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Abstract
We propose a new challenging dataset to bench-
mark robustness of ImageNet-trained models with
respect to domain shifts: ImageNet-D. ImageNet-
D has six different domains (“Real”, “Painting”,
“Clipart”, “Sketch”, “Infograph” and “Quick-
draw”). We show that even state-of-the-art models
struggle on this dataset and find that they make
well-interpretable errors. For example, our best
EfficientNet-L2 model experiences a large per-
formance drop even on the “Real” domain from
11.6% on ImageNet clean to 29.2% on the “Real”
domain.

Robustness datasets on ImageNet-scale (IN, Deng et al.,
2009) have so far been limited to a few selected domains—
image corruptions in ImageNet-C (IN-C, Hendrycks & Di-
etterich, 2019), image renditions in ImageNet-R (IN-R,
Hendrycks et al., 2020a), difficult images for ResNet50 (He
et al., 2016) classifiers in ImageNet-A (IN-A, Hendrycks
et al., 2019) or unusual viewpoints in ObjectNet (Barbu
et al., 2019). To enable researchers to benchmark their
models on a wider range of complex distribution shifts, we
re-purpose the dataset from the Visual Domain Adaptation
Challenge 2019 (DomainNet, Saenko et al., 2019) as an
additional robustness benchmark. This dataset comes with
six image styles: Clipart, Real, Infograph, Painting, Quick-
draw and Sketch. To benchmark robustness of IN-trained
models out of the box, we filter out the classes that cannot
be mapped to IN and refer to the smaller version of Domain-
Net as ImageNet-D (IN-D). We show example images from
IN-D in Fig. 1. The benefit of IN-D over DomainNet is the
re-mapping to ImageNet classes which allows robustness
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Figure 1. Example images from different domains of ImageNet-D.

researchers to easily benchmark on this dataset, without the
need of re-training a model (as is common in Unsupervised
Domain Adaptation). ImageNet-D could also be used for
studying the task of domain adaptation on ImageNet scale.

Related Work The most similar robustness dataset to IN-
D is IN-R which contains renditions of IN classes, such as
art, cartoons, deviantart, graffiti, embroidery, graphics and
others. The benefit of IN-D over IN-R is that in IN-D, the
images are separated according to the domain allowing for
studying of systematic domain shifts, while in IN-R, the
different domains are not distinguished. ImageNet-Sketch
(Wang et al., 2019) is a dataset similar to the ”Sketch” do-
main of IN-D. We expect models to perform similarly on
both datasets.

1. Creation of IN-D and the evaluation
protocol

The original DomainNet dataset has 345 classes in total,
out of which 164 overlap with IN. To create IN-D, we map
these 164 DomainNet classes to 463 IN classes, e.g., for an
image from the “bird” class in IN-D, we accept all 39 bird
classes in IN as valid predictions. IN also has ambiguous
classes, e.g., it has separate classes for “cellular telephone”
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and “dial phone” or for “analog clock” and “digital clock”
and “wall clock”, and others. For these cases, we accept all
predictions as valid. In this sense, the mapping from IN-D
to IN is a one-to-many mapping.

The mapping was first done by comparing the class labels
in DomainNet and the synset labels on IN. Afterwards, the
resulting label maps were cleaned manually, because simply
comparing class label strings resulted in imperfect matches.
For example, images of the class “hot dog” in DomainNet
were mapped to the class “dog” in IN. Another issue is
that IN synset labels of different animal species do not
contain the animal name in the text label, e.g., the class
“orangutan, orang, orangutang, Pongo pygmaeus” does not
contain the word “monkey” and we had to add this class
to the hierarchical class “monkey” manually. We verified
the mappings by investigating the class-confusion matrix
of the true DomainNet class and the predicted IN classes
remapped to DomainNet on the “Real” domain, and checked
that the predictions lay on the main diagonal, indicating that
IN classes have not been forgotten.

The statistics for the mappings are shown in Table 1. Most
IN-D classes (102) are mapped to one single IN class. A
few IN-D classes are mapped to more than 20 IN classes:
“monkey” and “snake” are mapped to 28 IN monkey and
snake species classes, “bird” is mapped to 39 IN bird species
classes, “dog” is mapped to 132 IN dog breed classes. The
full mapping dictionary can be found in our code online.

The domains in IN-D differ in terms of their difficulty for
the studied models. Therefore, to calculate an aggregate
score over all six domains, we propose normalizing the error
rates by the error achieved by AlexNet on the respective
domains to calculate the mean error, following the approach
in Hendrycks & Dietterich (2019) for IN-C. This way, we
obtain the aggregate score mean Domain Error (mDE) by
calculating the mean over different domains,

DEf
d =

Ef
d

EAlexNet
d

, mDE =
1

D

D∑
d=1

Ef
d , (1)

where Ef
d is the top-1 error of a classifier f on domain d.

The top-1 errors achieved by AlexNet on the different IN-D
domains are shown in Table 2.

1.1. Data access and evaluation code

Since IN-D is based on DomainNet, the first step in using IN-
D is to download the images from http://ai.bu.edu/
M3SDA/. We used both the train and test sets of DomainNet
to create IN-D. We provide code to map the DomainNet
classes to ImageNet classes. The mapping is done via the
creation of symbolic links to a new directory containing
ImageNet classes such that regular Pytorch (Paszke et al.,
2017) dataloaders can be used.

2. Benchmarking state-of-the-art robust
models on ImageNet-D

To benchmark models on IN-D, we evaluate the pre-trained
and public checkpoints of SIN (Geirhos et al., 2019), ANT
(Rusak et al., 2020), ANT+SIN (Rusak et al., 2020), Aug-
Mix (Hendrycks et al., 2020b), DeepAugment (Hendrycks
et al., 2020a), DeepAug+Augmix (Hendrycks et al., 2020a)
and EfficientNet-L2 Noisy Student (Xie et al., 2020). We
show the results in Table 3 where we also show reference
numbers on IN-C and IN-R.

More robust models perform better on IN-D. Compar-
ing the performance of the vanilla ResNet50 model to its
robust DeepAug+Augmix (Hendrycks et al., 2020a) variant
which was trained with DeepAugment and AugMix data
augmentations, we find that the DeepAug+Augmix model
performs better on all domains, with the most significant
gains on the “Clipart”, “Painting” and “Sketch” domains.
We find that the best performing models on IN-D are also
the strongest ones on IN-C and IN-R which indicates good
generalization capabilities of the techniques combined for
these models, given the large differences between the three
considered datasets. However, even the best models perform
20 to 30 percentage points worse on IN-D compared to their
performance on IN-C or IN-R, indicating that IN-D might
be a more challenging benchmark.

All models struggle with some domains of IN-D. The
EfficientNet-L2 Noisy Student model obtains the best results
on most domains. However, we note that the overall error
rates are surprisingly high compared to the model’s strong
performance on the other considered datasets (IN-A: 14.8%
top-1 error, IN-R: 17.4% top-1 error, IN-C: 22.0% mCE).
Even on the “Real” domain closest to clean IN where the
EfficientNet-L2 model has a top-1 error of 11.6%, the model
only reaches a top-1 error of 29.2%.

Error analysis on IN-D. We investigate the errors a
ResNet50 model makes on IN-D by analyzing the most
frequently predicted classes for different domains to reveal
systematic errors indicative of the encountered distribution
shifts and show the results in Fig. 2. The colors of the
bars indicate whether the predicted class is part of the IN-D
dataset: “blue” indicates that the class appear in the IN-D
dataset, while “orange” means that the class is not present
in IN-D. We find most errors interpretable: the classifier
assigns the label “comic book” to images from the “Clipart”
or “Painting” domains, “website” to images from the “Info-
graph” domain, and “envelope” to images from the “Sketch”
domain. Thus, the classifier predicts the domain rather than
the class. We find no systematic errors on the “Real” domain
which is expected since this domain should be similar to IN.
We find the systematic errors on the “Clipart”, “Painting”,
“Sketch” and “Infograph” domains to be consistent to the
observation that neural networks tend to focus on object

http://ai.bu.edu/M3SDA/
http://ai.bu.edu/M3SDA/
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Table 1. Statistics of one-to-many mappings from IN-D to IN.

Number of IN classes one IN-D class is mapped to 1 2 3 4 5 6 7 8 13 28 39 132
Frequency of these mappings 102 32 13 3 5 1 1 2 1 2 1 1

Figure 2. Systematic predictions of a vanilla ResNet50 on IN-D for different domains. The colors of the bars indicate whether the
predicted class is part of the IN-D dataset: “blue” indicates that the class appear in the IN-D dataset, while “orange” means that the class
is not present in IN-D.

Table 2. top-1 error on IN-D by AlexNet which was used for nor-
malization.

Dataset top-1 error in %

IN-D real 54.887
IN-D clipart 84.010
IN-D infograph 95.072
IN-D painting 79.080
IN-D quickdraw 99.745
IN-D sketch 91.189

textures rather than object shapes (Geirhos et al., 2019).

We also show the Spearman’s rank correlation coefficients
for errors on ImageNet-D correlated to errors on ImageNet-
R and ImageNet-C for robust ResNet50 models. For this
correlation analysis, we take the error numbers from Table 3.
We find the correlation to be high between most domains
in ImageNet-D and ImageNet-R which is expected since
the distribution shift between ImageNet-R and ImageNet
is similar to the distribution shift between ImageNet-D and

ImageNet. The only domain where the Spearman’s rank
correlation coefficient is higher for ImageNet-C is the “Real”
domain which can be explained with ImageNet-C being
closer to real-world data than ImageNet-R. Thus, we find
that the Spearman’s rank correlation coefficient reflects the
similarity between different datasets.

Filtering predictions on IN-D that cannot be mapped
to ImageNet-D We perform a second analysis: For a
vanilla ResNet50, we filter the predicted labels according to
whether they can be mapped to IN-D and report the filtered
top-1 errors as well as the percentage of filtered out inputs
in Table 4. We note that for the domains “Infograph” and
“Quickdraw”, the ResNet50 predicts labels that cannot be
mapped to IN-D in over 70% of all cases, highlighting the
hardness of these two domains.

Filtering labels and predictions on IN that cannot be
mapped to IN-D To test for possible class-bias effects,
we test the performance of a ResNet50 model on IN classes
that can be mapped to IN-D and report the results in Table 4.
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Table 3. Top-1 error on IN-D in % as obtained by robust ResNet50 models. For reference, we also show the mCE on IN-C and the top-1
error on IN-R and clean IN. See main text for model references.

Model Clipart Infograph Painting Quickdraw Real Sketch mDE IN-C IN-R IN

vanilla ResNet50 76.0 89.6 65.1 99.2 40.1 82.0 88.2 76.7 63.9 23.9
SIN 71.3 88.6 62.6 97.5 40.6 77.0 85.6 69.3 58.5 25.4
ANT 73.4 88.9 63.3 99.2 39.9 80.8 86.9 62.4 61.0 23.9
ANT+SIN 68.4 88.6 60.6 95.5 40.8 70.3 83.1 60.7 53.7 25.9
AugMix 70.8 88.6 62.1 99.1 39.0 78.5 85.4 65.3 58.9 22.5
DeepAugment 72.0 88.8 61.4 98.9 39.4 78.5 85.6 60.4 57.8 23.3
DeepAug+Augmix 68.4 88.1 58.7 98.2 39.2 75.2 83.4 53.6 53.2 24.2

EfficientNet-L2 Noisy Student 45.0 77.9 42.7 98.4 29.2 56.4 67.2 16.5 23.5 11.6

Table 4. top-1 error on IN and different IN-D domains for different
settings: left column: default evaluation, middle column: predicted
labels that cannot be mapped to IN-D are filtered out, right column:
percentage of filtered out labels.

Dataset top-1 error top-1 error on percentage of
filtered labels rejected inputs

IN val 12.1 13.4 52.7
IN-D real 40.2 17.2 27.6
IN-D clipart 76.1 59.0 59.0
IN-D infograph 89.7 59.3 74.6
IN-D painting 65.2 39.5 42.4
IN-D quickdraw 99.3 96.7 76.1
IN-D sketch 82.1 65.6 47.9

In addition, we map IN labels to IN-D to make the setting as
similar as possible to our experiments on IN-D and report
the top-1 error (12.1%). This error is significantly lower
compared to the top-1 error a ResNet50 obtains following
the standard evaluation protocol (23.9%). This can be ex-
plained by the simplification of the task: While in IN there
are 39 bird classes, these are all mapped to the same hierar-
chical class in IN-D. Therefore, the classes in IN-D are more
dissimilar from each other than in IN. Additionally, there
are only 164 IN-D classes compared to the 1000 IN classes,
raising the chance level prediction. If we further only accept
predictions that can be mapped to IN-D, the top-1 error is
slightly increased to 13.4%. In total, about 52.7% of all
images in the IN validation set cannot be mapped to IN-D.

Conclusion
We proposed a new challenging dataset (ImageNet-D) to
benchmark model robustness. While the error rates on IN-
C, -R and -A are at a well-acceptable level for our largest
EfficientNet-L2 model, IN-D performance is consistently
worse (for all models). We propose to move from isolated
benchmark settings like IN-R (single domain) to bench-
marks more common in domain adaptation (like Domain-
Net) and make IN-D publicly available as an easy-to-use
dataset for this purpose.
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