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Abstract
We extend path analysis by showing that, for a singly-connected path diagram, the partial covari-
ance of two random variables factorizes over the nodes and edges in the path between the variables.
This result allows us to determine the contribution of each node and edge to the partial covariance.
It also allows us to show that Simpson’s paradox cannot occur in singly-connected path diagrams.
Keywords: Path analysis, structural equation models, Simpson’s paradox

1. Introduction

To ease interpretation, linear structural equation models are typically represented as path diagrams:
Nodes represent random variables, directed edges represent direct causal relationships, and bidi-
rected edges represent confounding, i.e. correlation between error terms. Moreover, each directed
edge is annotated with the corresponding coefficient in the linear structural equation model, a.k.a.
path coefficient. Likewise, each bidirected edge is annotated with the corresponding error correla-
tion. A path diagram also brings in computational benefits. For instance, the covariance σXY of
two random variables X and Y can be determined from the path diagram. Specifically, σXY can be
expressed as the sum over the paths from X to Y of the product of path coefficients and error covari-
ances of the edges in the path (Wright, 1921; Pearl, 2009). Hence, the covariance factorizes over the
edges and nodes in the paths. In this work, we develop a similar factorization for the partial covari-
ance σXY ⋅Z in singly-connected path diagrams, i.e. the underlying undirected graph is a tree and,
thus, no undirected cycle exists. While path analysis in a singly-connected path diagram determines
the contribution of each node and edge to the covariance, our results determine the contribution of
each node and edge to the partial covariance. Moreover, we use our results to show that Simpson’s
paradox cannot occur in singly-connected path diagrams. For path diagrams, Simpson’s paradox
can be described as the reversal of the sign of the regression coefficient of a random variable Y on
a second variable X upon conditioning on a set of variables Z (Pearl, 2009, 2014).

Some previous works have certainly studied measures of association for singly-connected path
diagrams, or for Gaussian random vectors in general. However, none of these works develop a fac-
torization of the measure of association, as we do in this work. For singly-connected path diagrams,
Chaudhuri and Richardson (2003) and Chaudhuri (2005) identify sufficient conditional indepen-
dencies for ordering some squared partial correlation coefficients. Chaudhuri (2014) extends these
results to general Gaussian random vectors. Chaudhuri and Tan (2010) report similar general results
for absolute values of partial regression coefficients. Finally, Ong (2014) proves similar results for
(signed) partial covariances, correlation coefficients and regression coefficients for singly-connected
path diagrams and general Gaussian random vectors. In Section 5, we discuss further the work by
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Ong. Finally, it should be mentioned that Pearl (2014) identifies three singly-connected path dia-
grams that cannot lead to Simpson’s paradox. Our results are stronger, as we show that Simpson’s
paradox cannot occur in any singly-connected path diagram.

The rest of this work is structured as follows. Section 2 presents our factorization of partial
covariances for singly-connected path diagrams with no colliders. Section 3 demonstrates our fac-
torization on some examples. Section 4 extends the factorization to diagrams with colliders. Section
5 shows that our factorization implies that Simpson’s paradox cannot occur in singly-connected path
diagrams. Section 6 closes with some discussion.

2. Paths without Colliders

In this work, we make extensive use of the following recursive definition of the partial covariance of
two random variables X and Y given a set of variables Z and a variable W such that X,Y ∉ Z ∪W
(Anderson, 2003, Section 2.5.3):

σXY ⋅ZW = σXY ⋅Z −
σXW ⋅ZσWY ⋅Z

σ2
W ⋅Z

(1)

where, for simplicity, we use juxtaposition to denote union. Note that X and Y may be the
same random variable, in which case the expression above corresponds to the partial variance
σ2
X ⋅ZW = σXX ⋅ZW . Recall that the partial (co)variances coincide with the conditional (co)variances

for Gaussian random vectors.
We continue by recalling the separation criterion for path diagrams (Pearl, 2009, Section 1.2.3).

For simplicity, we do not make any distinction between the nodes in the path diagrams and the
random variables that they represent. Given a path πXY from a node X to a node Y in a path
diagram, a node C is a collider in πXY if A ←⊸C ←⊸ B is a subpath of πXY , where ←⊸means→ or
↔. Given a set of nodes Z, πXY is said to be Z-open if

• every collider in πXY is in Z or has some descendant in Z, and

• every non-collider in πXY is outside Z.

If there is no Z-open path from X to Y (which we denote as X ⊥ Y ∣Z), then we can readily
conclude that X and Y are conditionally independent given Z in the joint normal distribution rep-
resented by the path diagram and, thus, σXY ⋅Z = 0 (Pearl, 2009). If on the other hand there is a
Z-open path from X to Y (which we denote as X /⊥Y ∣Z), we assume in this section that it has no
colliders, and defer the case with colliders to the next section.

When X /⊥ Y ∣∅, it is known from path analysis that the covariance σXY of two standardized
random variables X and Y can be expressed as the sum for every ∅-open path from X to Y of the
product of the path coefficients and error covariances of the edges in the path (Wright, 1921; Pearl,
2009). For non-standardized variables, one has to multiply the product associated to each path with
the variance of the root variable in the path, i.e. the variable with no incoming edges. A path can
have no root variables (X ↔ Z → ⋯ → Y or X ← ⋯ ← Z ↔ W → ⋯ → Y ) or one root variable
(X → ⋯→ Y or X ← ⋯← Z → ⋯→ Y ).

When X /⊥ Y ∣Z with Z ≠ ∅, one may think that σXY ⋅Z can be obtained by first applying
path analysis to obtain an expression for σXY and, then, modifying this expression by replacing
(co)variances with conditional (co)variances given Z. However, this is incorrect as the following
example shows.

2



FACTORIZATION OF THE PARTIAL COVARIANCE IN SINGLY-CONNECTED PATH DIAGRAMS

X

Z

Y
α

δ

X

ϵX

Z ϵZ

Y ϵY
α

δ

1
1

1

(i) (ii)

Figure 1: Path diagrams in Example 1.

Example 1 Consider the path diagram (i) in Figure 1, which corresponds to the following linear
structural equation model:

X = ϵX
Y = αX + ϵY
Z = δY + ϵZ .

Consider representing the error terms explicitly in the diagram, which results in the path diagram
(ii) in Figure 1. Then,

σXY = cov(X,αX + ϵY ) = ασ2
X + cov(X, ϵY ) = ασ2

X

where the last equality follows from the fact that cov(X, ϵY ) = 0 since X⊥ϵY ∣∅. However,

σXY ⋅Z = cov(X,αX + ϵY ∣Z) = ασ2
X ⋅Z + cov(X, ϵY ∣Z) ≠ ασ2

X ⋅Z

where the last inequality follows from the fact that cov(X, ϵY ∣Z) ≠ 0 in general, since X /⊥ ϵY ∣Z
because Z is a descendant of Y , which is a collider in the path from X to ϵY .

For singly-connected path diagrams, the following two theorems show how to obtain σXY ⋅Z
from σXY . Interestingly, σXY ⋅Z can still be written as a product over the nodes and edges in the
path. See Appendix A for the proofs. Hereinafter, we use the following notation. The parents of a
node X are Pa(X) = {Y ∣Y → X}. The children of X are Ch(X) = {Y ∣X → Y }. The spouses of
X are Sp(X) = {Y ∣X ↔ Y }.

Theorem 1 Let πXY be of the form X = Xm ← ⋯ ← X2 ← X1 → Xm+1 → ⋯ → Xm+n = Y
or X = X1 → X2 → ⋯ → Xm+n = Y . Let Zi be a set of nodes such that each is connected to
Pa(Xi)∪Sp(Xi) by a path that does not contain any node in πXY .1 Let Zi be a set of nodes such
that each is connected to Ch(Xi) by a path that does not contain any node in πXY . Let Zi

i = Zi∪Zi

and Z1∶i
1∶i = Z1

1 ∪⋯ ∪Zi
i . Then,

σXY ⋅Z1∶m+n
1∶m+n

= σXY

σ2
X1⋅Z1

1

σ2
X1

m+n
∏
i=2

σ2
Xi⋅Z1∶i−1

1∶i−1Z
i
i

σ2
Xi⋅Z1∶i−1

1∶i−1Z
i

where σXY is obtained by path analysis.

1. It suffices that each node in Zi is connected to one node in Pa(Xi)∪Sp(Xi). The connecting path may be of length
zero. The path does not need to be open with respect to any set of nodes.
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Theorem 2 Let πXY be of the form X = Xm ← ⋯ ← X2 ← X1 ↔ Xm+1 → ⋯ → Xm+n = Y
or X = X1 ↔ X2 → ⋯ → Xm+n = Y . Let Zi be a set of nodes such that each is connected to
Pa(Xi) ∪ Sp(Xi) by a path that does not contain any node in πXY . Let Zi be a set of nodes such
that each is connected to Ch(Xi) by a path that does not contain any node in πXY . Let Zi

i = Zi∪Zi

and Z1∶i
1∶i = Z1

1 ∪⋯ ∪Zi
i . Then,

σXY ⋅Z1∶m+n
1∶m+n

= σXY

m+n
∏
i=1

σ2
Xi⋅Z1∶i−1

1∶i−1Z
i
i

σ2
Xi⋅Z1∶i−1

1∶i−1Z
i

where σXY is obtained by path analysis, and Z1∶0
1∶0 = ∅.

We demonstrate the theorems above on some examples in the next section. Before that, note that
the numerator and denominator of the partial variance ratio in the theorems above only differ in that
the conditioning set of the former is a superset of the conditioning set of the latter. Thus, the ratio is
never greater than 1, since conditioning never increases the variance of a random variable. There-
fore, the theorems above show that the partial covariance between two nodes can be computed by
multiplying the expression for the covariance given by path analysis with a product of partial vari-
ance ratios that account for the reduction of the partial variances of the variables in the path between
the two nodes. Thus, like the covariance, the partial covariance factorizes over the nodes and edges
in the path. Moreover, the partial covariance is never greater than the covariance. However, both
share the same sign, i.e. conditioning does not change the sign of the covariance. This implies that
if two nodes X and Y are connected by a path of the form X → ⋯ → Y , then conditioning does
not change the sign of the regression coefficient of Y on X and, thus, of the causal effect of X on
Y . This observation will be instrumental in proving in Section 5 that Simpson’s paradox does not
occur in singly-connected path diagrams. The following corollary is immediate.

Corollary 3 Let πXY be of the form in Theorems 1 or 2. Moreover, let πXY be open with respect
to the sets of nodes U and V . Then, sign(σXY ) = sign(σXY ⋅U) = sign(σXY ⋅V ).

The expressions in the theorems above can be simplified by removing irrelevant variables from
the conditioning set prior to applying the theorems. Specifically, let T = Z1∶m+n

1∶m+n , and let I =
{I1, . . . , Is} denote all the nodes in T such that X ∪ Y ⊥ Ii∣T ∖ Ii. Then, X ∪ Y ⊥ I ∣T ∖ I
by repeated application of the intersection property (Studený, 2005, Proposition 2.1) and, thus,
σXY ⋅T = σXY ⋅T∖I . In other words, I contains irrelevant nodes. As a matter of fact, I contains all
the irrelevant nodes. To see it, assume to the contrary that there exists a second set of nodes I ′ ⊈ I
such that X ∪ Y ⊥ I ′∣T ∖ I ′. Then, X ∪ Y ⊥ I ′j ∣T ∖ I ′j for all I ′j ∈ I ′ by the weak union property
(Studený, 2005, Lemma 2.1), which contradicts the definition of I .

To sum up, the relevance of the theorems above lies in that they somehow complement path anal-
ysis: While path analysis in a singly-connected path diagram determines the contribution of each
node and edge to the covariance σXY , the theorems above determine the contribution of each node
and edge to the partial covariance σXY ⋅Z1∶m+n

1∶m+n
. Specifically, the theorems indicate whether the con-

tribution of each node and edge to the covariance changes by conditioning and, if so, by how much.
For example, consider Theorem 1 and let πXY be of the form X = X1 → X2 → ⋯ → Xm+n = Y .
It follows from the theorem that the contribution of each edge in πXY to the covariance and partial
covariance is the same, namely the corresponding path coefficient. It follows from path analysis
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Figure 2: Path diagrams in Examples 2 and 3.

that the contribution of X1 to the covariance is σ2
X1

. The theorem shows that this contribution gets

reduced by a factor of
σ2

X1 ⋅Z
1
1

σ2
X1

when conditioning on Z1
1 . Likewise, the contribution of X2 to the

covariance is 1. This contribution gets reduced by a factor of
σ2

Xi ⋅Z
1
1
Z2
2

σ2

Xi ⋅Z
1
1
Z2

when conditioning on Z2
2 .

This indicates that conditioning on Z2 may change the variance of X2 but it does not constrain
X2 so as to alter the contribution of X2. Conditioning on Z2, on the other hand, has the opposite
effect. Likewise for the rest of the nodes in πXY . This fine-grained analysis is not possible with the
recursion in Equation 1.

3. Causal Phenomena Explained

In this section, we demonstrate Theorems 1 and 2 on some examples that shed light on some causal
phenomena. The examples are borrowed from Pearl (2013), who studied them using Equation 1.
The objective of this section is purely illustrative. That is, we do not compare our explanations and
those by Pearl (2013), as our theorems and Equation 1 address different problems.

Example 2 Consider the path diagram (i) in Figure 2. The causal effect of X on Y is given by
the regression coefficient rY X = αβ. Since W does not lie on the causal path from X to Y , one
may think that the causal effect of X on Y is also given by the partial regression coefficient rY X ⋅W ,
which can be computed from the subpopulation satisfying W = w for any w. However, this is
incorrect as shown by Pearl (2013, Section 3.2). We arrive at the same conclusion as Pearl (2013)
by applying Theorem 1 with X1 = X,X2 = Z,X3 = Y,Z1

1 = Z2 = Z3 = Z3
3 = ∅, and Z2

2 = {W},
which gives that

σXY ⋅W = σXY
σ2
X

σ2
X

σ2
Z ⋅W
σ2
Z

σ2
Y ⋅W

σ2
Y ⋅W

.

Moreover, σXY = σ2
Xαβ by path analysis. Then,

rY X ⋅W =
σXY ⋅W
σ2
X ⋅W

= αβ
σ2
X

σ2
X ⋅W

σ2
Z ⋅W
σ2
Z

and, thus, rY X ⋅W ≠ αβ unless γ = 0 or α = σZ/σX . To see it, note that

σ2
X ⋅W = σ2

X −
σXWσWX

σ2
W

= σ2
X −
(σ2

Xαγ)2

σ2
W

= σ2
X(

σ2
W − σ2

Xα2γ2

σ2
W

)
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and, similarly,

σ2
Z ⋅W = σ2

Z(
σ2
W − σ2

Zγ
2

σ2
W

).

Then,
σ2
X

σ2
X ⋅W

σ2
Z ⋅W
σ2
Z

=
σ2
W − σ2

Zγ
2

σ2
W − σ2

Xα2γ2
= 1

if and only if γ = 0 or α = σZ/σX .2

As also shown by Pearl (2013, Section 3.2), no bias is introduced when conditioning on W in
the path diagram (ii) in Figure 2. We arrive at the same conclusion as Pearl (2013) by applying
Theorem 1 with X1 =X,X2 = Z,X3 = Y,Z1

1 = Z3
3 = ∅, and Z2 = Z2

2 = {W}, which gives that

σXY ⋅W = σXY
σ2
X

σ2
X

σ2
Z ⋅W

σ2
Z ⋅W

σ2
Y ⋅W

σ2
Y ⋅W

.

Moreover, σXY = σ2
Xαβ by path analysis. Then,

rY X ⋅W =
σXY ⋅W
σ2
X ⋅W

= αβ
σ2
X

σ2
X ⋅W

= αβ

where the last equality follows from the fact that X⊥W ∣∅ and, thus, σ2
X = σ2

X ⋅W .

Example 3 Consider the path diagram (iii) in Figure 2. The causal effect of X on Y is given by
rY X = α. As shown by Pearl (2013, Section 3.3), conditioning on Z introduces a bias. We arrive at
the same conclusion as Pearl (2013) by applying Theorem 1 with X1 = X,X2 = Y,Z1

1 = Z2 = ∅,
and Z2

2 = {Z}, which gives that

σXY ⋅Z = σXY
σ2
X

σ2
X

σ2
Y ⋅Z
σ2
Y

.

Moreover, σXY = σ2
Xα by path analysis. Then,

rY X ⋅Z =
σXY ⋅Z
σ2
X ⋅Z

= α
σ2
X

σ2
X ⋅Z

σ2
Y ⋅Z
σ2
Y

. (2)

and, thus, rY X ⋅Z ≠ α unless δ = 0 or α = σY /σX as shown in Example 2. In summary, the causal
effect of X on Y cannot be computed from the subpopulation satisfying Z = z because rY X ⋅Z ≠ α.
However, if σ2

X and σ2
Z are known, then the causal effect can be computed from that subpopulation

by correcting rY X ⋅Z as shown in Equation 2.
As also shown by Pearl (2013, Section 3.3), no bias is introduced when conditioning on Z in

the path diagram (iv) in Figure 2. We arrive at the same conclusion as Pearl (2013) by applying
Theorem 1 with X1 =X,X2 = Y,Z1

1 = {Z}, and Z2 = Z2
2 = ∅, which gives that

σXY ⋅Z = σXY
σ2
X ⋅Z
σ2
X

σ2
Y ⋅Z

σ2
Y ⋅Z

.

2. The effect of setting γ = 0 on rY X ⋅W is as follows. Setting γ = 0 is equivalent to removing the edge Z → W from
the path diagram (i) in Figure 2, which implies that rY X ⋅W = αβ. The effect of setting α = σZ/σX on rY X ⋅W

is as follows. The path diagram (i) in Figure 2 corresponds to a model that contains the linear structural equation
Z = αX + ϵZ with X ⊥ ϵZ ∣∅. Then, σ2

Z = α2σ2
X + var(ϵZ) and, thus, var(ϵZ) = 0 when α = σZ/σX , i.e. Z is

completely determined by X . In other words, the diagram (i) in Figure 2 reduces to the diagram (iv), which is studied
in Example 3.
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Moreover, σXY = σ2
Xa by path analysis. Then,

rY X ⋅Z =
σXY ⋅Z
σ2
X ⋅Z

= a.

The examples above show that conditioning on a child of a mediator or on a child of the effect
introduces a bias in the estimation of the causal effect of interest. Appendix B illustrates with
experiments how this bias may lead to suboptimal decision making. On the other hand, the examples
above show that conditioning on a parent of a mediator or on a child of the cause does not introduce
any bias, which implies that the causal effect of interest can be computed from the corresponding
subpopulation.

For completeness, we show below that conditioning on a parent of the cause or on a parent of
the effect does not introduce any bias.

Example 4 Consider the path diagram (ii) in Figure 2. The causal effect of Z on Y is given by
rY Z = β. We conclude that rY Z ⋅W = β by applying Theorem 1 with X1 = Z,X2 = Y,Z1

1 = {W},
and Z2 = Z2

2 = ∅. Specifically,

σZY ⋅W = σZY
σ2
Z ⋅W
σ2
Z

σ2
Y ⋅W

σ2
Y ⋅W

.

Moreover, σZY = σ2
Zβ by path analysis. Then,

rY Z ⋅W =
σZY ⋅W
σ2
Z ⋅W

= β.

This result also follows from the first rule of do-calculus (Pearl, 2009, Section 3.4).
Consider again the path diagram (ii) in Figure 2. The causal effect of X on Z is given by

rZX = α. We conclude that rZX ⋅W = α by applying Theorem 1 with X1 = X,X2 = Z,Z1
1 = ∅, and

Z2 = Z2
2 = {W}. Specifically,

σXZ ⋅W = σXZ
σ2
X

σ2
X

σ2
Z ⋅W

σ2
Z ⋅W

.

Moreover, σXZ = σ2
Xα by path analysis. Then,

rZX ⋅W =
σXZ ⋅W
σ2
X ⋅W

= α
σ2
X

σ2
X ⋅W

= α

where the last equality follows from the fact that X ⊥W ∣∅ and, thus, σ2
X = σ2

X ⋅W . We can arrive at
the same conclusion by applying the definition of partial covariance. Specifically,

σXZ ⋅W = σXZ −
σXWσWZ

σ2
W

= σXZ

because X⊥W ∣∅ implies that σXW = 0.

Finally, the example below shows that Theorems 1 and 2 may be of help even when the path
diagram at hand is not singly-connected. The example is borrowed from Pearl (2013).
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Figure 3: Path diagrams in Example 5.

Example 5 Consider the path diagram (i) in Figure 3. Let us denote it by G. Moreover, let Gα

denote the diagram that results when the edge X → Y is deleted from G. Since X ⊥Y ∣U holds in
Gα, we have that α = rY X ⋅U (Pearl, 2009, Theorem 5.3.1). However, if U is unobserved then rY X ⋅U
cannot be computed. Assume that the proxy Z of U is observed and, thus, rY X ⋅Z can be computed.
Of course, α ≠ rY X ⋅Z because X ⊥Y ∣Z does not hold in Gα. However, Pearl (2013, Section 3.11)
shows that the bias introduced by adjusting for Z instead of U vanishes as the correlation between
U and Z grows, i.e. when Z is a good proxy of U . The same occurs in the path diagram (ii) in
Figure 3.

Although the path diagrams in Figure 3 are not singly-connected, we can still use our results to
reach the same conclusions as Pearl. Since the covariance of X and Y may differ in G and Gα,
we use σXY for the former and σα

XY for the latter. For the same reason, we distinguish between
σXY ⋅Z and σα

XY ⋅Z . Since the variance of U is the same in G and Gα, we simply denote it as
σ2
U . For the same reason, we use σ2

U ⋅Z to denote the partial variance of U given Z in both G
and Gα. Note that checking whether X ⊥ Y ∣Z holds in Gα is equivalent to checking whether
σα
XY ⋅Z = 0 holds. Since Gα is a singly-connected path diagram, we can apply Theorem 1 and

conclude that σα
XY ⋅Z = σα

XY σ
2
U ⋅Z/σ2

U . This implies that, although conditioning on Z does not
nullify the covariance of X and Y in Gα, it does reduce it. Moreover, the greater the correlation
between U and Z, the greater the reduction and, thus, the closer rY X ⋅Z comes to α. We illustrate
this with some experiments in Appendix C.

4. Paths with Colliders

In this section, we address the case where πXY has colliders. Specifically, let πXY be Z-open.
Given a collider C in πXY , an opener is any node W ∈ Z such that C = C1 → ⋯ → Cn = W and
C1, . . . ,Cn−1 ∉ Z. Note that C is an opener if C ∈ Z.

Theorem 4 Let C be a collider in πXY . Moreover, let πXY be closed with respect to Z but open
with respect to Z ∪ Z1∶n

1∶n ∪W1∶n where (i) W1, . . . ,Wn are openers for C, (ii) Zi is a set of nodes
such that each is connected to Pa(Wi) ∪ Sp(Wi) by a path that does not contain any node in
πXY or πCWi , (iii) Zi is a set of nodes such that each is connected to Ch(Wi) by a path, and (iv)
Z1∶j
1∶i = Z1 ∪⋯ ∪Zi ∪Z1 ∪⋯ ∪Zj . Then,

σXY ⋅ZZ1∶n
1∶nW1∶n

= −
n

∑
i=1

σXWi⋅ZZ1∶i
1∶i−1W1∶i−1

σWiY ⋅ZZ1∶i
1∶i−1W1∶i−1

σ2
Wi⋅ZZ1∶i

1∶i−1W1∶i−1

(3)

where Z1∶1
1∶0 = Z1 and W1∶0 = ∅.
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X C C ′

W1 W2

Y

Z1

Z1

Figure 4: Path diagram in Example 6.

In the theorem above, if πXWi has some collider then σXWi⋅ZZ1∶i
1∶i−1W1∶i−1

is obtained by recur-
sively applying the theorem to πXWi . When πXWi has no colliders, σXWi⋅ZZ1∶i

1∶i−1W1∶i−1
is obtained

as shown in Theorems 1 and 2. Likewise for πWiY and σWiY ⋅ZZ1∶i
1∶i−1W1∶i−1

. Example 6 demon-
strates this recursive procedure. Specifically, let πXY have colliders C1, . . . ,Ck, where Ci has
openers Wi = {Wi1, . . . ,Wini}. Then, the recursive procedure just described allows us to write
σXY ⋅ZZ1∶n

1∶nW1∶n
as

(−1)k ∑
O1∈W1

⋯ ∑
Ok∈Wk

σXO1⋅UO1
σO1O2⋅UO1∶2

⋯ σOk−1Ok ⋅UO1∶k
σOkY ⋅UO1∶k

σ2
O1⋅UO1

σ2
O2⋅UO1∶2

⋯ σ2
Ok−1⋅UO1∶k

σ2
Ok ⋅UO1∶k

(4)

for some sets of nodes UO1 , UO1∶2 , . . . , UO1∶k
. In other words, the partial covariance decomposes

as a sum over the different ways of opening πXY , and each term in the sum is a product of calls
to Theorems 1 and 2. Then, each term in the sum factorizes over the nodes and edges of πXY .
This resembles how path analysis on unconstrained path diagrams decomposes the covariance of
two random variables over the different ∅-open paths between them. We demonstrate the theorem
above with an example.

Example 6 Consider the path diagram in Figure 4. Then, the partial covariance σXY ⋅C′Z1
1W1∶2

can be computed with the help of Theorem 4 with Z = {C ′}. Specifically,

σXY ⋅C′Z1
1W1∶2

= −
σXW1⋅C′Z1σW1Y ⋅C′Z1

σ2
W1⋅C′Z1

−
σXW2⋅C′Z1

1W1
σW2Y ⋅C′Z1

1W1

σ2
W2⋅C′Z1

1W1

.

Moreover, σXW1⋅C′Z1 and σXW2⋅C′Z1
1W1

can be computed as shown in Theorem 1. On the other
hand, σW1Y ⋅C′Z1 and σW2Y ⋅C′Z1

1W1
can be computed by applying Theorem 4 again with Z = {Z1}

and Z = Z1
1 ∪ {W1}, respectively. Specifically,

σW1Y ⋅C′Z1 = −
σW1C′⋅Z1σC′Y ⋅Z1

σ2
C′⋅Z1

and
σW2Y ⋅C′Z1

1W1
= −

σW2C′⋅Z1
1W1

σC′Y ⋅Z1
1W1

σ2
C′⋅Z1

1W1

where the partial covariances in the numerators can be computed as shown in Theorems 1 and 2.
Putting all together, we have that

σXY ⋅C′Z1
1W1∶2

=
σXW1⋅C′Z1σW1C′⋅Z1σC′Y ⋅Z1

σ2
W1⋅C′Z1σ

2
C′⋅Z1

+
σXW2⋅C′Z1

1W1
σW2C′⋅Z1

1W1
σC′Y ⋅Z1

1W1

σ2
W2⋅C′Z1

1W1
σ2
C′⋅Z1

1W1

which confirms Equation 4 and the discussion thereof.

9
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5. Simpson’s Paradox

In this section, we use the theorems developed in the previous sections to show that Simpson’s
paradox does not occur in singly-connected path diagrams. For path diagrams, Simpson’s paradox
can be described as the reversal of the sign of the regression coefficient of a random variable Y on
a second variable X upon conditioning on a set of variables Z. Note that this is a generalization
of the definition by Pearl (2013, 2014), who restricts Z to a singleton. Pearl (2013, Section 3.1)
shows that the paradox can well occur for the path diagram X → Y ← Z → X . Note that the
diagram is not singly-connected. Pearl (2014, Section 2.2) argues that the paradox does not occur
for the singly-connected path diagrams Z ← X → Y , Z → X → Y , and X → Y ← Z, because
the association between X and Y is collapsible over Z. However, the correctness of this statement
depends on the definition of association. To see it, recall from Pearl (2009, Definition 6.5.1) that
given a functional g(p(x, y)) that measures the association between two random variables Y and
X in p(x, y), we say that g is collapsible over a variable Z if

Ez[g(p(x, y∣z))] = g(p(x, y)).

If we now consider the diagram Z ← X → Y and let g be the covariance between Y and X , then
collapsibility does not hold since

Ez[g(p(x, y∣z))] = Ez[cov(X,Y ∣Z = z)] = cov(X,Y ∣Z) = σXY ⋅Z ≠ σXY = g(p(x, y))

where the second equality follows from the fact that the conditional covariance does not depend
on the value on which we condition, and the inequality is proven in Example 3. Similarly for the
diagram Z → X → Y as shown in Example 4. For the diagram X → Y ← Z, on the other hand,
collapsibility does hold as shown in Example 4. If we instead let g be the regression coefficient of
Y on X , then collapsibility holds for the three diagrams under consideration, as shown in Examples
3 and 4. Moreover, Pearl (2014) does not discuss if Simpson’s paradox can occur for the diagram
X → Y → Z. Recall that Example 3 shows that collapsibility does not hold for this diagram,
regardless of whether association means covariance or regression coefficient. Pearl does not discuss
either the case of singly-connected path diagrams where X and Y are connected by a path of length
greater than one with and without colliders, or the case where the conditioning set contains more
than one variable. We fill these gaps below.

Note that Simpson’s paradox concerns the sign of the regression coefficient of a random variable
Y on a random variable X upon conditioning on a set of variables Z or, equivalently, it concerns the
sign of the covariance between X and Y upon conditioning on Z. Therefore, we are interested in the
collapsibility of the sign rather than in the collapsibility of the regression coefficient or covariance.
Corollary 3 implies that conditioning does not change the sign of the covariance for paths without
colliders. The following theorem shows that this also holds for paths with colliders. Consequently,
Simpson’s paradox cannot occur in any singly-connected path diagram.

Theorem 5 Let πXY be open with respect to the sets of nodes U and V . Then, sign(σXY ⋅U) =
sign(σXY ⋅V ).

Note that the result above is actually stronger than required to disprove Simpson’s paradox,
because U may neither include nor be included in V .

10
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It is worth mentioning that Ong (2014, Theorem 6.6) proves the theorem above by other means
when U and V only contain descendants of the colliders in πXY . Ong states that the proof can be
extended to include other conditionates, as in our theorem. However, since he does not provide the
details, we believe that our proof fills some gap. Moreover, Ong does not discuss the relevance of
this result for disproving Simpson’s paradox. Therefore, our discussion above fills some gap, too.

6. Discussion

In this work, we have extended path analysis by showing that, for a singly-connected path diagram,
the partial covariance of two random variables factorizes over the nodes and edges in the path
between the variables. This result applies even when the path contains colliders. We find the case
where the path has no colliders particularly interesting, since then the partial covariance can be
computed by multiplying the expression for the covariance given by path analysis with a product
of partial variance ratios that account for the reduction of the partial variances of the variables in
the path. Moreover, these results have allowed us to show that Simpson’s paradox cannot occur in
singly-connected path diagrams. Naturally, we would like in the future to extend our results beyond
singly-connected path diagrams. Appendix E presents a first attempt in this direction.
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Appendix A. Proofs of Sections 2-5

Recall that in all the results in this appendix the path diagram is assumed to be singly-connected.

Lemma 6 Let S be the root node in a path πXY without colliders, i.e. A ← S → B or S → B is
a subpath of πXY . Note that S = X or S = Y in the latter case. Let W be a set of nodes such that
each is connected to Pa(S) ∪ Ch(S) ∪ Sp(S) by a path that does not contain any node in πXY .
Then,

σXY ⋅ZW = σXY ⋅Z
σ2
S⋅ZW

σ2
S⋅Z

.

Proof Assume that W is a singleton. Consider first the case where A ← S → B is a subpath of
πXY . Note that X⊥W ∣Z ∪ S. Then,

0 = σXW ⋅ZS = σXW ⋅Z −
σXS⋅ZσSW ⋅Z

σ2
S⋅Z

which implies that σXW ⋅Z = δXS⋅ZσSW ⋅Z where δXS⋅Z = σXS⋅Z/σ2
S⋅Z . Likewise, Y ⊥W ∣Z ∪ S

implies that σYW ⋅Z = δY S⋅ZσSW ⋅Z where δY S⋅Z = σY S⋅Z/σ2
S⋅Z . Likewise, X⊥Y ∣Z ∪S implies that

0 = σXY ⋅ZS = σXY ⋅Z −
σXS⋅ZσSY ⋅Z

σ2
S⋅Z

which implies that σXY ⋅Z = δXS⋅ZδY S⋅Zσ
2
S⋅Z . Therefore,

σXY ⋅ZW = σXY ⋅Z −
σXW ⋅ZσWY ⋅Z

σ2
W ⋅Z

= δXS⋅ZδY S⋅Zσ
2
S⋅Z −

δXS⋅ZσSW ⋅ZδY S⋅ZσSW ⋅Z
σ2
W ⋅Z

= δXS⋅ZδY S⋅Z(σ2
S⋅Z −

σSW ⋅ZσSW ⋅Z
σ2
W ⋅Z

)

= δXS⋅ZδY S⋅Zσ
2
S⋅ZW = σXY ⋅Z

σ2
S⋅ZW

σ2
S⋅Z

.

Now, consider the case where S → B is a subpath of πXY . Assume without loss of generality
that S =X . Note that Y ⊥W ∣Z ∪X . Then,

0 = σYW ⋅ZX = σYW ⋅Z −
σY X ⋅ZσXW ⋅Z

σ2
X ⋅Z

12
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which implies that
σYW ⋅Z =

σY X ⋅ZσXW ⋅Z
σ2
X ⋅Z

.

Therefore,

σXY ⋅ZW = σXY ⋅Z −
σXW ⋅ZσWY ⋅Z

σ2
W ⋅Z

= σXY ⋅Z −
σXW ⋅ZσY X ⋅ZσXW ⋅Z

σ2
W ⋅Zσ

2
X ⋅Z

= σXY ⋅Z(1 −
σXW ⋅ZσXW ⋅Z
σ2
W ⋅Zσ

2
X ⋅Z

) = σXY ⋅Z
σ2
X ⋅Z
(σ2

X ⋅Z −
σXW ⋅ZσXW ⋅Z

σ2
W ⋅Z

)

= σXY ⋅Z
σ2
X ⋅ZW

σ2
X ⋅Z

.

Repeated application of the paragraphs above proves the result for when W is a set. Specifically,
let W = {W1, . . . ,Wn}. Then,

σXY ⋅ZW1 = σXY ⋅Z
σ2
S⋅ZW1

σ2
S⋅Z

by replacing W with W1 in the paragraphs above. Likewise,

σXY ⋅ZW1W2 = σXY ⋅ZW1

σ2
S⋅ZW1W2

σ2
S⋅ZW1

by replacing Z and W with Z ∪ {W1} and W2, respectively, in the paragraphs above. These last
two results imply that

σXY ⋅ZW1W2 = σXY ⋅Z
σ2
S⋅ZW1W2

σ2
S⋅Z

.

Continuing with this process for W3, . . . ,Wn yields the desired result.

Lemma 7 Let S be a non-root node in a path πXY without colliders, i.e. A ←⊸S → B or A ←⊸S
is a subpath of πXY . Note that S =X or S = Y in the latter case. Let W be a set of nodes such that
each is connected to Pa(S) ∪ Sp(S) by a path that does not contain any node in πXY . Then,

σXY ⋅ZW = σXY ⋅Z

if Z contains no descendants of S.

Proof Assume that W is a singleton. Then,

σXY ⋅ZW = σXY ⋅Z −
σXW ⋅ZσWY ⋅Z

σ2
W ⋅Z

which implies that σXY ⋅ZW = σXY ⋅Z because σXW ⋅Z = 0 or σWY ⋅Z = 0 since X⊥W ∣Z or W ⊥Y ∣Z.
Repeated application of the paragraph above proves the result for when W is a set. Specifically,

let W = {W1, . . . ,Wn}. Then,
σXY ⋅ZW1 = σXY ⋅Z

13
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by replacing W with W1 in the paragraph above. Likewise,

σXY ⋅ZW1W2 = σXY ⋅ZW1

by replacing Z and W with Z ∪ {W1} and W2, respectively, in the paragraph above. These last two
results imply that

σXY ⋅ZW1W2 = σXY ⋅Z .

Continuing with this process for W3, . . . ,Wn yields the desired result.

Lemma 8 Let S be a non-root node in a path πXY without colliders, i.e. A ←⊸S → B or A ←⊸S
is a subpath of πXY . Note that S =X or S = Y in the latter case. Let W be a set of nodes such that
each is connected to Ch(S) by a path that does not contain any node in πXY . Then,

σXY ⋅ZW = σXY ⋅Z
σ2
S⋅ZW

σ2
S⋅Z

.

Proof Assume that W is a singleton. Consider first the case where A ←⊸S → B is a subpath of
πXY . Note that X⊥W ∣Z ∪ S. Then,

0 = σXW ⋅ZS = σXW ⋅Z −
σXS⋅ZσSW ⋅Z

σ2
S⋅Z

which implies that σXW ⋅Z = σXS⋅ZδSW ⋅Z where δSW ⋅Z = σSW ⋅Z/σ2
S⋅Z . Note also that Y ⊥W ∣Z∪S.

Then,
0 = σYW ⋅ZS = σYW ⋅Z −

σY S⋅ZσSW ⋅Z
σ2
S⋅Z

which implies that σYW ⋅Z = δY S⋅ZσSW ⋅Z where δY S⋅Z = σY S⋅Z/σ2
S⋅Z . Likewise, X ⊥ Y ∣Z ∪ S

implies that
0 = σXY ⋅ZS = σXY ⋅Z −

σXS⋅ZσSY ⋅Z
σ2
S⋅Z

which implies that σXY ⋅Z = σXS⋅ZδY S⋅Z . Therefore,

σXY ⋅ZW = σXY ⋅Z −
σXW ⋅ZσWY ⋅Z

σ2
W ⋅Z

= σXY ⋅Z −
σXS⋅ZδSW ⋅ZδY S⋅ZσSW ⋅Z

σ2
W ⋅Z

= σXY ⋅Z(1 −
δSW ⋅ZσSW ⋅Z

σ2
W ⋅Z

) = σXY ⋅Z
σ2
S⋅Z
(σ2

S⋅Z −
σ2
S⋅ZδSW ⋅ZσSW ⋅Z

σ2
W ⋅Z

)

= σXY ⋅Z
σ2
S⋅ZW

σ2
S⋅Z

.

Now, consider the case where A ←⊸S is a subpath of πXY . Assume without loss of generality
that S = Y . Note that X⊥W ∣Z ∪ Y . Then,

0 = σXW ⋅ZY = σXW ⋅Z −
σXY ⋅ZσYW ⋅Z

σ2
Y ⋅Z

which implies that
σXW ⋅Z =

σXY ⋅ZσYW ⋅Z
σ2
Y ⋅Z

.

14
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Therefore,

σXY ⋅ZW = σXY ⋅Z −
σXW ⋅ZσWY ⋅Z

σ2
W ⋅Z

= σXY ⋅Z −
σXY ⋅ZσYW ⋅ZσWY ⋅Z

σ2
Y ⋅Zσ

2
W ⋅Z

= σXY ⋅Z(1 −
σYW ⋅ZσWY ⋅Z
σ2
Y ⋅Zσ

2
W ⋅Z

) = σXY ⋅Z
σ2
Y ⋅Z
(σ2

Y ⋅Z −
σYW ⋅ZσWY ⋅Z

σ2
W ⋅Z

)

= σXY ⋅Z
σ2
Y ⋅ZW

σ2
Y ⋅Z

.

Repeated application of the paragraphs above proves the result for when W is a set. Specifically,
let W = {W1, . . . ,Wn}. Then,

σXY ⋅ZW1 = σXY ⋅Z
σ2
S⋅ZW1

σ2
S⋅Z

by replacing W with W1 in the paragraphs above. Likewise,

σXY ⋅ZW1W2 = σXY ⋅ZW1

σ2
S⋅ZW1W2

σ2
S⋅ZW1

by replacing Z and W with Z ∪ {W1} and W2, respectively, in the paragraphs above. These last
two results imply that

σXY ⋅ZW1W2 = σXY ⋅Z
σ2
S⋅ZW1W2

σ2
S⋅Z

.

Continuing with this process for W3, . . . ,Wn yields the desired result.

Proof of Theorem 1 First, note that

σXmXm+n⋅Z1
1
= σXmXm+n

σ2
X1⋅Z1

1

σ2
X1

by Lemma 6. Then, note that
σXmXm+n⋅Z1

1Z
2 = σXmXm+n⋅Z1

1

by Lemma 7. Finally, note that

σXmXm+n⋅Z1
1Z

2Z2
= σXmXm+n⋅Z1

1Z
2

σ2
X1⋅Z1

1Z
2Z2

σ2
X1⋅Z1

1Z
2

by Lemma 8. Continuing with this process for the rest of the nodes yields the desired result.

Proof of Theorem 2 First, note that

σXmXm+n⋅Z1 = σXmXm+n

by Lemma 7. Then, note that

σXmXm+n⋅Z1Z1
= σXmXm+n⋅Z1

σ2
X1⋅Z1Z1

σ2
X1⋅Z1

15
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by Lemma 8. Continuing with this process for the rest of the nodes yields the desired result.

Proof of Theorem 4 First, note that

σXY ⋅ZZ1∶n
1∶nW1∶n

= σXY ⋅ZZ1∶n
1∶n−1W1∶n

= σXY ⋅ZZ1∶n
1∶n−1W1∶n−1

−
σXWn⋅ZZ1∶n

1∶n−1W1∶n−1
σWnY ⋅ZZ1∶n

1∶n−1W1∶n−1

σ2
Wn⋅ZZ1∶n

1∶n−1W1∶n−1

= σXY ⋅ZZ1∶n−1
1∶n−1W1∶n−1

−
σXWn⋅ZZ1∶n

1∶n−1W1∶n−1
σWnY ⋅ZZ1∶n

1∶n−1W1∶n−1

σ2
Wn⋅ZZ1∶n

1∶n−1W1∶n−1

because X ∪ Y ⊥Zn∣Z ∪ Z1∶n
1∶n−1 ∪W1∶n and X ∪ Y ⊥Zn∣Z ∪ Z1∶n−1

1∶n−1 ∪W1∶n−1. Then, the theorem
follows by recursively applying the paragraph above to σXY ⋅ZZ1∶n−1

1∶n−1W1∶n−1
until n − 1 = 0, in which

case σXY ⋅ZZ1∶n−1
1∶n−1W1∶n−1

= σXY ⋅Z = 0 because X⊥Y ∣Z.

Lemma 9 Let πXY be a path that is open with respect to a set of nodes U . Then, the sign of σXY ⋅U
does not depend on U , i.e. sign(σXY ) = sign(σXY ⋅U).

Proof If πXY has no colliders, then the result follows from Corollary 3. Otherwise, consider any
collider C in πXY , and split U into Z ∪Z1∶n

1∶n ∪W1∶n as indicated in Theorem 4. We prove the result
by induction over the number of colliders in πXY . First, assume that C is the only collider in πXY .
Consider the following two cases.

Case 1. Suppose that C is an opener for the collider C. Then, C is the only opener by definition and,
thus, the summation in Equation 3 reduces to

σXW1⋅ZZ1σW1Y ⋅ZZ1

σ2
W1⋅ZZ1

with W1 = C.

Case 2. Suppose that C is not an opener for the collider C. Then, note that X ⊥Wi∣Z ∪ Z1∶i
1∶i−1 ∪

W1∶i−1 ∪C for all i. Then,

0 = σXWi⋅ZZ1∶i
1∶i−1W1∶i−1C

= σXWi⋅ZZ1∶i
1∶i−1W1∶i−1

−
σXC ⋅ZZ1∶i

1∶i−1W1∶i−1
σCWi⋅ZZ1∶i

1∶i−1W1∶i−1

σ2
C ⋅ZZ1∶i

1∶i−1W1∶i−1

and thus

σXWi⋅ZZ1∶i
1∶i−1W1∶i−1

=
σXC ⋅ZZ1∶i

1∶i−1W1∶i−1
σCWi⋅ZZ1∶i

1∶i−1W1∶i−1

σ2
C ⋅ZZ1∶i

1∶i−1W1∶i−1

.

Likewise for σWiY ⋅ZZ1∶i
1∶i−1W1∶i−1

. Then, each term in the summation in Equation 3 can be
rewritten as

σXC ⋅ZZ1∶i
1∶i−1W1∶i−1

σCY ⋅ZZ1∶i
1∶i−1W1∶i−1

σ2
CWi⋅ZZ1∶i

1∶i−1W1∶i−1

σ2
Wi⋅ZZ1∶i

1∶i−1W1∶i−1
σ4
C ⋅ZZ1∶i

1∶i−1W1∶i−1

.
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In both cases above, πXC and πY C have no colliders and, thus, the signs of σXC ⋅M and σCY ⋅N
do not depend on M and N by Corollary 3 for any sets of nodes M and N . Therefore, the sign of
σXY ⋅ZZ1∶n

1∶nW1∶n
is the same in both cases above and, moreover, it does not depend on Z∪Z1∶n

1∶n ∪W1∶n.
After proving above that the result holds for any path with zero or one collider, we now assume

as induction hypothesis that the result holds for any path with fewer than k colliders. To prove it for
k colliders, we simply let C be any collider in πXY and consider the same two cases as above. Note
that πXC and πCY may now have colliders. So, Corollary 3 does not apply. However, since πXC

and πCY have fewer than k colliders, the induction hypothesis does apply, which leads to the same
conclusions as before.

Proof of Theorem 5 It follows from Lemma 9.

Appendix B. Suboptimal Decision Making I

In this appendix, we show that the bias introduced by conditioning on a child of the effect (recall
Example 3) may lead to suboptimal decision making. We do so with the help of the following
fictitious but, in our opinion, realistic scenario. Doctor 1 and Doctor 2 both treat a certain disease
by administering approximately 5 units of drug X , i.e. X ∼ N (5, σX). The doctors use different
methods to administer the drug, which we suspect affects the effectiveness of the drug. The effec-
tiveness of the drug is assessed by measuring the abundance of Y in blood, which is determined by
X , i.e. Y = αiX + ϵY for Doctor i and ϵY ∼ N (0, σY ). The higher the value of Y the higher the
effectiveness of the treatment. Moreover, the doctors also monitor the abundances of Z and W in
blood, which are determined by respectively X and Y , specifically Z = X + ϵZ and W = Y + ϵW
for both doctors and ϵZ ∼ N (0, σZ) and ϵW ∼ N (0, σW ). The doctors divide the treatments into
ordinary and extraordinary. Specifically, Doctor 1 declares the treatment ordinary when 4 < Z < 6,
and Doctor 2 when 4 <W < 6. The doctors share with us data only about ordinary treatments. They
believe that extraordinary treatments may lead to new findings about the disease at hand and, thus,
they are not willing to share them as of today.

The problem above can be rephrased as follows. We want to estimate α1 in the following path
diagram (Doctor 1) from a sample of the subpopulation satisfying 4 < Z < 6:

X

Z

Y
α1

1

We also want to estimate α2 in the following path diagram (Doctor 2) from a sample of the subpop-
ulation satisfying 4 <W < 6:

X

W

Y
α2

1

As discussed in Example 3, the estimate of α1 will be unbiased, whereas the estimate of α2 will be
biased. This may make us recommend the suboptimal doctor to future patients. We illustrate this
below with some experiments.
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Figure 5: Estimates of α1 and α2 obtained by ϵ-greedy without correction (top) and with correction
(bottom).
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Estimating α1 and α2 above can be seen as an instance of the exploration/exploitation dilemma:
In order to learn the effectiveness of the treatment administered by a particular doctor, the doctor
has to administer the treatment to some patients, which leads to some patients receiving suboptimal
treatment. A straightforward solution to this dilemma consists in combining exploration and ex-
ploitation as follows: Select the doctor with the highest effectiveness so far (i.e. exploitation) with
probability 1 − ϵ, otherwise select the doctor at random (i.e. exploration). This strategy is called
ϵ-greedy in the reinforcement learning community (Sutton and Barto, 2018).

Figure 5 (top) shows the estimates of α1 and α2 (denoted as α̂1 and α̂2) obtained by running ϵ-
greedy for 5000 iterations (a.k.a. episodes). Each episode consists in selecting a doctor for treating
a patient. The doctor shares the data with us only if the treatment is regarded as ordinary. In our
experiments, this means that each episode starts by choosing a doctor, say Doctor 1, according to
the ϵ-greedy strategy. Then, a triplet of values (x, y, z) is sampled from the corresponding linear
structural equation model.3 Finally, the triplet is kept if 4 < z < 6 and discarded otherwise. In the
figure, we can clearly see that α̂1 converges to α1, whereas α̂2 does not converge to α2. Moreover,
α̂1 converges to a larger value than α̂2, which means that Doctor 1 is considered more effective
than Doctor 2 and, thus, we should recommend the former. This is suboptimal because, as shown
in the figure, α2 is greater than α1 and, thus, Doctor 2 should be preferred. This conclusion was
consistent across many runs of the experiment. In each run, α1 and α2 were sampled uniformly
from the intervals (0.5,1.5) and (α1 +0.15, α1 +0.3) respectively, i.e. Doctor 2 was more effective
than Doctor 1. In each run, σX = σY = σZ = σW = 1.

As discussed in Example 3, if we can estimate σ2
X and σ2

Y , then we can correct the bias in α̂2.
To illustrate this, assume that the doctors do not share with us data about individual extraordinary
treatments but they do share aggregated data, in particular some estimates of σ2

X and σ2
Y (which

they can compute from all the ordinary and extraordinary treatments performed). Figure 5 (bottom)
shows α̂1 and α̂2 when the correction is applied to the latter. We can appreciate that both path
coefficient estimates converge to the true values, and that Doctor 2 is now preferred. Again, this
conclusion was consistent across many runs of the experiment.

Of course, ϵ-greedy is not the only way of solving the problem above. Alternative solutions
include Thompson sampling, upper confidence bound (UCB) or directly performing a randomized
controlled trial. However, the conclusions should not differ essentially from the ones presented
above. The code for our experiments is publicly available at

https://www.dropbox.com/s/hawshrihhgr5uvi/MAB.zip?dl=0

Appendix C. Suboptimal Decision Making II

In this appendix, we show that the bias introduced by adjusting for a faithful proxy of a confounder
is negligible for decision making (recall Example 5). However, the bias may be substantial when
adjusting for a proxy of a non-confounder in a confounding path, which may lead to suboptimal
decision making. We do so with the help of the following fictitious but, in our opinion, realistic
scenario. Doctor 1 and Doctor 2 both treat a certain disease by administering a dose of drug X . The
dose is determined by the abundance of U in blood. The doctors use different methods to administer
the drug, which we suspect affects the effectiveness of the drug. The effectiveness of the drug is
assessed by measuring the abundance of Y in blood, which is determined by X and U . The lower

3. Since negative abundance values do not make sense, if x, y or z are negative then a new triplet is sampled. This
seldom happens, anyway.
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the value of Y the higher the effectiveness of the treatment. Unwilling to disclose further details
about the treatment, the doctors do not share with us any measurements of U . However, they do
provide us with measurements of two proxies of U . Specifically, Doctor 1 provides us with the
abundance of Z in blood, whereas Doctor 2 provides us with the abundance of W in blood. The
former is known to be caused by U , whereas the latter is known to cause U .4

In the language of path diagrams, the problem above can be stated as follows. We want to
estimate α1 in the following path diagram (Doctor 1) from a sample for X , Y and Z:

X

Z

Y

U

α1

1 1

1

We also want to estimate α2 in the following diagram (Doctor 2) from a sample for X , Y and W :

X

W

Y

U

α2

1 1

1

Recall that U is unobserved. As discussed in Example 5, if Z and W are faithful proxies of U , then
the estimates of rY X ⋅Z and rY X ⋅W should be close to α1 and α2, respectively, which implies that
we should be able to identify the optimal doctor. We illustrate this below with some experiments.

As in Appendix B, we use ϵ-greedy to solve the problem above. We consider ϵ = 0.2 and 5000
episodes. In each run of ϵ-greedy, α1 and α2 are sampled uniformly from the intervals (0.5,1.5)
and (α1 − 0.3, α1 − 0.15) respectively, i.e. Doctor 2 is more effective than Doctor 1. The standard
deviations of the error terms are all equal to 1, with the exception of the term corresponding to Z
for Doctor 1 and the term corresponding to U for Doctor 2. Specifically, σZ , σU = 0.1,0.5,1. The
smaller the values of σZ and σU the better Z and W are as proxies of U . Figure 6 (top) shows a
representative run of the many that we performed. We can see that Doctor 2 is preferred if Z and W
are equally good proxies of U , i.e. σZ = σU . Moreover, both α̂1 and α̂2 converge to the true values
when Z and W are faithful proxies of U , i.e. σZ = σU = 0.1.

The experiments above may lead one to conclude that blocking a confounding path by adjusting
for a proxy does not bias much the estimate of a causal effect as long as the proxy is a good one.
However, this is not true. To illustrate it, we repeat the experiments above after replacing the
confounding path from X to Y in the path diagrams with the confounding path X ← U ′ → U → Y .
Additional parameters are all set to 1. Figure 6 (bottom) shows a representative run of the new
experiments. We can clearly see that α̂1 converges to a smaller value than α̂2 for every combination
of σZ and σU , i.e. no matter how good Z and W are as proxies of U . This means that Doctor 1
is considered more effective than Doctor 2 and, thus, that we should recommend the former. This
is suboptimal because, as shown in the figure, α2 is smaller than α1 and, thus, Doctor 2 should be
preferred. Note also that α̂1 converges to α1 when Z is almost a perfect proxy of U . On the other
hand, α̂2 behaves bad no matter how good W is as a proxy of U . In summary, on the negative
side, we wrongly recommend Doctor 1 but, on the positive side, we can estimate her effectiveness
accurately if Z is a faithful proxy of U . To get further insight into these results, we can repeat the

4. Some authors would call Z a proxy and W a driver.
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Figure 6: Estimates of α1 and α2 obtained by ϵ-greedy when adjusting for a proxy of a confounder
(top) and for a proxy of a non-confounder (bottom).
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reasoning in Example 5 now for the path diagrams of Doctor 1 and Doctor 2 after replacing the
confounding path from X to Y with the confounding path X ← U ′ → U → Y . Let G denote the
path diagram of Doctor 1. Since Gα1 is singly-connected, we can apply Theorem 1 and conclude
that σα1

XY ⋅Z = σ
α1
XY σ

2
U ⋅Z/σ2

U . This implies that conditioning on Z reduces the covariance between X
and Y . Moreover, the greater the correlation between U and Z, the greater the reduction and, thus,
the closer rY X ⋅Z comes to α1. Let G now denote the path diagram of Doctor 2. Applying Theorem
1 to Gα2 gives that σα2

XY ⋅W = σ
α2
XY . In other words, conditioning on W leaves the covariance of X

and Y unchanged. Moreover, X ⊥W ∣∅ in G and, thus, σX ⋅W = σX and, thus, rY X ⋅W = rY X . In
other words, adjusting for W does not solve our problem, even if W is almost a perfect proxy of U .
In summary, the effectiveness of adjusting for a proxy depends on the type of confounding path, the
type of causal relation between the proxy and the unobserved variable, and the correlation between
them.

Appendix D. Beyond Singly-Connected Path Diagrams

In this appendix, we extend Theorems 1 and 2 from singly-connected diagrams to a superclass
thereof. Note that we then only consider paths without colliders. The extension to path with colliders
seems complicated.

In Section 2, we defined the separation criterion for path diagrams in terms of paths. For some of
the results in this appendix, it is more convenient to define it in terms of routes. Recall that whereas
all the nodes in a path must be different, the nodes in a route do not need to be so. Given a route
ρX ∶Y from a node X to a node Y in a path diagram, a node C is a collider in ρX ∶Y if A ←⊸C ←⊸ B
is a subroute of ρX ∶Y . Note that A and B may be the same node. Given a set of nodes Z, ρX ∶Y is
said to be Z-open if

• every collider in ρX ∶Y is in Z, and

• ever non-collider in ρX ∶Y is outside Z.

Note that there is a Z-open route from X to Y if and only if there is a Z-open path from X to Y (see
Lemma 13 in Appendix E). When such a path or route exists, we say that X and Y are Z-connected.

Before presenting the results in this appendix, we define the operation of conditioning a path
diagram on a node A as replacing every edge A → B with an edge AB → B, where AB is a new
node. Note that A is not removed. In terms of the associated system of linear equations, this im-
plies (i) adding a new equation AB = ϵAB

where ϵAB
is normally distributed with arbitrary mean

and variance, and (ii) replacing every equation B = αT (A,Pa(B) ∖ A) + ϵB with an equation
B = αT (AB, Pa(B) ∖ A) + ϵB . Note that, after conditioning, we have that Ch(A) = ∅ whereas
Pa(AB) ∪ Sp(AB) = ∅ and Ch(AB) = B. See Figure 7 for an illustration. Let V denote all the
nodes in the path diagram at hand, and consider the distribution p(V ∖ A,A = a) defined by the
system of equations before conditioning on A. This is the unnormalized conditional distribution of
V ∖A given A. Let A′ denote the new nodes created by conditioning on A, and consider the dis-
tribution p(V ∖A,A = a,A′ = a) defined by the system of equations after conditioning on A. This
is the unnormalized conditional distribution of V ∖ A given A ∪ A′. Note that both unnormalized
conditional distributions coincide for all a, i.e. p(V ∖A = x,A = a) = p(V ∖A = x,A = a,A′ = a)
for all x and a. Thus, their normalized versions coincide as well. So, computing partial covariances
in either of them gives the same result, since partial covariances coincide with conditional covari-
ances for Gaussian random vectors. In other words, the partial covariance σXY ⋅A in the original path
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A

B C

A

AB AC

B C

Figure 7: Conditioning the path diagram to the left on the node A results in the diagram to the right.

diagram is equal to σXY ⋅AA′ in the conditional diagram. Finally, we define conditioning on a set of
nodes S as conditioning on each node in S. By the previous reasoning, the partial covariance σXY ⋅S
in the original path diagram is equal to σXY ⋅SS′ in the conditional diagram, where S′ denotes the
new nodes created by conditioning on S. The following theorems show how to compute the latter.
See the Appendix E for the proofs. We illustrate the theorems through some examples afterwards.

Theorem 10 Consider a path diagram conditioned on a set of nodes S. Let Z = S ∪ S′. Let ΠX ∶Y
denote all the Z-open paths from X to Y . Suppose that no path in ΠX ∶Y has colliders. Suppose
that all the paths in ΠX ∶Y have a subpath Xm ← ⋯ ← X2 ← X1 → Xm+1 → ⋯ → Xm+n or
X1 = X → X2 → ⋯ → Xm+n. Suppose that there is no Z-open route Xi → A ⊸⊸ ⋯ ⊸⊸ B ←⊸Xi

with i > 1. Moreover, let Zi
i = Zi ∪Zi and Z1∶b

1∶a = Z1 ∪⋯ ∪Za ∪Z1 ∪⋯ ∪Zb where

• Zi = {W1,W2, . . .} is a subset of Z∖Z1∶i−1
1∶i−1 such that each Wj is (Z1∶i−1

1∶i−1 ∪W1∶j−1)-connected
to Xi through Pa(Xi) ∪ Sp(Xi) by a path that does not contain any node that is in some
path in ΠX ∶Y except Xi, and

• Zi = {W1,W2, . . .} is a subset of Z∖Z1∶i
1∶i−1 such that each Wj is (Z1∶i

1∶i−1∪W1∶j−1)-connected
to Xi through Ch(Xi) by a path that does not contain any node that is in some path in ΠX ∶Y
except Xi.

Finally, let Z ∖ Z1∶m+n
1∶m+n = {W1,W2, . . .} and suppose that X ⊥ Wj ∣Z1∶m+n

1∶m+n ∪ W1∶j−1 or Y ⊥
Wj ∣Z1∶m+n

1∶m+n ∪W1∶j−1. Then,

σXY ⋅Z = σXY

σ2
X1⋅Z1

1

σ2
X1

m+n
∏
i=2

σ2
Xi⋅Z1∶i

1∶i

σ2
Xi⋅Z1∶i

1∶i−1

.

Theorem 11 Consider the same assumptions as in Theorem 10 with the only difference that all
the paths in ΠX ∶Y have now a subpath Xm ← ⋯ ← X2 ← X1 ↔ Xm+1 → ⋯ → Xm+n or
X1 ↔X2 → ⋯→Xm+n or ←⊸X1 → ⋯→Xm+n.5 Then,

σXY ⋅Z = σXY

m+n
∏
i=1

σ2
Xi⋅Z1∶i

1∶i

σ2
Xi⋅Z1∶i

1∶i−1

.

5. In the third subpath type, the predecessor of X1 does not have to be the same in every path in ΠX ∶Y . It just has to
reach X1 through an edge→ or↔ in every path in ΠX ∶Y .
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X X2 X1 X3 Y

GA

B F

C

D E

X X2 X1 X3 Y

GA

B F

CCX2

CX1

D E

ED

Figure 8: Left: Path diagram where Theorem 10 can be applied to compute σXY ⋅CDE . Right: The
path diagram to the left conditioned on {C,D,E}.

Like Theorems 1 and 2, the two theorems above show that the partial covariance of two random
variables can be computed by correcting their covariance with the product of some partial vari-
ance ratios. This implies that the partial covariance inherits the salient feature of factorizing over
the nodes and edges in the paths between the two variables of interest. The two theorems above
also imply that conditioning does not change the sign of the covariance, as stated in the following
immediate corollary.

Corollary 12 Suppose that two sets of nodes S1 and S2 satisfy the assumptions in Theorem 10 or
11. Then, sign(σXY ) = sign(σXY ⋅S1) = sign(σXY ⋅S2).

For the path diagrams that satisfy the conditions in Theorem 10 or 11, the corollary above
implies that conditioning does not change the sign of the causal effect of X on Y , and that Simpson’s
paradox cannot occur.

We illustrate Theorem 10 with the following example.

Example 7 Consider the path diagram to the left in Figure 8. Say that we want to compute σXY ⋅S
with S = {C,D,E}. The path diagram conditioned on S can be seen to the right in Figure 8. Then,
S′ = {CX1 ,CX2 ,ED} and Z = S ∪ S′ = {C,D,E,CX1 ,CX2 ,ED}. As discussed before, σXY ⋅S in
the original diagram coincides with σXY ⋅Z in the conditional diagram. Now, note that Z1 = {CX1},
Z1 = {D,ED}, Z2 = {CX2}, Z2 = ∅, Z3 = ∅, and Z3 = {E}. Then, Theorem 10 gives

σXY ⋅Z = σXY

σ2
X1⋅CX1

DED

σ2
X1

σ2
X2⋅CX1

DEDCX2

σ2
X2⋅CX1

DEDCX2

σ2
X3⋅CX1

DEDCX2
E

σ2
X3⋅CX1

DEDCX2

.

We illustrate Theorem 11 with the following example.

Example 8 Consider the path diagram to the left in Figure 9. Say that we want to compute σXY ⋅S
with S = {C,D}. The path diagram conditioned on S can be seen to the right in Figure 9. Then,
S′ = {CX1 ,CX2 ,DE} and Z = S∪S′ = {C,D,CX1 ,CX2 ,DE ,DY }. As discussed before, σXY ⋅S in
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X X1 X2 X3 Y

A

B

C

D

E

F

X X1 X2 X3 Y

A

B

CCX1

CX2

D

DY

DE

E

F

Figure 9: Left: Path diagram where Theorem 11 can be applied to compute σXY ⋅CD. Right: The
path diagram to the left conditioned on {C,D}.

X1 X2 X3 X4

A

C

B

D

X1 X2 X3 X4

A AX2

C

B

BX3 BX4

D

Figure 10: Left: Path diagram where Theorems 10 and 11 can be combined to compute σX1X4⋅ABD.
Left: The path diagram to the left conditioned on {A,B,D}.

the original diagram coincides with σXY ⋅Z in the conditional diagram. Now, note that Z1 = {CX1},
Z2 = {CX2 ,DE}, and Z1 = Z2 = Z3 = Z3 = ∅. Then, Theorem 11 gives

σXY ⋅Z = σXY

σ2
X1⋅CX1

σ2
X1⋅CX1

σ2
X2⋅CX1

CX2
DE

σ2
X2⋅CX1

CX2
DE

σ2
X3⋅CX1

CX2
DE

σ2
X3⋅CX1

CX2
DE

.

Theorems 10 and 11 can be extended to when all the paths from X to Y in the conditional
path diagram share more than one subpath. For instance, consider the path diagram to the left
in Figure 10. Say that we want to compute σX1X4⋅S with S = {A,B,D}. The path diagram
conditioned on S can be seen to the right in Figure 10. Then, S′ = {AX2 ,BX3 ,BX4} and Z =
S∪S′ = {A,B,D,AX2 ,BX3 ,BX4}. As discussed before, σX1X4⋅S in the original diagram coincides
with σX1X4⋅Z in the conditional diagram. Now, note that Z1 = {A}, Z2 = {AX2}, Z3 = {BX3},
Z4 = {BX4}, Z4 = {D}, and Z1 = Z2 = Z3 = ∅. Note also that the conditional diagram has two
Z-open paths from X1 to X4, which share two subpaths: X1 → X2 and → X3 → X4. Therefore,
neither Theorem 10 nor 11 applies. However, applying Theorem 10 followed by Theorem 11 gives

σX1X4⋅Z = σX1X4

σ2
X1⋅A
σ2
X1

σ2
X2⋅AAX2

σ2
X2⋅AAX2

σ2
X3⋅AAX2

BX3

σ2
X3⋅AAX2

BX3

σ2
X4⋅AAX2

BX3
BX4

D

σ2
X4⋅AAX2

BX3
BX4

. (5)
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The proof of correctness of the previous expression is simply a concatenation of the proofs of
Theorems 10 and 11. We omit the details. An alternative way of answering the previous query is by
first absorbing the subpath X2 → C →X3 into the subpath X2 →X3. Now, there is only one shared
subpath in the path diagram conditioned on S, namely X1 → X2 → X3 → X4. Then, Theorem 10
gives Equation 5. This absorption trick is always possible when there are several shared subpaths.
We omit the details.

Appendix E. Proofs of Appendix D

We start with some lemmas stating some auxiliary results. Recall from Footnote 5 that when we
say that every path has a subpath A ←⊸, we do not mean that the successor of A is the same in every
path. We mean that the successor is reached through an edge → or↔ in every path. Given a route
ρX ∶Y from X to Y , we let ρX ∶A denote the subroute of ρX ∶Y from X to A. Given two routes ρX ∶A
and ρA∶Y , we let ρX ∶A ∪ ρA∶Y denote the route from X to Y resulting from concatenating ρX ∶A and
ρA∶Y . Finally, the path corresponding to a Z-open route from X to Y is a Z-open path from X to
Y whose edges are a subset of the edges in the route. Such a path always exists by Lemma 13.

Lemma 13 There is a Z-open route from X to Y if and only if there is a Z-open path from X to
Y . Moreover, the path and the route can be chosen such that the edges in the former are a subset of
the edges in the latter.

Proof Let πX ∶Y be a Z-open path from X to Y . For every subpath A ←⊸C ←⊸ B of πX ∶Y
such that C ∉ Z, do the following. First, find a path C → X1 → ⋯ → Xn with Xn ∈ Z and
X1, . . . ,Xn−1 ∉ Z. Such a path must exist for πX ∶Y to be Z-open. Second, replace A ←⊸C ←⊸ B
with A ←⊸C →X1 → ⋯→Xn ← ⋯←X1 ← C ←⊸ B. The result is the desired route.

Let ρX ∶Y be a Z-open route from X to Y . Repeat the following two steps while possible. The
result is the desired path. First, choose a node A that occurs several times in ρX ∶Y . Let A1 and A2

denote the first and the last occurrences of A in ρX ∶Y . Assume without loss of generality that no
node in ρX ∶A1 occurs in ρA2∶Y except A. Second, consider the following cases.

• If ρX ∶Y is X ⊸⊸ ⋯← A1 ⊸⊸ ⋯ ⊸⊸ A2 ⊸⊸ ⋯ ⊸⊸ Y , then replace it with ρX ∶A1 ∪ ρA2∶Y .

• If ρX ∶Y is X ⊸⊸ ⋯ ←⊸A1 ⊸⊸ ⋯ ⊸⊸ A2 → ⋯ ⊸⊸ Y , then replace it with ρX ∶A1 ∪ ρA2∶Y .

• If ρX ∶Y is X ⊸⊸ ⋯ ←⊸A1 ⊸⊸ ⋯ ⊸⊸ A2 ←⊸ ⋯ ⊸⊸ Y , then replace it with ρX ∶A1 ∪ ρA2∶Y . Note
that A or some descendant of A must be in Z for the original ρX ∶Y to be Z-open.

Lemma 14 Consider a path diagram. Let X , Y , R and W be nodes and Z a set of nodes. If
X⊥W ∣Z ∪R and Y ⊥W ∣Z ∪R and X⊥Y ∣Z ∪R, then

σXY ⋅ZW = σXY ⋅Z
σ2
R⋅ZW

σ2
R⋅Z

.
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Proof Note that X⊥W ∣Z ∪R implies that

0 = σXW ⋅ZR = σXW ⋅Z −
σXR⋅ZσRW ⋅Z

σ2
R⋅Z

which implies that σXW ⋅Z = δXR⋅ZσRW ⋅Z where δXR⋅Z = σXR⋅Z/σ2
R⋅Z . Likewise, Y ⊥W ∣Z ∪ R

implies that σYW ⋅Z = δY R⋅ZσRW ⋅Z where δY R⋅Z = σY R⋅Z/σ2
R⋅Z . Likewise, X ⊥ Y ∣Z ∪ R implies

that σXY ⋅Z = δXR⋅ZδY R⋅Zσ
2
R⋅Z . Therefore,

σXY ⋅ZW = σXY ⋅Z −
σXW ⋅ZσWY ⋅Z

σ2
W ⋅Z

= δXR⋅ZδY R⋅Zσ
2
R⋅Z −

δXR⋅ZσRW ⋅ZδY R⋅ZσRW ⋅Z
σ2
W ⋅Z

= δXR⋅ZδY R⋅Z(σ2
R⋅Z −

σRW ⋅ZσRW ⋅Z
σ2
W ⋅Z

)

= δXR⋅ZδY R⋅Zσ
2
R⋅ZW = σXY ⋅Z

σ2
R⋅ZW

σ2
R⋅Z

.

Lemma 15 Consider a path diagram. Let X , Y and W be nodes and Z a set of nodes. If Y ⊥
W ∣Z ∪X , then

σXY ⋅ZW = σXY ⋅Z
σ2
X ⋅ZW

σ2
X ⋅Z

.

Proof Note that Y ⊥W ∣Z ∪X implies that

0 = σYW ⋅ZX = σYW ⋅Z −
σY X ⋅ZσXW ⋅Z

σ2
X ⋅Z

which implies that
σYW ⋅Z =

σY X ⋅ZσXW ⋅Z
σ2
X ⋅Z

.

Therefore,

σXY ⋅ZW = σXY ⋅Z −
σXW ⋅ZσWY ⋅Z

σ2
W ⋅Z

= σXY ⋅Z −
σXW ⋅ZσY X ⋅ZσXW ⋅Z

σ2
W ⋅Zσ

2
X ⋅Z

= σXY ⋅Z(1 −
σXW ⋅ZσXW ⋅Z
σ2
W ⋅Zσ

2
X ⋅Z

) = σXY ⋅Z
σ2
X ⋅Z
(σ2

X ⋅Z −
σXW ⋅ZσXW ⋅Z

σ2
W ⋅Z

)

= σXY ⋅Z
σ2
X ⋅ZW

σ2
X ⋅Z

.

Lemma 16 Consider a path diagram. Let X , Y and W be nodes and Z a set of nodes. If X⊥W ∣Z
or Y ⊥W ∣Z, then σXY ⋅ZW = σXY ⋅Z .
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Proof Note that X ⊥W ∣Z and Y ⊥W ∣Z imply σXW ⋅Z = 0 and σYW ⋅Z = 0, respectively. Thus, if
X⊥W ∣Z or Y ⊥W ∣Z then

σXY ⋅ZW = σXY ⋅Z −
σXW ⋅ZσWY ⋅Z

σ2
W ⋅Z

= σXY ⋅Z .

Lemma 17 Consider a path diagram. Let ΠX ∶Y denote all the Z-open paths from X to Y . Suppose
that no path in ΠX ∶Y has colliders. Suppose that all the paths in ΠX ∶Y have a subpath ← R → or
R =X →. Let W be a node that is Z-connected to R by a path that does not contain any node that
is in some path in ΠX ∶Y except R. If Pa(W ) ∪ Sp(W ) = ∅, then

σXY ⋅ZW = σXY ⋅Z
σ2
R⋅ZW

σ2
R⋅Z

.

Proof Consider first the case where ← R → is a subpath of every path in ΠX ∶Y . Assume to the
contrary that X /⊥W ∣Z ∪R and let ρX ∶W be a (Z ∪R)-open route. Follow ρX ∶W until reaching R
or W , and let πX ∶Y ∈ ΠX ∶Y .

• If R is reached first, then consider the first occurrence of R in ρX ∶W and note that ρX ∶R∪πR∶Y
is a Z-open route. Moreover, it does not contain any edge ← R that is in some path in ΠX ∶Y
because, otherwise, ρX ∶W contains the edge (πR∶Y cannot by definition) and, thus, it is not
(Z ∪R)-open. Then, the path corresponding to ρX ∶R ∪ πR∶Y contradicts the assumptions in
the lemma.

• If W is reached first, then let ϱR∶W denote a Z-open path that does not contain any node
that is in some path in ΠX ∶Y except R. Such a path exists by the assumptions in the lemma.
Thus, ρX ∶W ∪ ϱW ∶R ∪ πR∶Y is a Z-open route, because neither R nor W is a collider in it.
The latter follows from the assumption that Pa(W )∪Sp(W ) = ∅. Moreover, the route does
not contain any edge ← R that is in some path in ΠX ∶Y because, otherwise, ρX ∶W contains
the edge (ϱW ∶R and πR∶Y cannot by definition) and thus it reaches R first. Then, the path
corresponding to ρX ∶W ∪ ϱW ∶R ∪ πR∶Y contradicts the assumptions in the lemma.

Consequently, X ⊥W ∣Z ∪ R. We can analogously prove that Y ⊥W ∣Z ∪ R. Now, assume to the
contrary that X /⊥ Y ∣Z ∪ R and let ρX ∶Y be a (Z ∪ R)-open route. Note that R must be in ρX ∶Y
because, otherwise, ρX ∶Y is Z-open and, thus, its corresponding path contradicts the assumptions
in the lemma. Consider the first occurrence of R in ρX ∶Y , and let πX ∶Y ∈ ΠX ∶Y . Then, ρX ∶R ∪ πR∶Y
is a Z-open route. Moreover, the route does not contain any edge ← R that is in some path in
ΠX ∶Y because, otherwise, ρX ∶Y contains the edge (πR∶Y cannot by definition) and thus it is not
(Z ∪ R)-open. Then, the path corresponding to ρX ∶R ∪ πR∶Y contradicts the assumptions in the
lemma. Consequently, X⊥Y ∣Z ∪R. Therefore, the desired result follows from Lemma 14.

Finally, consider the case where R = X → is a subpath of every path in ΠX ∶Y . Assume to the
contrary that Y /⊥W ∣Z ∪X and let ρY ∶W be a (Z ∪X)-open route. Follow ρY ∶W until reaching X
or W .

• If X is reached first, then note that ρY ∶X does not contain any edge ← X that is in some path
in ΠY ∶X because, otherwise, ρY ∶W is not (Z ∪ X)-open. Then, the path corresponding to
ρX ∶Y contradicts the assumptions in the lemma.
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• If W is reached first, let ϱX ∶W denote a Z-open path that does not contain any node that is
in some path in ΠX ∶Y except X . Such a path exists by the assumptions in the lemma. Then,
ϱX ∶W ∪ ρW ∶Y is a Z-open route, because W is not a collider in it due to the assumption that
Pa(W ) ∪ Sp(W ) = ∅. Moreover, the route does not contain any edge X → that is in some
path in ΠX ∶Y because, otherwise, ρW ∶Y contains the edge (ϱX ∶W cannot by definition) and
thus ρY ∶W reaches X first. Then, the path corresponding to ϱX ∶W ∪ ρW ∶Y contradicts the
assumptions in the lemma.

Consequently, Y ⊥W ∣Z ∪X and, thus, the desired result follows from Lemma 15.

Lemma 18 Consider a path diagram. Let ΠX ∶Y denote all the Z-open paths from X to Y . Suppose
that no path in ΠX ∶Y has colliders. Suppose that all the paths in ΠX ∶Y have a subpath ← R → or
R =X →. Let W be a node that is Z-connected to R by a path that does not contain any node that
is in some path in ΠX ∶Y except R. If Ch(W ) = ∅ and ΠX ∶Y are all the (Z ∪W )-open paths from
X to Y , then

σXY ⋅ZW = σXY ⋅Z
σ2
R⋅ZW

σ2
R⋅Z

.

Proof Consider first the case where ← R → is a subpath of every path in ΠX ∶Y . Assume to the
contrary that X /⊥W ∣Z ∪R and let ρX ∶W be a (Z ∪R)-open route. Follow ρX ∶W until reaching R
or W , and let πX ∶Y ∈ ΠX ∶Y .

• If R is reached first, then consider the first occurrence of R in ρX ∶W and note that ρX ∶R∪πR∶Y
is a Z-open route. Moreover, it does not contain any edge ← R that is in some path in ΠX ∶Y
because, otherwise, ρX ∶W contains the edge (πR∶Y cannot by definition) and, thus, it is not
(Z ∪R)-open. Then, the path corresponding to ρX ∶R ∪ πR∶Y contradicts the assumptions in
the lemma.

• If W is reached first, then let ϱR∶W denote a Z-open path that does not contain any node that
is in some path in ΠX ∶Y except R. Such a path exists by the assumptions in the lemma. Thus,
ρX ∶W ∪ ϱW ∶R ∪ πR∶Y is a (Z ∪W )-open route from X to Y , because W is a collider in it
whereas R is not. The former follows from the assumption that Ch(W ) = ∅. Moreover, the
route does not contain any edge ← R that is in some path in ΠX ∶Y because, otherwise, ρX ∶W
contains the edge (ϱW ∶R and πR∶Y cannot by definition) and thus it reaches R first. Then, the
path corresponding to ρX ∶W ∪ ϱW ∶R ∪ πR∶Y contradicts the assumptions in the lemma.

Consequently, X ⊥W ∣Z ∪ R. We can analogously prove that Y ⊥W ∣Z ∪ R. Now, assume to the
contrary that X /⊥ Y ∣Z ∪ R and let ρX ∶Y be a (Z ∪ R)-open route. Note that R must be in ρX ∶Y
because, otherwise, ρX ∶Y is Z-open and, thus, its corresponding path contradicts the assumptions
in the lemma. Consider the first occurrence of R in ρX ∶Y , and let πX ∶Y ∈ ΠX ∶Y . Then, ρX ∶R ∪ πR∶Y
is a Z-open route. Moreover, the route does not contain any edge ← R that is in some path in
ΠX ∶Y because, otherwise, ρX ∶Y contains the edge (πR∶Y cannot by definition) and thus it is not
(Z ∪ R)-open. Then, the path corresponding to ρX ∶R ∪ πR∶Y contradicts the assumptions in the
lemma. Consequently, X⊥Y ∣Z ∪R. Therefore, the desired result follows from Lemma 14.

Finally, consider the case where R = X → is a subpath of every path in ΠX ∶Y . Assume to the
contrary that Y /⊥W ∣Z ∪X and let ρY ∶W be a (Z ∪X)-open route. Follow ρY ∶W until reaching X
or W .
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• If X is reached first, then note that ρY ∶X does not contain any edge ← X that is in some path
in ΠY ∶X because, otherwise, ρY ∶W is not (Z ∪ X)-open. Then, the path corresponding to
ρX ∶Y contradicts the assumptions in the lemma.

• If W is reached first, let ϱX ∶W denote a Z-open path that does not contain any node that is
in some path in ΠX ∶Y except X . Such a path exists by the assumptions in the lemma. Then,
ϱX ∶W ∪ ρW ∶Y is a (Z ∪W )-open route, because W is a collider in it due to the assumption
that Ch(W ) = ∅. Moreover, the route does not contain any edge X → that is in some path in
ΠX ∶Y because, otherwise, ρW ∶Y contains the edge (ϱX ∶W cannot by definition) and thus ρY ∶W
reaches X first. Then, the path corresponding to ϱX ∶W ∪ ρW ∶Y contradicts the assumptions in
the lemma.

Consequently, Y ⊥W ∣Z ∪X and, thus, the desired result follows from Lemma 15.

Lemma 19 Consider a path diagram. Let ΠX ∶Y denote all the Z-open paths from X to Y . Suppose
that no path in ΠX ∶Y has colliders. Suppose that all the paths in ΠX ∶Y have a subpath ←⊸R → or
←⊸Y = R. Let W be a node that is Z-connected to R through Pa(R) ∪ Sp(R) by a path that does

not contain any node that is in some path in ΠX ∶Y except R. If Pa(W )∪Sp(W ) = ∅ and W is not
Z-connected to R through Ch(R), then

σXY ⋅ZW = σXY ⋅Z .

Proof Consider first the case where ←⊸R → is a subpath of every path in ΠX ∶Y . Assume to the
contrary that X /⊥W ∣Z and let ρX ∶W be a Z-open route. Follow ρX ∶W until reaching R or W , and
let πX ∶Y ∈ ΠX ∶Y .

• If R is reached first, then consider the first occurrence of R in ρX ∶W and note that ρX ∶R ends
with an edge ←⊸R because, otherwise, ρX ∶R ∪ πR∶Y is a Z-open route that has a subroute
← R → and, thus, its corresponding path contradicts the assumptions in the lemma. Then,
ρR∶W must start with an edge R → for ρX ∶W to be Z-open. However, this contradicts the
assumption that W is not Z-connected to R through Ch(R).

• If W is reached first, then let ϱR∶W denote a Z-open path that does not contain any node
that is in some path in ΠX ∶Y except R. Such a path exists by the assumptions in the lemma.
Thus, ρX ∶W ∪ ϱW ∶R ∪ πR∶Y is a Z-open route, because neither R nor W is a collider in it.
The latter follows from the assumption that Pa(W )∪Sp(W ) = ∅. Moreover, the route does
not contain any edge ←⊸R that is in some path in ΠX ∶Y because, otherwise, ρX ∶W contains
the edge (ϱW ∶R and πR∶Y cannot by definition) and thus it reaches R first. Then, the path
corresponding to ρX ∶W ∪ ϱW ∶R ∪ πR∶Y contradicts the assumptions in the lemma.

Consequently, X ⊥W ∣Z. When ←⊸Y = R is a subpath of every path in ΠX ∶Y , we can prove that
X⊥W ∣Z much in the same way. Consequently, X⊥W ∣Z in either case and, thus, the desired result
follows from Lemma 16.

Lemma 20 Consider a path diagram. Let ΠX ∶Y denote all the Z-open paths from X to Y . Suppose
that no path in ΠX ∶Y has colliders. Suppose that all the paths in ΠX ∶Y have a subpath ←⊸R →
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or ←⊸Y = R. Let W be a node that is Z-connected to R through Pa(R) ∪ Sp(R) by a path that
does not contain any node that is in some path in ΠX ∶Y except R. If Ch(W ) = ∅, and W is not
Z-connected to R through Ch(R), and ΠX ∶Y are all the (Z ∪W )-open paths from X to Y , then

σXY ⋅ZW = σXY ⋅Z .

Proof Consider first the case where ←⊸R → is a subpath of every path in ΠX ∶Y . Assume to the
contrary that X /⊥W ∣Z and let ρX ∶W be a Z-open route. Follow ρX ∶W until reaching R or W , and
let πX ∶Y ∈ ΠX ∶Y .

• If R is reached first, then consider the first occurrence of R in ρX ∶W and note that ρX ∶R ends
with an edge ←⊸R because, otherwise, ρX ∶R ∪ πR∶Y is a Z-open route that has a subroute
← R → and, thus, its corresponding path contradicts the assumptions in the lemma. Then,
ρR∶W must start with an edge R → for ρX ∶W to be Z-open. However, this contradicts the
assumption that W is not Z-connected to R through Ch(R).

• If W is reached first, then let ϱR∶W denote a Z-open path that does not contain any node that
is in some path in ΠX ∶Y except R. Such a path exists by the assumptions in the lemma. Thus,
ρX ∶W ∪ ϱW ∶R ∪ πR∶Y is a (Z ∪W )-open route, because W is a collider in it whereas R is
not. The former follows from the assumption that Ch(W ) = ∅. Moreover, the route does
not contain any edge ←⊸R that is in some path in ΠX ∶Y because, otherwise, ρX ∶W contains
the edge (ϱW ∶R and πR∶Y cannot by definition) and thus it reaches R first. Then, the path
corresponding to ρX ∶W ∪ ϱW ∶R ∪ πR∶Y contradicts the assumptions in the lemma.

Consequently, X ⊥W ∣Z. When ←⊸Y = R is a subpath of every path in ΠX ∶Y , we can prove that
X⊥W ∣Z much in the same way. Consequently, X⊥W ∣Z in either case and, thus, the desired result
follows from Lemma 16.

Lemma 21 Consider a path diagram. Let ΠX ∶Y denote all the Z-open paths from X to Y . Suppose
that no path in ΠX ∶Y has colliders. Suppose that all the paths in ΠX ∶Y have a subpath ←⊸R →
or ←⊸Y = R. Let W be a node that is Z-connected to R through Ch(R) by a path that does not
contain any node that is in some path in ΠX ∶Y except R. If Pa(W ) ∪ Sp(W ) = ∅ and W is not
Z-connected to R through Pa(R) ∪ Sp(R), then

σXY ⋅ZW = σXY ⋅Z
σ2
R⋅ZW

σ2
R⋅Z

.

Proof Consider first the case where ←⊸R → is a subpath of every path in ΠX ∶Y . Assume to the
contrary that X /⊥W ∣Z ∪R and let ρX ∶W be a (Z ∪R)-open route. Follow ρX ∶W until reaching R
or W , and let πX ∶Y ∈ ΠX ∶Y .

• If R is reached first, then note R must be a collider in ρX ∶W for this to be (Z ∪ R)-open.
However, the last occurrence of R in ρX ∶W contradicts the assumption that W is not Z-
connected to R through Pa(R) ∪ Sp(R).

• If W is reached first, then let ϱR∶W denote a Z-open path that does not contain any node
that is in some path in ΠX ∶Y except R. Such a path exists by the assumptions in the lemma.
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Thus, ρX ∶W ∪ ϱW ∶R ∪ πR∶Y is a Z-open route, because neither R nor W is a collider in it.
The latter follows from the assumption that Pa(W )∪Sp(W ) = ∅. Moreover, the route does
not contain any edge ←⊸R that is in some path in ΠX ∶Y because, otherwise, ρX ∶W contains
the edge (ϱW ∶R and πR∶Y cannot by definition) and thus it reaches R first. Then, the path
corresponding to ρX ∶W ∪ ϱW ∶R ∪ πR∶Y contradicts the assumptions in the lemma.

Consequently, X ⊥W ∣Z ∪ R. Now, assume to the contrary that Y /⊥W ∣Z ∪ R and let ρY ∶W be a
(Z ∪R)-open route. Follow ρY ∶W until reaching R or W , and let πX ∶Y ∈ ΠX ∶Y .

• If R is reached first, then note R must be a collider in ρY ∶W for this be (Z∪R)-open. However,
the last occurrence of R in ρY ∶W contradicts the assumption that W is not Z-connected to R
through Pa(R) ∪ Sp(R).

• If W is reached first, then let ϱR∶W denote a Z-open path that leaves R through Ch(R)
and that does not contain any node that is in some path in ΠX ∶Y except R. Such a path
exists by the assumptions in the lemma. Thus, πX ∶R ∪ ϱR∶W ∪ ρW ∶Y is a Z-open route,
because neither R nor W is a collider in it. The latter follows from the assumption that
Pa(W ) ∪ Sp(W ) = ∅. Moreover, the route does not contain any edge R → that is in
some path in ΠX ∶Y because, otherwise, ρW ∶Y contains the edge (πX ∶R and ϱR∶W cannot by
definition) and thus ρY ∶W reaches R first. Then, the path corresponding to πX ∶R∪ϱR∶W ∪ρW ∶Y
contradicts the assumptions in the lemma.

Consequently, Y ⊥W ∣Z ∪ R. Now, assume to the contrary that X /⊥ Y ∣Z ∪ R and let ρX ∶Y be a
(Z ∪R)-open path. Note that R must be a collider or a descendant of a collider in ρX ∶Y because,
otherwise, R is not in ρX ∶Y and, thus, ρX ∶Y is Z-open, which contradicts the assumptions in the
lemma. Note also that the assumption that W is Z-connected to R through Ch(R) implies that
some descendant of R is in Z ∪W . Actually, some descendant of R must be in Z due to the
assumption that Pa(W ) ∪ Sp(W ) = ∅. Then, ρX ∶Y is Z-open, which contradicts the assumptions
in the lemma. Consequently, X⊥Y ∣Z ∪R. Therefore, the desired result follows from Lemma 14.

Finally, consider the case where ←⊸Y = R is a subpath of every path in ΠX ∶Y . Assume to the
contrary that X /⊥W ∣Z ∪ Y and let ρX ∶W be a (Z ∪ Y )-open route. Follow ρX ∶W until reaching Y
or W .

• If Y is reached first, then note Y must be a collider in ρX ∶W for this to be (Z ∪ Y )-open.
However, the last occurrence of Y in ρX ∶W contradicts the assumption that W is not Z-
connected to R through Pa(Y ) ∪ Sp(Y ).

• If W is reached first, let ϱY ∶W denote a Z-open path that does not contain any node that is
in some path in ΠX ∶Y except Y . Such a path exists by the assumptions in the lemma. Then,
ϱX ∶W ∪ ρW ∶Y is a Z-open route, because W is not a collider in it due to the assumption
that Pa(W ) ∪ Sp(W ) = ∅. Moreover, the route does not contain any edge ←⊸Y that is in
some path in ΠX ∶Y because, otherwise, ρX ∶W contains the edge (ϱW ∶Y cannot by definition)
and thus it reaches Y first. Then, the path corresponding to ϱX ∶W ∪ ρW ∶Y contradicts the
assumptions in the lemma.

Consequently, X⊥W ∣Z ∪ Y and, thus, the desired result follows from Lemma 15.
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Lemma 22 Consider a path diagram. Let ΠX ∶Y denote all the Z-open paths from X to Y . Suppose
that no path in ΠX ∶Y has colliders. Suppose that all the paths in ΠX ∶Y have a subpath ←⊸R →
or ←⊸Y = R. Let W be a node that is Z-connected to R through Ch(R) by a path that does not
contain any node that is in some path in ΠX ∶Y except R. If Ch(W ) = ∅, and W is not Z-connected
to R by any path that reaches R through Pa(R) ∪ Sp(R), and ΠX ∶Y are all the (Z ∪W )-open
paths from X to Y , then

σXY ⋅ZW = σXY ⋅Z
σ2
R⋅ZW

σ2
R⋅Z

.

Proof Consider first the case where ←⊸R → is a subpath of every path in ΠX ∶Y . Assume to the
contrary that X /⊥W ∣Z ∪R and let ρX ∶W be a (Z ∪R)-open route. Follow ρX ∶W until reaching R
or W , and let πX ∶Y ∈ ΠX ∶Y .

• If R is reached first, then note that R must be a collider in ρX ∶W for this to be (Z ∪ R)-
open. However, the last occurrence of R in ρX ∶W contradicts the assumption that W is not
Z-connected to R through Pa(R) ∪ Sp(R).

• If W is reached first, then let ϱR∶W denote a Z-open path that does not contain any node that
is in some path in ΠX ∶Y except R. Such a path exists by the assumptions in the lemma. Thus,
ρX ∶W ∪ ϱW ∶R ∪ πR∶Y is a (Z ∪W )-open route, because W is a collider in it whereas R is
not. The former follows from the assumption that Ch(W ) = ∅. Moreover, the route does
not contain any edge ←⊸R that is in some path in ΠX ∶Y because, otherwise, ρX ∶W contains
the edge (ϱW ∶R and πR∶Y cannot by definition) and thus it reaches R first. Then, the path
corresponding to ρX ∶W ∪ ϱW ∶R ∪ πR∶Y contradicts the assumptions in the lemma.

Consequently, X ⊥W ∣Z ∪ R. Now, assume to the contrary that Y /⊥W ∣Z ∪ R and let ρY ∶W be a
(Z ∪R)-open route. Follow ρY ∶W until reaching R or W , and let πX ∶Y ∈ ΠX ∶Y .

• If R is reached first, then note that R must be a collider in ρY ∶W for this to be (Z ∪ R)-
open. However, the last occurrence of R in ρY ∶W contradicts the assumption that W is not
Z-connected to R through Pa(R) ∪ Sp(R).

• If W is reached first, then let ϱR∶W denote a Z-open path that leaves R through Ch(R) and
that does not contain any node that is in some path in ΠX ∶Y except R. Such a path exists
by the assumptions in the lemma. Thus, πX ∶R ∪ ϱR∶W ∪ ρW ∶Y is a (Z ∪W )-open route,
because W is a collider in it whereas R is not. The former follows from the assumption that
Ch(W ) = ∅. Moreover, the route does not contain any edge R → that is in some path in
ΠX ∶Y because, otherwise, ρW ∶Y contains the edge (πX ∶R and ϱR∶W cannot by definition) and
thus ρY ∶W reaches R first. Then, the path corresponding to πX ∶R ∪ ϱR∶W ∪ ρW ∶Y contradicts
the assumptions in the lemma.

Consequently, Y ⊥W ∣Z ∪ R. Now, assume to the contrary that X /⊥ Y ∣Z ∪ R and let ρX ∶Y be a
(Z ∪R)-open path. Note that R must be a collider or a descendant of a collider in ρX ∶Y because,
otherwise, R is not in ρX ∶Y and, thus, ρX ∶Y is Z-open, which contradicts the assumptions in the
lemma. Note also that the assumption that W is Z-connected to R through Ch(R) implies that
some descendant of R is in Z∪W . Then, ρX ∶Y is (Z∪W )-open, which contradicts the assumptions
in the lemma. Consequently, X⊥Y ∣Z ∪R. Therefore, the desired result follows from Lemma 14.
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Finally, consider the case where ←⊸Y = R is a subpath of every path in ΠX ∶Y . Assume to the
contrary that X /⊥W ∣Z ∪ Y and let ρX ∶W be a (Z ∪ Y )-open route. Follow ρX ∶W until reaching Y
or W .

• If Y is reached first, then note Y must be a collider in ρX ∶W for this to be (Z ∪ Y )-open.
However, the last occurrence of Y in ρX ∶W contradicts the assumption that W is not Z-
connected to R through Pa(Y ) ∪ Sp(Y ).

• If W is reached first, let ϱY ∶W denote a Z-open path that does not contain any node that is
in some path in ΠX ∶Y except Y . Such a path exists by the assumptions in the lemma. Then,
ϱX ∶W ∪ ρW ∶Y is a (Z ∪W )-open route, because W is a collider in it due to the assumption
that Ch(W ) = ∅. Moreover, the route does not contain any edge ←⊸Y that is in some path
in ΠX ∶Y because, otherwise, ρX ∶W contains the edge (ϱY ∶W cannot by definition) and thus it
reaches Y first. Then, the path corresponding to ϱX ∶W ∪ ρW ∶Y contradicts the assumptions in
the lemma.

Consequently, X⊥W ∣Z ∪ Y and, thus, the desired result follows from Lemma 15.

Proof of Theorem 10 Consider hereinafter the path diagram conditioned on S. We first compute
σXY ⋅Z1 from σXY by adding the nodes in Z1 to the conditioning set in the order W1,W2, . . .. The
assumption that ΠX ∶Y are all the Z-open paths from X to Y implies that ΠX ∶Y are all the (W1∶j−1)-
open paths from X to Y because, otherwise, any other path cannot be closed afterwards which
contradicts the assumption. To see it, note that a node W ∈ Z does not close any open path, since
there is no subpath ←⊸W → or ←W → due to the conditioning operation. Then,

σXY ⋅W1 = σXY

σ2
X1⋅W1

σ2
X1

by Lemma 17 if Pa(W1) ∪ Sp(W1) = ∅, or Lemma 18 if Ch(W1) = ∅. Likewise,

σXY ⋅W1W2 = σXY ⋅W1

σ2
X1⋅W1W2

σ2
X1⋅W1

by Lemma 17 or 18. Combining the last two equations gives

σXY ⋅W1W2 = σXY

σ2
X1⋅W1W2

σ2
X1

.

Continuing with this process for the rest of the nodes in Z1 gives

σXY ⋅Z1 = σXY

σ2
X1⋅Z1

σ2
X1

. (6)

Now, we compute σXY ⋅Z1
1

from σXY ⋅Z1 by adding the nodes in Z1 to the conditioning set in the
order W1,W2, . . .. Recall from above that ΠX ∶Y are all the (Z1 ∪W1∶j−1)-open paths from X to Y .
Then,

σXY ⋅Z1Z1
= σXY ⋅Z1

σ2
X1⋅Z1Z1

σ2
X1⋅Z1

34



FACTORIZATION OF THE PARTIAL COVARIANCE IN SINGLY-CONNECTED PATH DIAGRAMS

by repeating the reasoning that led to Equation 6. Moreover, combining the last two equations yields

σXY ⋅Z1
1
= σXY

σ2
X1⋅Z1

1

σ2
X1

. (7)

Now, we compute σXY ⋅Z1
1Z

2 from σXY ⋅Z1
1

by adding the nodes in Z2 to the conditioning set in
the order W1,W2, . . .. The assumption that there is no Z-open route X2 → A ⊸⊸ ⋯ ⊸⊸ B ←⊸X2

implies that there is no (Z1
1 ∪W1∶j−1)-open path from Wj to X2 through Ch(X2). To see it, assume

the opposite. Then, there are (Z1
1 ∪W1∶j−1)-open paths from Wj to X2 through both Ch(X2) and

Pa(X2)∪Sp(X2). This implies that there is a route X2 → A ⊸⊸ ⋯ ⊸⊸ B ←⊸X2 that contains Wj ,
and the route is (Z1

1 ∪W1∶j−1)-open or (Z1
1 ∪W1∶j)-open. Then, there is a path→ A ⊸⊸ ⋯ ⊸⊸ B ←⊸

that is (Z1
1 ∪W1∶j−1)-open or (Z1

1 ∪W1∶j)-open by Lemma 13. However, this path cannot be closed
afterwards which contradicts the assumption. To see it, note that a node W ∈ Z does not close
any open path, since there is no subpath ←⊸W → or ← W → due to the conditioning operation.
Consequently, there is no (Z1

1 ∪W1∶j−1)-open path from Wj to X2 through Ch(X2). Recall also
from above that ΠX ∶Y are all the (Z1

1 ∪W1∶j−1)-open paths from X to Y . Then,

σXY ⋅Z1
1W1
= σXY ⋅Z1

1
.

by Lemma 19 if Pa(W1) ∪ Sp(W1) = ∅, or Lemma 20 if Ch(W1) = ∅. Likewise,

σXY ⋅Z1
1W1W2

= σXY ⋅Z1
1W1

.

by Lemma 19 or 20. Combining the last two equations gives

σXY ⋅W1W2 = σXY ⋅Z1
1
.

Continuing with this process for the rest of the nodes in Z2 gives

σXY ⋅Z1
1Z

2 = σXY ⋅Z1
1
. (8)

Now, we compute σXY ⋅Z1
1Z

2
2

from σXY ⋅Z1
1Z

2 by adding the nodes in Z2 to the conditioning set
in the order W1,W2, . . .. Recall from above that ΠX ∶Y are all the (Z1∶2

1 ∪W1∶j−1)-open paths from
X to Y . Recall also from above that the assumption that there is no Z-open route X2 → A ⊸
⊸ ⋯ ⊸⊸ B ←⊸X2 implies that there is no (Z1∶2

1 ∪W1∶j−1)-open path from Wj to X2 through
Pa(X2) ∪ Sp(X2). Then,

σXY ⋅Z1
1Z

2
2
= σXY ⋅Z1

1Z
2

σ2
X2⋅Z1

1Z
2
2

σ2
X2⋅Z1

1Z
2

by repeating the reasoning that led to Equation 6 but using Lemmas 21 and 22 instead. Moreover,
combining the last equation with Equations 7 and 8 gives

σXY ⋅Z1
1Z

2
2
= σXY

σ2
X1⋅Z1

1

σ2
X1

σ2
X2⋅Z1

1Z
2
2

σ2
X2⋅Z1

1Z
2

.

Finally, continuing with the process above for X3, . . . ,Xm+n yields

σXY ⋅Z1∶m+n
1∶m+n

= σXY

σ2
X1⋅Z1

1

σ2
X1

m+n
∏
i=2

σ2
Xi⋅Z1∶i

1∶i

σ2
Xi⋅Z1∶i

1∶i−1
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which implies the desired result by repeated application of Lemma 16.

Proof of Theorem 11 The proof is analogous to that of Theorem 10.
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