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Abstract
In this paper, we seek to develop a versatile test-
time adaptation (TTA) objective for a variety
of tasks — classification and regression across
image-, object-, and pixel-level predictions. We
achieve this through a self-bootstrapping scheme
that optimizes prediction consistency between
the test image (as target) and its deteriorated
view. The key challenge lies in devising effec-
tive augmentations/deteriorations that: i) preserve
the image’s geometric information, e.g., object
sizes and locations, which is crucial for TTA
on object/pixel-level tasks, and ii) provide suf-
ficient learning signals for TTA. To this end, we
analyze how common distribution shifts affect
the image’s information power across spatial fre-
quencies in the Fourier domain, and reveal that
low-frequency components carry high power and
masking these components supplies more learn-
ing signals, while masking high-frequency com-
ponents can not. In light of this, we randomly
mask the low-frequency amplitude of an image
in its Fourier domain for augmentation. Mean-
while, we also augment the image with noise in-
jection to compensate for missing learning signals
at high frequencies, by enhancing the information
power there. Experiments show that, either in-
dependently or as a plug-and-play module, our
method achieves superior results across classifica-
tion, segmentation, and 3D monocular detection
tasks with both transformer and CNN models.

1. Introduction
Despite deep learning evolving at an incredible speed, its
ability to generalize to out-of-distribution (OOD) domains
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remains a long-existed challenge (Hendrycks & Dietterich,
2019; Koh et al., 2021), drawing substantial interest from
both research and industry. To address this, numerous meth-
ods have been explored, including training-time approaches
like domain generalization (Shankar et al., 2018; Dou et al.,
2019) and data augmentation (Hendrycks et al., 2020; Yao
et al., 2022), as well as test-time techniques such as source-
free domain adaptation (Qiu et al., 2021) and test-time adap-
tation (TTA) (Liang et al., 2023), to name just a new.

Among these approaches, TTA (Sun et al., 2020; Niu et al.,
2023; Iwasawa & Matsuo, 2021; Bartler et al., 2022; Liang
et al., 2023; Wang et al., 2024) has emerged as a rapidly
advancing research area. By adapting to each data point
immediately after inference, TTA achieves minimal over-
head for model updates, making it highly appealing to a
broad audience in real-world applications. However, current
TTA solutions remain limited in scope, supporting only a
narrow range of tasks due to constraints in their underlying
self-supervised learning objectives, as depicted below.

Self-learning/entropy-based TTA methods (Wang et al.,
2021; Niu et al., 2022a; 2023) and prototype-based meth-
ods (Iwasawa & Matsuo, 2021) focus on minimizing the
entropy of predicted logits or maintaining class-wise proto-
types for discriminative models, e.g., image classification,
making them unsuitable for regression tasks. Alignment-
based approaches (Mirza et al., 2023; Lin et al., 2023) con-
duct adaptation by aligning feature statistics, e.g., mean and
variance, between the target and source data. While this ap-
proach is more general and applicable to a broader of tasks,
it requires pre-calculating source statistics with access to
source data, which raises data privacy concerns (Liang et al.,
2020; Wang et al., 2021). Moreover, this method regular-
izes statistics to align with the source but overlooks direct
learning from test data, leading to limited performance in
more complex scenarios, see Tables 2 and 3.

Consistency-based methods (Zhang et al., 2022; Shu
et al., 2022) are another major category of TTA, such as
MEMO (Zhang et al., 2022), which optimizes prediction
consistency across different augmented views of the input
image. Their augmentation strategy typically follows the
well-established practice in contrastive learning methods
like MoCo (He et al., 2020) and SimCLR (Chen et al.,
2020a), relying on techniques such as random cropping
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and resizing. However, these augmentations can disrupt
the overall content of the image, i.e., the image’s geomet-
ric structure—objects sizes, locations, relative layouts, and
etc. While this may not impact image-level predictions like
classification, it shall fail on more fine-grained tasks, such
as object detection, which require the precise predictions of
each object’s coordinates and sizes.

In this paper, we aim to develop a new fully TTA method to
adapt an arbitrary trained model, while requiring no access
to source data or altering the original training process. We
build on the general idea of consistency-based learning,
but extend it to a more unified, architecture-agnostic, and
task-agnostic self-bootstrapping TTA approach, so that it
is applicable to classification and regression tasks across
image-, object-, and pixel-level prediction models.

To be specific, in our self-bootstrapping TTA (SPA) frame-
work, we use the predictions of the original image (strong
view) as the target, which provide supervision to guide the
model learning in making consistent predictions on a de-
teriorated view (weak) of the same image. This process
enhances the predictions of the weak image view, which,
in turn, feeds back and improves the original predictions
through shared model parameters. Here, the key challenge
of making this self-bootstrapping learning scheme applica-
ble to fine-grained object- or pixel-level tasks, is designing
effective augmentations—which need to preserve the main
image’s geometric structure while introducing sufficient
differences (learning signals)—to deteriorate a given image.

To the above end, we propose randomly masking amplitudes
in the image’s Fourier frequency domain for augmentation.
Specifically, we analyze how common distribution shifts
manifest in the frequency domain by comparing the radially
averaged power spectral density (RAPSD) (Van der Schaaf
& Van Hateren, 1996) of shifted and source domains in
Figure 2, where RAPSD reflects image information power
across spatial frequencies. We observe that original images
typically exhibit low RAPSD (i.e., low information power)
at high frequencies, with several domain shifts further re-
ducing it. Thus, masking high-frequency amplitudes tends
to provide limited learning signals (see Table 6). In contrast,
images show high RAPSD at low frequencies, indicating
that there will be a larger RAPSD difference before and
after masking there, and thus can provide richer learning
signals. Therefore, we only mask the low-frequency com-
ponent of the amplitude. Moreover, to compensate for the
lack of learning signals at high frequencies, we augment the
image by injecting random Gaussian noise into it, which
enhances RAPSD in the high-frequency range, thereby sup-
plying learning signals across all frequencies. Lastly, to
make SPA more stable and reliable, we introduce an active
self-bootstrapping learning scheme—for tasks including
classification heads, we perform adaptation only when the

model has higher prediction confidence on the target strong
image view than on the deteriorated weak image view.

Main Novelty and Contributions 1) We propose a sim-
ple yet effective active self-bootstrapping learning frame-
work for TTA, which is general to be used for classifica-
tion and regression across image/object/pixel-level tasks,
showing broad applicability. 2) We analyze how common
domain shifts manifest in the Fourier frequency domain
and, based on this analysis, propose geometry-preserving
augmentations—low-frequency amplitude masking and
high-frequency noise injection. These augmentations supply
learning signals for our self-bootstrapping adaptation across
all spatial frequencies, significantly enhancing adaptation
performance. 3) Extensive experiments across classifica-
tion, segmentation, and 3D monocular detection with both
transformer and CNN models demonstrate our superiority.

2. Preliminary and Problem Statement
We briefly revisit fully TTA in this section for the conve-
nience of our method presentation and put detailed related
work discussions into Appendix A due to page limits.

Fully Test-Time Adaptation (TTA) In this paper, we fo-
cus on the problem of fully TTA. Formally, given any model
f(·; θ) trained on source data Dtrain = {(xi, yi)}Ni=1, fully
TTA adapts f(·; θ) to testing data Dtest = {xj}Mj=1 with po-
tential distributions shifts from Dtrain on the fly using some
unsupervised learning objectives (Wang et al., 2021) L, i.e.,
minθ̃ L(f(x; θ)), where θ̃ ⊂ θ are learnable parameters dur-
ing TTA. Here, test samples arrive in an online data stream.
The fully TTA process does not alter the original model
training process or require access to source data, making it
practical and easy to implement in real-world applications.

Problem Statement and Motivation Existing fully TTA
methods often suffer a limited application scope and are
not general enough. For instance, entropy-based meth-
ods (Wang et al., 2021; Niu et al., 2022a) are restricted to
classification and not compatible with regression tasks. Aug-
mentation consistency-based methods (Zhang et al., 2022)
work well for image-level recognition but may tend to fail
in object- and pixel-level prediction tasks, e.g., object detec-
tion, where precise coordinates and dimensions of objects
shall be destroyed by their commonly used augmentations
like random cropping and resizing. In real-world applica-
tions, tasks are typically various, and selecting or redesign-
ing working TTA solutions for different tasks or models can
be inconvenient or impractical. Therefore, in this paper, we
aim to develop a more versatile fully TTA method that is
task-agnostic, supporting both classification and regression
across image-, object- and pixel-level prediction tasks.
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Figure 1. Illustration of SPA method. (a) We conduct self-bootstrapping learning for TTA by maximizing prediction consistency from the
weak augmented/deteriorated views to the strong original image view. The augmentations are designed to preserve geometric structure by
(b) randomly masking low-frequency components of the image’s amplitude in the Fourier domain, and (c) injecting Gaussian noise into
the original image to enhance the information intensity on high frequency. ‘sg’: stop gradient. (I)FFT: (Inverse) Fast Fourier Transform.

3. Approach
We achieve the goal of task-agnostic and architecture-
agnostic versatile TTA by establishing a framework of
self-bootstrapping adaptation with geometric structure-
preserving weak-to-strong learning, namely SPA. Here, we
begin with self-bootstrapping, which introduces a general
idea of refining the model predictions, using its own outputs
as training targets. To broaden its compatibility with object-
/pixel-level downstream tasks requiring dense prediction,
we propose to optimize the prediction consistency between
the original image (strong), as targets, and a corresponding
geometric structure-preserving deteriorated image (weak).
In SPA, we aim to create a weak image view that loses as
much information as possible—providing sufficient signals
for self-bootstrapping learning, while preserving the overall
structural content of the image, such as size and relative lo-
cation—making it suitable for finer object/pixel-level tasks.
We depict the self-bootstrapping scheme in Sect. 3.1 and
geometry-preserving augmentations in Sect. 3.2. The over-
all details of SPA are illustrated in Figure 1 and Algorithm 1.

3.1. Active Self-Bootstrapping Learning

We design SPA with inspiration from prior self-supervised
contrastive methods like BYOL (Grill et al., 2020) and
DINO (Caron et al., 2021), as their core learning scheme,
bootstrapping, is not limited to classification or regression.
Unlike BYOL or DINO which maximize consistency be-
tween two randomly augmented views for representation
learning, we extend this framework for TTA by introducing
weak-to-strong learning, i.e., from a randomly deteriorated
view (weak) to the original image (strong). This adjustment
is necessary because, in TTA, we are adapting a well-trained
model to new, out-of-distribution domains where reliable

signals are essential for guiding the prediction adaptation;
otherwise, it risks degrading the model’s performance.

To make this self-bootstrapping TTA applicable to object-
/pixel-level tasks, we define geometric structure-preserving
random augmentations T . This differs from heavy geomet-
ric augmentations required by prior self-supervised meth-
ods, such as random cropping and resizing, which signif-
icantly alter pixel-level content (e.g., object locations and
sizes) from the original image, making them unsuitable in
our weak-to-strong self-bootstrapping learning. For pre-
sentation coherence, we leave the augmentation details in
Sect. 3.2. Given test image x, SPA creates an augmented
view v = t(x) with t ∼ T . We take v as the weak view
and the original x as the strong view. We then minimize a
similarity loss Ls between the predictions of x and v using
a confidence-aware selection function S(x,v) (for tasks
including classification heads), which actively determines
whether to perform optimization w.r.t. a given sample or
pixel to mitigate the influence of unreliable supervisions.
Formally, our self-bootstrapping TTA formula is given by:

min
θ̃

S(v,x)Ls

(
f(v; θ), f(x; θ)

)
,v = t(x), t ∼ T . (1)

Here, θ̃ ⊂ θ denotes the learnable model parameters. For
the similarity loss Ls(·, ·), we adopt KL divergence for clas-
sification heads and L1 loss for regression heads. We also
insert a new learnable projector before the final prediction
head, following BYOL (Grill et al., 2020), to prevent the
model from converging to trivial solutions in the image-level
classification task. This projector is initialized as identity
mappings to enable a warm start for the fully TTA process.

The confidence-aware selection S(v,x) in Eqn. (1) is
designed for when the given task comprises classifica-
tion heads. For image classification tasks, let f̂(x, θ) =
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Figure 2. (a-d) Changes of radially averaged power spectral density (RAPSD) (Van der Schaaf & Van Hateren, 1996) under domain
shifts. (e) SPA ’s geometry-preserving augmentations reduce the RAPSD at low frequencies and enhance it at high frequencies to create
deteriorated images for our self-bootstrapping learning. We separately select 512 images from the Source, ImageNet-R, ImageNet-C (15
corruptions), to perform FFT, and visualize their mean RAPSD based on the spectrum amplitude.

max(f(x, θ)) and I{·}(·) be an indicator function, S(v,x)
aims to select samples whose prediction confidence of the
strong view is higher than the weak view for optimization:

S(v,x) = I{f̂(x;θ)>f̂(v;θ)}(v,x), (2)

For segmentation and object detection tasks, the predictions
are often made on the pixel-level f̂(x/v; θ)i,j . In this case,
we conduct selection at the pixel level, and calculate overall
similarity loss Ls(·, ·) by averaging it on all selected pixels.

3.2. Geometry-Preserving Augmentation

The core idea in SPA is to devise image geometric structure-
preserving augmentations to enable self-bootstrapping learn-
ing on finer object-/pixel-level tasks. To this end, one can di-
rectly exploit conventional image structure-preserving aug-
mentations, e.g., contrast adjustment, brightness changes,
and grayscale conversion. However, as in Table 6, these
augmentations, either individually or in combination, failed
to provide sufficient learning signals, were sensitive to the
type of domain shifts, and even led to model collapse.

To ensure the augmentations are geometric-preserving while
still providing as much learning guidance as possible for
TTA, we propose augmenting the image by randomly mask-
ing its amplitude in the Fourier frequency domain. Let F (·)
and F−1(·) be the Fast Fourier Transform (FFT) and inverse
Fast Fourier Transform (IFFT) operations, respectively. We
denote the amplitude and phase component after FFT by
FA(·) and FP (·). Then, using a random amplitude mask to
augment an image x is defined as

v = F−1([M(m) ◦ FA(x), FP (x)]). (3)

Here, ◦ is element-wise multiplication, M(m) produces a
random 0-1 matrix with the same size as x for masking. The
proportion of 0 in M(m) is defined as a mask ratio m.

Applying Eqn. (3) to generate a deteriorated view to per-
form weak-to-strong self-bootstrapping learning in Eqn. (1)
already yields much better performance compared to con-
ventional geometry-preserving augmentations that fail to

supply sufficient learning signals, as in Table 6. However,
this is still not optimal. To further improve, we first analyze
how amplitude changes when domain shift occurs below.

How Common Domain Shifts Manifest in Frequency Do-
main? We compare the radially averaged power spectral
density (RAPSD) (Van der Schaaf & Van Hateren, 1996)
differences between the out-of-distribution test samples and
the in-distribution source samples. Here, RAPSD calculates
the average spectral amplitude of an image across a concen-
tric rectangle (within FA(x) in Eqn. 3) at each frequency,
reflecting the distribution of image information power across
all frequencies, i.e., the higher RAPSD, the higher informa-
tion power. From Figure 2 (a-d), common domain shifts
typically exhibit the following changes of RAPSD: high-
frequency increase (e.g., noise corruptions) or degradation
(e.g., blur corruptions), low-frequency degradation (e.g.,
contrast), or minimal change across all frequencies (e.g.,
rendition). In the following, we seek to devise general aug-
mentation strategies for various types of domain shifts and
based on the observations from Figure 2 (a-d), we draw the
following designing motivations.

1) Low-frequency masking contributes more for SPA. Im-
ages generally exhibit high RAPSD in the low-frequency
range. Thus, the RAPSD difference before and after ap-
plying a low-freq mask is relatively large, making random
low-freq masking an effective way to supply sufficient learn-
ing signals, regardless of whether amplitude shifts degrade
or remain unchanged, i.e., for all types of domain shifts.

2) High-frequency masking yields limited gains in SPA or
even slightly hinder adaptation. Images typically display
low RAPSD at high frequencies, especially with further
RAPSD degradation there, e.g., blur corruptions. In these
cases, masking high-freq components fails to provide suffi-
cient learning signals, since the absolute RAPSD difference
before and after applying a high-freq mask is relatively
small. From Table 6, it can easily lead to trivial solutions if
we only mask the high-freq amplitude. Moreover, masking
high-freq components (which lowers RAPSD) runs counter
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Algorithm 1 PyTorch-style pseudocode of SPA.
# lf, hf: low-frequency, high-frequency
# a, m: \alpha for lf size, mask ratio, Eqn.(4)
# g: hyper-param \gamma for noise injection, Eqn.(5)

optimizer = SGD(model.learnable_params, lr, momentum)
predictions = []
for x in test_data_loader: # load data in online manner

# structure-preserving random augmented views
x1 = lf_aug(x, a, m) # lf amplitude mask, Eqn.(4)
x2 = hf_aug(x, g) # hf noise injection, Eqn.(5)

# forward-propagate
y, y1, y2 = model(x), model(x1), model(x2)
predictions.append(y)

# active loss calculation, Eqn.(1)
# use KL/L1 similarity for Cls./Reg. heads
y = y.detach() # stop gradient
loss = active_similarity_loss(y1, y)
loss += active_similarity_loss(y2, y)

loss.backward() # back-propagate
optimizer.step() # parameter update
optimizer.zero_grad()

return predictions

to the direction of domain shifts that raise RAPSD (e.g.,
noise-based corruptions), thereby slightly hindering adapta-
tion performance, as results on noisy corruptions in Table 6.

3) Noise injection is an effective option for creating learn-
ing signals at high frequencies for SPA. Though amplitude
masking doesn’t work at high frequencies, one can still aug-
ment the image to generate deteriorated views through noise
injection to supply learning signals at high frequencies for
self-bootstrapping learning. This is because noise injection,
which is able to preserve the core geometry information
of a given image, increases the information power/RAPSD
at high frequencies, as in Figure 2 (a), thereby creating
larger RAPSD differences before and after augmentation
compared with high-freq amplitude masking.

Inspired by the above motivations, we derive our overall
geometry-preserving augmentation from both low- and high-
frequency perspectives, to supply sufficient learning signals
for our self-bootstrapping TTA framework.

Low-Frequency Amplitude Mask Let τ(·) represent a
shift (sort) operation that moves the low-frequency com-
ponents to the center of the amplitude, and τ(·)−1 be the
inverse operation that returns the components to their orig-
inal positions. Based on Eqn. (3), augmentation with a
low-frequency amplitude mask becomes

vl = F−1([τ−1
(
M(α,m) ◦ τ(FA(x))

)
, FP (x)]), (4)

where M(α,m) is a random 0-1 low-frequency mask with
the same size as x ∈ Rh×w. In M(α,m), the center area
of size αh× αw is a random 0-1 matrix with a mask ratio
m and α is always set to 0.2, while the surrounding area is
padded with 1. Other notations are the same as in Eqn. (3).

High-Frequency Noise Injection We inject Gaussian
noise into the original image to further supply learning
signals at high frequencies. Note that although noise in-
jection contrasts with the amplitude shift direction of some
domain shifts like blur corruptions—where high-frequency
RAPSD degrades, we still apply it in these cases and ob-
serve promising performance, see Table 6. This is because,
for such corruptions, augmentations like high-frequency
amplitude masking that align with the RAPSD degradation
direction fail to provide effective learning signals. Instead,
the availability of sufficient learning signals is more critical
than maintaining consistency with the degradation direc-
tion. Consequently, noise injection remains an effective and
viable option. Formally, the augmentation is given by

vh = (1− γ) · x+ γ · ϵ, where ϵ ∼ N (0, 1). (5)

Here, N (0, 1) is a multivariate standard normal distribution
with the same size of image x, γ is a constant for injection.

4. Experimental Results
Datasets and Models For classification, we conduct exper-
iments on four benchmarks, i.e., ImageNet-C (Hendrycks
& Dietterich, 2019) (corrupted images in 15 types of
4 main categories, with the most severe corruption
level 5), ImageNet-R (artistic renditions of 200 Im-
ageNet classes) (Hendrycks et al., 2021a), ImageNet-
Adversarial (Hendrycks et al., 2021b) and ImageNet-
Sketch (Wang et al., 2019). We use ViT-base (Dosovit-
skiy et al., 2021), trained on ImageNet by timm repos-
itory (Wightman, 2019), as the source model. For 3D
monocular object detection, we follow MonoTTA (Lin
et al., 2024) to evaluate all methods on KITTI-C, con-
structed from a validation set of KITTI (Geiger et al., 2012)
through the incorporation of 13 distinct types of data cor-
ruptions (Hendrycks & Dietterich, 2019). Each corruption
has 3,769 images by following the original training and
validation split of MonoFlex (Zhang et al., 2021). We use
the model trained on KITTI by MonoFlex (Zhang et al.,
2021) as the source model for TTA. For segmentation, we
use the Segformer-B5 (Xie et al., 2021) model trained on
Cityscape dataset (Cordts et al., 2016) as the source model
and perform TTA on ACDC dataset (Sakaridis et al., 2021).

Compared Methods We compare SPA with: batch
norm (BN) Adapt (Schneider et al., 2020); entropy-based:
TENT (Wang et al., 2021), EATA (Niu et al., 2022a),
SAR (Niu et al., 2023) and DeYO (Lee et al., 2024);
ActMAD (Mirza et al., 2023) aligns feature statistics
between target and source data; CoTTA (Wang et al.,
2022) and DePT (Gao et al., 2023) adapt a given model
via augmentation-based consistency maximization and a
teacher-student learning scheme, ROID (Marsden et al.,
2024) and CMF (Lee & Chang, 2024); MonoTTA (Lin
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Noise Blur Weather Digital Average
Method Gauss. Shot Impul. Defoc. Glass Motion Zoom Snow Frost Fog Brit. Contr. Elastic Pixel JPEG Acc.
Source 56.8 56.8 57.5 46.9 35.6 53.1 44.8 62.2 62.5 65.7 77.7 32.6 46.0 67.0 67.6 55.5
TENT 60.3 61.6 61.8 59.2 56.5 63.5 59.2 54.3 64.5 2.3 79.1 67.4 61.5 72.5 70.6 59.6
CoTTA 63.6 63.8 64.1 55.5 51.1 63.6 55.5 70.0 69.4 71.5 78.5 9.7 64.5 73.4 71.2 61.7
EATA 62.2 63.4 63.4 60.5 61.2 66.0 63.5 70.3 68.4 73.1 79.8 67.0 69.7 75.2 73.4 67.8
SAR 59.2 60.5 60.7 57.5 55.6 61.8 57.6 65.9 63.5 69.1 78.7 45.7 62.4 71.9 70.3 62.7
ActMAD 61.3 62.8 63.2 55.9 55.7 62.7 61.7 70.8 68.8 73.5 80.8 62.3 67.8 74.8 73.0 66.3
DeYO 59.8 61.5 61.1 57.4 59.0 64.5 61.9 69.1 66.7 69.5 78.9 65.3 69.6 74.0 72.3 66.0
ROID 63.0 64.3 64.0 60.1 61.6 65.2 63.5 71.9 70.4 73.8 80.5 60.5 71.8 75.8 74.0 68.0
CMF 63.5 65.2 64.7 59.3 63.3 67.2 66.0 73.1 71.2 72.7 80.9 65.6 73.6 76.6 74.6 69.2
SPA (ours) 64.0 65.5 65.2 61.0 63.6 69.1 67.9 74.1 72.7 75.3 80.9 65.2 74.0 77.6 75.0 70.1±0.1

✙ActMAD 64.8 66.5 66.0 62.2 64.6 70.3 69.7 75.1 73.4 76.7 81.6 67.3 75.0 78.4 75.7 71.2±0.2

✙ActMAD+TENT 65.2 67.0 66.4 63.7 65.7 70.9 70.4 75.2 73.5 77.2 81.7 67.8 75.5 78.4 76.0 71.6±0.0

Table 1. Comparisons with state-of-the-art methods on ImageNet-C (severity level 5) with ViT-Base regarding Accuracy (%).

et al., 2024) and VDP (Gan et al., 2023) are TTA methods
specified for 3D monocular detection and segmentation.

Implementation Details We set the mask ratio m to 0.2
for all experiments. The noise factor γ is set to 0.4 for
classification and 0.1 for segmentation and 3D detection.
Following CoTTA (Wang et al., 2022) and MonoTTA (Lin
et al., 2024), we apply SGD on classification and 3D de-
tection, and Adam on segmentation, using the learning rate
of 10−2/5×10−3/6×10−5. We only update norm layers
following TENT. More details of SPA and details of base-
line methods are put in Appendix B.2. The cource code is
availiable at https://github.com/mr-eggplant/SPA.

4.1. Image Classification

In this section, we validate our SPA on image classification.
From results in Table 1, SPA outperforms all considered
baselines consistently on all corruptions of ImageNet-C,
highlighting its superiority. To be specific,

1) Compared to entropy-based methods such as TENT,
EATA, SAR, and DeYO, SPA improves the state-of-the-
art by 2.3% in average accuracy, achieving 70.1% compared
to EATA’s 67.8%. Additionally, SPA offers the flexibility
to handle regression tasks (as shown in Table 3) while the
entropy-based objectives can not; 2) Compared to CoTTA,
which also applies consistency learning between the original
image and its augmented views, our SPA achieves signifi-
cantly greater gains. This result highlights the effectiveness
of our self-bootstrapping learning framework and demon-
strates that our structure-preserving augmentations are able
to provide richer learning signals within this framework; 3)
Compared to ActMAD, our method, SPA, does not require
access to the source training data for calculating source
statistics to achieve alignment, and thus is more general
to be used in case of source data are unavailable. Despite
this, SPA achieves higher performance than ActMAD, im-
proving average accuracy from 66.3% to 70.1%; 4) The
learning objective of SPA is in parallel and not conflict with
existing objectives like entropy minimization and feature

Method R A Sketch Avg. Acc. (%,↑)
Source 59.5 50.5 44.9 51.6
TENT (Wang et al., 2021) 63.9 52.8 49.1 55.3
CoTTA (Wang et al., 2022) 63.5 52.2 50.0 55.2
EATA (Niu et al., 2022a) 67.5 54.3 52.1 58.0
ActMAD (Mirza et al., 2023) 60.2 50.3 46.2 52.2
DeYO (Lee et al., 2024) 68.7 55.0 50.3 58.0
SPA (ours) 68.2 55.4 53.4 59.0
✙ EATA 70.4 55.0 55.0 60.1

Table 2. Comparisons on ImageNet-R/A/Sketch with ViT-Base.

alignment, allowing it to be integrated with these approaches
to enhance performance further, as demonstrated by SPA
incorporating ActMAD and TENT. At last, from the results
on ImageNet-R/A/Sketch in Table 2, our SPA also achieves
the best performance, further suggesting our effectiveness.

4.2. 3D Monocular Object Detection

This section validates SPA on 3D monocular object detec-
tion (Zhang et al., 2021), a challenging task that involves
detecting objects in single-camera images using 3D bound-
ing boxes. This task comprises classification, to identify
objects within each 3D bounding box, and regression, to
predict the bounding box coordinates, dimensions, depths,
and angles. We perform weak-to-strong self-bootstrapping
learning to align the classification head (via KL loss) and
align regression heads of bounding box coordinates, dims,
and depths predictions (via L1 loss).

From Table 3, SPA achieves the best average AP3D|R40 over
13 corruptions across different object difficulty levels (easy,
moderate, hard) for each class, suggesting our effectiveness.
Even compared to MonoTTA (Lin et al., 2024), the lat-
est TTA method tailored for 3D monocular detection, SPA
shows clear performance gains, with improvements such
as 1.4% for Cars and 2.4% for Pedestrians. This largely
benefits from the generality of SPA, which introduces TTA
loss to regression heads in addition to classification heads,
unlike previous methods, MonoTTA, TENT, and EATA,
which focus solely on classification heads. Moreover, the
3D monocular detection task is highly imbalanced, with
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Car, AP@0.7, 0.5, 0.5 Pedestrian, AP@0.5, 0.25, 0.25 Cyclist, AP@0.5, 0.25, 0.25
Method Easy Mod Hard Average Easy Mod Hard Average Easy Mod Hard Average
Source 16.4 12.1 10.5 13.0 5.0 4.2 3.5 4.3 6.5 3.3 3.0 4.3
BN Adapt (Schneider et al., 2020) 33.2 23.0 19.2 25.1 9.7 8.1 6.7 8.2 12.9 6.6 6.0 8.5
TENT (Wang et al., 2021) 36.1 25.2 21.4 27.6 10.2 8.5 7.1 8.6 13.3 6.8 6.1 8.7
EATA (Niu et al., 2022a) 36.7 25.5 21.8 28.0 10.4 8.7 7.2 8.8 13.4 6.8 6.2 8.8
ActMAD (Mirza et al., 2023) 33.3 23.2 19.4 25.3 9.0 7.6 6.3 7.6 12.6 6.6 6.0 8.4
MonoTTA (Lin et al., 2024) 42.1 29.5 25.6 32.4 11.3 9.4 7.7 9.5 13.6 6.9 6.2 8.9
SPA (ours) 43.7 30.9 26.9 33.8±0.0 14.3 11.8 9.7 11.9±0.2 14.3 7.4 6.8 9.5±0.1

✙ MonoTTA 45.7 32.8 28.6 35.7±0.1 14.9 12.3 10.1 12.4±0.1 14.7 7.5 6.9 9.7±0.2

Table 3. Comparisons on 3D monocular object detection w.r.t. the average precision of 3D bounding boxes, denoted as AP3D|R40(%, ↑).
The results are averaged over 13 corruptions of KITTI-C (e.g., Fog and Snow, see Appendix B.1 for more details) with MonoFlex (Zhang
et al., 2021) as the source model. The Intersection over Union (IoU) thresholds are set to 0.7, 0.5, 0.5 for Cars and 0.5, 0.25, 0.25 for
Pedestrians and Cyclists, respectively.

Time: t → Round 1 Round 2 Round 3 Round 1-3
Method Fog Night Rain Snow Avg. Fog Night Rain Snow Avg. Fog Night Rain Snow Avg. Average
Source 69.1 40.3 59.7 57.8 56.7 69.1 40.3 59.7 57.8 56.7 69.1 40.3 59.7 57.8 56.7 56.7
TENT (Wang et al., 2021) 69.1 40.2 60.0 57.3 56.7 68.4 39.1 60.0 56.4 56.0 67.6 37.9 59.7 55.3 55.1 55.9
CoTTA (Wang et al., 2022) 70.9 41.1 62.4 59.7 58.5 70.9 41.0 62.5 59.7 58.5 70.9 40.8 62.6 59.7 58.5 58.5
DePT (Gao et al., 2023) 71.0 40.8 58.2 56.8 56.7 68.2 40.0 55.4 53.7 54.3 66.4 38.0 47.3 47.2 49.7 53.6
VDP (Gan et al., 2023) 70.5 41.1 62.1 59.5 58.3 70.4 41.1 62.2 59.4 58.3 70.4 41.0 62.2 59.4 58.3 58.3
SPA (ours) 68.7 42.9 62.0 59.8 58.3 69.7 44.6 63.3 61.1 59.7 70.0 43.2 63.8 61.7 59.7 59.2±0.1

✙ CoTTA 71.2 42.7 65.2 62.1 60.3 72.5 43.1 66.0 62.2 61.0 72.5 42.9 66.0 62.1 60.9 60.7±0.1

Table 4. Comparisons on segmentation under continual TTA. We report mIoU (%, ↑) on Cityscape-to-ACDC with Segformer-B5.

Pedestrian and Cyclist as minority objects. Methods that
only target the classification head often over-optimize the
majority class (e.g., Cars) while neglecting minority ones.
Thus, these classification-only methods yield very marginal
gains on Pedestrian and Cyclist. In contrast, SPA is some-
how free from this limitation, and it can mitigate this im-
balanced issue, achieving higher gains on minority classes,
e.g., 2.4% higher AP3D|R40 on Pedestrian over MonoTTA.

4.3. Image Segmentation

We compare SPA with prior TTA methods on image seg-
mentation in a continual adaptation setting (Wang et al.,
2022). In this setup, the target domains of ACDC (Sakaridis
et al., 2021) progress through an ordered sequence of
Fog→Night→Rain→Snow, repeated across 3 rounds, to
simulate the environmental changes encountered in real-life
driving scenarios. Table 4 shows that SPA alone outperforms
CoTTA, which requires 29 augmentations per sample, while
SPA achieves better results with only two augmentations,
highlighting its effectiveness and efficiency. Furthermore,
when combined with CoTTA, SPA improves the average
mIoU from 58.5% to 60.7%, further demonstrating its supe-
riority as a plug-and-play module.

4.4. Ablations

Effects of Components in SPA We ablate the effects of
each component within SPA in Table 5. First, unlike previ-
ous SSL methods (Chen et al., 2020a; He et al., 2020) and
augmentation consistency-based TTA methods (Zhang et al.,

ImageNet-C KITTI-Fog (AP3D|R40,%, ↑)
Acc. (%, ↑) Car Pedestrian Cyclist

No Adapt 55.5 7.8 2.0 3.6
Full SPA 70.1 34.4 11.1 9.7

w/o weak-to-strong i.e., stop grad 4.9 24.0 7.3 5.4
w/o active selection, Eqn. (2) 69.4 28.0 9.9 7.7
w/o Low-freq amplitude mask 65.6 31.0 7.2 9.1
w/o High-freq noise injection 67.7 31.4 10.3 9.4

Table 5. Ablation on effects of components in SPA. We use ViT-
Base/MonoFlex as the source model on ImageNet-C/KITTI-Fog.

2022) that maximize prediction or feature consistency be-
tween two augmented views, SPA adopts a weak-to-strong
self-bootstrapping learning paradigm, which learns from a
weak (augmented) view to a strong (original) view. This uni-
directional learning plays a crucial role in our TTA approach,
as it provides more reliable learning signals, which are es-
sential in TTA contexts. Without this weak-to-strong mech-
anism, bidirectional consistency learning results in drastic
performance degradation. Second, The activation selection
strategy in Eqn. (2) also helps to filter out partially unre-
liable supervisions, based on the premise that predictions
from the original image are more reliable than those from
the weaker augmented views, and thus results in promising
performance gains. Third, both our low-frequency ampli-
tude mask and high-frequency noise injection augmentation
strategies are effective individually, yet achieve the best
performance when applied together.

Effects of Different Geometric-Preserving Augmenta-
tions in SPA The core idea in SPA is to devise image
geometric structure-preserving augmentations to boost its
applicability for fine-grained tasks like object detection
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Noise Blur Weather Digital Average
Aug. Choice Gauss. Shot Impul. Defoc. Glass Motion Zoom Snow Frost Fog Brit. Contr. Elastic Pixel JPEG Acc.

a) Greystyle 59.7 59.8 61.4 58.7 59.0 65.5 63.6 70.3 69.4 72.5 76.5 0.4 71.0 75.5 71.4 62.3
b) Brightness 38.4 60.5 60.8 9.7 55.5 35.5 60.9 69.2 70.3 4.9 79.7 0.8 66.0 74.3 70.7 50.5
c) Contrast 34.9 61.3 61.6 45.0 58.2 65.0 61.5 68.1 70.0 72.2 78.7 0.4 66.9 74.5 70.9 59.3
d) Gaussian Blur 3.2 8.7 2.9 20.9 1.7 30.6 30.4 57.9 41.8 73.9 80.2 6.5 14.6 2.0 6.6 25.4

a) + b) + c) 59.8 60.5 61.3 60.0 60.5 66.6 64.1 70.5 69.2 73.7 76.5 0.4 71.4 75.8 71.7 62.8
e) Freq Mask 60.8 62.5 61.7 57.8 59.4 66.5 63.9 69.9 68.0 74.8 79.6 65.6 70.7 75.3 72.7 67.3
f) High-Freq Mask 4.3 5.9 5.4 1.4 6.6 10.5 16.0 63.7 21.3 22.9 73.4 2.3 11.0 2.5 4.7 16.8
g) Low-Freq Mask 62.6 64.3 63.4 57.6 59.2 66.9 64.4 70.6 69.0 74.8 79.6 65.7 71.0 75.9 72.6 67.8
h) Noise Injection 63.6 65.5 65.2 57.5 61.2 66.5 63.9 73.6 72.1 68.4 81.0 21.6 71.7 77.1 74.8 65.6

g) + h) (ours) 64.0 65.5 65.2 61.0 63.6 69.1 67.9 74.1 72.7 75.3 80.9 65.2 74.0 77.6 75.0 70.1

Table 6. Effects of different image geometric structure-preserving augmentation choices under our self-bootstrapping learning framework.
We report Accuracy (%) on ImageNet-C (severity level 5) with ViT-Base.

0.1 0.2 0.3 0.4 0.5
Noise ratio 

0.5

0.4

0.3

0.2

0.1

M
as

k 
ra

tio
 m

62.6 63.1 63.1 62.9 62.8

62.9 63.3 63.4 63.3 63.2

63.4 63.7 63.7 63.6 63.5

63.6 63.8 63.9 64.0 63.8

63.8 64.0 64.1 64.0 64.1

ImageNet-C, Acc. (%, )

0.1 0.2 0.3 0.4 0.5
Noise ratio 

0.5

0.4

0.3

0.2

0.1

M
as

k 
ra

tio
 m

18.6 17.7 17.0 15.8 14.8

19.0 17.9 16.8 16.2 15.1

18.7 18.0 16.9 16.2 14.6

18.4 17.6 16.9 16.0 14.7

18.4 17.4 16.5 15.3 14.2

KITTI-Fog, AP3D|R40 (%, )

59

60

61

62

63

64

14

16

18

Figure 3. Sensitivity of amplitude mask ratio m in Eqn. (4) and
noise injection ratio γ in Eqn. (5). We use ViT-Base for ImageNet-
C (Gaussian Noise) and MonoFlex for KITTI-Fog. The source
model Acc./AP on ImageNet-C/KITTI-Fog is 55.5%/4.5%.

and segmentation. Here, we compare our augmentation
strategy with existing geometric-preserving ones, including
grayscale, brightness, contrast (ColorJitter), and Gaussian
blur. However, as in Table 6, none of them, individually
or combined, effectively provide TTA with rich learning
signals. These augmentations are also often sensitive to the
corruption type and struggle to perform stably across all cor-
ruptions, leading to limited overall performance. Moreover,
as discussed in Sect. 3.2, SPA masks only the low-frequency
amplitude while keeping the high-frequency components
unchanged, since the high-frequency range exhibits low
RAPSD and masking there provide limited learning signals
(whereas low frequencies are quite the opposite). To verify
this, rows f) and g) in Table 6 show that solely masking
high frequencies tends to yield trivial solutions, i.e., model
collapse, while masking at low frequencies perform stably.

Parameter Sensitivity We evaluate SPA with different am-
plitude mask ratio m (in Eqn. (4)) and noise ratio γ (in
Eqn. (5)) selected from {0.1, 0.2, 0.3, 0.4, 0.5}. From Fig-
ure 3, SPA works well across a wide range of m ≤ 0.5
and γ ≤ 0.5 for image classification, showing its insensi-
tivity. However, for 3D monocular detection, although m
performs well within a broad range from 0.1 to 0.5, the
optimal range of noise ratio γ is narrower than that in image
classification, i.e., γ ≤ 0.2. This difference arises because,
in ImageNet-C, the task is at the image level and does not

ImageNet-C KITTI-Fog (AP3D|R40,%, ↑)
Method Acc. (%, ↑) Car Pedestrian Cyclist
No Adapt 55.5 7.8 2.0 3.6
BN Adapt (Schneider et al., 2020) n/a 23.3 8.6 9.7

Self-bootstrapping learning of SPA using augmentations of:
Eqns. (4) and (5) (ours) 70.1 34.4 11.1 9.7
Random image mask 64.9 9.7 4.3 2.0
AugMix 63.5 26.8 6.2 6.0
SimCLR augmentations 68.1 25.0 5.7 6.6
MoCo augmentations 64.0 27.7 6.5 6.7

Table 7. Comparisons with SPA using conventional augmentation
strategies that do not preserve geometric structure. We use ViT-
Base/MonoFlex as the source model on ImageNet-C/KITTI-Fog.

strictly require content invariance, allowing for a higher γ
to provide richer learning signals. In contrast, 3D monoc-
ular detection involves dense predictions where high noise
levels could significantly disrupt the original image content,
making it challenging for our self-bootstrapping learning.

Comparison with Self-Bootstrapping Learning using
Augmentations of Image Mask (He et al., 2022; Gan-
delsman et al., 2022b), AugMix (Hendrycks et al., 2020),
MoCo (He et al., 2020) and SimCLR (Chen et al., 2020a)
We compare our proposed augmentation strategy with prior
augmentations used in SSL and consistency-based TTA
methods under our self-bootstrapping TTA framework in
Table 7. Results show that while prior augmentations
achieve considerable performance on image-level classi-
fication (ImageNet-C), they fall short for 3D monocular
detection, where they often perform worse than BN Adapt.
This arises because these augmentations like random crop-
ping&resizing disrupt the image’s geometric structure, mak-
ing them unsuitable for finer dense prediction tasks. In
contrast, our augmentations are geometric-preserving and
supply rich signals for weak-to-strong self-bootstrapping
learning, achieving improved adaptation performance.

4.5. Further Results and Discussions

Comparisons with Methods Beyond Fully TTA Our SPA
approach can adapt any pre-trained model off-the-shelf with-
out any other requirements, which falls into the category of
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Model + Method Gauss. Fog Pixel Snow Contr. Average
Customized ViT-L/16 classifier 17.1 38.7 47.1 35.6 6.9 29.1
✙ TTT-MAE 37.9 51.1 65.7 56.5 10.0 44.2

ViT-B/32 39.5 35.9 55.0 30.0 31.5 38.4
✙ Diffusion-TTA 46.5 56.2 64.7 50.4 33.6 50.3
✙ SPA (Ours) 49.4 56.9 66.7 49.9 51.5 54.9

Table 8. Comparison with TTT-MAE and Diffusion-TTA on
ImageNet-C regarding accuracy (%).

Method Source TPT C-TPT ETA SAR DeYO SPA SPA+ETA
Acc (%) 74.0 77.1 76.0 76.9 75.6 76.6 77.2 78.2

Table 9. Comparisons with baselines on CLIP-ViT-B for OOD
robustness. We report results on ImageNet-R.

fully TTA. Here, we further compare SPA with methods be-
yond fully TTA, i.e., TTT-MAE (Gandelsman et al., 2022a)
that requires modifying the original model training process
and Diffusion-TTA (Prabhudesai et al., 2023) that relies on
an additional pre-trained generative diffusion model and
updates both the diffusion model and original discriminative
model at test time. As shown in Table 8, our SPA, as a fully
TTA method, still achieves superior performance, further
demonstrating our effectiveness.

Effectiveness on Vision-Language Model (VLM) for both
OOD and Cross-Dataset Generalization We freeze the
text encoder of the CLIP (Radford et al., 2021) model and
treat it as a fixed classifier, and then apply SPA to the image
encoder. SPA primarily focuses on addressing the OOD
issue in the visual modality through our deterioration-driven
self-bootstrapping learning, by improving the visual fea-
ture representation. Therefore, as in Table 9, SPA achieves
superior performance on OOD benchmarks.

However, for commonly used cross-dataset benchmarks
(like DTD (Cimpoi et al., 2014), UCF101 (Soomro et al.,
2012) and Aircraft (Maji et al., 2013)) on the CLIP model,
the image distributions are often relatively more stable com-
pared to OOD datasets, and the image encoder already pro-
vides more semantical representations. The performance
bottleneck instead often lies in the text modality (i.e., the text
encoder)—specifically, the quality of the classifier formed
from text embeddings. This is also supported by 1) prior
VLM TTA methods, such as TPT (Shu et al., 2022) and
C-TPT (Yoon et al., 2024), which focus on adapting the text
branch to improve cross-dataset generalization, and 2) prior
visual modality-focused TTA methods (like Tent and ETA)
achieve limited gains in this cross-dataset scenario.

Therefore, the performance gain of our SPA method on
cross-dataset scenarios with CLIP is not as competitive as
its improvement on OOD scenarios—but it still provides
benefits (see Table 10)—as we do not adapt the text branch.
Extending our method to also adapt the text branch to further
boost performance in cross-dataset scenarios is an interest-
ing and promising direction. We leave this for future work.

Method DTD UCF101 Aircraft Avg. Acc. (%)
Source 44.3 65.1 23.8 44.4

VLM TTA methods:
TPT (Shu et al., 2022) 46.7 67.3 23.4 45.8
C-TPT (Yoon et al., 2024) 46.0 65.7 24.0 45.2

Vision TTA methods:
Tent 45.2 66.0 23.4 44.9
ETA 44.7 66.1 23.7 44.8
SAR 44.6 66.5 23.4 44.8
DeYO 44.2 66.0 22.7 44.3
SPA (ours) 45.4 66.2 23.6 45.1

Table 10. Results on CLIP-ViT-B for cross-dataset generalization.

5. Conclusion
In this paper, we aim to develop a new versatile fully TTA ap-
proach to support various tasks—classification or regression
across image-, object-, and pixel-level predictions. To this
end, we re-establish a consistency-based TTA framework
with active weak (augmented image)-to-strong (original im-
age) supervisions, termed SPA. In SPA, by analyzing how
domain shifts manifest in the Fourier frequency domain, we
devise two Fourier-based augmentations: low-frequency am-
plitude masking and high-frequency noise injection. These
augmentations preserve the geometric structure of images
(e.g., object locations and sizes), making them applicable
for consistency learning in fine-grained dense tasks while
also supplying rich learning signals for TTA. Extensive ex-
periments on classification, 3D monocular object detection,
and segmentation verify the generality and superiority of
SPA, both as a standalone approach and as a plug-and-play
module to enhance existing methods.
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Supplementary Materials

A. Related Work
We categorize related Test-Time Adaptation (TTA) works
based on their learning objectives and discuss their general-
ity across model architectures and tasks. Following that, we
relate our method with data augmentation techniques.

Learning Objective-Free TTA mainly relies on adapting
batch norm statistics (Nado et al., 2020; Schneider et al.,
2020; Gong et al., 2022). Building on this, various methods
have been developed to extend its applicability to diverse
test scenarios, e.g., label shifts (Niu et al., 2023; Gong et al.,
2022) and single sample (Khurana et al., 2021; Niu et al.,
2023), using methods like data augmentation (Khurana et al.,
2021), statistics mix-up (Hu et al., 2021; Lim et al., 2023),
re-normalization (Zhao et al., 2023), etc. These methods are
general for various tasks (e.g., image-/object-level) but are
limited to batch norm-equipped models.

Learning-Based TTA (Sun et al., 2020; Wang et al., 2021;
Liang et al., 2023; Niu et al., 2022b; 2024; Deng et al., 2024;
Chen et al., 2024a; Zhang et al., 2025) explicitly learns
from test data by updating model parameters using self- or
unsupervised learning, achieving much better gains. Unlike
learning-free TTA, in learning-based TTA, the designed
objectives typically support various models, e.g., CNN or
ViT, but may be restrictively applicable to different tasks:

• Entropy / Self-Learning-based methods (Wang et al.,
2021; Mummadi et al., 2021; Goyal et al., 2022; Chen et al.,
2024b) are among the most popular fully TTA approaches.
These methods, which optimize prediction entropy or cross-
entropy loss using pseudo-labels, have become foundational
techniques in the TTA community. Building on them, sev-
eral methods have been further developed: EATA (Niu et al.,
2022a; Tan et al., 2024) and SAR (Niu et al., 2023) intro-
duce selective entropy minimization strategies for improved
efficiency and sharpness-aware optimization for stable TTA
in the wild; SLR (Mummadi et al., 2021) and Conjugate
PL (Goyal et al., 2022) design advanced loss functions to
better utilize pseudo-labels in TTA, etc.

• Prototype-Based TTA methods (Iwasawa & Matsuo,
2021; Choi et al., 2022) enhance TTA performance by main-
taining class-specific prototypes and making predictions
based on feature similarity with these prototypes.

However, all these methods rely on predicted class probabil-
ities, making them unsuitable for regression tasks.

• Contrastive-Based TTA (Zhang et al., 2022; Liu et al.,
2021; Shu et al., 2022; Chen et al., 2022) is another pop-
ular and promising direction. It is mainly based on self-
supervised learning methods that seek to learn robust repre-
sentations by contrasting different augmentation views of
the same image to enforce consistency, such as MoCo (He
et al., 2020; Chen et al., 2020b), SimCLR (Chen et al.,
2020a), BYOL (Grill et al., 2020), and DINO (Caron et al.,
2021). Building on this, many test-time adaptation (TTA)
methods incorporate contrastive learning objectives to adapt
models to out-of-distribution data during testing, show-
ing promising performance. TTT++ (Liu et al., 2021) ex-
ploits the SimCLR (Chen et al., 2020a) loss, while Ada-
Contrast (Chen et al., 2022) incorporates MoCo (He et al.,
2020)’s momentum update scheme with the InfoNCE loss,
which conduct contrastive learning at the feature level.
MT3 (Bartler et al., 2022) explores BYOL (Grill et al.,
2020) loss for TTA, applying contrastive learning directly on
model predictions. However, as a TTT-series method, MT3
still requires modifications to the model training process. In
contrast, MEMO (Zhang et al., 2022) and TPT (Shu et al.,
2022) extend this prediction-level consistency learning into
a fully TTA approach by maximizing prediction consistency
across various augmented views.

Nevertheless, the success of contrastive learning (He et al.,
2020; Chen et al., 2020a; Grill et al., 2020; Caron et al.,
2021) and their integration in TTA (Zhang et al., 2022; Shu
et al., 2022; Chen et al., 2022; Bartler et al., 2022) stems
from a crucial motivation: they depend on heavy and strong
augmentations to supply adequate learning signals across
different views. Their commonly used strong augmenta-
tions, e.g., random cropping, resizing, and masking, often
disrupt the overall content and geometric structure of the
image, making them work well for image-level tasks, but
infeasible for object-/pixel-level TTA tasks. In this work, we
aim to develop a new versatile fully TTA method to enable
model- and task-agnostic applications, by augmenting an
image in the Fourier domain for self-bootstrapping.

Data Augmentation (Shorten & Khoshgoftaar, 2019) aims
to increase the diversity of training data, i.e., enlarging train-
ing data distribution, by applying transformations such as
rotation, flipping, and cropping, helping models generalize
better and reduce overfitting. As a widely used technique in
deep learning, data augmentation has evolved significantly
over time. Starting from the simple, manually designed
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transformations, it has progressed to more advanced ap-
proaches like RandAugment (Cubuk et al., 2020), AutoAug-
ment (Cubuk et al., 2019), FastAutoAugment (Lim et al.,
2019), Mixup (Zhang, 2017), AugMix (Hendrycks et al.,
2020) and etc. These methods have demonstrated remark-
able effectiveness in enhancing generalization at training
time in supervised manner, and also have been adopted by
self-supervised (He et al., 2020; Chen et al., 2020b;a; Grill
et al., 2020; Caron et al., 2021) methods and contrastive
TTA methods (Chen et al., 2022; Zhang et al., 2022; Bartler
et al., 2022) to generate diverse augmentation views for
effective learning, as we depicted above.

In the work, we develop a new versatile fully TTA method,
termed SPA, to enable model- and task-agnostic applica-
tions. SPA is also built on data augmentation. It aug-
ments/deteriorates an image in the Fourier domain to gener-
ate a weak view for self-bootstrapping learning. Here, we
would like to point out that although recently there are some
works introducing Fourier-based augmentations (Xu et al.,
2023; Yang & Soatto, 2020; Kalibhat et al., 2023), they tar-
get training-time generalization, unsupervised domain adap-
tation and self-supervised learning, exploring techniques
like amplitude swap/mixup, and phase shift. And these
methods still overlook and disrupt the geometric structure
of images after augmentation, or rely on paired source and
target data, making them incompatible with our context of
a versatile fully TTA framework. In this paper, we ana-
lyze how common distribution shifts manifest in the Fourier
domain and, based on our findings, design specific augmen-
tation strategies for low and high frequencies, respectively.
Our augmentations aim to preserve the core geometric struc-
ture of the image while providing as much as possible learn-
ing signals for effective and versatile TTA.

B. More Implementation Details
B.1. More Details on Datasets

We conduct experiments on six datasets to evaluate the OOD
generalization. Specifically, 1) for classification: we use
ImageNet-C (Recht et al., 2019), ImageNet-R (Hendrycks
et al., 2021a), ImageNet-A (Hendrycks et al., 2021b), and
ImageNet-Sketch (Wang et al., 2019); 2) for 3D monocular
object detection: we use KITTI-C per MonoTTA (Lin et al.,
2024); and 3) for segmentation: we use ACDC (Sakaridis
et al., 2021) per CoTTA (Wang et al., 2022); encompassing
35 distribution shifts in total, as shown in Figure 4.

ImageNet-C consists of various versions of corruption ap-
plied to 50,000 validation images from ImageNet. The
dataset encompasses 15 distinct corruption types of 4 main
groups, including noise, blur, weather, and digital. Each
corruption is characterized by 5 different levels of severity.
We specifically utilize severity level 5 for all evaluations.

ImageNet-R contains 30,000 images featuring artistic ren-
ditions of 200 ImageNet classes. These images are mainly
sourced from Flickr and filtered by Amazon MTurk.

ImageNet-A comprises 7,500 images covering 200 Ima-
geNet classes. These images are naturally existing samples
that lead to a notable degradation in classifier performance.

ImageNet-Sketch consists of 50,899 images represented as
black and white sketches, covering 1000 ImageNet classes.

KITTI-C consists of various versions of corruption applied
to 3,769 validation images from KITTI (Geiger et al., 2012).
It encompasses 13 corruption types of 4 main groups, includ-
ing Gaussian noise, shot noise, impulse noise, defocus blur,
glass blur, motion blur, snow, frost, fog, brightness, contrast,
pixelation, and saturation. Each corruption is characterized
by 5 different levels of severity. We utilize severity level 1
for all evaluations per MonoTTA (Lin et al., 2024).

ACDC contains four categories of images collected in ad-
verse conditions, including fog, night, rain, and snow. Fol-
lowing CoTTA (Wang et al., 2022), we use 400 unlabeled
images from each adverse condition for continuous TTA.

B.2. More Evaluation Protocols

We use the ViT-Base (Dosovitskiy et al., 2021) model
trained on ImageNet by timm (Wightman, 2019) as the
source model for classification, the MonoFlex (Zhang et al.,
2021) model trained on KITTI (Geiger et al., 2012) for
3D monocular detection, and the Segformer-B5 (Xie et al.,
2021) model trained on CityScapes (Cordts et al., 2016) for
semantic segmentation. We introduce the implementation
details of the involved methods below.

SPA (ours) For classification, we set the mask ratio m to
0.2 and the noise factor γ to 0.4. We insert a new learn-
able projector before the final predictions of the augmented
(weak) views following BYOL (Grill et al., 2020). This
projector is initialized as identity mappings and updated via
SGD optimizer with a learning rate of 0.05 and a momen-
tum of 0.9. The affine parameters of the norm layers are
also updated via SGD, using a learning rate of 0.01 and a
momentum of 0.9. When integrated with ActMAD (Mirza
et al., 2023) and Tent (Wang et al., 2021), the learning rate
of the norm layers is set to 0.005 following ActMAD. For
3D monocular object detection, we set the mask ratio m
to 0.2 and the noise factor γ to 0.1. We align the classi-
fication head via KL loss and regression heads of bound-
ing box coordinates, dims, and depths prediction via L1
loss, where we apply a rescaling factor of 0.01 on regres-
sion losses for balancing. We also adopt a threshold of
0.4 on f̂(x; θ) to filter unreliable predictions inspired by
MonoTTA (Lin et al., 2024). The norm layers are updated
using SGD, with a learning rate of 0.005 and a momentum
of 0.9. When integrated with MonoTTA, the loss com-
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Figure 4. Visualizations of partial images in ImageNet, ImageNet-C/A/R/Sketch, KITTI, KITTI-C, Cityscapes and ACDC.

ponents from SPA are further rescaled by a factor of 0.5.
For semantic segmentation, when incorporated with
CoTTA (Wang et al., 2022), we set the mask ratio m to 0.2
and the noise factor γ to 0.1, where our augmentation strate-
gies are applied on the student model. We adopt the Adam
optimizer with the learning rate of 6 × 10−5 to optimize
all the parameters in Segformer-B5. When SPA works as a
standalone method, we further apply a confidence threshold
of 0.2 on the original (strong) views to select reliable predic-
tions inspired by CoTTA (Wang et al., 2022), and adopt the
Adam optimizer to update the norm layers with a learning
rate of 1× 10−4.

We make noise injection learnable for image classification
tasks by dividing the images into patches, with a patch size
of 16, and learn patch-specific noise factor {γi}Pi=1, where
P is the number of patches. γ is updated to maximize the
test-time objective via SGD with a learning rate of 1 and a
momentum of 0.9, under the constraint mean(γ) = 0.4.

TENT1 (Wang et al., 2021) We follow all hyper-parameters

1https://github.com/DequanWang/tent

that are set in Tent unless it does not provide. For clas-
sification, we use the SGD optimizer, with a momentum
of 0.9 and a learning rate of 0.001. For 3D monocular
detection, we use the SGD optimizer per MonoTTA (Lin
et al., 2024), with a momentum of 0.9 and a learning rate
of 0.0005, and entropy loss is applied on the classification
head. For segmentation, we use the Adam optimizer per
CoTTA (Wang et al., 2022) with a learning rate of 0.00006/8.
Trainable parameters are the parameters of the norm layers.

SAR2 (Niu et al., 2023) We follow all hyper-parameters
that are set in SAR unless it does not provide. Specifically,
we use SGD as the update rule, with a momentum of 0.9,
batch size of 64, and a learning rate of 0.001. The threshold
E0 is set to 0.4× lnC, where C is the number of classes.
The trainable parameters are the affine parameters of the
layer normalization layers from blocks 1 to blocks 8 in
ViT-Base (Dosovitskiy et al., 2021).

EATA3 (Niu et al., 2022a) We follow all hyper-parameters

2https://github.com/mr-eggplant/SAR
3https://github.com/mr-eggplant/EATA
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Noise Blur Weather Digital Average
Method Gauss. Shot Impul. Defoc. Glass Motion Zoom Snow Frost Fog Brit. Contr. Elastic Pixel JPEG Acc.
Source 56.8 56.8 57.5 46.9 35.6 53.1 44.8 62.2 62.5 65.7 77.7 32.6 46.0 67.0 67.6 55.5
TENT 60.3 61.6 61.8 59.2 56.5 63.5 59.2 54.3 64.5 2.3 79.1 67.4 61.5 72.5 70.6 59.6
EATA 62.2 63.4 63.4 60.5 61.2 66.0 63.5 70.3 68.4 73.1 79.8 67.0 69.7 75.2 73.4 67.8
SPA 64.0 65.5 65.2 61.0 63.6 69.1 67.9 74.1 72.7 75.3 80.9 65.2 74.0 77.6 75.0 70.1
SPA-I 62.7 64.3 64.2 58.9 61.9 67.7 65.9 72.6 71.7 75.1 80.5 66.3 71.9 76.8 73.6 69.0

Table 11. Effects of combined vs. separate augmentation strategy in SPA on ImageNet-C (severity level 5) with ViT-Base w.r.t. Accuracy
(%). SPA-I applies low-frequency amplitude mask (Eqn. (4)) and high-frequency noise injection (Eqn. (5)) in a single image simultane-
ously, obtaining one augmented image. While SPA augments an image using Eqn. (4) and Eqn. (5) separately, generating two augmented
images for test-time self-bootstrapping learning.

that are set in EATA unless it does not provide. Specifically,
for image classification, we use SGD as the update rule,
with a momentum of 0.9 and a learning rate of 0.001. The
entropy threshold E0 is set to 0.4 × lnC, where C is the
number of task classes. We use 2,000 samples to estimate
the importance of each parameter. The trainable parameters
are all affine parameters of layer normalization layers in ViT-
Base (Dosovitskiy et al., 2021). For 3d monocular detection,
we follow the hyper-parameters specified by MonoTTA (Lin
et al., 2024). In particular, we optimize the affine parameters
of the batch norm layers using SGD, with a momentum of
0.9 and a learning rate of 0.0005. The entropy threshold E0

is set to lnC/2−1 and we also apply a confidence threshold
of 0.2 to filter out potentially unreliable predictions.

DeYO4 (Lee et al., 2024) We follow all hyper-parameters
that are set in DeYO unless it does not provide. Specifi-
cally, we use SGD as the update rule, with a momentum
of 0.9 and a learning rate of 0.001. The entropy thresh-
old E0 is set to 0.4× lnC and the entropy factor τEnt is
set to 0.5× lnC, where C is the number of task classes.
The Pseudo-Label Probability Difference (PLPD) threshold
τPLPD is set to 0.2. Trainable parameters are the affine pa-
rameters of the layer normalization layers from blocks 1 to
blocks 8 in ViT-Base (Dosovitskiy et al., 2021).

ActMAD5 (Mirza et al., 2023) The implementations of
ActMAD on ViT-Base (Dosovitskiy et al., 2021) for classifi-
cation and MonoFlex (Zhang et al., 2021) for 3D monocular
detection are inspired by FOA. For classification, we cal-
culate the source training statistics with the validation set
of ImageNet and align the test statistics per batch, using
the SGD optimizer with a learning rate of 0.005 and a mo-
mentum of 0.9. For 3D monocular detection, we calculate
the source training statistics with 15,168 samples from the
validation set of KIITI and adopt the SGD optimizer with a
learning rate of 0.0005 and a momentum of 0.9. Trainable
parameters are affine parameters in norm layers.

4https://github.com/Jhyun17/DeYO
5https://github.com/jmiemirza/actmad

CoTTA6 We follow all hyper-parameters that are set in
CoTTA unless it does not provide. For classification, we
use SGD as the update rule, with a momentum of 0.9, and
a batch size of 64. We consistently set the learning rate to
0.001 and the augmentation threshold pth to 0.1 given the
optimal accuracy observed in Table 1. For images below
the threshold, we conduct 32 augmentations including color
jitter, random affine, Gaussian blur, random horizontal flip,
and Gaussian noise. For segmentation, the threshold pth
is set to 0.69. We apply a range of image resolution scale
factors [0.5, 0.75, 1.0, 1.25, 1.5, 1.75, 2.0] and horizontal
flip as the augmentation of teacher model input. We use
Adam as the update rule with a learning rate of 0.00006/8.
In both cases, the trainable parameters are all the parameters
in the student model, and the teacher model is updated via
the exponential moving average with a moving factor of
0.999. The restoration probability is set to 0.01.

MonoTTA7 (Lin et al., 2024) We follow all hyper-
parameters that are set in MonoTTA. Specifically, the initial
object detection threshold γ is set to 1, the decay coefficient
β for threshold updating is set to 0.9, and the threshold η
for low-score object filtering is set to 0.05. The affine pa-
rameters of batch norm layers are updated via SGD, with
a learning rate of 0.0005 and a momentum of 0.9. We
also follow the hyper-parameters of other baseline meth-
ods, including TENT, EATA, and ActMAD, as specified by
MonoTTA for the 3D monocular object detection task.

C. More Discussions and Results
Effects of Combined vs. Separate Augmentations in SPA
In SPA, we augment a given image using low-frequency am-
plitude mask in Eqn. (4) and high-frequency noise injection
in Eqn. (5) to generate two distinct augmented views for
weak-to-strong self-bootstrapping learning. This separates
the learning process for high and low frequencies and helps
the model better learn low- or high-frequency preserving
features, aiming to maximize the efficiency of utilizing the

6https://github.com/qinenergy/cotta
7https://github.com/Hongbin98/MonoTTA
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SPA: Self-Bootstrapping for Versatile Test-Time Adaptation

KITTI-Fog (AP3D|R40,%, ↑)
Method Car Pedestrian Cyclist Avg.
No Adapt 7.8 2.0 3.6 4.5
BN Adapt (Schneider et al., 2020) 23.3 8.6 9.7 13.9
TENT (Wang et al., 2021) 26.5 8.7 10.5 15.2
EATA (Niu et al., 2022a) 27.9 8.7 10.5 15.7
MonoTTA (Lin et al., 2024) 32.0 9.2 9.7 17.0
SPA-I 32.6 10.1 8.8 17.2
SPA 34.4 11.1 9.7 18.4

Table 12. Effects of combined vs. separate augmentation strat-
egy in SPA on 3D monocular detection with MonoFlex as source
model. SPA-I applies low-frequency amplitude mask (Eqn. (4))
and high-frequency noise injection (Eqn. (5)) in a single image
simultaneously, obtaining one augmented image. While SPA aug-
ments an image using Eqn. (4) and Eqn. (5) separately, generating
two augmented images for test-time self-bootstrapping learning.

constructed weak-to-strong learning signals at different fre-
quency ranges independently. In this section, we further
compare SPA with SPA-I, which simultaneously applies
two augmentation strategies in a single image. From results
in Tables 11 and 12, SPA-I performs slightly worse than
SPA but still achieves better or comparable performance
compared to prior SOTAs, suggesting its superiority.

Adaptation Efficiency Notably, though SPA involves one
more forward and backward propagation, it remains effi-
cient and operates in real-time, achieving 79 FPS (vs. SPA-
I: 125 FPS) on a single A100 GPU with ViT-Base and
ImageNet-C. Here, SPA-I is the variant that applies two
deteriorations within a single image (1 augmentation) and
achieves similar ImageNet-C accuracy: SPA (70.1%) vs
SPA-I (69.0%) as in Table 11. SPA is more efficient than
prior augmentation-based methods such as MEMO (Zhang
et al., 2022), CoTTA (Wang et al., 2022), and TPT (Shu
et al., 2022), which require 64, 34(or 2), and 63 augmenta-
tions per sample, respectively. It also matches the efficiency
of entropy-based SAR. The FPS on ImageNet-C with ViT-
Base (on a single A100 GPU) are: SPA-I (125) > SAR
(102) > SPA (79) > CoTTA (36).

Effectiveness of Aligning Regression Heads in SPA for
3D Monocular Object Detection The 3D monocular de-
tection task comprises both classification heads to identify
object class within each 3D bounding box, and regression
heads to predict the 3D bounding box coordinates, dimen-
sions, depths, and angles which provides a comprehensive
spatial understanding of each detected object. However,
existing TTA methods (Schneider et al., 2020; Wang et al.,
2021; Niu et al., 2022a; Lin et al., 2024) for 3D MonoDet
focus on designing TTA loss on classification heads while
overlooking the regression heads with rich predictions. In
contrast, SPA is task-agnostic, making it applicable to both
classification and regression heads seamlessly. In SPA, we
demonstrate that leveraging the regression heads (with rich
spatial information) for TTA, i.e., aligning prediction consis-

KITTI-Fog (AP3D|R40,%, ↑)
Method Car Pedestrian Cyclist Avg.
No Adapt 7.8 2.0 3.6 4.5
BN Adapt (Schneider et al., 2020) 23.3 8.6 9.7 13.9
TENT (Wang et al., 2021) 26.5 8.7 10.5 15.2
EATA (Niu et al., 2022a) 27.9 8.7 10.5 15.7
MonoTTA (Lin et al., 2024) 32.0 9.2 9.7 17.0

Self-bootstrapping learning of our SPA by aligning:
Reg. heads 32.4 8.7 8.7 16.6
Cls. heads 32.2 10.7 9.3 17.4
Reg. heads & Cls. heads 34.4 11.1 9.7 18.4

Table 13. Effects of SPA aligning different heads’ predictions (clas-
sification and regression heads) in 3D monocular object detection.
We use MonoFlex as the source model.

Method Average Accuracy (%)
Source 31.4
CoTTA (Wang et al., 2022) 34.0
EATA (Niu et al., 2022a) 44.4
DeYO (Lee et al., 2024) 45.9
ROID (Marsden et al., 2024) 46.8
CMF (Lee & Chang, 2024) 48.1
SPA (ours) 49.2
SPA + Tent (ours) 50.9
SPA + EATA (ours) 52.5

Table 14. Comparisons on ImageNet-C (level 5) with ResNet-50.

tency of regression predictions, offers rich learning signals
at test time. As shown in Table 13, SPA achieves comparable
performance to existing methods using only regression self-
supervision, e.g., with an average AP3D|R40 of 16.6% (SPA
with Reg. Heads Alignment) vs. 15.7% (EATA). When fur-
ther incorporating classification supervision, our SPA is able
to surpass the existing state-of-the-art method, MonoTTA,
which focuses only on the classification head, by an average
of 1.4%. These results collectively highlight the effective-
ness of SPA, and underscore the importance of exploiting
both information from regression and classification predic-
tions to design more general and effective TTA solution.

Effectiveness of SPA with Different Model Architectures
In our experiments, we use the ViT-Base model for image
classification, MonoFlex (Zhang et al., 2021) for 3D monoc-
ular object detection, and Segformer-B5 (Xie et al., 2021)
for segmentation tasks. Here, ViT-Base and Segformer-B5
employ transformer-based architectures, while MonoFlex
is based on convolutional neural networks. Our results in
Tables 1, 2, 3 and 4 demonstrate that SPA performs well
on all three backbone models, demonstrating its generality
across different types of model architectures.

More Results on Classification with ResNet-50 In this
section, we provide more experiments on ResNet-50 with
ImageNet-C. As shown in Table 14, the improvements ob-
served on ResNet-50 are consistent with our experiments
on ViT-Base. This further underscores SPA’s effectiveness
both as a standalone method and as a plug-and-play module
to enhance existing methods.
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