & Paschke
(2024)) and RAGRE+Finetuned (Efeoglu & Paschke (2025)) improve reliability by injecting exter-
nal knowledge, yet suffer from dependency on retrieval modules and limited generalization. These
limitations motivate our work, where we propose a Point–Line–Plane fusion framework to better
integrate entity and contextual information for relation extraction.

2.2 LLM EMBEDDING

Large language models (LLMs), pretrained on massive text corpora, have become fundamental for
a wide range of NLP tasks. Recent work such as GTE (Li et al. (2023)), GME (Zhang et al. (2024)),
and E5 (Wang et al. (2024)) demonstrates that compact embeddings derived from LLMs can effec-
tively support applications like retrieval and classification. These approaches typically rely on the
final hidden state of Transformers, with the last token serving as the sequence representation.

Unlike generative paradigms that model the full data distribution, embedding-based methods follow
a discriminative paradigm. By focusing explicitly on the decision boundary rather than text genera-
tion, discriminative methods are computationally more efficient and substantially less prone to hal-
lucinations. Prompt-based methods such as BGE emb (Xiao et al. (2023)) further enrich embeddings
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with task-specific natural language instructions, showing that instruction-driven representations can
significantly enhance downstream performance. These observations motivate our work to adopt a
discriminative, embedding-based approach for relation classification with LLMs.

3 PRELIMINARY

3.1 HALLUCINATION ANALYSIS OF GENERATIVE METHODS

LLMs often generate responses that deviate from user input or training data, a phenomenon known
as “hallucination” (Bang et al. (2025)). The hallucination issues is mainly attributed to two factors:
the next-token prediction objective used during pretraining, and the low quality of the pretraining
corpus. Existing efforts to mitigate hallucination focus on improving data quality and training ob-
jectives, or incorporating external knowledge at inference time through methods such as RAG and
constrained decoding. In contrast, discriminative paradigms inherently avoid hallucination by oper-
ating over predefined candidate spaces, offering a more stable alternative to generative approaches.

3.2 TASK DEFINATION AND MOTIVATION

Given an input sequence X = (x1, x2, ..., xn), the goal of the relation classification task is to
predict the semantic relation between a subject entity and an object entity within the input sequence
X , which can be formalized as Equation 1.

r̂ = argmax
r∈R

P (r | X) (1)

We define R as the set of candidate relation types, with r ∈ R denoting a specific type. Following
a span-based discriminative paradigm, the training objective can be formulated as maximizing the
Score of the correct relation r∗ as Equation 2:

θ̂, ϕ̂, γ̂ = argmax
θ,ϕ,γ

Sγ(r
∗, fϕ(Hsub | X, θ), fϕ(Hobj | X, θ)) (2)

whereH = PLM(X; θ) denotes the full hidden states of the input sequenceX produced by the PLM
with parameters θ, and Hsubject = (hs1 , hs2 , . . . , hsm), Hobject = (ho1 , ho2 , . . . , hon) ⊆ H are the
subsequences corresponding to the subject and object entity spans. fϕ is a span-level fusion network
that maps an entity span Hentity to a span-level feature vector, with ϕ denoting its parameters. S is
a scoring function with learnable parameters γ that measures how well the predicted relation aligns
with the ground-truth label r∗. In short, this objective maximizes the score of the correct relation
with respect to the PLM parameters θ, the fusion network parameters ϕ and the scoring function
module parameters γ.

While encoder-only PLMs such as BERT benefit from bidirectional attention and provide context-
sensitive embeddings, their token representation is not explicitly optimized for relation classifica-
tion, as the masked language modeling pretraining objective does not enforce span-level semantic
coherence. In contrast, decoder-only LLMs are pretrained with the objective of next-token predic-
tion in Equation 3,

L(θ) = −
T∑
t=1

logP (xt | x<t; θ) (3)

where T denotes the length of the training sequence, t indexes each position in the sequence, and the
model predicts each token given only the preceding context x<t. This objective favors autoregressive
fluency but lacks explicit mechanisms for learning coherent span-level semantics. Consequently,
both paradigms have inherent limitations when directly adapted for relation classification, even with
task-specific fine-tuning. To address this limitation, we integrate the global context representation
with span embeddings, and define the prediction objective as Equation 4.

θ̂, ϕ̂, ψ̂, γ̂ = arg max
θ,ϕ,ψ,γ

Sγ(r
∗, fϕ(Hsub|X, θ), fϕ(Hobj|X, θ), gψ(H|X, θ)) (4)

where gψ denotes the global context that produces a representation of the full hidden states H , with
ψ donates the global context fusion network’s parameters, capturing long-range dependencies and
context information beyond individual entity spans. By integrating context-aware features with span
features, the model captures richer semantic signals and overcomes the limitations of existing PLMs.
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4 METHODOLOGY

Effective relation classification requires modeling global context beyond entity mentions. In
decoder-only LLMs, the [EOS] token is commonly used as a compressed representation of the entire
input (Springer et al. (2024)), and it is derived through causal attention, which compresses preceding
tokens in a strictly autoregressive manner. This aggregation produces a compact global signal but
inevitably flattens the underlying sequence topology and discards fine-grained token interactions.

Building on this motivation, we propose the Point-Line-Plane framework for relation classification
(PLP-RC). Unlike generative paradigms, our discriminative formulation leverages the rich knowl-
edge embedded in pretrained LLMs while avoiding hallucinations. Rather than relying on a single
global summary, PLP-RC aggregates cues from multiple levels of granularity, including information
from entities, the surrounding context, and direct interaction patterns between them. The goal is to
construct a holistic representation that captures not only the entities and their context but also the
explicit relationship between them.

To better capture relational cues, we decompose the global semantic information into three com-
plementary components: (1). The Point representation serves as a localized coordinate, embedding
the fine-grained semantic content of an entity span. (2). The Plane representation, derived from
the [EOS] token’s final hidden state, acts as a low-dimensional projection of the global contextual
manifold. (3). Crucially, the Line representation bridges these two levels of granularity. Figure 1
illustrates the overall architecture.

Point Point Plane

 Attn Score  Attn Score

Line Line

Fused Emb

Context token

Span token

Instruction token

EOS token

Attn Score

Pre-trained Large Language Model

Relation Classification Prompt: <Input Sentence> + <Instruction>

tokenize[Subject Span] [Object Span] [Instruction Span] [EOS]

t1 t2 EOS

EOSh1 h2

 Compress Compress Compress Compress

Figure 1: Overall architecture of the proposed framework. The Point–Line–Plane fusion module
constructs point embeddings from entity spans, line embeddings from attention-based correlations
between entities and the [EOS] token, and plane embeddings from the global contextual represen-
tation. These features are integrated into fused entity representations for relation prediction. The
prompt-based instruction module further guides the decoder-only LLM with task-specific prompts
to enrich contextual semantics.

4.1 POINT-LINE-PLANE FUSION METHOD

We employ the decoder-only LLMs as our text encoder to obtain contextualized token-level repre-
sentations of the input sequence. Compared with encoder-only models such as BERT, decoder-only
LLMs pretrained on large-scale corpora demonstrate superior scalability and stronger contextual
modeling capacity, making them better suited for constructing span-level and context-aware fea-
tures in our fusion framework. Building on these representations, we construct point, line, and plane
features to jointly capture local entity information, relational interactions, and global contextual
semantics, respectively.
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4.1.1 POINT: DIRECT SPAN-LEVEL REPRESENTATION

In the task of relation classification, the most fundamental signal arises from the entity mentions
themselves. Given an encoded sequence H , each entity is represented either by a single token
embedding or by a contiguous span of embeddings Hentity ⊆ H . Such spans provide the most
direct semantic evidence for relation prediction, since they capture the lexical and local contextual
information tied to the entity surface form. To transform the span into representations, several
strategies have been explored in prior work, such as mean pooling, max pooling, or concatenating
the boundary token embeddings (Fu et al. (2021)). We refer to these span-level entity embeddings as
point features. Specifically, we construct Point representations by combining boundary embeddings
with entity type information. Leveraging the contextualized token embeddings from decoder-only
LLMs, we construct span representations by integrating boundary embeddings through dedicated
MLP layers. To enrich entity semantics, we further embed discrete entity types, mapping one-hot
type encodings into continuous vectors etype and fused with span embeddings in Equation 5.

ePoint = MLPstart(hstart) + MLPend(hend) + etype ∈ Rd, (5)

where boundary start and end tokens are projected independently via dedicated MLP layers, and
combined with type embeddings to form the final span representation. Although token sequences
and point embeddings encode partial contextual cues, they remain insufficient for capturing rela-
tional semantics, partly due to the limitations of the pretraining objectives in Equation 3, which
do not explicitly optimize for entity interactions. This motivates the incorporation of higher-level
features to better capture relational information.

4.1.2 PLANE：THE COMPRESSED REPRESENTATION OF THE CONTEXT

Context is critical for relation classification, as the same entity pair may imply different relations
under varying contexts. Relying solely on entity spans limits generalization. Intuitively, the global
compressed representation should integrate point-level embeddings together with the structural and
topological relations between them, providing the semantic representation. However, performing ad-
ditional weighted summations would lead to computational efficiency issues. Instead, by leveraging
the characteristics of PLMs, we can obtain compressed contextual representations more efficiently.

Due to the causal attention mechanism, information is aggregated and propagated forward, and
the [EOS] token is commonly used as the compressed representation of the whole input. In line
with prior work, we take the [EOS] as the global representation of the entire sequence, denoted
as ePlane = hEOS ∈ Rd . While the [EOS] provides a compact summary of the entire sequence,
its computation via attention-weighted pooling limits its ability to model fine-grained interactions
between entities and context. To bridge this gap, we further exploit attention scores to quantify the
correlation between [EOS] and entity boundaries, yielding the line representation that bridges local
entity information and the global context.

4.1.3 LINE：THE ASSOCIATION BETWEEN TOKENS

In causal attention mechanism, the attention score still reflects the degree of association between
tokens, but the computation is constrained by the autoregressive mask that prevents each position
from attending to future tokens. The computation of attention score is computed as Equation 6

A = Softmax
(
QK⊤
√
dk

+M

)
(6)

where Q ∈ Rn×dk denotes the query, K ∈ Rn×dk denotes the key, and dk is the dimension of
the keys. The matrix M ∈ Rn×n is a causal mask that assigns −∞ to positions corresponding to
future tokens, thereby enforcing that each token can only attend to itself and its preceding context.
To enable better interaction between the local span representation and the [EOS] token that encodes
global contextual information, we adopt the attention score to extract their correlations as the line
information. Line information serves as an implicit edge representation, analogous to edge weights
in GNNs (Zhou et al. (2020)), enabling structured message passing between local entity spans and
the global [EOS] context. Specifically, we compute the attention scores between the [EOS] token
and the entity boundaries (i.e., entity start and entity end), as well as the average attention score over
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all tokens within the entity span to capture aggregated interactions. These three components are then
concatenated to form the line representation eLine in Equation 7:

eLine = Concat(Astart,Aend,
1

Nt

end∑
i=head

Ai) (7)

where Ai denotes the attention score between token ti and [EOS], and Nt is the number of tokens
in the entity span. In this way, we obtain the point information ePoint, the line information eLine,
and the plane information ePlane. The line embedding eLine, derived from attention scores, has a
relatively small dimensionality (equal to 3 times the number of attention heads). To amplify its
contribution, we project it into the same latent space through an MLPA. At the entity level, we enrich
point representations by element-wise addition with the transformed line embedding. Following
the intuition of positional encoding, we incorporate the transformed line embedding into the entity
representation by element-wise addition, as formalized in Equation 8.

eEntity = ePoint + MLPA(eLine) (8)
which ensures that line information acts as a bias term enriching the entity representation without
overriding the semantics of the point embedding. Besides, the plane information Plane encodes
complementary high-level structural semantics rather than fine-grained entity attributes. To preserve
the independent contributions of heterogeneous sources, we adopt concatenation in Equation 9:

eFused = Concat(ePlane, eSub, eObj) ∈ R3×d (9)
where eSubj and eObj are the entity embeddings obtained from the above fusion process. A linear
classifier followed by a softmax layer produces the predictive distribution over the relation label set
r, as defined in Equation 10.

L = − 1

N

N∑
i=1

log p(ri | eifused), (10)

Here, N denotes the total number of examples. This design maintains the full expressive power of
each component while allowing the classifier to learn their relative importance during training.

4.2 INSTRUCTION REFINEMENT BASED ON PROMPT LEARNING

Since the optimization objective of LLMs during pre-training is next-token prediction, whereas in
practical applications we use the last hidden state to represent the overall context, there exists a
semantic gap between the two. To enable the [EOS] to sufficiently capture contextual information
for entity relation classification, we enhance its semantic representation through instruction tuning.

Specifically, we design a relation classification instruction I , constructed in natural language using
the following template. This instruction is concatenated to the end of the original input context, i.e.,
C ′ = C + I . In this way, we aim to strengthen the task-aware contextual representation provided
by the [EOS] token. The construction of the relation classification instruction is illustrated in 2.

Figure 2: Construction of the relation classification instruction appended to the context.

5 EXPERIMENTS

5.1 DATASET

We adopt TACRED and two revised versions with corrected labels TACREV and RE-TACRED as
the benchmarks in this paper. TACRED is a large-scale, comprehensive, and task-oriented super-
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vised relation extraction dataset that significantly outperforms previous datasets, which are either
limited in size or heavily affected by noise. These datasets are among the most widely used bench-
marks for supervised relation classification, providing a reliable and comprehensive evaluation foun-
dation for this task.

• TACRED (Zhang et al. (2017)) (The TAC Relation Extraction Dataset) is a supervised relation
extraction dataset created through crowdsourcing, specifically designed for TAC KBP relations.
The relations are not pre-assigned with directions, meaning they can be extracted from sentence
tokens.

• TACREV (Alt et al. (2020)) is a refined version of TACRED. This revised dataset addresses the
issues of data annotation quality and relation ambiguity, which constitute the primary bottlenecks
to model performance on TACRED.

• RE-TACRED (Stoica et al. (2021)) is a re-annotated version of TACRED that enables more reli-
able evaluation of relation extraction models.

By leveraging these datasets, which have become the widely adopted standard for relation classifi-
cation research, we ensure that our evaluation is both rigorous and comparable to prior work. More
dataset details can be found in the Appendix.

5.2 BASELINE

We consider the following baselines for comparison and we divide the baselines into two categories:
discriminative Conventional Models methods and generative large language model (LLM) methods.
Conventional Model Methods : PALSTM (Zhang et al. (2017)), C-GCN (Zhang et al. (2018)),
SpanBert (Joshi et al. (2020)), KnowBERT (Peters et al. (2019)),LUKE (Yamada et al. (2020)),
Roberta (Zhou & Chen (2022)); LLM-based methods : DeepStruct (Wang et al. (2022)) , GAP
(Chen et al. (2024)), RAGRE (Efeoglu & Paschke (2024)), RAGRE+Fintuned (Efeoglu & Paschke
(2025)) . We demonstrate the effectiveness of our proposed method through extensive experiments
comparing it with the aforementioned baseline approaches.

We restrict our comparisons to open-source models, spanning both discriminative and generative
paradigms, as closed-source models have accessibility and transparency limitations, ensuring a fair
and representative evaluation.

5.3 IMPLEMENTATION DETAILS

Our model consists of two components: a LLM encoder and a feature fusion-based relation classifier.
We take dense type Qwen3 Series as our pretrained LLM backbone. We take models ranging from
0.6B to 4B parameters for our experiments. In addition, our relation classification module consists
of a feature extraction and fusion component that captures the PLP-RC representations of entities,
followed by a two-layer MLP with ReLU activation functions for relation classification.

In the training stage, we conduct an end-to-end training with instructions to adapt to the downstream
relation classification task with full parameter tuning. All experiments can be conducted on a single
NVIDIA H100 GPU 80GB. More hyperparameter settings can be found in the Appendix.

For a fair comparison with previous methods, we also use micro-F1, a commonly adopted metric in
multi-class classification tasks especially entity relation classification tasks, as our evaluation metric.

5.4 EXPERIMENT RESULT

Table 1 summarizes the overall micro-F1 results across TACRED, TACREV, and Re-TACRED. Our
Qwen3-0.6B model, enhanced with the PLP-RC method, achieves a micro-F1 of 88.9 on TACRED
and 92.8 on TACREV, outperforming all prior pre-trained and generative large language model
baselines by a clear margin. Notably, despite its relatively small size, the 0.6B model even surpasses
much larger models such as Flan-T5-XL and LLaMA2-7B. This demonstrates that the discriminative
paradigm, by focusing directly on decision boundaries rather than sequence generation, can deliver
superior task alignment and sample efficiency.

7
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On Re-TACRED, our method attains 91.1, which is on par with the best existing approaches (e.g.,
Roberta+Typed and GAP), showing that the proposed PLP-RC representation does not compromise
robustness across benchmark variants. Furthermore, scaling to larger Qwen3 models (1.7B and
4B) yields additional performance gains, establishing new state-of-the-art results among decoder-
only generative LLMs on all three benchmarks. Overall, these findings highlight the advantages
of reframing LLMs as discriminative classifiers: smaller models achieve superior task alignment
compared to larger generative counterparts, while larger models continue to benefit from scaling,
delivering both efficiency and competitiveness.

Method Model TACRED TACREV RE-TACRED
Sequence-based Model
PA-LSTM LSTM 66.2 74.3 79.4
C-GCN GCN 66.7 75.0 80.2
Transformer-based (Large) Language Model
SpanBert Bert 66.3 73.4 83.2
KnowBert Bert 71.5 79.3 -
LUKE Bert 72.7 80.6 90.3
Bert + Typed Bert 72.9 81.3 89.7
Roberta + Typed Roberta 74.6 83.2 91.1
GAP Roberta 72.7 82.7 91.4
RAGRE Flan-T5-XL 86.6 88.3 73.3
Decoder-Only Large Language Model
DeepStruct GLM-10B 76.8 - -
RAGRE + Fintune LlaMA2-7B 84.5 90.2 75.1
RAGRE + Fintune Mistral-7B 84.7 87.5 88.3
Ours
PLP-RC Qwen3-0.6B 88.9 92.8 91.1
PLP-RC Qwen3-1.7B 89.4 93.4 92.4
PLP-RC Qwen3-4B 89.9 94.0 92.9

Table 1: Overall Micro-F1 results on TACRED, TACREV, and Re-TACRED, comparing our PLP-
RC method with prior pre-trained and decoder-only generative LLM methods.

5.5 ABLATION STUDY

We conduct comprehensive ablation experiments to validate the effectiveness of our method. The
details of ablation study are as follows.

Ablation of PLP-RC components: We perform ablation studies to examine the effect of each
component in our method. We sequentially remove point and line information to examine their
individual contributions. The results are as shown in Figure 3a.

These results highlight the importance of each component in our framework. The complete PLP-
RC framework achieves the best performance across all datasets. While removing Line information
alone only leads to a minor drop, removing both Line and Plane substantially degrades performance,
suggesting that Plane plays a more critical role and that Line information is more effective in com-
bination with Plane. While Point captures fine-grained entity semantics, Line and Plane serve as
essential components for modeling global context. Moreover, removing Instruction results in the
largest performance degradation, confirming its strong influence on the overall effectiveness. Over-
all, the ablation confirms that each component contributes to the effectiveness of PLP-RC. The
overall results suggest that PLP-RC forms a solid representation backbone, upon which instruction
can further enhance performance.

Ablation of model parameters scaling law: We take Qwen series model range from 0.5B to 4B
in our model parameters ablation experiments. For 0.5B model, we choose Qwen2.5-0.5B as our
LLM backbone. The results are shown in the Figure 3b and Table 1. Scaling up model parameters
consistently enhances benchmark performance. We also observe that although increasing the model
parameters leads to further improvements in performance, the gains are non-linear with respect to
the scale of parameter growth. The performance gain from using larger models is limited under
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the discriminative setting, and does not align with trends observed in Qwen3 Technical Report.
This suggests that pure generative capability does not fully reflect effectiveness on non-generative
downstream tasks such as relation classification.
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Figure 3: Ablation studies. (a) Component ablation of PLP-RC. Removing Line or Plane informa-
tion consistently decreases performance, highlighting the complementary role of each component
based on Qwen3-1.7B. (b) Model scaling ablation. Increasing the model size from 0.5B to 4B pa-
rameters steadily improves results on TACRED, TACREV, and RE-TACRED, although the gains
diminish at larger scales.

Ablation of computational efficiency: To further examine the practicality of our ap-
proach, we conduct an ablation study on computational efficiency with 1.7B model on
TACRED. As shown in Table 2, the baseline model (w/o Line and Plane) requires 16
minutes per epoch on 1*H100 GPU. Introducing the Line component increases the time

Method Time (min)

Point–Line–Plane 25.5
-w/o Line 24.2
-w/o Line and Plane 16.0

Table 2: Efficiency Comparison

to 24.2 minutes, while the full PLP-RC model requires 25.5
minutes. Despite incurring moderate computational over-
head, the method offers consistent performance gains with
negligible impact on overall training cost, making it suit-
able for large-scale applications where accuracy is priori-
tized. Moreover, given the relatively short training time per
epoch, the overall training cost does not increase noticeably.

Ablation of position of the instruction: There exist many instruction-enhanced embed-
ding methods, such as BGE and GTE, whose primary goal is to improve the representation

Pos TACRED TACREV RE-TACRED

Prefix 89.6 93.4 92.1
Suffix 89.4 93.5 92.2

Table 3: Ablation of instruction position

capability of the model and its adaptability to down-
stream tasks. Instruction concatenation is commonly
performed either at the beginning or at the end of the
input sequence. We additionally conducted an ab-
lation study on the effect of instruction position on
4*A100 GPU. The experimental results are shown
in Table 3. The results indicate that prefix and suf-
fix prompting yield nearly identical performance, with no significant difference across the three
datasets.

Ablation of comparison with the generative method:

To further distinguish whether the performance gains come from the pretrained model itself or from
our proposed PLP method, we compared our approach with a generative baseline and conducted
additional analyzes. We further evaluate a generative modeling setting on Qwen3 series using both
zero-shot generation and supervised fine-tuning (SFT) on RE-TACRED.

In the zero-shot setting, using only a simple instruction cannot reliably enforce instruction fol-
lowing. The model often generates chain-of-thought (COT) (Yu et al. (2025)) reasoning in-
stead of directly producing the target relation label. We attribute this behavior to the inher-
ent generative preference shaped during pre-training, where the model was mainly exposed to
long-form open-ended generation rather than discriminative relation classification supervision.

9
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Model Zero-Shot SFT

Qwen3-1.7B No IF 45.6
Qwen3-4B No IF 57.9

Table 4: Generation Comparison

Therefore, we conducted SFT training based on the MS-
Swift framework, and the performance on the test set is as
follows in Table 4.

These results demonstrate the advantages of our discrim-
inative modeling paradigm. Although generative models
combined with RAG (Arslan et al. (2024)) or reinforcement
learning (DeepSeek-AI (2025)) may further improve performance, the SFT results suggest that they
still do not surpass our PLP method. Additionally, generative approaches have computational inef-
ficiencies. Our smaller model thus achieves better performance with significantly higher computa-
tional efficiency than generative alternatives.

5.6 ANALYSIS

We further analyze the behavior of PLP-RC from multiple perspectives. First, we analyze how the
model handles long-context inputs, particularly problems involving cross-sentences. Our architec-
ture naturally supports long-context inputs. Since LLMs can encode extremely long text spans (e.g.,
Qwen3-4B supports up to 40k tokens), the discriminative framework offers a clear advantage over
previous BERT models that have limited context window. Building on the LLM backbone, our ap-
proach is able to represent cross-sentence long-range context more effectively. Second, we analyze
whether certain types of relations have a disproportionate impact on overall performance on the
1.7B model on RE-TACRED by computing the F1 score for each relation type. The full results are
provided in the appendix. Notably, the underperforming categories share common characteristics
in the test set: they all contain relatively few samples. This extreme data imbalance may have led
to the lower performance observed for these specific categories. Future improvements could focus
on addressing the class imbalance, which may further enhance the performance of our method. Ad-
ditionally, our task follows a pretrain-finetune paradigm, where the LLM is used as an encoder for
downstream tasks, avoiding the generative process and thereby mitigating hallucination issues.

6 CONCLUSION

This paper presents the Point-Line-Plane fusion method for relation classification(PLP-RC), a span-
based discriminative framework that builds on LLM embeddings. The experiments demonstrate that
Point-Line-Plane substantially improves relation classification, achieving SOTA results even with
relatively small decoder-only LLM backbones. Ablation studies show that Plane and Instruction
contribute the most, while Line provides complementary benefits, confirming the necessity of all
components. Scaling experiments further indicate consistent gains with larger models but reveal
diminishing returns as parameter size grows. Importantly, PLP-RC introduces negligible compu-
tational overhead, yielding a favorable trade-off between accuracy and efficiency. Ablation exper-
iments comparing our approach with the SFT generative paradigm demonstrate that the observed
advantages primarily stem from the proposed method itself. Unlike recent generative approaches
to relation extraction, our framework adopts a discriminative formulation, which not only leverages
LLM representations more effectively but also avoids the hallucination issues often observed in gen-
erative models. Moreover, unlike discriminative models like BERT, our use of a LLM as the encoder
inherently enables processing of extremely long contexts. Overall, these results establish PLP-RC
as a robust and scalable representation framework for LLM-based relation classification.

7 LIMITATION

While our proposed PLP-RC representation enhances entity-level reasoning and achieves consistent
improvements across benchmarks, several limitations remain. First, the majority of our performance
gains stem from the proposed PLP-RC method, with additional contributions from the underlying
pretrained model, whose representational capacity ultimately bounds the overall performance. Sec-
ond, although our method is effective even with smaller models, its computational efficiency still has
room for improvement. Third, our evaluation does not fully reflect cross-sentence relational reason-
ing. However, since all existing relation classification datasets are sentence-level only, systematic
evaluation of cross-sentence cases is not currently available. Addressing these issues presents a
valuable foundation for future research.
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REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our experiments, we provide the complete source code and datasets
as supplementary material. Our implementation allows training models starting from the pre-trained
language models. Based on the training scripts, dataset, and hyperparameters we provide in the
appendix, researchers can easily reproduce our results.

ETHICS STATEMENT

We adhere to responsible research principles, using only publicly available datasets and ensuring
ethical data usage. We acknowledge potential biases in the data and model outputs, and we encour-
age careful and responsible application of our methods to avoid societal harm.
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A APPENDIX

A.1 LLMS STATEMENT

Since we are not native English speakers, we leverage LLMs for English refinement in our paper.

A.2 DATASET DETAILS

All the data we use are open-source and can be accessed from the Internet and we can provide the
preprocessed datasets. The splits and sizes of each dataset are as follows in Table 5.

Table 5: Overview of benchmark datasets.

Split TACRED TACREV Re-TACRED
Training 68124 68124 58465
Test 15509 15509 13418
Validation 22631 22631 19584
Number of Relations 42 42 40
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A.3 HYPERPARAMETER SETTINGS

In this section, we provide the detailed hyperparameter settings used in our experiments. These
settings are chosen based on preliminary tuning on the validation set. Specifically, our 1.7B model
on TACRED is trained with the hyperparameters listed in Table 6, while additional configurations
can be found in the released code.

Table 6: Hyperparameter settings

Hyperparameter Value Hyperparameter Value
Learning rate 3× 10−5 Learning rate scheduler constant
Batch size 24 Weight decay 0.01
Number of epochs 10 Warmup steps 1000
Optimizer AdamW Random seed 42

A.4 F1 SCORES FOR SPECIFIC RELATION TYPES

Analyzing performance across specific relation types can indeed help us quickly identify potential
weaknesses of the model. Therefore, we conducted a per-category metric analysis based on the
results of the 1.7B model on Re-TACRED. It is worth noting that the newly added ablation ex-
periments were conducted in slightly different environments — including GPU models and CUDA
versions — which may result in minor fluctuations in the reported metrics.The results are as follows
in 7

Table 7: F1 scores for different relation labels (two-column compact format)

Label Count F1 Label Count F1

per:parents 106 0.90 org:alternate names 337 0.96
per:siblings 66 0.95 org:city of branch 129 0.83
per:stateorprovince of death 16 0.32 no relation 7770 0.94
per:children 55 0.81 org:country of branch 166 0.86
org:stateorprovince of branch 57 0.88 per:stateorprovince of birth 9 0.89
per:city of birth 15 0.72 per:charges 126 0.85
per:country of death 14 0.13 per:identity 2036 0.95
per:country of birth 0 0.00 per:age 208 0.98
org:dissolved 5 0.00 org:founded by 84 0.89
per:cities of residence 125 0.84 org:number of employees/members 13 0.82
per:date of death 63 0.80 org:founded 34 0.94
per:countries of residence 148 0.69 per:other family 52 0.95
per:city of death 26 0.36 per:date of birth 7 0.82
org:members 63 0.71 per:cause of death 50 0.84
per:title 523 0.94 per:schools attended 33 0.86
per:employee of 332 0.85 org:top members/employees 295 0.91
per:stateorprovinces of residence 73 0.78 org:shareholders 12 0.43
org:political/religious affiliation 29 0.81 per:origin 115 0.84
org:website 30 0.76 per:spouse 73 0.91
per:religion 59 0.68 org:member of 64 0.63
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