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ABSTRACT

Antibody therapies have been employed to address some of today’s most chal-
lenging diseases, but must meet many criteria during drug development before
reaching a patient. Humanization is a sequence optimization strategy that ad-
dresses one critical risk called immunogenicity — a patient’s immune response to
the drug — by making an antibody more ‘human-like’ in the absence of a predic-
tive lab-based test for immunogenicity. However, existing humanization strategies
generally yield very few humanized candidates, which may have degraded bio-
physical properties or decreased drug efficacy. Here, we re-frame humanization as
a conditional generative modeling task, where humanizing mutations are sampled
from a language model trained on human antibody data. We describe a sampling
process that incorporates models of therapeutic attributes, such as antigen bind-
ing affinity, to obtain candidate sequences that have both reduced immunogenicity
risk and maintained or improved therapeutic properties, allowing this algorithm
to be readily embedded into an iterative antibody optimization campaign. We
demonstrate in silico and in lab validation that in real therapeutic programs our
generative humanization method produces diverse sets of antibodies that are both
(1) highly-human and (2) have favorable therapeutic properties, such as improved
binding to target antigens.

1 INTRODUCTION

Antibodies are the fastest growing drug class, with approved molecules treating a breadth of disor-
ders ranging from cancer to autoimmune disease to infectious disease (Carter & Lazar, 2018). Many
candidate therapeutic antibodies are derived from non-human e.g., murine or camelid sources, and
modern antibody formats such as multi-specifics or antibody-drug conjugates can require heavy se-
quence engineering after discovery. This increases the risk of immunogenicity, where Anti-Drug
Antibodies (ADAs) result in either fast clearance of the drug or adverse events (Hwang & Foote,
2005). While antibody sequence humanness is only roughly correlated with immunogenicity, hu-
manization is widely employed to decrease immunogenicity risk (Prihoda et al., 2022). However,
even targeted humanizing changes may alter drug efficacy, and any such engineering must be under-
taken while maintaining or improving the “drug-likeness” (developability) and intended function of
the resulting antibody.

Canonically, humanization is a time-consuming, manual or semi-manual “cut-and-paste” process
requiring specialized expertise. Machine learning-based approaches to humanization have been pro-
posed to address this challenge – many of these (Marks et al., 2021; Prihoda et al., 2022; Ramon
et al., 2023) use models built on large antibody datasets (Kovaltsuk et al., 2018) to suggest spe-
cific mutations which greedily optimize humanness. Published methods employ various mitigating
measures aimed at preserving antibody function such as avoiding changes in the Complementarity
Determining Regions (CDRs), which are key for target binding, or relying on structural features
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(Choi et al., 2015; Tennenhouse et al., 2023)(related work in Appendix A). However these methods
may still alter antibody function (Chirino et al., 2004; Harding et al., 2010), and generally yield
one or a small number of humanized candidates which, if unsuccessful, can prevent the drug from
advancing in development.

In this work, we propose re-framing humanization as a conditional generative sequence modeling
task, and outline a new humanization algorithm that, given a starting antibody, generates multiple
humanized candidates enriched for therapeutic properties of interest. When this method is combined
with a modern high-throughput wet lab, it allows reliable and efficient humanization that can be
performed either in a single step, or incrementally during an iterative optimization campaign: at
each round of optimization, we generate many humanized sequences enriched for properties of
interest, validate them quickly in the lab, and select top performers for further development in the
next round.

From a technical standpoint, our humanization algorithm operates by introducing controlled, human-
izing mutations to antibody sequences. These mutations are obtained by sampling from a masked
language model (MLM) trained on human antibody sequences. Sampling from an MLM allows
us to generate many more diverse, human-like sequences than what existing (mostly determinis-
tic) methods produce. We outline a product of experts formulation for sampling that incorporates
oracle models trained to predict therapeutic attributes of antibodies, such as binding affinity. This
allows us to generate multiple humanized candidates that maintain (or even improve) the therapeutic
properties of the starting antibody.

In experiments, we first evaluate our algorithms in silico, demonstrating we can obtain a large num-
ber of highly human candidates with favorable therapeutic attributes. Secondly, we conduct lab
validation and demonstrate that in two real therapeutic programs, our method generates humanized
antibodies that have improved binding to a target antigen as compared to baselines.

2 METHODS

2.1 BACKGROUND

Antibody humanization. To be a viable therapeutic candidate, an antibody must be “developable”
- e.g., it must be synthesizable, thermostable, and of specific relevance here, non-immunogenic
(Jarasch et al., 2015). Humanization aims to address this requirement, by taking an engineered
antibody and altering its amino acid sequence such that it resembles human antibodies more closely,
while preserving its structure, function, and developability.

Notation. Denote the set of 20 amino acids by A = {r0, r1, . . . , r19}. Let x = [x0, . . . , xL−1] ∈
AL denote an antibody, representing a sequence of L amino acids with each xi ∈ A.

Let fk : AL 7→ R be a scoring function, or oracle, that evaluates an antibody x on some metric of
interest. Examples include binding affinity fKD

, melting temperature fTm , and humanness fh.

Further, let m : AL 7→ RL×20 denote a masked language model (MLM) that takes an input
antibody x (potentially with some residues replaced by <MASK>) and outputs a L× 20 matrix
Z = [z0, . . . , zL−1]

⊤, where each zl contains log probabilities over the set of residues in A. The
probability distribution over the residues at location l is obtained using the softmax function with
temperature τ , giving the probability of each residue ri at location l as:

p(ri) = softmax(zl/τ)[i] =
exp(zl[i]/τ)∑20

k=1 exp(zl[k]/τ)
. (1)

2.2 HUMANIZATION VIA SAMPLING

Concept. We humanize a starter antibody by mutating it over a series of steps. Each step’s mutation
is obtained by sampling from the output distribution of a masked language model (MLM) condi-
tioned on the current sequence. Importantly, the MLM is trained on a large human antibody dataset
(The Observed Antibody Space, OAS (Kovaltsuk et al., 2018)). Samples from such an MLM will
tend to introduce more human-like mutations, which can be confirmed with an orthogonal human-
ness metrics such as the OASis percentile (Prihoda et al., 2022).
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Our algorithm proceeds as follows. We first propose a starting antibody sequence x(0), mutable
residue locations I, and a sampling temperature τ . For each step j of the iterative humanization, we
pass the sequence x(j) through the MLM m (potentially after masking), generating a matrix of log
probabilities Z. We take zI[j], the log probabilities at location I[j], and sample from the resulting
distribution following equation 1. The mutated location I[j] is infilled with the sampled residue,
resulting in x(j+1). This process then repeats until all indices I are filled.

On the choice of masking strategy. The simplest variant is to not mask at all – Unmasked Sam-
pling. If we mask all of I at the start and progressively infill, we obtain Autoregressive Denoising
Sampling (similar to Autoregressive Diffusion Models (Hoogeboom et al., 2021)). If at each itera-
tion j, we only mask xI[j], we obtain Gibbs-like Sampling. We compare these different strategies in
our experiments. Appendix B has full details for all three variants.

On argmax Humanization. Our algorithm samples from the MLM output distribution at muta-
ble locations, rather than infilling mutable locations with the residue that has the maximal MLM
output (i.e., taking an argmax). This choice results in many more humanized candidates (Section
3.2). argmax infilling (possibly over multiple rounds) without masking gives the Sapiens algorithm
(Prihoda et al., 2022), a baseline with which we compare with in experiments. We also define two
new variants on Sapiens that do incorporate masking:

• Random Masking Argmax: Mask the mutable input residues, pass the sequence through
the MLM, infill all masked locations with the argmax over the MLM outputs.

• Iterative Masking Argmax: For each mutable residue, mask it out, pass the sequence
through the MLM and infill using the argmax operator. Repeat for all mutable residues.

2.3 GUIDED SAMPLING FOR ATTRIBUTE-AWARE ITERATIVE HUMANIZATION

One important drawback with the approach described so far is that the process is completely agnostic
to important functional or developability attributes of the starting sequence such as strong binding
affinity and thermostability. The humanized candidates can therefore have substantially worse prop-
erties along these axes, as we demonstrate in Section 3.2. Furthermore, it assumes that humanization
will be undertaken as a single step at either the beginning or end of a campaign, rather than as part
of an iterative optimization process.

To address this, we modify the sampling to enrich for attributes of therapeutic importance while
iteratively improving humanness. Assume access to a set of oracles {fk}Kk=1, each of which scores
an antibody x based on some attribute. Then, at each mutable location l, instead of sampling from
the MLM distribution, we sample from a product of experts (PoE) (Hinton, 2002) distribution. We
define sk,xl

∈ R20 to be a vector of scores that oracle fk produces for all 20 possible mutations of xl.
Interpreting these scores as log probabilities, the PoE distribution at this location has the following
log probability of residue ri:

log pPoE(ri) = zl[i]/τ +

K∑
k=1

sk,xl
[i]/τk − logZ, (2)

where zl are the MLM’s log probabilities at location l, τk represents each oracle’s temperature, and
Z is a normalizing constant. Here, high probability is assigned to a residue ri that has both: (1)
high likelihood under the MLM, representing ‘humanness’; and (2) high scores under the oracles,
representing other desired therapeutic attributes, weighted by the temperature terms. By sampling
from r′ ∼ softmax(zI[j]/τ +

∑K
k=1 sk,xI[j]

/τk) instead of equation 1, we obtain our updated al-
gorithm: Guided Sampling Humanization. In our experiments, we demonstrate that sampling in
this way generates sequences which progressively improve both humanness and desired therapeutic
attributes.

Comparison to PoE in existing work. Each step of our guided sampling algorithm constructs a
local PoE distribution over mutations at a single location, which allows for tractable sampling. This
implicitly assumes a notion of local functional smoothness in sequence space, which we show is
effective in practice. Prior work (Emami et al., 2023; Hie et al., 2022a) has formulated PoE distri-
butions over multiple-mutation trajectories; however, sampling from these distributions necessitates
approximations since calculating the partition function exactly is intractable – see Appendix A.
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(a) Multiple Murine Starters (b) Multiple Human Starters (c) Humanness assessment (d) Lab validating affinity

Figure 1: Sampling-based approaches generate many candidates with increased humanness from both
murine (a) and manually-humanized (b) starter antibodies. Allowing up to 2 CDR mutations but measuring
resulting affinity in the lab gives improved humanness (c) and a range of affinities (d) including some equal to
or better than the starter.

3 EXPERIMENTS

3.1 EXPERIMENTAL SETUP

Datasets. For Masked Language Model (MLM) training, following several earlier works (Ruffolo
et al., 2021; Prihoda et al., 2022), we use a dataset of 4 million sequences from Open Antibody Space
(Kovaltsuk et al., 2018) (OAS). OAS data processing details are in the appendix. Oracle models
were first pre-trained on in-house Next Generation Sequencing (NGS) datasets with between 500k
and 1M sequences, and then fine-tuned to 8k binding and thermostability measurements.

Model and training details. We train a BERT-style (Devlin et al., 2018) masked language model
(MLM) with ∼25 million parameters on the OAS subset described above. We train two oracles –
one to predict binding affinity, and one to predict melting temperature. Each of these is an ensemble
of 1D CNNs with a ByteNet/CARP architecture (Yang et al., 2022) – details in Appendix C.

Humanness metrics. We use an established humanness metric, the OASis percentile (Prihoda et al.,
2022), which is well-correlated with immunogenicity risk (with higher humanness indicating lower
immunogenicity). When assessing the contribution of experts to guided sampling, we also use the
log likelihood of a sequence under the MLM as a continuous humanness proxy, which is correlated
with the OASis percentile score (Appendix C).

3.2 SAMPLING YIELDS HIGHLY DIVERSE HUMAN CANDIDATES

Our first goal is to understand what impact our sampling-based approaches to humanization have on
the number of unique, highly human candidates that can be generated for a given a starting antibody.

First, we take a set of 10 murine (mouse) clinical antibodies (see Appendix C) with low starting
humanness (average OASis percentile score of 0.06), and humanize them with different strategies,
including a manual (germline grafted) baseline – results are in Figure 1a. In all cases humanizing
mutations were limited to the framework regions, with the number of mutations ranging from 22
to 35. Sapiens generates only a few, highly-human candidates; in contrast, the masked argmax
methods and sampling algorithms all generate orders of magnitude more.

Next, we evaluate a more challenging situation – further humanization of a set of 30 already-
humanized clinical antibodies (average OASis percentile score of 0.41) – results are in Figure 1b. On
this more difficult task, the sampling-based approaches generate far more highly human candidates
as compared to the argmax methods, demonstrating the value of sampling-based humanization for
challenging starter molecules.

Lab validating binding affinity. We lab validate a subset of humanized candidates from a murine
starter sequence (details in Appendix C). We synthesize sequences from Random Masking Argmax,
Iterative Masking Argmax, Sapiens, HuMAb (Marks et al., 2021) (failed synthesis), and manual
humanization, and measure affinities with Bio Layer Interferometry (BLI). Because we have many
humanized candidates and will measure affinity in high-throughput, we allow up to 2 humanizing
CDR mutations. This gives even more human sequences with a range of affinities including many
with equal or better binding (Figure 1c).
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Figure 2: Guided sampling generates sequences which balance MLM log likelihood (∼ humanness) and
predicted target binding affinity yielding higher-affinity samples compared to unguided sampling (left, con-
tours indicate areas of high sample density, middle and right affinity and log likelihood marginals respectively).

(a) Multioracle Guidance
(b) Predicted Affinity with Struc-
ture Guidance

Figure 3: Guided sampling can flexibly capture multiple desired properties. Multioracle guidance (a)
improves predicted affinity (left), thermostability (middle) and maintains log likelihood (right). Even in the
absence of a trained oracle, sampling guided to minimize structural perturbation (b) yields samples which less
frequently ablate target binding.

3.3 GUIDED SAMPLING ALLOWS FOR JOINT ITERATIVE OPTIMIZATION

We now investigate whether sampling-based humanization can generate candidates with increased
humanness that are also enriched for favourable therapeutic properties, such as target binding affinity
and thermostability, as part of an iterative antibody optimization campaign. We use the Unmasked
Sampling algorithm and use log likelihood as a continuous humanness proxy. For efficiency, we
employ a cached oracle approximation, where oracles are first evaluated for all point mutations
of the starter sequence and this is used to compute the PoE distribution at each step of sampling.
Further details for all experiments are in Appendix C.

Single-oracle guidance. We first study guided sampling with a binding affinity oracle, with results
in Figure 2. Guided sampling results in sequences that are enriched for being highly human (high
log likelihood) and have high predicted binding affinity.

Multi-oracle guidance. Extending the above, we generate samples guided by both the affinity
and thermostability oracles – Figure 3a shows the distribution of samples. Multi-oracle sampling
results in a greater density of sequences with high log likelihood, predicted affinity, and predicted
thermostability, as compared to unguided sampling or when just using one oracle.

In this scenario we are humanizing while iteratively optimizing e.g. affinity over several rounds, so
we adjust the number and location of mutations introduced accordingly: First, we introduce only a
limited number of mutations (up to 6) at each step, and we allow only a subset of these to be within
the CDRs (up to 2).

Structure-guided sampling. In situations where we do not have data to train attribute oracles or
such oracles are otherwise unavailable, we can use an off-the-shelf antibody structure predictor
(e.g., IgFold Ruffolo & Gray (2022)) in guided sampling to generate candidates that have high log
likelihood and minimize structural deviation from the starting antibody. These samples are enriched
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for high predicted binding affinity as compared to unguided sampling (Figure 3b), even though an
affinity oracle was not used during sampling.

3.4 GUIDED SAMPLING IS EFFECTIVE IN LAB VALIDATION

We now validate our sampling approaches in the lab, confirming they enrich for sequences with
desirable therapeutic properties.

Setup. We evaluate both Guided and Unguided Unmasked Sampling. For Guided Unmasked Sam-
pling, we generate 500 candidate sequences that have increased humanness and oracle-predicted
binding affinity as compared to the starter. For Unguided Unmasked Sampling, we generate 500
candidate sequences that have increased humanness as compared to the starter. We also included
2 sequences humanized by the Sapiens algorithm. Sequences are then filtered for developability
liabilities (Appendix C.6).

Figure 4: In lab validation, guided generative
humanization yields improved binding affin-
ity. Affinity guidance outperforms both unguided
sampling, as well as unguided samples which are
ranked post-hoc by an affinity oracle.

We study two variants of each method:

1. Unranked, where we sample at random 20
sequences.

2. Ranked, where we rank the sequences with
the affinity oracle and then select the top 10.

The final sets of sequences are then synthesized in
the lab and characterized for binding affinity.

Results. Figure 4 presents the lab validation re-
sults – we see that guided sampling methods outper-
forms unguided sampling, and ranked guided sam-
pling performs best. The Sapiens humanized se-
quences failed to bind. This demonstrates the value
in vitro of biasing the sampling process for predicted
high affinity variants, rather than only filtering with
an oracle after generation.

4 CONCLUSION

In this paper, we reframed the problem of antibody
humanization as one of conditional sampling from a
generative model. This represents a departure from
prior work that considered humanization as build-
ing a functional mapping between an input anti-
body and a (often single) humanized output anti-
body. We demonstrate through in silico and lab val-
idation that our new sampling based approach can
generate many highly human candidate antibodies
that are also enriched for properties of therapeutic
interest, such as strong binding affinity to a target
antigen.

Our method for humanization can be readily em-
bedded into an iterative optimization loop, which
could lead to accelerating the development of anti-
body therapies with reduced immunogenicity risk.
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A EXTENDED RELATED WORK

Here, we describe additional related work.

Protein Language Models. Language models such as BERT or GPT (Devlin et al., 2018; Radford
et al., 2019) operate over discrete tokenized spaces making them appropriate modeling tools for
proteins (also sequences of discrete tokens, namely amino acid residues). There have been many
works developing language models specifically for proteins. ESM trained a series of large-scale
transformers that were able to learn biological properties of general proteins in an unsupervised
manner (Rives et al., 2021; Lin et al., 2023). In line with this work, others have followed for
antibody-specific protein language models such as AntiBERTy, AntiBERTa, and IgLM (Ruffolo
et al., 2021; Leem et al., 2022; Shuai et al., 2023). Protein language models have been shown
to model the evolutionary trajectory of proteins and mature antibodies without conditioning on the
antigen (Hie et al., 2022b; 2023). In this work, we train a protein language model on human antibody
data and use it to suggest humanizing mutations to a starter antibody sequence, motivated by the fact
that such language models effectively model the human antibody repertoire.

Classical Humanization. Early work to reduce the immune risk of an antibody involved com-
bining a non-human antibody’s variable region with a fully human antibody’s constant region, in a
process known as grafting. In an effort to increase the human content of the antibody even more,
many classical humanization methods preserve only the CDRs of the non-human molecule, since
these regions are important in antigen binding. In such an approach, a scientist will take antibody
sequences found in the human genome, known as germline antibodies, and graft the non-human
CDRs onto the human framework. These methods are manual, require a lot of time, and often put
other features of the antibody at risk (Chirino et al., 2004; Harding et al., 2010). Further, often only
a single humanized candidate is produced for a single input antibody sequence.

Machine Learning-based Humanization. As antibody datasets grew in size and methods im-
proved, humanization has become an important machine learning task. Marks et al. (2021) train
random forest models to classify antibodies as human or nonhuman based on their V gene and
uses those models to greedily humanize an antibody using framework mutations. Sapiens trained
a masked language model (MLM) on human antibody data, and then used this to suggest human-
ized sequences by taking the most probable amino acid at each location as determined by the model
(Prihoda et al., 2022). PLAN uses a protein language model to embed antibody k-mers, takes the
closest k-Nearest-Neighbors, and finally votes on mutations of the initial k-mer using the retrieved
k-mers (Zou et al., 2023). Most recently, AbNatiV trains VQ-VAEs on human and camelid antibody
data (Ramon et al., 2023; Oord et al., 2017). It then chooses liable positions and suggests muta-
tions at those locations using observed frequency seen at the residues in existing human or camelid
samples, while retaining only those that satisfy humanness or camelid-ness criterion. Compared to
these methods, our sampling-based humanization approach: (1) generates many more humanized
candidates for a starter antibody sequence; and (2) generates highly human candidates that are also
enriched for desirable therapeutic properties.

Sampling from Language Models. Protein language models can provide transition probabilities
from one sequence to the next, framing the problem as a Markov random field. If the mutational
space has stationary distribution, the problem opens up to Markov Chain Monte Carlo sampling
algorithms like Gibbs, Metropolis-Hastings, or the Metropolis-adjusted Langevin algorithm Geman
& Geman (1984); Metropolis et al. (1953); Hastings (1970); Grenander & Miller (1994). Notably,
Wang & Cho (2019) treated the English MLM Bert as a Markov Random Field to generate text using
Gibbs sampling.

When sampling mutations, designers often want multiple different factors to influence sampling.
The aforementioned methods only consider a single unsupervised oracle. To overcome this in En-
glish language modeling, Plug and Play Language Models (PPLMs) modified the sampling dis-
tribution of a model by performing gradient ascent on the final representation of a token using a
supervised classifier Dathathri et al. (2019). NOS from Gruver et al. (2023) extended PPLM to dif-
fusion models using both the gradient of supervised classifier and a KL-divergence penalty between
the original sequence and the current proposal.
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The PPLM line of solutions necessitate a supervised oracle that shares the latent space of the lan-
guage model of interest, an often untrue assumption in practice and in the context of our exper-
iments. Plug and Play Directed Evolution proposed a general solution to mirror PPLMs, while
not requiring gradients Emami et al. (2023). The work proposed a Metropolis Hastings algorithm
that uses the gradients of the experts to arrive at proposal distributions. With unsupervised fis
and supervised gis as experts, they viewed log odds of the distribution as π(x) = log p(x) =∑

i fi(x)+λ
∑

j gj(x)− logZ, Z being a normalizing constant. They then take the gradients w.r.t.
x to create a forward proposal distribution. After proposing n mutations to x(0) making it x(n) the
probabilities of mutating from x(n) to x(0) are calculated. A Metropolis-Hastings criteria accepts the
sample with probability equal to the product of exp(π(x(n))−π(x(0))) and the ratio of the product of
forward chain probabilities and reverse chain probabilities. As another multi-objective sampler, Hie
et al. (2022a) proposed a programming language for proteins by creating sums of energy functions
from different oracles then sampling using an algorithm with qualities of both Metropolis-Hastings
and Simulated Annealing.
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B ADDITIONAL METHODS DETAILS

Algorithm descriptions. Algorithms 1, 2, and 3 present Unguided Unmasked Sampling, Un-
guided Gibbs-like Sampling and Unguided Autoregressive Denoising Sampling respectively.

Algorithm 1 Unguided Humanization via Unmasked Sampling

1: Inputs: starting antibody x, mutation indices I, sampling temperature τ , and an MLM m.
2: Output: a final humanized sequence.
3:
4: Initialize x(0) = x and shuffle I.
5: for j in range(len(I)) do
6: Compute Z = m(x(j))
7: Extract row I[j] from Z, obtaining log probabilities zI[j].
8: Sample r′ ∼ softmax(zI[j]/τ)
9: Set xI[j] = r′

10: Set x(j+1) = x(j)

11: end for
12: Return: x(len(I))

Algorithm 2 Unguided Humanization via Gibbs Sampling

1: Inputs: starting antibody x, mutation indices I, sampling temperature τ , and an MLM m.
2: Output: a final humanized sequence.
3: Initialize x(0) = x and shuffle I.
4: for j in range(len(I)) do
5: Set xI[j] = <MASK>

6: Compute Z = m(x(j))
7: Extract row I[j] from Z, obtaining log probabilities zI[j].
8: Sample r′ ∼ softmax(zI[j]/τ)
9: Set xI[j] = r′

10: Set x(j+1) = x(j)

11: end for
12: Return: x(len(I))

Algorithm 3 Unguided Humanization via Autoregressive Denoising Sampling

1: Inputs: starting antibody x, mutation indices I, sampling temperature τ , and an MLM m.
2: Output: a final humanized sequence.
3:
4: for i in I do
5: Set xi = <MASK>
6: end for
7: Initialize x(0) = x and shuffle I.
8: for j in range(len(I)) do
9: Compute Z = m(x(j))

10: Extract row I[j] from Z, obtaining log probabilities zI[j].
11: Sample r′ ∼ softmax(zI[j]/τ)
12: Set xI[j] = r′

13: Set x(j+1) = x(j)

14: end for
15: Return: x(len(I))
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C ADDITIONAL EXPERIMENTAL DETAILS

C.1 DATASET DETAILS

Open Antibody Space (OAS). To train masked language models (MLMs), we use approximately
4 million total unpaired heavy and light chain sequences from the Open Antibody Space (Kovaltsuk
et al., 2018) (OAS), a large, unlabelled dataset of antibody sequences. This follows several earlier
works (Ruffolo et al., 2021; Prihoda et al., 2022). We extracted human studies from OAS up to 2019,
and derived a training set of 2 million heavy and 2 million light chain antibody sequences, randomly
sampling studies until the desired training set size was obtained.

Oracle training datasets. The affinity and thermostability oracles were pre-trained on Next-
Generation Sequencing (NGS) data from phage display selections containing 1M and 1.9M se-
quences respectively. Round-over-round enrichments as log-transformed reads-per-million (RPM)
ratios were used as regression targets. The affinity models were fine-tuned to 6k BLI (Octet) KD

measurements. The thermostability models were fine-tuned to 7k nanoDSF (Uncle) measurements
of both Tm and Tagg as a multi-objective regression task. Fine-tuning data was derived from anti-
bodies produced using Cell-Free Protein Synthesis (CFPS).

C.2 MODEL AND TRAINING DETAILS

Masked language model. We train a masked language model (MLM) on the OAS subset de-
scribed above. Our MLM is an 8 layer transformer encoder with 8 attention heads, an embedding
dimension of 512, and a feedforward dimension of 2048. It has approximately 25 million trainable
parameters in total. This model is trained using a masked language modelling objective, following
a similar procedure to Sapiens (Prihoda et al., 2022) and the original BERT model (Devlin et al.,
2018). During training, we use the same masking configuration as BERT with 15% of the input
amino acid tokens being corrupted overall. Of these, 80% become <MASK>, 10% are randomly
corrupted to other residues, and 10% remain the same. We use train this model for 100 epochs using
a cross entropy loss with label smoothing of 0.1 and the AdamW optimizer with a learning rate of
3e-4 and weight decay of 0.01. We use a cosine decay learning rate scheduler with linear warmup
for 1000 steps.

Oracle models. We train two oracle model ensembles. The first predicts an input antibody’s bind-
ing affinity to a target antigen, KD. The second predicts an input antibody’s melting and aggregation
temperature Tm and Tagg , which is a proxy for the molecule’s thermostability (to be developable
an antibody must have high thermostability). Note that in the experiments shown here only the Tm

predictions were used. Each ensemble consists of 10 models that are trained on different subsets of
the input data. At inference time, we obtain a single point prediction for an input antibody by taking
the minimum prediction over the antibody (representing a lower bound on the property of interest).
Each model in the ensemble is a 1D CNN with a CARP/ByteNet architecture (Yang et al., 2022),
modified for regression by removing causal masking and adding a linear projection layer on the
output. The affinity and thermostability models had 48 and 64 residual ByteNet blocks respectively
and a model dimension of 64, giving a total of 4.1M and 5.5M parameters.

C.3 HUMANNESS METRICS

OASis Percentile. The central goal of our work is to increase the ‘humanness’ of antibodies,
thereby reducing the immunogenicity risk. As current in vitro immunogenicity assays are minimall
predictive of immunogenicity in human patients, prior work has developed various surrogates to
predict immunogenicity, ranging from metrics such as the OASis percentile (Prihoda et al., 2022),
to models of the underlying biology to predict anti-drug antibody (ADA) response (De Groot &
Moise, 2007). We adopt the OASis Percentile from Prihoda et al. (2022) since it is is well correlated
with ADA response on clinical antibody data and has the best AUROC on the human-non human
discriminative task amongst open-source humanness metrics. This score is computed by calculating
the number of overlapping 9-mer amino acid sequences within an antibody as compared to human
9-mers within the OAS database (Kovaltsuk et al., 2018) at different prevalence levels. This number
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Figure 5: Log-likelihood under the MLM is correlated with the OASis percentile score.

is normalized and then assigned a percentile based on a set of 544 therapeutic antibodies from the
IMGT/mAb-DB database (Poiron et al.).

Masked Language Model Log Likelihood. The OASis percentile score is a discrete quantity and
is only indirectly related to the likelihood of a sequence under an OAS language model. Therefore
when combining MLMs with other oracles we use the log likelihood of a sequence under our OAS-
trained MLM as a measure of that model’s contribution to the sampling, as well as a proxy for the
humanness of a given antibody. To check that this is a suitable approximation, we compute the
OASis score and MLM log likelihood for 500 test sequences and compare them in Figure 5. We see
a correlation between the two metrics.

C.4 ADDITIONAL DETAILS ON UNGUIDED SAMPLING EXPERIMENTS

C.4.1 EXPERIMENTAL SETUP

Data. For the in silico evaluation the starter murine and humanized antibodies are sampled from a
set of existing clinical antibodies taken from Prihoda et al. (2022). We randomly sample 10 murine
starters as a simple test case, and 30 humanized starters as a challenging test case.

For the lab validation, we synthesized the 30 most human random masking argmax framework-
region-only humanized versions of a murine starter sequence. Because we are able to validate
binding in high-throughput, we also synthesized 230 iterative random masking argmax humanized
sequences where we allowed up to 2 mutations in CDRs in addition to framework humanization.
HumAb(Marks et al., 2021) and manually humanized forms of the same starter sequence were also
included, although the former failed at the synthesis step. Affinities of all synthesizable variants
were measured via BLI. This demonstrates that we are able to produce many variants with high
humanness, and which are also synthesizable and bind the target (albeit with variable affinity).

Sample generation hyperparameters. We set the softmax temperature for the MLM to be equal
to 1 for all sampling methods. We set all non-CDR locations in the input to be mutable indices (that
is, all framework region residues) in order to obtain the most diversity possible, without mutating
regions of the sequence that might affect binding.

C.4.2 ADDITIONAL RESULTS

In the main text, we showed that all methods except Sapiens generated large numbers of unique
samples with increased humanness from the highly non-human murine starter antibodies. With
the partly-humanized starter antibodies, the sampling methods generated many more highly human
samples.

Figure 6 additionally presents the raw number of unique samples generated by the different methods
for murine starters and humanized starters, without filtering for increased humanness. We see that
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(a) Murine Starter (b) Human Starter

Figure 6: Sampling-based approaches generate many unique humanized candidates for both Murine
and Humanized starter antibodies.

the sampling based techniques produce far more unique sequences overall. We observed that for
the partly-humanized starters, a large number of generated samples from our the methods have
humanness equal to that of the starter – this is perhaps expected, since the starter sequences have
already passed through a humanization process, and it is difficult to humanize them further.

C.5 ADDITIONAL DETAILS ON GUIDED SAMPLING EXPERIMENTS

C.5.1 EXPERIMENTAL SETUP

Starter antibody. We use an already-optimized nanobody (VHH) sequence from an ongoing ther-
apeutic optimization program as the starter sequence. This represents a typical real use-case for
humanization, when an antibody sequence with favourable therapeutic properties must undergo a
humanization step to reduce the immunogenicity risk.

Sample generation hyperparameters. We set temperature hyperparameters based on visual in-
spection of the distribution of predicted affinity and log likelihood of samples. When sampling
from the MLM with no guidance, we use a temperature of 0.6. When sampling from oracle models
(affinity, thermostability, structure) without the MLM, we use a temperature of 0.2. When sampling
with guidance (MLM and one or more oracles) we use an MLM temperature of 1.2 and an oracle
temperature of 0.4.

In these experiments, we choose at random at most 6 locations in the sequence as mutable, with
maximally 2 of these being in the CDRs. This allows us to generate a diverse set of samples while
also maintaining minimal changes in the CDRs to prevent changes that might affect properties of
therapeutic importance such as antigen binding.

For each of the visualizations, we sample 500 unique antibodies from each method.

Cached oracle approximation. At every mutable location, our algorithm constructs the product
of experts (PoE) sampling distribution by evaluating the oracle for every possible point mutation (20
total) at that location, keeping the rest of the sequence fixed. This evaluation can be computationally
intensive, especially with an ensemble of large oracle models.

As an approximation, following Emami et al. (2023), before running the sampling algorithm, we
evaluate the oracle for all possible single mutations of the starter antibody at every location and
store this matrix (for a length 100 antibody, this amounts to 2000 oracle evaluations). We then use
this pre-computed matrix to obtain the oracle’s scores for the different mutations and compute the
PoE distribution in equation 2 at each mutable location. This approximation is exact for mutations
with hamming distance 1 (i.e., single point mutations) from the starting sequence.
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Figure 7: Using Local PoE results in a similar disribution of generated samples to using Non-Local PoE.

Figure 8: Guided sampling with a thermostability oracle generates sequences enriched for high melting
point.

Since we consider only 6 total mutations from the starter, we find that this approximation is effective
in practice. Figure 7 shows that the distribution of samples with and without this approximation for
guided sampling with an affinity oracle, showing that the two distributions are similar.

C.5.2 ADDITIONAL RESULTS

Guidance with Thermostability Oracle. In the main paper, we showed how guided sampling
with an affinity oracle generates antibodies enriched for high MLM log likelihood (a proxy for
humanness) and high oracle-predicted binding affinity. Figure 8 presents guided sampling with a
thermostability oracle, showing we obtain sequences with high MLM likelihood and high oracle-
predicted melting temperature, demonstrating again that our algorithm effectively samples se-
quences enriched for properties of interest.

Guidance with Structure Prediction Oracle. As discussed in the main text, there may be situ-
ations where attribute prediction oracles are not available for guided sampling. As an example –
early in an antibody optimization campaign, there may not be sufficiently large datasets of antibody
sequences and lab-measured attributes to train such an oracle model. One option in this case is to
guide the sampling using an off-the-shelf antibody structure predictor, such as such as IgFold (Ruf-
folo & Gray, 2022) – this serves as a proxy for similarity to the starter sequence. We now describe
this approach.

Given a candidate antibody x, we define:

S(x) =

 x0i x0j x0k
...

...
...

x(L−1)i
x(L−1)j

x(L−1)k

 ∈ RL×3

to be the antibody’s predicted backbone structure. Each row of this matrix represents the 3D coor-
dinates of each alpha carbon atom for each amino acid in the sequence after rigid alignment to the
corresponding alpha carbons of the starter antibody x(0).
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Figure 9: Guided sampling with a structural score function results in fewer samples that have poor binding to
a target antigen when compared to sampling without guidance (only using the MLM).

We define the structural score function fs between the candidate and the starter antibody as follows:

fs(x,x
(0)) = − 1

9L2
||S(x)− S(x(0))||Fr,

which is the negative of the Froebenius norm of the difference between the two structures, normal-
ized by dimensionality. Intuitively, under this definition, a score of 0 represents the highest similarity
to the starter antibody, and a highly negative score represents large structural change from the starter.

We use this score function to guide sampling, which selects for samples that are structurally close
to the starter antibody. We then evaluate the predicted affinity of the sampled sequences using our
affinity oracle. These results are visualized in Figure 9. We observe that incorporating structure
guidance results in fewer samples with low predicted binding affinity, suggesting that this score
function can help reduce the number of samples obtained that may bind very poorly to the target
antigen.

C.6 ADDITIONAL DETAILS ON GUIDED SAMPLING LAB VALIDATION

C.6.1 EXPERIMENTAL SETUP

Data. We use the same starter antibody as in the previous section.

Sample generation details. We use the same sampling hyperparameters and settings as in the
previous section.

Humanizing mutations were primarily limited to the framework regions, with only up to 2 humaniz-
ing mutations allowed within CDRs (except for Sapiens humanization where CDRs were completely
excluded). CDRs were defined as the union of the IMGT, Kabat and Chothia definitions. Sequences
were filtered to exclude DDD isomerization and glycosylation motifs, as well as any non-canonical
Cysteines.

Wet-lab validation details. VHHs were synthesized from the humanized sequences via CFPS.
Affinities of the variants which were synthesizable in sufficient quantities were measured via BLI
(Octet).
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