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Abstract
LLMs show remarkable emergent abilities, such as inferring concepts from presum-
ably out-of-distribution prompts, known as in-context learning. Though this success
is often attributed to the Transformer architecture, our systematic understanding is
limited. In complex real-world data sets, even defining what is out-of-distribution is
not obvious. To better understand the OOD behaviour of autoregressive LLMs, we
focus on formal languages, which are defined by the intersection of rules. We define
a new scenario of OOD compositional generalization, termed rule extrapolation.
Rule extrapolation describes OOD scenarios, where the prompt violates at least one
rule. We evaluate rule extrapolation in formal languages with varying complexity
in linear and recurrent architectures, the Transformer, and state space models to
understand the architectures’ influence on rule extrapolation. We also lay the first
stones of a normative theory of rule extrapolation, inspired by the Solomonoff prior
in algorithmic information theory.

1 Introduction
Autoregressive language models (AR LMs) can reach both low training and test loss, but even
minimal test loss is not predictive for out-of-distribution (OOD) model performance [Liu et al.,
2023, Reizinger et al., 2024], i.e. when the test data has vanishing probability under the training
distribution. Despite the success of deploying modern language models in OOD situations, OOD
generalization is not well understood theoretically. Recently, studies started to focus on a specific
form of OOD generalization: compositional generalization in language models [Ahuja and Mansouri,
2024, Han and Padó, 2024, Ramesh et al., 2024, Lake and Baroni, 2023, Reizinger et al., 2024]. To
systematically examine compositional generalization of AR LMs, we study a particular notion of
OOD generalization, which we call rule extrapolation.

Rule extrapolation is a form of compositional generalization: it studies OOD behavior of language
models trained on formal languages defined by a logical conjunction of rules.

For example, the anbn language is the intersection of two rules: (R1) the number of a’s is equal to the
number of b’s and (R2) a’s precede b’s. The prompt bbaab cannot be completed to obey the R2, but
it is still possible to satisfy (R1) (e.g., bbaaba). When a language model trained on an intersection
of rules remains consistent with one of the rules when another is broken, we say it successfully
extrapolated the rule beyond its training data.
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A limited experiment by Reizinger et al. [2024] indicated that Transformers exhibit much-better-than-
chance rule extrapolation performance on the formal grammar anbn, despite lacking any explicit
inductive biases encouraging this behaviour. However, it remains unclear whether the behaviour
observed was specific to the Transformer or whether it holds more generally on a wider range of
formal languages. Inspired by this work, we conduct a thorough empirical investigation of the role of
architecture in rule extrapolation on a range of formal languages. As a non-rigorous baseline, we also
conducted a small pilot human study to understand how people would generalize the rules.
We chose to study rule extrapolation because it appears to be a rational, or at least desirable, behaviour.
However, we lack a normative reason why this behaviour should be considered rational. It is unclear
whether any OOD behaviours could be considered rational. This question led us to investigate how
a general rational algorithm for OOD prompt completion might be formalized. That is, instead of
asking what models do, we ask what they should do if they were to be consistent with some principles
of rational inference. We turn to Algorithmic Information Theory (AIT) to formalize a normative
model. We propose a non-parametric prior for next-token prediction inspired by the Solomonoff
prior [Solomonoff, 2001, Li and Vitányi, 1997]. This prior helps resolve how a rational model
should behave in situations that are mathematically underspecified by their training: to extrapolate
the simplest theories consistent with training data. Although, like Solomonoff’s induction, our
rational algorithm is uncomputable, it helps explain some of our empirical observations about rule
extrapolation in practical language models. Our contributions are:
• We use formal languages to define scenarios for evaluating sequence models’ OOD compositional

generalization, which we call rule extrapolation (§ 2.2);
• We empirically evaluate different models’ rule extrapolation in formal languages with varying

complexity, we study linear, recurrent, Transformer and State Space models. We show that there is
no single architecture that emerges as a clear winner of rule extrapolation. Though Transformers
fare very well in most scenarios we investigated, they struggle on regular languages (§ 4);

• Inspired by algorithmic information theory, we propose a normative theory for OOD prompt
completion, which posits that rule learning and extrapolation should be governed by the relative
simplicities of rules (§ 5);

• To demonstrate the presence of a similar simplicity bias in Transformers, We visualise the training
dynamics enabling rule extrapolation on the anbn language. We find that the model first learns a
set obeying the easier rule, and then identifies the language as its subset (§ 5.3).

Figure 1: Rule extrapolation summary for all models and languages (Tab. 1): The Transformer is
the best on context-free and context-sensitive languages, whereas the LSTM and Mamba excel on
regular languages. We also plot chance-level performance as gray rectangles. Mean accuracies and
standard deviations (averaged over 5 seeds)

Language Category Rule 1 Rule 2
L1 = {bα} regular #a even starts with b
L2 = {bna2m} regular #a even b’s before a’s
L3 = {anbn} context-free #a = #b a’s before b’s
L4 = Dyck context-free paired and nested [ ] paired and nested ( )
L5 = {anbncn} context-sensitive #a = #b = #c a’s before b’s before c’s
L6 = CS Dyck context-sensitive paired [ ] paired ( )

Table 1: Formal languages used in our paper: The languages are categorized according to the
Chomsky hierarchy, and they can be considered as the intersection of two rules: (R1) and (R2)
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2 Background and related work
2.1 Formal languages
Formal languages are linguistic constructions that simplify the study of natural languages. Their
advantage is their well-defined set of symbols and rules. Although they fall short of capturing
the nuances and irregularities of human languages, they are very powerful with immense practical
relevance—e.g., programming languages are formal languages.
Formal languages consist of words with symbols coming from a possibly infinite alphabet. Chom-
sky [1956] has categorized formal languages into four types with increasing complexity: regular,
context-free, context-sensitive, and recursively enumerable languages. Regular languages have rules
that can be expressed via regular expressions, e.g., L1 = {bα : α contains even number of a’s}
and L2 = {bna2m : n > 0}. Context-free grammars have rules that do not depend on
the context—programming languages such as C or Python belong to this category, e.g., an
if-else block in the programming language C always has the same structure. For demon-
stration purposes, we will use two simpler languages: L3 = {anbn : n > 0}, L4 =
{sequences of nested parentheses and brackets}. Context-sensitive grammars have rules that de-
pend on the position in the sequence—we will use the standard example of L5 = {anbncn :n > 0}
and L6 = {sequences of paired, but not necessarily nested parentheses and brackets}. We omitted
the recursively enumerable grammars similar to Deletang et al. [2022], as they require an infinite tape
to simulate, which is impossible.

2.2 Out-of-distribution (OOD) generalization
In modern deep learning theory, the test loss distinguishes the performance of models with low
training loss by evaluating the model on unseen data sampled from the same distribution (i. e.,
i.i.d.) as the data it was trained on. When the test loss is (near-)minimal, the model has statistical
generalization ability. Therefore several studies focused on establishing bounds on the generalization
gap [Vapnik and Chervonenkis, 1971, Dziugaite and Roy, 2017, Pérez-Ortiz et al., 2021]. Along
with the question of whether the test loss is sufficiently low, another one arose: does the test loss
have a unique minimum? Identifiability is a property of a family of statistical models, concerning
the uniqueness of the data generator model recovered from the observed data. In machine learning,
identifiability implies the uniqueness of the test loss’ minimum, and the model it corresponds to,
which is desirable since it enables us to interpret the model and reason about its properties.
Theoretical tools such as statistical generalization or identifiability are mostly concerned about the
i.i.d. scenario, i.e., when the training and test data come from the same distribution. However, this is
an unrealistic assumption for language models (LMs), especially when pretrained models are used
for various downstream tasks. Despite the clear OOD nature of these tasks, OOD generalization
of these models is not understood theoretically. Recently, several works addressed a special type
of OOD generalization called compositional generalization in vision models [Schott et al., 2021,
Wiedemer et al., 2023b,a, Brady et al., 2023, Yang et al., 2023, Lachapelle et al., 2023]; however,
such studies are only started emerging for natural language [Ahuja and Mansouri, 2024, Han and
Padó, 2024, Ramesh et al., 2024, Lake and Baroni, 2023, Nogueira et al., 2021, Dziri et al., 2023,
Saparov et al., 2023]. Deletang et al. [2022] and Ruoss et al. [2023] conducted a similar experimental
investigation to ours, the tasks they evaluate on are also derived from formal language recognition
and thus grouped according to the Chomsky hierarchy, but they focus on length generalization.
Reizinger et al. [2024] show that despite any explicit inductive bias or regularization, Transformers
can exhibit much-better-than-chance extrapolation performance on some synthetic grammars. How-
ever, it is unclear whether this behavior is specific to the Transformer and/or the formal language.
Furthermore, there are some tasks such as addition and parity that are known to be very hard (or even
impossible) to solve by Transformers, at least without tricks [Zhou et al., 2023]. Inspired by these
works, our paper investigates the role of architecture in different formal languages.
Rule extrapolation. To understand the OOD behavior in AR LMs, we study a particular notion
of OOD generalization, which we term rule extrapolation. Rule extrapolation is a subclass of
compositional generalization, for formal languages are defined by composing multiple rules. When
assessing rule extrapolation, the model is pre-trained on formal language data, i.e., the support is the
intersection of all language rules. Then, OOD data is presented, where a subset of rules is violated,
thus having zero probability over the training distribution. If the completed OOD prompts satisfy
the not violated rules, we say the model extrapolates the rules. For example, the anbn language is
the intersection of two rules: (R1) the number of a’s equals the number of b’s and (R2) a’s precede
b’s. The prompt bbaab cannot be completed to obey the second rule. In this case, rule extrapolation
means that the completed prompt satisfies the first rule (e.g., bbaaba).
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2.3 Inductive biases in sequence models
Several deep learning architectures, such as CNNs or GNNs, were designed to capture specific
structural data properties. Such inductive biases in sequence models remain to be understood
[Reizinger et al., 2024]. McCoy et al. [2020] and Murty et al. [2023] studied whether different
architectures on language processing tasks have an inductive bias towards hierarchical structure.
[Murty et al., 2023] showed that with sufficient training, the transformer architecture can represent
hierarchical sentence structure and use this structure to generalize correctly. Several works establish
forms of simplicity bias [Valle-Pérez et al., 2019, Dingle et al., 2018, Mingard et al., 2020]. Goldblum
et al. [2023] demonstrate that (even randomly initialized) language models are biased towards low
algorithmic complexity. Weiss et al. [2021] developed a formal programming language called RASP
to model the inner workings of the Transformer, whereas Zhou et al. [2023] defined a subset, called
RASP-L, and proved length generalization in Transformer, emphasizing a simplicity bias in terms of
RASP-L code length. Chen et al. [2024] attribute the development of grammatical capabilities to
Syntactic Attention Structure (SAS), wherein specific Transformer heads tend to focus on specific
syntactic relations. These approaches leverage the tools of theoretical computer science to reason
about the success of Transformers, hinting at the role of a structural inductive bias. For example,
in-context learning (ICL) performance depends on the ordering of layers in the Transformer [Press
et al., 2020], and also the structure of the training data [Chan et al., 2022]. LM inductive biases
have also been studied from a mechanistic interpretability perspective. Most notably, Olsson et al.
[2022] propose that ICL is due to induction heads (a type of specialised attention heads). Mechanistic
interpretability approaches can also identify and disable the computational circuits responsible for bad
behaviors [Li et al., 2024] and locate ones that capture factual knowledge [Meng et al., 2023]. These
works constitute important progress; though we take a step back to ask: is the good performance
attributable to the Transformer? Are (at least some of) these emergent capabilities present in simpler
models such as linear models or RNNs?

3 Experimental setup
3.1 Architectures
To study when rule extrapolation emerges, we compare five architectures: linear models,
LSTMs [Hochreiter and Schmidhuber, 1997], Transformers [Vaswani et al., 2023], and State Space
Models (SSMs) (focusing on Mamba [Gu and Dao, 2023]), and the recently introduced xLSTM [Beck
et al., 2024]. The Transformer [Vaswani et al., 2023] caused a breakthrough in Natural Language
Processing (NLP) by introducing the (self-)attention mechanism, allowing it to capture global depen-
dencies efficiently in both directions, unlike the standard LSTM. Adapted from dynamical systems,
SSMs have recently entered language modeling, and became increasingly popular, such as this work’s
focus, Mamba [Gu and Dao, 2023]. In this architecture, the attention mechanism (where every
token must “attend" to every other token) is replaced by a single SSM block, allowing the model
to selectively focus on relevant information. The on-par performance of the Transformer and the
SSM along with the removal of the attention block raises the question of whether the SSM also show
rule extrapolation abilities. Recently, Beck et al. [2024] proposed an extension of the LSTM, which
includes matrix-valued memory cells, new gating and memory mixing mechanisms, and several
computational improvements. Training details, data set sizes, and model parameters are in Appx. B.

3.2 Datasets
Our data sets follow the hierarchy of [Chomsky, 1956]. The advantage of the classification is that
the categories exhibit fundamental differences. However, this hierarchy is based on computational
linguistics concepts. Therefore, there might be no connection between the language’s complexity in
the Chomsky hierarchy and what a neural network finds difficult to learn. Each language we study
obeys two rules, and the OOD prompts violate the corresponding R2, but the prompt can still be
completed to satisfy the other. Following (R1) and/or (R2) provide different information: following
(R1) means the LM still adheres to a rule even when the other is violated (in the whole sequence),
whereas adhering to (R2) on the completion shows that the LM still tries to satisfy that.
The used formal languages and their categorization and rules are included in Tab. 1. We define two
rules for each language to keep the results comparable; however, we acknowledge that these can lead
to rules of different complexity (cf. the chance levels for L3 and L5 in Tabs. 4 and 6), and also that
the rules can potentially be defined in multiple equivalent ways.
Regular grammars. Regarding the hierarchy, the two simplest data sets are regular languages
L1 = {bα : α contains even number of ’a’s} and L2 = {bna2m : n,m > 0}. The rules of the
language L1 are: (R1) there are even number of as in the sequence; and (R2) the sequence starts with
a b. For L1, the OOD prompts consist of prompts that violate (R2) , i.e. start with an a, but all these
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prompts can be completed to satisfy (R1). For language L2, the rules are: (R1) there are even number
of as in the sequence; and (R2) bs precede as. The OOD prompts for L2 violate (R2). They start with
a single a, then a block of bs and possibly a block of as.
Context-free grammars. We implemented two context-free grammars L3 and L4: L3 = {anbn :
n > 0}, i.e., (R1) the number of as and bs match; and (R2) as precede bs. For L3, OOD prompts
violate (R2) , i.e., the prompts include b tokens followed by a tokens.
Our fourth formal language is a bracketing (Dyck-) language, i.e., L4 =
{sequences of nested and paired parentheses and brackets}, e.g. “( [ ]( ) )" The rules of the
language are: (R1) brackets are nested and paired; and (R2) parentheses are nested and paired. Paired
means that every opening bracket/parenthesis has a closing pair; nested means that between an
opening and closing bracket/parenthesis, all other tokens must be paired—contrast this with L6. For
L4, ID prompts begin with "([" and OOD prompts start with ")["; both are followed by a sequence
where the parentheses and the square brackets are matched.
Context-sensitive grammars. We implemented two context-sensitive grammars L5 and L6.
L5 = {anbncn : n > 0}. Though it seems very similar to L3, its grammar rules make
it context-sensitive, i.e., the tokens generated depend on multiple tokens. The grammar rules
can be summarized as: (R1) the number of as, bs, and cs are the same; (R2) as precede
bs and bs precede cs; and The OOD prompts are sequences which violate (R2) . All these
prompts can still be completed to obey (R1). L6 is a context-sensistve Dyck-language, i.e.,
L6 = {sequences of paired, but not necessarily nested parentheses and brackets}, e.g. “( [ )]" The
rules of the language are: (R1) brackets are paired; and (R2) parentheses are paired. Akin to L4, for
L6 ID prompts begin with "([" and OOD prompts start with ")["; both are followed by a sequence
where the parentheses and the square brackets are matched.

3.3 Metrics.
We monitor training and test loss. We evaluate the accuracy of both rules (R1/R2) separately and
simultaneously both for in-distribution samples, and also for OOD prompts. As OOD prompts are
designed that (R2) cannot be satisfied, we evaluate its accuracy in the most lenient way. That is,
we either calculate it on the completion or, for the Dyck languages, on the part after the closing
parenthesis “)". An example for the L3 OOD prompt abbb is as follows: the completion abbbaa
is considered correct for (R2), but abbbabaa is not, as it has an a after a b in the completion. Our
evaluation is restricted to prompt completions with an EOS token. We also monitor the accuracy
of the next token prediction via greedy decoding (i.e., using the token with the largest probability).
Our results report the minimum of the test loss to measure whether the models are in the saturation
regime [Reizinger et al., 2024]. We select the largest values for the rule accuracies. We choose this
evaluation as small variations in the test loss could lead to large deviations (as predicted by Liu et al.
[2023]). We also report chance level accuracies as a baseline, quantifying how complex a given rule
is. Chance level accuracy in each case refers to the performance of a model that always predicts
each token (excluding the start-of-sequence (SOS) token) as the next token with equal probability2.
We report means and standard deviations across 5 seeds. Similar to [Rajamanoharan et al., 2024],
we provide a non-representative human baseline based on a small pilot study, where participants
have seen three examples for L1, L3 then were asked to complete five OOD sequences for each
(Appx. B.6). We corrected for invalid answers and emphasize that we only aim to provide a sense of
how humans measure against neural networks, without reaching any statistical conclusions.

4 Results
Regular grammars. Perhaps surprisingly, modern architectures perform the worst on regular
languages L1 (Tab. 2) and L2 (Tab. 3) : both Mamba and the Transformer are worse in- and out-of-
distribution than the LSTM—the xLSTM only matches the LSTM in OOD performance on (R1).
Furthermore, the Transformer’s accuracies are below chance level even for in-distribution, despite
having approximately the same test loss as the LSTM and Mamba. The Linear model seemingly
manages to obey perfectly (R2) in-distribution on L2, which happens because this model only predicts
EOS on test prompts, and the ID test prompt already satisfies (R2). In the other categories, Linear
is at or below chance-level. In our small pilot study, humans performed akin to Mamba on L1

(Tab. 14). Zhou et al. [2023] observed that Transformers struggle with addition or parity calculation,
which might explain the Transformer’s low performance on regular languages, as both L1, L2 require
calculating the parity of a tokens.

2The code for calculating chance levels is in chance_level_accuracies.ipynb
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Model Test loss ID R1 OOD R1 OOD R2 completion

Chance N/A 0.500 0.500 0.333
Linear 4.553±0.290 0.500±0.000 0.500±0.000 0.000±0.000

LSTM 0.276±0.007 0.926±0.110 0.862±0.143 0.947±0.107

Mamba 0.274±0.006 0.634±0.130 0.591±0.063 0.597±0.246

Transformer 0.277±0.005 0.393±0.402 0.445±0.461 0.468±0.515

xLSTM 0.284±0.008 0.740±0.221 0.679±0.183 0.701±0.301

Table 2: Test loss and rule-following accuracies for the regular language L1 = {bα}: the LSTM
can extrapolate (R1) the best. The column R2 is left out as it is satisfied by design.

Model Test loss ID R1 ID R2 OOD R1 OOD R2 completion

Chance N/A 0.473 0.250 0.500 0.750
Linear 1.927±2.537 0.422±0.034 1.000±0.000 0.513±0.045 0.000±0.000

LSTM 0.037±0.000 1.000±0.000 1.000±0.000 1.000±0.000 0.000±0.000

Mamba 0.038±0.000 0.901±0.088 1.000±0.000 0.959±0.076 0.073±0.120

Transformer 0.039±0.000 0.158±0.357 0.182±0.405 0.067±0.214 0.000±0.000

xLSTM 0.037±0.000 0.833±0.408 0.833±0.408 1.000±0.000 0.000±0.000

Table 3: Test loss and rule-following accuracies for the regular language L2 = {bna2m}: the
LSTM and the xLSTM can extrapolate (R1) the best, closely followed by Mamba

Context-free grammars. On the context-free grammars L3, L4, the conclusion is different. On L3

(Tab. 4), although all four models achieve perfect accuracy on (R2) both in- and out-of-distribution,
and all models except the Linear, (near) perfectly obey (R1) in-distribution, the Transformer ex-
trapolates (R1) to the largest extent (66%), followed by the LSTM (38%) and Mamba (30%). The
seemingly perfect (R2) ID and OOD extrapolation for the Linear model is, again, due to EOS
token generation. On the Dyck language L4 (Tab. 5), the Transformer has the best extrapolation
performance, and Mamba is better than the LSTM. On L3, the human participants in our small study
had performed better on following (R2) on the completion than extrapolating (R1); however, the
Transformer was better than humans in extrapolating both (R1) and (R2).

Model Test loss ID R1 ID R2 OOD R1 OOD R2 completion

Chance N/A 0.105 0.356 0.154 0.445
Linear 2.553±0.159 0.200±0.000 1.000±0.000 0.275±0.000 1.000±0.000

LSTM 0.019±0.000 1.000±0.000 1.000±0.000 0.376±0.209 1.000±0.000

Mamba 0.019±0.000 1.000±0.000 1.000±0.000 0.296±0.043 1.000±0.000

Transformer 0.022±0.002 1.000±0.000 1.000±0.000 0.657±0.162 1.000±0.000

xLSTM 0.019±0.000 1.000±0.000 1.000±0.000 0.438±0.252 1.000±0.000

Table 4: Test loss and rule-following accuracies for the context-free language L3 = {anbn}: the
Transformer can extrapolate (R1) the best.

Context-sensitive grammars. The grammar L5 (Tab. 6) is similar to L3, i.e., the Transformer
performs best. Intuitively, the sequences in the form of {anbn} and {anbncn} are rather similar,
despite the latter being context-sensitive in Chomsky’s hierarchy. Rule extraplation accuracies for
(R1) in L5 are lower than for L3, which can be attributed to the higher complexity of (R1) in the
context-sensitive grammar (cf. chance levels in Tabs. 4 and 6). For the context-sensitive Dyck
language L6 (Tab. 7), the Transformer and LSTM perform similarly on both OOD (R1) and (R2).

Results summary. We conclude that on different grammars, different architectures perform best
(Fig. 1). Although the Transformer has a consistently good performance on the investigated context-
free and -sensitive grammars, LSTM and Mamba are better choices for the studied regular grammars.
We hypothesize that it happens because these languages require calculating parity, in which the
Transformer struggles [Zhou et al., 2023]. The xLSTM generally lies somewhere between the LSTM
and the Transformer. The Linear model has very limited capabilities for modeling formal grammars
as it cannot even minimize the test loss. In our small pilot study on L1, L3, humans found the tasks
difficult: they performed better than chance, though the LSTM performed better on L1, and the
Transformer on L3 (Tab. 14)—we emphasize that our human-machine comparison only provides
intuition, rather than a rigorous evaluation of human performance, which is left for future work.
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Model Test loss ID R1 ID R2 OOD R1 OOD R2 completion

Chance N/A 0.127 0.127 0.127 0.382
Linear 6.145±0.647 0.000±0.000 0.000±0.000 0.000±0.000 1.000±0.000

LSTM 0.266±0.014 0.961±0.075 0.969±0.050 0.543±0.282 1.000±0.000

Mamba 0.277±0.014 0.697±0.152 0.607±0.140 0.644±0.164 0.886±0.129

Transformer 0.273±0.018 0.974±0.148 0.973±0.109 0.980±0.090 1.000±0.000

xLSTM 0.273±0.013 0.706±0.116 0.665±0.155 0.689±0.164 0.991±0.018

Table 5: Test loss and rule-following accuracies for the context-free Dyck language L4: the
Transformer can extrapolate (R1) the best.

Model Test loss ID R1 ID R2 OOD R1 OOD R2 completion

Chance N/A 0.022 0.454 0.003 0.593
Linear 2.657±0.383 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000

LSTM 0.017±0.001 1.000±0.000 1.000±0.000 0.068±0.036 1.000±0.000

Mamba 0.017±0.000 1.000±0.000 1.000±0.000 0.099±0.010 1.000±0.000

Transformer 0.024±0.003 1.000±0.000 1.000±0.000 0.187±0.085 1.000±0.000

xLSTM 0.017±0.000 1.000±0.000 1.000±0.000 0.116±0.058 1.000±0.000

Table 6: Test loss and rule-following accuracies for the context-sensitive language
L5 = {anbncn}: the Transformer can extrapolate (R1) the best

Model Test loss ID R1 ID R2 OOD R1 OOD R2 completion

Chance N/A 0.127 0.127 0.127 0.382
Linear 4.013±0.254 0.000±0.000 0.000±0.000 0.000±0.000 1.000±0.000

LSTM 0.645±0.019 0.981±0.042 0.956±0.061 1.000±0.000 0.894±0.165

Mamba 0.675±0.018 0.745±0.070 0.807±0.185 0.684±0.159 0.810±0.212

Transformer 0.640±0.016 1.000±0.000 1.000±0.000 0.980±0.045 0.973±0.044

xLSTM 0.671±0.021 0.791±0.179 0.765±0.155 0.767±0.158 0.715±0.121

Table 7: Test loss and rule-following accuracies for the context-sensitive Dyck language L6: the
Transformer and the LSTM can extrapolate the best

5 Normative theory of OOD prompt completion
The previous sections empirically assessed an example of rational OOD prompt completion: rule
extrapolation. In this section, instead of asking what happens, we take a step back to ask what
should happen: how an ideal model should learn and extrapolate rules. We propose a non-parametric
prior and prediction scheme for OOD prompt completion, that can be seen as a generalization of
Solomonoff induction [Solomonoff, 2001, Li and Vitányi, 1997] to settings relevant for AR LMs.
Although our algorithm, just like Solomonoff induction, is uncomputable, we argue that it formalises
a rational approach capable of OOD extrapolation in AR sequence models. Rather than a practical
algorithm itself, it should be interpreted as a guide towards building and assessing future practical
models. Our conceptual approach is not without precedent: ideas from AIT have recently been
popularized as “North Stars” for guiding practical implementations [Theis, 2024, Goldblum et al.,
2023], and have been applied in practical algorithms [Grau-Moya et al., 2024].
We first introduce our approach on the high-level, via the following story.
A story of OOD prompt completion. Suppose that Bob has a Language Model pdata, that autore-
gressively generates M i.i.d. sequences of length m, {(x1,j , x2,j , . . . xm,j)}Mj=1 := (xm

1j)
M
i=1. Since

the sequences are generated autoregressively, we may call (xm−1
1j )Mj=1 the ID prompts, and each mth

element (xm,j)
M
j=1 its ID completions. Suppose that Charlie, Bob’s enemy, generates a n−length

sequence from the same LM, and intervenes (in the causal sense) on it, so that the resulting sequence
(x1, x2, . . . xn−1) := xn−1

1 has zero probability under the LM. We call this the OOD prompt. Despite
pdata(x

n−1
1 ) = 0, the LM still defines the conditional probability of completing the OOD prompt

xn−1
1 . Charlie then asks an observer, Alice, to predict how Bob’s LM will complete the OOD prompt

xn−1
1 , i.e., what xn will be. Fig. 2 shows the probabilistic assumptions of Alice: the completions

are generated independently, according to the same procedure (i.e., using the same LM). We use the
conditional independence assumption xn ⊥ (xm

1 )Mj=1 | xn−1
1 in eq. (4) below.
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pdata

j ∈ (1, 2, . . . , M)

ID
prompt
(xm−1

1 )j

ID
completion

(xm)j

OOD
prompt

OOD
completion

(xn−1
1 ) xn

Figure 2: Graphical model representing our approach for OOD prompt completion. Although Bob’s
LM pdata assigns zero probability to the OOD prompt, it defines a conditional probability distribution
for its completions. Our probabilistic model assumes that Bob’s LM completes the ID and OOD
prompt independently, according to the same procedure (e.g. the same LM architecture and parameters
are used for generating the completions). This is the same as assuming that the Markov factors
marked in blue are the same, i.e. p(completion|prompt, pdata) = p(completion|OOD prompt, pdata),
and the conditional independence OOD completion ⊥ ID prompt | OOD prompt.

In the rest of this section, we construct an algorithmic prior that formalizes these assumptions, and
argue why it is a promising approach to study OOD compositional generalization theoretically.

5.1 The Solomonoff prior
The Solomonoff prior assigns a prior probability to individual data points based on some algorithmic
notion of how difficult it is to generate that data point. It embodies Occam’s razor and Epicure’s
principle, as simple data points have a larger probability, and every possible explanation is included
in the prior (see also Appx. C.2). For simplicity, we define the Solomonoff prior for discrete sample
spaces, though similar arguments hold for the continuous case. To encourage readability, we define
technical terms in Appx. C.2, and highlight them in blue here. Let us fix a monotone universal Turing
machine (UTM). Solomonoff’s universal prior [Solomonoff, 2001] is defined over arbitrary-length
sequences xN

1 := (x1, x2, . . . , xN ) as
pS(x

N
1 ) =

∑
i

α(pi)pi(x
N
1 ), (1)

where we sum over all discrete lower semicomputable semimeasures pi(xN
1 ) implementable on the

UTM [Li and Vitányi, 1997]. We will refer to the pi(x
N
1 ) as mixture components or explanations

of the data. The prior on weights α(pi) is an arbitrary semimeasure, i.e., ∀i : α(pi) > 0 and∑
i α(pi) ≤ 1. Frequently, α(pi) is chosen as 2−K(pi), the prefix Kolmogorov complexity of pi in

the UTM (see Defn. C.5 in Appx. C.2).
Predictive form. The above formulation of the Solomonoff prior has the predictive form [Hutter,
2005, Chapter 3.2.3], where α(pi | xN−1

1 ) is updated via Bayesian inference:

pS(xN | xN−1
1 ) =

∑
i

α(pi | xN−1
1 )pi(xN | xN−1

1 ), where α(pi | xN−1
1 ) =

α(pi)pi(x
N−1
1 )

pS(x
N−1
1 )

(2)

Convergence of predictions. Suppose that the true distribution of (x1, x2, . . . , xN ) is µ. The
Solomonoff prior (with any valid sequence of weights) satisfies [Hutter, 2005].

pS(xN | xN−1
1 )

N→∞−−−−→ µ(xN | xN−1
1 ) with µ−probability 1. (3)

5.2 A predictive model for OOD prompt completion
Our goal is to define a similar prior, and predictive scheme that fits our scenario of AR next-token
prediction, and where we can express the notion of completing an out-of-distribution prompt xn−1

1 ,
even when our prior assigns zero probability to the prompt.
The Solomonoff prior assigns nonzero prior mass to every possible prompt, i.e. there exist no OOD
problems for the Solomonoff prior, as each possible test distribution is included in the prior as
a mixture component pi. However, by definition, the Solomonoff prior can only take in a single
sequence xn

1 . This means that it can only model pre-training and (OOD) testing together, since
the pre-training and testing data need to be concatenated into the same sequence [Hutter, 2011].
Intuitively, it is more natural to separate those processes. To achieve this, we propose an adapted
version of the Solomonoff prior, modifying it two ways, and justifying our approach below:
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(i) We condition the prediction on a pre-training dataset D of M independent and identically
distributed (i.i.d.) sequences of finite length m, i.e. D = {xm

1j}Mj=1. D is sampled from the
distribution pMdata(D) =

∏M
j=1

∏m
k=2 pdata(xk,j | xk−1

1,j ). For simplicity, we assume that each
pre-training datapoint has equal length m.

(ii) Instead of modelling semimeasures as joints over sequences {(xN
1 )}N∈N, we model semimea-

sures as lists of conditionals, just as how AR LMs model probability distributions over
{(xk | xk−1

1 )}Nk=2, enumerating them with index i = 1, 2, . . . , denoting each semimea-
sure as pi| to emphasize the lists of conditionals representation. That is, pi|(xk | xk−1

1 ) and
pi|(D) mean pi(xk | xk−1

1 ) and pi(D) =
∏M

j=1

∏m
k=2 pi(xk,j | xk−1

1,j ), respectively. Note
that the pre-training distribution pdata also belongs to the set of pi|. We define a mixture over
all lists of discrete lower semicomputable semimeasures pi| implementable on the UTM See
Appx. C.1 for details.

The motivation for modelling xN
1 as a list of conditionals is because the mapping from lists of

conditional factorizations to joint semimeasures consistent with them is a many-to-one mapping,
because zero-probability sequences have multiple factorizations (see Appx. C.1 for justification and
more details on this notation). If the prompt xn−1

1 comes from a distribution different from D ∼ pMdata,
that assigns zero probability mass to xn−1

1 , the probability pdata(xn | xn−1
1 ) is left undefined if only

the joint probability pdata(x
n
1 ) is specified. This is not a problem in the Solomonoff prior, as it assigns

nonzero probability mass to every (computable) sequence. But once we introduce the conditioning
on D, this step becomes necessary. The above two modifications generalize the predictive form of
the Solomonoff prior as follows (we color-code the equation denoting modification (i) in red and
modification (ii) in green):

pR(xn | xn−1
1 ,D) :=

∑
i

α(pi| | D)pi|(xn | xn−1
1 ), with α(pi| | D) =

α(pi|)pi|(D)

pdata(D)
. (4)

Interpreting pR. Starting from a prior weight α over all possible explanations pi| = {pi(xk |
xk−1
1 )}nk=2, the posterior probability of pi| given D is computed (eq. (4), right). The nth step

prediction by pi, conditioned on a possibly OOD test prompt, is then weighted by this posterior. It
is important that the prediction pi|(xn | xn−1

1 ) is not conditioned on the pre-training data D, and
the posterior α(pi| | D) is not conditioned on the test prompt xn−1

1 . This, as stated above, separates
pre-training from testing, enabling us to define the completion of OOD test prompts. When D equals
xn−1
1 , pR reduces to pS , and thus the posterior prediction converges according to eq. (3).

Choice of the weight prior α(pi|). For OOD test prompts, there are multiple explanations pi|
consistent with D. Therefore, the behaviour of pR, even when |D| tends to infinity, depends on the
prior weight α(pi|). This differs from the Solomonoff prior, which converges to the true posterior
regardless of the weights (eq. (3)) [Hutter, 2005]. Thus, α must be chosen to allow the extrapolation of
simple explanations consistent with the data. We define α(pi|) := 2−K(pi|), penalising exponentially
the length of the shortest program (implemented on the fixed UTM) K(pi|) that can approximate pi|
(each conditional probability) for every prompt xn

1 . This encodes Occam’s razor into the prior, and is
consistent with the optimal weights of the Solomonoff prior [Hutter, 2005].
5.3 Towards explaining training dynamics and rule extrapolation
Here, we argue informally that our normative algorithm provides a notion of a rational pre-training
process, and thus helps explain the training dynamics of practical LMs, and is also capable of
rule extrapolation. We support our arguments by showing the role of simplicity bias (towards low
Kolmogorov complexity) in the dynamics of learning the anbn language with Transformers.
Explaining training dynamics. We analize the dynamics of learning rule extrapolation. We report
results on the Transformer (training dynamics of Mamba and the LSTM are in Appx. A), trained on
the anbn language—where high rule extrapolation ability is achieved. Fig. 3 shows that first, the
model learns the sequences obeying (R2), then it learns the language (R1) ∩ (R2) as its subset.
We argue that the order in which rules are learnt is governed by the relative simplicity of the rules,
quantified by Kolmogorov complexity. Given a formal language with rules (R1) and (R2), let p1, p2
and p1,2 be distributions defined by LMs that generate sequences that satisfy (R1), (R2) and (R1) ∩
(R2), respectively. If, e.g., K(p2) ≪ K(p1,2), our normative algorithm will first learn (R2), and then
learn the (R1) ∩ (R2) as its subset. In the anbn language, (R2) (a’s before b’s), is, on average, simpler
to generate than (R1) (#a=#b) and (R1) ∩ (R2). Therefore, we expect our normative algorithm to first
learn (R2), and then learn (R1) ∩ (R2) as its subset. Remarkably, our Transformer employs the same
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Figure 3: Training dynamics of rule learning for a Transformer trained on the anbn language:
we color-code the log probability of all sequences of length 8 consisting of a’s and b’s and ending with
EOS at initialization (left left), during (left middle) and after training (left right). The sequences are
separated according to which rule they obey. While at initialization, the probabilities are distributed
roughly evenly, during training the model starts to assign higher probabilities to sequences satisfying
(R2). After training the most likely sequences are the ones in (R1) ∩ (R2), the others are negligible.
The same trend can be seen on the right, where the normalized sum of the probabilities of the four
categories (satisfying (R1) and (R2), only (R1), only (R2) and neither) is plotted during training.

strategy ( Fig. 3), verifying the presence of simplicity bias. This result is matches past observations
that Transformers are biased towards low Kolmogorov complexity [Goldblum et al., 2023].

Towards explaining rule extrapolation. Our normative algorithm has been designed to complete
OOD prompt based on the simplest explanations consistent with the pre-training data. On the high
level, this approach is consistent with rule extrapolation. We conjecture that approximating our
normative algorithm similarly to the approach of Grau-Moya et al. [2024], will result in models with
superior rule extrapolation properties. We leave this promising direction to future work.

6 Discussion
Conclusion. We argue that focusing on rule extrapolation and formal languages gives us sound
(theoretical) tools to analyze and better understand out-of-distribution behaviour in language models,
such as the role of different architectures. Our empirical findings emphasize that no single universal
architecture exists for autoregressive sequence modeling. Though Transformers fare very well in
most scenarios we investigated, they struggled on regular languages. Therefore, we argue that the
architecture’s inductive bias should be considered when selecting models since the architecture that
performs the best depends on the nature of the task. Furthermore, we analyse the training process
enabling rule extrapolation, we find that the model first identifies the whole set obeying one of the
rules, then it learns the language (intersection of all rules) as its subset. Beyond advancing our
empirical understanding, we also proposed a normative theory of OOD prompt completion. Our
normative algorithm predicts the next token based on simple explanations consistent with the data,
and allows us to explain and contextualise some of our empirical observations.
Impact. Rule extrapolation is a special case of compositional generalization in language models.
While other OOD generalisation types were examined previously, this is the first work studying rule
extrapolation. This novel concept has the potential to impact LLM research both on conceptual and
practical levels. General compositional generalization notions examine whether from learning multi-
ple concepts/rules separately, the model can understand the composition of the concepts/intersection
of the rules. However, in rule extrapolation, we measure the reverse direction: from the composi-
tion/intersection, can the model identify the concepts/rules separately? Importantly, this direction is
less straightforward. Rule extrapolation allows for easy study of compositional generalisation ability
on a variety of datasets, such as formal or programming languages. Therefore rule extrapolation
has the potential to become an established benchmark task for evaluating current and future LM
architectures.
Limitations. We defined and empirically evaluated rule extrapolation in simple formal languages,
where analysis is tractable and demonstrates that models can “go beyond" their training data. We
acknowledge that our data sets are far from natural language where rule extrapolation may be difficult
to demonstrate. Studying formal languages may still have practical relevance, e. g. for programming
languages or formal mathematics. Even though we considered different hyperparameter setups
presented in the appendix, we have not performed exhaustive ablations over the hyperparameters or
analysis of architectures. Furthermore, model variants, like different attention or positional encoding,
may impact our findings.
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A Further experimental results on training dynamics

Figure 4: Training dynamics of the LSTM Training an LSTM on the anbn language, the normalized
probability of all sequences, grouped into the four categories (satisfying (R1) and (R2), only (R1),
only (R2) and neither) of length 8 consisting of a’s and b’s and ending with EOS is plotted during
training. The sequences are separated according to which rule they obey. At initialization, sequences
obeying any of the rules have low probability. During training, the model first starts assigning higher
probabilities to sequences satisfying (R2), but soon after, sequences in (R1) ∩ (R2) dominate. After
training the most likely sequences are the ones in (R1) ∩ (R2), the others are negligible.

Figure 5: Training dynamics of Mamba Training a Mamba architecture on the anbn language, the
normalized probability of all sequences, grouped into the four categories (satisfying (R1) and (R2),
only (R1), only (R2) and neither) of length 8 consisting of a’s and b’s and ending with EOS is plotted
during training. The sequences are separated according to which rule they obey. Intriguingly, at
initialization, sequences obeying (R2) are assigned largest probability. During training, the model
learns (R1) ∩ (R2) consistently after 3000 epochs. After training the most likely sequences are the
ones in (R1) ∩ (R2), the others are negligible.
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B Experimental details
B.1 Reproducibility and codebase.
We use PyTorch [Paszke et al., 2019], PyTorch Lightning [Falcon, 2019], and HuggingFace
Transformers [Wolf et al., 2020]. Our training pipeline builds on [Reizinger et al.] and we
use the PyTorch implementation of Mamba from [LeGuet] and the code released by the authors
for the xLSTM [Beck et al., 2024]. Our code and experimental logs are publicly available at
https://github.com/meszarosanna/rule_extrapolation.

B.2 Formal grammars
Training data. We generate data from the formal languages L1, L2, L3, L4 and L5 described in
§ 3.2 up to length 256—excluding the SOS and EOS tokens, i.e., those two tokens add two to the
maximal length. The SOS (0), EOS (1), and padding (2) tokens are always represented by these
numbers. When the grammar consists of letters, their representations are a (3), b (4) and c (5), and
when the language is the nested brackets and parentheses the tokens are the ′(′ (3), ′)′ (4), ′[′ (5) and
′]′ (6).
We used different data set sizes for the different languages. This is explained by the highly different
size of all possible sequences that obey all rules of any language. For the languages, L1, L2 the
training set consists of 15000 samples (as these languages have rules satisfied by many sequences),
and for L4, 512 samples. For L3 and L5, the corresponding data sets include all unique sequences up
to length 256, which is 128 for L3 and 85 for L5, respectively.

Test prompts. We define our test prompts as all possible sequences of length 8 (prepended with
SOS) for L1 and L3, and all possible sequences of length 5 (prepended with SOS) for L5 = {anbncn :
n > 0}—we chose different lengths to have a comparable number of test samples, i.e., 28 and 53,
respectively. We split these sets into in-distribution and OOD test prompts, based on whether they
can be completed to obey the rules of the specific grammar.
For L2, first, we generate in-distribution test prompts of length 8—these can be completed according
to the grammar rules by definition. From these, we create the OOD prompts by adding a single a to
the beginning of the sequences. For L4, we sample length-6 sequences obeying both rules, then the
ID prompts are prepended with ′( [′ and the OOD prompts with ′) [′. Then the prompts are prepended
with SOS.

B.3 Model and training parameters
We observed that the Linear model constantly predicts PAD tokens, unless we ignore those by setting
the ignore_index=PAD in torch.nn.CrossEntropyLoss(). However, for comparison, when
reporting the losses, we report the loss where we do not set the ignore_index parameter.

Table 8: General parameters

PARAMETER VALUES

TRAINING DATA MAXIMUM LENGTH 256
PROMPT PREDICTION CUTOFF LENGTH 300
BATCH SIZE 128
OPTIMIZER ADAMW
LEARNING RATE SCHEDULER INVERSE SQUARE ROOT
BATCH SIZE 128
LEARNING RATE 2e−3
NUMBER OF EPOCHS 50, 000

Table 9: Linear model parameters

PARAMETER VALUE

MODEL LINEAR
DIMENSION OF THE MODEL 256
BIAS TRUE
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Table 10: LSTM parameters

PARAMETER VALUE

MODEL STANDARD LSTM
NUMBER OF LAYERS 5
EMBEDDING DIMENSION 16
HIDDEN DIMENSION 64
DROPOUT PROBABILITY 0.4

Table 11: Transformer parameters

PARAMETER VALUE

MODEL TRANSFORMER DECODER
NUMBER OF LAYERS 7
MODEL DIMENSION 10
NUMBER OF ATTENTION HEADS 5
FEEDFORWARD DIMENSION 1024
DROPOUT PROBABILITY 0.1
LAYER NORM ϵ 6e−3
ACTIVATION RELU

Table 12: Mamba parameters

PARAMETER VALUE

MODEL MAMBA
NUMBER OF LAYERS 10
MODEL DIMENSION 32
DIM OF CONV LAYER 8
DIM OF STATE SPACE 16

Table 13: xLSTM parameters3

PARAMETER VALUE

MODEL XLSTM
NUMBER OF BLOCKS 6
EMBEDDING DIMENSIONS 64
MLSTM CONV1D KERNEL SIZE 4
MLSTM qkv PROJECTION BLOCK SIZE 4
MLSTM NUMBER OF HEADS 4
SLSTM POSITION 1
SLSTM NUMBER OF HEADS 4
SLSTM CONV1D KERNEL SIZE 4
SLSTM BIAS INITIALIZATION BLOCK-DEPENDENT POWER LAW
SLSTM FEEDFORWARD PROJECTION FACTOR 1.3
SLSTM FEEDFORWARD ACTIVATION GELU

B.4 Training dynamics plot generation details
Figure 3 was plotted on the anbn language with the Transformer on seed 63656. The left left was
plotted at the Lightning module’s "self.global_step=0", left middle at "self.current_epoch
= 600" and left middle at nearly end of the training at "self.current_epoch=9700". On the right,

3Adopted from https://github.com/NX-AI/xlstm?tab=readme-ov-file#
xlstm-language-model
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the sum of the probabilities was computed at every epoch divisible by 100. Similarly, Figure 4 was
plotted on anbn with LSTM with seed 8556, and Figure 5 on anbn with Mamba with seed 91686.

B.5 Additional experimental results
Greedy decoding vs sampling. Our initial results use greedy decoding, but we conducted experi-
ments to evaluate the sampling method for next token prediction. As shown in Fig. 6, we conclude
that while the the Transformer is the best choice with greedy decoding, except for regular languages
where the LSTM performs better (Fig. 6a); the LSTM appears to excel when using sampling (Fig. 6b).
These results also open up new interesting future directions, e.g., investigating the influence of
different temperature values in the softmax.

(a) Greedy decoding

(b) Sampling decoding

Figure 6: Rule extrapolation summary for all models but the xLSTM and languages L1 − L5

(Tab. 1) with greedy (Fig. 6a) and sampling (Fig. 6b) next-token decoding

Figure 7: Rule extrapolation performance for different optimizers and learning rates for all
models except the xLSTM and languages L1 − L5 (Tab. 1): top row left is the same as Fig. 6a

Hyperparameter sensitivity. We tested multiple hyperparameters, including three learning rates
and two optimization algorithms, and plotted the results in Fig. 7. Though our hyperparameter search
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is not exhaustive, we can state that when considering the best settings for each architecture, the LSTM
consistently performs best on regular languages, while the Transformer excels on everything else.

Model size ablation. We tested varying size settings (different numbers of layers and heads) for the
Transformer architecture to determine whether increasing size can improve performance on regular
languages. As shown in Fig. 8, increasing the Transformer model size does not meaningfully improve
performance on regular languages; the best values remain those originally used (num_layers =
7, num_heads = 5). For non-regular languages, the Transformer already outperformed the other
architectures.

Figure 8: Rule extrapolation performance for different number of attention heads and decoder
layers in the Transformer for languages L1 − L5 (Tab. 1)

B.6 Human pilot study details
We conducted a small pilot study with humans using an online questionnaire (the study size was 14).
We did not collect any personal information, only task-relevant responses.

Instructions. The participants received the following instruction:
This questionnaire asks you to perform a task of completing sequences based on examples for 2 cases.
Each case follows the same layout:

• first, we show some example sequences
• then on, we start sequences and ask you to finish them as you see fit

Then, on the three following pages of the questionnaire, they were presented the following:
We generate sequences according to some patterns. You see below examples, which are considered
completed (whitespace is only for visibility reasons):
[Examples came here in the questionnaire; detailed below]
Now you will see 5 incomplete messages. What you see are the first characters of sequences of
unknown length. Your task is to finish them.
When writing down your answer:

• DO NOT include the beginning of the sequence already provided, only your completion of it.
• The length of your answer is up to you, choose what you see fit.
• If you think the sequence is already completed, leave the space for the completion empty

Case 1: regular grammar L1. The examples for the context-free grammar L1 were:

• baba
• baa
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• babbaaa

The prompts the participants needed to complete were:

• aba
• abba
• abaaba
• abab
• aaba

Case 2: context-free grammar L3. The examples for the context-free grammar L3 were:

• aabb
• aaabbb
• aaaaaabbbbbb

The prompts the participants needed to complete were:

• baa
• abaa
• bba
• baab

Results. We preprocessed the questionnaire results to remove invalid responses (e.g., those with
invalid characters, where we assumed that we did not explain the task well to the study subjects). We
report the OOD (R1) and (R2) accuracies, the latter only on the completion in Tab. 14.

Language OOD R1 OOD R2 completion

L1 = {bα} 0.654 0.605
L3 = {anbn} 0.415 0.623

Table 14: Human pilot study OOD accuracies: humans in our study performed better than chance,
though they could not beat the LSTM on L1 and the Transformer on L3

B.7 Computational requirements
Our models and data sets are small scale and were designed to fit into an NVIDIA GeForce RTX
2080 Ti with 11GB VRAM, this guided our parameter choices (Appx. B.3). As we used SLURM and
Condor managed clusters, our experiments were, due to GPU availability, in some cases, allocated on
NVIDIA A100 GPUs. Although in the paper we report statistics over 5 seeds, in some cases, we ran
more experiments during the lifetime of the project. For transparency, we report overall numbers,
given in GPU hours for each synthetic grammar (Tab. 1). The runtimes differed based on model
architecture, data set size, and the stochasticity of the training (i.e., the use of early stopping)

• L1 : 1,455 GPU hours for 107 runs
• L2 : 707 GPU hours for 59 runs
• L3 : 301 GPU hours for 334 runs
• L4 : 269 GPU hours for 208 runs
• L5 : 264.5 GPU hours for 65 runs,

which amounts to approximately 3,000 GPU hours and also includes the GPU hours required for
creating the figures (Fig. 3).
To estimate the energy consumption, we take the maximum power consumption of an NVIDIA A100
(PCIe version), which is 250W4. This amounts to approximately 750kWh, which is equivalent to
the emission of 0.313 metric ton CO2, i.e., approximately 1290 kilometres driven by an average
gasoline-powered passenger vehicle5.

4https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/a100/pdf/
nvidia-a100-datasheet.pdf

5https://www.epa.gov/energy/greenhouse-gas-equivalencies-calculator
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C Details on the normative theory of OOD extrapolation
C.1 The set of joints and conditional factorizations
In this section, we denote sets of probability distributions as D and use subscripts J and C to
refer to joint and conditional distributions, respectively. Consider the set of joint probabilities
on N−length sequences, where the pi are drawn from some set S. For example, S = {pi :
is computable w.r.t. a UTM}.

DJ,N = {pi(x1, x2, ..., xN ), pi ∈ S} (5)

and the set of conditional factorizations consistent i.e., such conditionals that the joint equals the
product of the conditionals, with them

DC,N = {{pi|(xk | xk−1
1 )}Nk=1, consistent with elements of S}. (6)

We claim that DJ,N ⊂ DC,N . To see that DJ,N ⊆ DC,N , note that the list {pi|(xk | xk−1
1 )}Nk=1

uniquely determines pi(x1, x2, ..., xN ) as the product of its elements. To see that the sets are not
equal, consider the following example.

Example. Let X1 and X2 be two binary random variables. Let us define a probability mass
function (pmf) p such that p(X1 = 0) = 0 and p(X1 = 0, X2 = 0) = p(X1 = 0, X2 = 1) = 0.
Now consider two sets of conditional pmfs q1 and q2, satisfying

q1(X2 = x | X1 = 1) = q2(X2 = x | X1 = 1) = p(X2 = x | X1 = 1) = p(X2 = x),

q1(X1 = 1) = q2(X1 = 1) = 1,

but
q1(X2 = 0 | X1 = 0) = 1 and q2(X2 = 0 | X1 = 0) = 0.

Due to the first two equations, both q1 and q2 are consistent with p, but they can differ on the
zero-probability prompt X1 = 0.
Hence the set corresponding to DC,N is larger, and the extra elements correspond to the zero-
probability sequences under each pi. These are precisely the prompts on which we assess rule
extrapolation.

The lists of conditionals notation. In § 5, we distinguish between the joint probability represen-
tation pk := {pk(xN

1 )} and the lists of conditionals representation pi|. Let ϕ denote the mapping
from lists of conditionals to the joint probabilities. Consider the set of pre-images of pk under ϕ, i.e.,
ϕ−1(pk), which has cardinality |ϕ−1(pk)|. If this set has multiple elements, we can enumerate them
as {pk|,j}

|ϕ−1(pk)|
j=1 , with pk|,j := {pk,j(xk | xk−1

1 )}Nk=1}, where pk,j is the jth element of ϕ−1(pk).
In our predictive pR, we list the pi|, where the index i is understood to loop over all pre-images:

{pi|}i ≡ {{pk|,j}
|ϕ−1(pk)|
j=1 }k, where the enumerations over (k, j) are combined into an enumeration

over i in a dovetail fashion. Index k loops over the joint probability distributions, and j loops through
each of their pre-images. Note that this is a different enumeration than the one in the Solomonoff
prior pS , where only the joint probabilities are enumerated (here with index k).

C.2 Solomonoff Induction
This section has been adapted from Li and Vitányi [1997], Hutter [2005] and Hutter [2011].

Epicure’s principle states that if more than one theory is consistent with the observations, one
should keep all the theories. The Solomonoff prior follows this principle in including all (lower
semicomputable) semimeasures in the prior.

Occam’s razor states to keep the simplest theory consistent with the observations. The Solomonoff
prior follows this in assigning larger probabilities to algorithmically more complex strings.

Definition C.1 (Prefix code). A prefix code P is a set of binary strings such that no element is proper
prefix of another. It satisfies Kraft’s inequality

∑
p∈P 2−l(p) ≤ 1.
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Turing machines. A Turing machine can be thought of as an idealised form of a computer.
Informally, it consists of tapes, read/write heads, a table of rules and an internal state. There are
multiple technical variants of Turing machines. Here, we define prefix Turing machines.6

Definition C.2 (Prefix Turing Machine). A prefix Turing machine T is a Turing machine with one
unidirectional (i.e. the head can only move from left to right) input tape, one unidirectional output
tape, and some bidirectional work tapes. Input tapes are read only, output tapes are write only. All
tapes are are binary (no blank), work tapes are initially filled with zeros.
We say that T halts on input p with output x, and write T (p) = x if p is to the left of the input head
and x is to the left of the output head after T halts. The set of p on which T halts forms a prefix code.
We call such codes p self-delimiting programs. The Turing machine may take another input y on its
input tape. Since T is a prefix Turing machine, y needs to be prefix encoded, denoted as y‘, and then
concatenated to the program p. In this case, we say T (y‘p) = x.
The table of rules of a Turing machine T can be encoded as a binary string, which we denote by ⟨T ⟩.
Hence the set of Turing machines {T1, T2, . . . } can be enumerated (computably). We will use this
property when we sum over Turing machines.

Universal Turing Machines. There are so-called universal Turing machines, which can “simulate”
all Turing machines. We define a particular one which simulates a prefix Turing machine T (q) if
fed with input ⟨T ⟩q, i.e. U(⟨T ⟩q) = T (q) ∀T, q. If p is not of the form ⟨T ⟩q, U(p) does not output
anything. We call this particular U the reference universal Turing machine.

Semimeasures. Let X ∗ be the set of finite strings and X∞ be the set of infinite sequences over some
alphabet X of size |X |. Recall our sequence notation from § 5: for a string (x1, x2, . . . , xn) ∈ X ∗ of
length n we write use the shorthand xn

1 with xi ∈ X ∀i ∈ {1, 2, . . . , n}.
Definition C.3 (Semimeasure). Let ϵ denote the empty string. A function µ : X ∗ → R is
a semimeasure if for all x ∈ X ∗, µ(ε) ≤ 1, and µ(x) ≥

∑
b∈X µ(xb), where xb denotes the

concatenation of x and b, also an element of X ∗. If equalities hold, µ is called a probability measure.
Remark C.1. pS and pR (§ 5) are semimeasures, because

∑
xn
1
pS(x1, x2, ..., xn) < 1. The fact that

the integral is less than 1 is due to the halting problem of UTMs [Turing, 1936], which means that
there are some programs in the sum that never stop running.
Definition C.4 (Lower semicomputability). A function f : N → R is lower semicomputable iff
there exists a computable function ϕ(x, k) : Q× N → Q, such that

• limk→∞ ϕ(x, k) = f(x)
• ∀k ∈ N : ϕ(x, k + 1) ≥ ϕ(x, k).

i.e, if it can be approximated from below to arbitrary precision.

Kolmogorov complexity. Kolmogorov complexity measures the complexity of an object as the
length of the shortest program that generates the object. There is also a conditional version, based on
the length of programs that input some other objects.
Definition C.5 ((Conditional) prefix Kolmogorov complexity). The (conditional) prefix Kol-
mogorov complexity of a string x is the length l of the shortest halting program p for which U outputs
x (given y):

K(x) := min
p

{l(p) : U(p) = x halts}. (7)

K(x|y) := min
p

{l(p) : U(y‘p) = x halts}. (8)

The Kolmogorov complexity of a semimeasure, pi(xn
1 ), is understood to be the length of the shortest

self-delimiting program on U , computing pi(x
n
1 ) given xn

1 , for every xn
1 .

6Some works introduce the Solomonoff prior using monotone Turing machines [Hutter, 2011, Grau-Moya
et al., 2024], but for our purposes, using prefix Turing machines is equivalent [Li and Vitányi, 1997].
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D Acronyms

AR LM autoregressive language model

CS context-sensitive

EOS end-of-sequence

i.i.d. independent and identically distributed
ICL in-context learning

LM language model

NLP Natural Language Processing

OOD out-of-distribution

RASP Restricted-Access Sequence Processing
Language

SOS start-of-sequence
SSM State Space Model
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We define the formal languages we use and the term rule extrapolation in
Section 2; the detailed empirical findings can be found in Section 4; and the proposed
normative theory is in Section 5. Furthermore, we clearly state the scope/ main limitation
of the paper when we write "We empirically evaluate different models’ rule extrapolation
in formal languages with varying complexity, we study linear, recurrent, Transformer and
State Space models" in the Introduction.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: There can be found a Limitations paragraph in Section 6, which clearly states
the limitations of our datasets and the architectures analysed. As we did not propose new
algorithms, concerns regarding their computational efficiency are not applicabble

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.
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3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: The paper does not contain novel theorems and proofs. However, this section
of the checklist is still applicable, as § 5 proposes a novel prior inspired by the Solomonoff
prior, and provides high-level intuition on why the prior is a suitable first-step for explaining
OOD compositional generalization. § 5 and the corresponding Appx. C.2 provides all
necessary background and definitions. For all results that are recalled from other sources,
we provide references containing the proof (e.g. eq. (3)).

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: All experimental details can be found in Section 3 and Appendix B, including
how the metrics were evaluated, how the datasets were generated, and the parameters of
the architectures and algorithm we use. The experimental results can be found in Section 4.
Furthermore, we upload our code and experimental logs as supplementary and make them
publicly available upon acceptance.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
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(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We upload our code and experimental logs as supplementary and make them
publicly available upon acceptance.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: All experimental details can be found in Section 3 and Appendix B, e.g. data
generation, metrics, hyperparameters, type of architectures, type of the optimizer.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We report standard deviations in our tables and figures.
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Guidelines:
• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We report the experimental details, including our estimated energy consump-
tion in Appx. B).
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Our paper aims to advance the field of Machine Learning. There are many
potential societal consequences of our work, none of which, we feel, must be specifically
highlighted here.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
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Justification: This paper presents work that aims to advance the field of Machine Learning.
There are many potential societal consequences of our work, none of which we feel must be
specifically highlighted here.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks since our data sets are artificial and are far
from real-world data sets. Moreover, the paper aims for deeper understanding, not for
improvement.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We only use open source assets, i.e., code, which we properly cite in Appx. B.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
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• The authors should state which version of the asset is used and, if possible, include a
URL.

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: we release our codebase and experimental logs as supplementary material.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [Yes]
Justification:We included the details for our small pilot human questionnaire in Appx. B.
Participant were not compensated.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Although our work includes a small human study, as it involved only a
questionnaire participants could fill out whenever and wherever they wished, and their
participation was fully voluntary, no potential risks were involved. Thus, no IRB approval,
or equivalent, was necessart.
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Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Depending on the country in which research is conducted, IRB approval (or equivalent)

may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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