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Abstract

Current Federated Learning (FL) methods often struggle with high statistical het-
erogeneity across clients’ data, resulting in client drift due to biased local solutions.
This issue is particularly pronounced in the final classification layer, negatively
impacting convergence speed and accuracy throughout model aggregation. To
overcome these challenges, we introduce Federated Recursive Ridge Regression
(FED3R). Our method replaces the softmax classifier with a ridge regression-based
one computed in a closed form, ensuring robustness to statistical heterogeneity
and drastically reducing convergence time and communication costs. When the
feature extractor is fixed, the incremental formulation of FED3R is equivalent to the
exact centralized solution. Thus, Fed3R enables higher-capacity pre-trained feature
extractors with better predictive performance, incompatible with previous FL tech-
niques, because no backpropagation is required through the feature extractor, and
only a few rounds are needed to converge. We propose FED3R in three variants,
with FED3R-RF significantly enhancing performance to levels akin to centralized
training while remaining competitive regarding the total communication costs.

1 Introduction

Federated Learning (FL) offers a practical framework to train machine learning models collaboratively
across clients while ensuring that data never leaves the devices, hence mitigating potential privacy
risks. In its simplest version, FedAvg [1], federated training involves multiple communication rounds
between clients and server. Each client optimizes their local models independently on their private
data, sends the parameters to a central server that aggregates them, and transmits the updated model
to the next clients. While appealing, limiting loss minimization to local datasets presents several
challenges. In real-world scenarios, the number of clients can reach billions [2], and data are collected
based on user preferences, availability, geographical location [3, 4, 5, 6], or personal habits [7, 8].
This leads to data distributions across clients with inherent statistical heterogeneity in the form of
quantity skewness [9, 10], label skewness [11, 12, 13], or domain shift [5, 4].

As a result, training models that generalize well across the global underlying data distribution pose a
significant challenge. In particular, convergence speed is hampered due to clients’ sparse sampling
and partial participation [14, 15]. Furthermore, biased updates from individual clients can cause the
model to deviate from its global convergence points [16, 17, 18].
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Most of the approaches addressing these issues focus on client-side training by regularizing the local
objective to reduce client drift [17, 16, 18, 19] or leveraging momentum to incorporate knowledge
from previous updates and align the local optimization to the global direction [15, 20, 21, 22].

The authors of [23] show that deeper layers in Neural Networks are more susceptible to bias toward
the individual client data distribution, while initial layers maintain better consistency. Similarly to
Continual Learning [24, 25], this phenomenon occurs due to the data distribution being non-i.i.d. and
the nature of the softmax-based classifier which, once updated, is prone to forgetting past experience
[26]. Indeed, local optimization leads to biased solutions towards local data, and users may not be
revisited during training [27, 12]. See Appendix A for more related works.

Contributions. Following a recent trend in Federated and Continual Learning [28, 29, 30] leverag-
ing pre-trained representations, we propose Federated Recursive Ridge Regression (FED3R). FED3R
employs a Ridge Regression (RR) classifier [31] in federated settings to tackle the issues of statistical
heterogeneity. We show how the exact centralized closed-form solution of the RR problem can be
computed collaboratively by the clients by repurposing the recursive RR formulation to the FL setting
to design a classifier immune to client drift, catastrophic forgetting, and statistical heterogeneity.
Indeed, by fixing the representation, the global solution can be computed incrementally without
gradient-based updates, resulting in an algorithm invariant to the data split across clients and the
order in which they are sampled during training. To address the distribution shift of the target task
from the pre-trained representation, we also introduce FED3R with Fine-Tuning (FED3R-FT), which
can update the feature extractor while efficiently computing the RR classifier. In addition, we propose
a kernelized version of FED3R based on Random Features (RF) (FED3R-RF) that allows trading off
computational and communication costs with improved predictive performance. Nevertheless, these
costs are still competitive with other methods specifically developed for statistical heterogeneity as
the number of rounds for convergence is significantly reduced.

We empirically evaluate the effectiveness of our proposed algorithms on the Landmarks-Users-160K
dataset [3], a realistic FL scenario for visual classification with thousands of clients and pronounced
statistical heterogeneity converging up to 44× and 18× times faster than FedAvg and Scaffold [16].

2 Background

In this section, we provide a concise overview of the Federated Learning framework and the funda-
mental concepts of RR, before formally describing our algorithm.

2.1 FL problem formulation

Let K be the set of all the clients involved in the training forming the federation of cardinality
|K| = K, and let S be the server that orchestrates the training procedure. Each client k ∈ K has
access to a private local datasetDk of size nk = |Dk|. The server and other clients do not have access
to individual client data of the clients. Each local dataset Dk is composed of nk pairs (x, y) ∼ Pk,
where x ∈ X , y ∈ Y , X and Y are the input and output space respectively, and Pk is the joint
distribution associated with the client k. In the case of the RGB image class, X = R3×W×H and
Y = {0, 1}C , where C is a fixed number of classes.

Therefore, the global federated objective is given by θ∗ = argminθ
∑

k∈K Lk(M(θ);Dk), where
Lk =

∑
(x,y)∈Dk

L(M(x; θ), y) is the local empirical risk computed according to a loss function
L (e.g., cross-entropy) associated to the client k andM is a model parameterized by θ. At each
round t, a subset of selected clients K′ ⊆ K train their local models on private datasets Dk starting
from the same θt−1 initialization. Then, the locally optimized model parameters are shared with the
server S , which aggregates them according to the specific FL algorithm. For instance, the FedAvg [1]
aggregation rule is a weighted average of clients’ models θt =

∑
k∈K′

nk

n θtk, where n =
∑

k∈K nk.
The server broadcasts the aggregated model θt to the new active clients and the process is repeated
for several rounds until convergence.
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2.2 Ridge Regression (RR)

Consider the Ridge Regression problem (or Tikhonov Regularized Least Squares problem) [32]
argminf∈F E(x,y)∼PX ,Y

[
(f(x)− y)2 + λ ∥f(x)∥22

]
, where F is the set of all the possible hypothe-

ses, PX ,Y is the joint distribution of the input-output pairs and λ > 0.

If we restrict the hypothesis f to all the possible linear hyperplanes f(x) = xW , where W ∈ Rd×C ,
we can reformulate the problem as follows:

argmin
W∈Rd×C

∑
(x,y)∈D

∥Y −XW∥22 + λ ∥W∥22 , (1)

where X ∈ Rn×d and Y ∈ Rn×C are the matrices of stacked input samples x and one-hot encoded
ground-truth outputs y respectively, where n is the number of samples in the dataset D such that
(x, y) ∼ PX ,Y ∀(x, y) ∈ D and d is the dimensionality of the input features. A closed-form optimal
solution W ∗ to 1 exists, and is the solution of the following linear system:

(A+ λId)W = bΓα, (2)

where A = X⊤X ∈ Rd×d, b = X⊤Y ∈ Rd×C , Id is the identity matrix of shape d × d, and
Γ ∈ RC×C is a rebalancing diagonal matrix to handle class unbalanced distributions [33], whose
entries correspond to the inverse frequencies of the classes with respect to n, and α > 0 is a label
recording hyper-parameter. Additional details on the rebalancing matrix Γ are in Appendix B.

2.3 Recursive Ridge Regression Formulation

If a new labeled sample becomes available, the RR statistics can be efficiently and exactly updated
without requiring costly re-training from scratch on the entire dataset [34, 35, 36]:

An+1 = An + xn+1x
⊤
n+1; bn+1 = bn + xn+1e

⊤
yn+1

, (3)

where (xn+1, yn+1) is the new available pair and eyn+1
∈ RC is the one-hot encoding for class yn+1.

Now, we can generalize Eq. 3 to the case where a set Dm of m new pairs is observed:

An+m = An +
∑

(x,y)∈Dm

xx⊤; bn+m = bn +
∑

(x,y)∈Dm

xe⊤y (4)

and obtain the final RR classifier by substituting An+m and bn+m in Equation 2.

3 Methods

Drawing from the previous section, we can introduce the FED3R algorithm by repurposing the
recursive RR formula to the FL setting where each client, once sampled, introduces a new set Dk

consisting of nk pairs (x, y).

We also leverage a pre-trained representation as the input space for the RR algorithm rather than
the original input space. Subsequently, we introduce the FED3R-FT variant, where we allow for
fine-tuning the feature extractor across rounds using a gradient-based FL method. Finally, we present
FED3R-RF, a kernelized version that uses random features [37] to approximate the Kernel Ridge
Regression (KRR) solution.

3.1 Federated Recursive Ridge Regression (FED3R)
Algorithm 1: FED3R
Require:
Server S, clients k ∈ K, local datasetsDk

Fixed pre-trained feature extractor φ : X → Rd

Hyper-parameters λ > 0, α > 0
for each client k in any order do

Zk = φ(Xk), Ak = Z⊤
k Zk , bk = Z⊤

k Yk

gk = Y ⊤
k 1, 1 ∈ Rnk

S collects all the clients statistics and computes:
A =

∑
k∈K Ak , b =

∑
k∈K bk

g =
∑

k∈K gk , Γ = diag
(
C

∥g∥1
g

)
Solve Eq. 2 to get W∗

Let φ : X → Z be the pre-trained feature extractor of
a modelM, mapping the input space X onto the latent
feature space Z ⊆ Rd, and ϕ : Z → Y be the classifier,
mapping the latent feature space to the output space Y .
Given a client k and all the pairs (xi, yi) ∈ Dk, we define
Xk as the tensor of all the nk stacked input samples xi,
and Yk ∈ {0, 1}nk×C as the matrix of corresponding
one-hot encoded vectors for all the yi.
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As soon as each client k is idle and the server is ready to receive statistics, the clients activate. At this
point, k must have access to the pre-trained feature extractor parameters θφ. There are two possible
equivalent scenarios: either the clients have been deployed with these parameters before, or the server
communicates them promptly as needed. Once active, the client k extracts the local feature maps
Zk = φ(Xk)

1 ∈ Rnk×d, where nk = |Dk|, and communicates Ak = Z⊤k Zk, bk = Z⊤k Yk and the
local number of samples per class gk to the server. After the server has received these statistics from
all the clients, it calculates the RR matrices A =

∑
k∈KAk and b =

∑
k∈K bk, and solves the linear

system of Eq. 2.

Invariance to clients split. Note that, when all the clients have been sampled, this solution is
equivalent to the corresponding optimal RR solution of the centralized scenario whereD =

⋃
k∈KDk.

In particular, the RR solution is invariant to the clients split of the centralized dataset, thanks to the
permutation invariance of the summation operator [29]:

A =
∑

(x,y)∈D

φ(x)φ(x)⊤ =
∑
k∈K

∑
(x,y)∈Dk

φ(x)φ(x)⊤ (5)

b =
∑

(x,y)∈D

φ(x)e⊤y =
∑
k∈K

∑
(x,y)∈Dk

φ(x)e⊤y (6)

Finally, note that each client has to communicate its updates only once, compared to the classical
gradient-based FL algorithms that require multiple training rounds.

See Appendix B for a detailed explanation of why we construct the rebalancing matrix Γ as described
in Algorithm 1, and Appendix D for the privacy implications of FED3R.

3.2 Federated Recursive Ridge Regression with Fine-Tuning (FED3R-FT)

As pre-trained feature extractors may not provide discriminative enough feature maps if the target
task is too dissimilar or drifts from the pre-training one, we propose to fine-tune the feature extractor
through a gradient-based FL algorithm, guiding the training via a distinct softmax classifier ϕ(x; θϕ),
while computing the RR statistics. However, the RR statistics need to be adjusted to counteract the
features drift over time.

As in standard FL, a group of clients K′ is sampled with replacement during each round. Therefore,
each client k is potentially sampled again at different rounds, communicating statistics computed
using different versions of the feature extractor. To update the global RR statistics, we make the
reasonable assumption that the representation smoothly varies during training and let each client
k have an internal state (Ãold

k , b̃old
k , sk), to store statistics extracted at previous rounds and a flag

sk ∈ {0, 1} indicating if the class counting vector gk, needed to compute the Γ matrix, has already
been communicated to the server once.

In addition, the server S has a global state (At, bt, gt), needed to incrementally aggregate the statistics
received from the clients after each round t.

FED3R-FT Algorithm. During round t, each sampled client computes Zt
k using the feature

extractor φ(x; θt−1φ ) before computing the updated feature extractor parameters θtφ,k. Then, it
employs Zt

k to compute the new statistics Ãnew
k = (Zt

k)
⊤Zt

k and b̃new
k = (Zt

k)
⊤Yk, and communicates

Ãt
k = Ãnew

k − Ãold
k , b̃tk = b̃new

k − b̃old
k and gk = (1− sk)Y

⊤
k 1. Thereafter, the sampled clients and the

server update their internal states:

Client k: (Ãold
k , b̃old

k , sk)← (Ãnew
k , b̃new

k , 1), (7)

Server S: (At, bt, gt)←

(
At−1 +

∑
k∈K′

Ãt
k, b

t−1 +
∑
k∈K′

b̃tk, g
t−1 +

∑
k∈K′

gk

)
. (8)

Finally, the server may update the rebalancing matrix Γ as illustrated in Section 3.1, and solve Eq. 2
to obtain the RR classifier.

1With a slight abuse of notation, here we mean the matrix of all the stacked feature maps φ(x) computed
from each input sample x : (x, y) ∈ Dk.
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Figure 1: Rounds required to reach the target accuracy for
the experiments with fixed feature extractor.
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Figure 2: Comparison with FedAvg and
Scaffold, with fixed feature extractor.

FED3R-FT lets the latent feature space change between classifier updates. Therefore, the solution
provided by Eq. 2 is sub-optimal. However, as we show in Section 4, this issue is negligible compared
to the benefits of updating the classifier based on more expressive features. The full algorithm and
additional details on FED3R-FT can be found in Appendix C.

3.3 FED3R with Random Features approximation for Kernel RR (FED3R-RF)

Even if the feature extractor is trained for the target task as in FED3R-FT, it may still not be expressive
enough to linearly separate the feature space. To solve this issue, we propose to employ Kernel Ridge
Regression (KRR), a nonparametric learning algorithm using kernel functions, to implicitly handle
non-linearity [38, 39]. However, the kernel matrix’s space complexity is O(n2), in contrast to the
covariance matrix A with a space complexity of O(d2). For sizable datasets, computing the exact
KRR solution becomes impractical. Data-dependent sub-sampling methods [40, 41, 42] proved to be
successful in scaling up kernel machines. However, adapting them to FL is non-trivial. In this work
we focus on a data-independent method, Random Features KRR [37]. Its properties are particularly
suitable for the FL setting, rendering KRR suitable for large datasets and enabling the use of the same
linear RR formulation from Section 2.2.

Therefore, we propose to use a random features approximation of the RBF Kernel k(z, ζ) =

e−∥z−ζ∥2/2σ2
, z, ζ ∈ Rd both with FED3R and FED3R-FT. The algorithms are equivalent, with the

sole exception that we now map the features z, ζ of the latent space Z to the latent space Z ′ ⊆ RD

using random features, where D is a hyper-parameter controlling the number of random features for
the approximation. Consequently, all the dimensionalities of the statistics that depended on d here
depend on D > d.

4 Experiments

In the following, we compare the performance and communication costs between our algorithms and
FedAvg [1], Scaffold [16] and FedNCM [28]. If not specified differently, we train a MobileNetV2
[43] architecture. We use the Landmarks-Users-160K dataset [44] partitioned by [3] for FL in all
the experiments. For more details on the implementation, you can refer to Appendix E. Moreover,
Appendix F provides additional information on how the communication costs have been estimated.
Further experiments investigating the performances of the random features approximation and the
impact of the number of clients sampled per round are detailed in Appendix H and Appendix I.

Experiments with fixed feature extractor. In this section, we evaluate FED3R against the baselines
with a fixed feature extractor. Figure 1 shows how much FED3R and FED3R-RF are faster in reaching
the target accuracies compared to the other methods. However, in the long run, Scaffold can recover
and provide performance comparable with FED3R-RF D = 5k, as shown in Figure 2. The RR curve
represents the centralized method described in Section 2.2, which is the upper bound equivalent to the
case when all clients are sampled in each round. FED3R converges exactly to the RR performance
after a small number of rounds, as expected (see Appendix I). Furthermore, in Table 1, we compare
the communication costs required by the algorithms considering the same uniform client sampling
strategy for all the methods and the final accuracies they achieve at round 3000.

Given the non-linear separability of the feature space, we also employ FED3R-RF, which consistently
delivers excellent results, surpassing Scaffold and FedAvg in terms of accuracy by approximately
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Table 1: Communication costs and final performance for the experiments with fixed feature extractor.
Algorithm Downstr./k Upstream/k Round/k Downstream Upstream Round 30% acc 40% acc 50% acc Acc r=3k (%)
FedAvg 12.00 MB 12.00 MB 24.00 MB 120.00 MB 120.00 MB 240.00 MB 237.36 GB 542.40 GB - 40.79
Scaffold 24.00 MB 24.00 MB 48.00 MB 240.00 MB 240.00 MB 480.00 MB 228.48 GB 337.44 GB 970.56 GB 51.52
FED3R 0.00 B 16.95 MB 16.95 MB 0.00 B 169.45 MB 169.45 MB 5.42 GB 17.96 GB - 42.47
FED3R-RF 5k 0.00 B 140.57 MB 140.57 MB 0.00 B 1.41 GB 1.41 GB 37.95 GB 78.72 GB 560.87 GB 50.4
FED3R-RF 10k 0.00 B 481.13 MB 481.13 MB 0.00 B 4.81 GB 4.81 GB 129.90 GB 250.19 GB 553.30 GB 53.96
FedNCM 0.00 B 10.38 MB 10.38 MB 0.00 B 103.83 MB 103.83 MB 9.35 GB - - 35.93

2% and 13% while also demonstrating significantly faster convergence. In particular, FED3R-
RF D = 10k is 18× and 44× faster than Scaffold and FedAvg to reach 50% and 40% accuracy,
respectively. Although FED3R-RF incurs a higher communication cost per client, those are warranted
when evaluating them in terms of total communication required to reach a target accuracy. However,
when the communication costs per client are a constraint, we observe that FED3R still outperforms
FedNCM and FedAvg, the two least communication expensive methods together with FED3R, by
7% and 2% in terms of accuracy. Finally, it is worth noting that at least one method from the FED3R
family consistently outperforms all other approaches in terms of (less) communication costs and
higher accuracy.

Experiments with fine-tuned feature extractor. In this section, we evaluate the performance of
FED3R-FT when the feature extractor is fine-tuned using a standard gradient-based optimization
algorithm.

Table 2: Rounds to reach the target
accuracy with fine-tuned feature ex-
tractor and final performance.

Algorithm 40% acc 50% acc 60% acc Acc r=3k (%)
FedAvg 500 999 - 58.17
Scaffold 281 484 1038 62.32
FED3R-FT FedAvg 172 774 - 52.95
FED3R-FT Scaffold 168 547 - 54.02
FED3R-RF D = 5k FedAvg 95 321 - 58.60
FED3R-RF D = 5k Scaffold 98 256 1077 60.11
FED3R-RF D = 10k FedAvg 86 212 1077 61.61
FED3R-RF D = 10k Scaffold 88 178 659 62.69
FedNCM FedAvg 420 2038 - 50.70
FedNCM Scaffold 261 818 - 53.49

Here, we empirically show the advantages of introducing fea-
ture extractor fine-tuning. In this case, the communication costs
of FED3R-FT are added to the costs of the underlying method
for the fine-tuning (e.g. FedAvg or Scaffold). Results are shown
in Table 2. Similarly to Section 4, FED3R-FT and FED3R-RF
are significantly faster than all the other algorithms. Eventually,
Scaffold is the only one able to reach comparable accuracy to
FED3R-RF at convergence. Appendix G.1 provides further de-
tails on these experiments, including the communication costs
evaluation. Moreover, Appendix J also shows a possible technique to mitigate the effect of the feature
extractor shift when computing the RR statistics with FED3R-RF.

Table 3: Rounds to reach the target ac-
curacy and final performance with more
complex architectures.

Architecture Algorithm 60% acc 70% acc 80% acc Acc r=3k (%)

ViT [45]
FedAvg 314 539 2168 81.23
FED3R 29 122 - 72.11

FED3R-RF D = 10k 23 39 165 81.49

SWIN [46]
FedAvg 937 2439 - 71.03
FED3R 61 - - 65.35

FED3R-RF D = 10k 42 124 - 73.17

ConvNext [47]
FedAvg 1424 - - 66.92
FED3R 120 - - 62.69

FED3R-RF D = 10k 46 219 - 71.43

Enabling Foundation Models in FL. Gradient-based
FL algorithms require lightweight networks due to the
clients’ limited computational capabilities. However, we
can mitigate computational costs by maintaining the fea-
ture extractor parameters fixed, thus conducting only for-
ward passes. This approach enables the use of more com-
plex architectures with superior generalization capabili-
ties in the context of FL. We employ this strategy also
in FED3R. In Table 3, the number of rounds required to
achieve the target accuracy and the final performance are presented for different feature extractor
architectures. Once again, FED3R-FT and FED3R-RF demonstrate significantly faster convergence.
For comprehensive results and communication costs, please refer to Appendix G.2, highlighting how
our methods consistently yield substantial savings in total communication costs.

5 Conclusion

In this work, we propose FED3R, an FL algorithm based on Recursive Ridge Regression. The design
of FED3R is geared towards minimizing communication costs and accelerating convergence time
while adhering to the privacy constraints inherent in FL. We propose our method in three variants,
permitting feature extractor fine-tuning (FED3R-FT) and Kernel Ridge Regression (KRR) approx-
imation via random features (FED3R-RF). FED3R efficiency opens avenues for employing more
complex architectures in FL, achieving performance levels previously challenging with foundation
models and more powerful architectures. Future works may extend this work to incremental learning
or personalized learning scenarios within the FL framework.
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Appendix

A Additional detail on the Related Works

Classifier bias and destructive interference. In strong statistically heterogeneous scenarios, the
local updates of individual clients during any given training round may not be consistent. This is
because the landscapes of the local loss may vary significantly. As a consequence, client drift happens,
which negatively impacts convergence time [12]. The authors of [23] show that the bias of the clients
is more pronounced in deeper layers of a neural network, with the peak in the deepest layer i.e. the
classifier. Moreover, prior works observed that biased classifiers and misaligned features create a
vicious cycle [48, 49]. Finally, the classifier bias phenomenon causes destructive interference during
the aggregation phase at the end of each round, further slowing and affecting the training procedure.

Partial solutions in the literature mitigate the classifier bias problem by reducing the gap between the
global model and the local ones by modifying the loss function [50], or rethinking the statistical het-
erogeneity problem as a generalization problem as in the standard centralized setting [51]. Following
the latter direction, FedNCM [28] fits a classifier using Nearest Class Means (NCM). FedNCM is a
simple method that is not gradient-based in its first phase. However, contrary to FED3R, it requires
a gradient-based second phase, where they fine-tune the whole model starting from the powerful
classification head derived in the first phase using NCM.

Impact of pre-training. Communication is one of the fundamental bottlenecks of FL from both
timing and energy consumption perspectives [52]. Therefore, using a lightweight network is often
necessary when training from scratch. However, the possibility of using a pre-trained model to
fine-tune only deeper layers may allow the usage of some more complex architectures [53] because
of reduced computation and communication requirements since there is no need to propagate the
gradients through the fixed shallower layers and only the deeper layers need to be communicated
back and forth with the server. For instance, several prior works study how to fine-tune Vision
Transformers in FL [30, 53, 54, 55, 56], how to adapt Contrastive Language Image Pre-training
(CLIP [57]) to FL [58], and how to fine-tune using Neural-Tangent Kernels [59].

Ridge Regression in Distributed and Federated Learning. Regarding prior works on ridge
regression in FL settings, [60] finds an optimal Tikhonov Regularized Least Squares solution for a
federation of only two clients that in practice constitutes a cross-knowledge distillation framework,
and [61] and [62] apply RR to a Vertical FL scenario in which the feature space varies among the
clients but the sample space is the same. To the best of our knowledge, no prior works employ ridge
regression in the Horizontal cross-device FL scenario, where the feature space is shared among the
clients but the sample space varies. This is the first work to show the effectiveness and efficiency of
RR in real-world, horizontal, cross-device FL problems.

Other work generalizes Ridge Regression to the Distributed Learning setting [63, 64]. While similar
in spirit, Distributed Learning is fundamentally different from FL as privacy is not a concern and data
is i.i.d. among the clients.

B The rebalancing matrix Γ

In this work, we normalize the diagonal of the rebalancing matrix Γ, originally introduced by [33],
such that the sum of its diagonal entries is n. This choice is guided by the intuition that, without
regularization on Γ, in the scenario of uniform class frequencies, the regularization matrix Γ would
have 1/C as diagonal entries for each class. Consequently, the Γ matrix acts as a rescaling factor of
(1/C)α for the final optimal weights W ∗.

To compute the RR classifier with class rebalancing, we need the empirical frequency of each
class. Therefore, in FED3R (see Algorithm 1) each client has to communicate one additional vector
gk = Y ⊤k 1, 1 ∈ Rnk , with the server. Together with A and b, the server aggregates all the gk to

obtain the final vector g =
∑

k∈K gk, compute Γ = diag
(
C
∥g∥1
g

)
and, finally, solves Eq. 2.
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C Details on the FED3R-FT algorithm

The pseudo-code for the FED3R-FT algorithm is outlined in Algorithm 2. FED3R-FT can be viewed
as a more general version of FED3R, with three minor distinctions that we summarize below:

1. The UpdateRule function, nested in the ClientUpdate function, is redundant in FED3R since
FED3R does not need to update the classifier parameters ϕ.

2. The sampling strategy could be significantly simplified and optimized. Unlike FED3R-FT,
FED3R does not necessitate a strict division into rounds because the clients only need to be
sampled once.

3. In FED3R, both the clients and the server do not require internal states. In other words,
it suffices to 1) set Ãold

k = 0 and b̃old
k = 0, 2) communicate the gk statistics only once

concurrently with the sole occasion each client k is sampled, and that c) the server then
computes A and b only once all the clients have transmitted their statistics.

Algorithm 2: FED3R-FT
Require:
Server S, clients k ∈ K, local datasetsDk

ModelM : X → RC , feature extractor φ : X → Rd, classifier ϕ : Rd → RC :M
(
x; θ0

)
= ϕ

(
φ
(
x; θ0

φ

)
; θ0

ϕ

)
Number of rounds T , Number of local epochs E, Number of clients sampled per each round K ≤ |K|
Hyper-parameters λ > 0, α > 0
Initialize:
A0 = λId ∈ Rd×d, b0 = 0 ∈ Rd×C , g = 0 ∈ RC ,
Ãold

k = 0 ∈ Rd×d ∀k ∈ K, b̃old
k = 0 ∈ Rd×C ∀k ∈ K, s = 0 ∈ RC

Server
for each round t ∈ [T ] do

Randomly extract K clientsK′ ⊂ K
for k ∈ K′ in parallel do

θt
k , Ãt

k , b̃tk , gk = ClientUpdate
(
θt−1

)
θt = Aggregate

(
θt
1, θ

t
2, ..., θ

t
K

)
Ãt =

∑
k Ãt

k , b̃t =
∑

k b̃tk , g ← g +
∑

k gk // Aggregate the stats received from the clients
At = At−1 + Ãt, bt = bt−1 + b̃t // Update A and b
Only when needed for inference: Γt = GammaUpdate(C, g), W t = (At)−1bt

(
Γt

)α
Return W t

ClientUpdate
Extract Zk

// Get the delta statistics
Ãnew

k = (Zt
k)

⊤Zt
k Ãt

k = Ãnew
k − Ãold

k Ãold
k = Ãnew

k

b̃new
k = (Zt

k)
⊤Yk b̃tk = b̃new

k − b̃old
k b̃old

k = b̃new
k

gk = (1− sk)Y
⊤
k 1, 1 ∈ Rnk sk = 1 //Send the img/class stats ⇐⇒ first time, else send 0

θt
k = UpdateRule

(
M, θt−1, Xk, Yk

)
Return θt

k , Ãt
k , b̃tk , gk

GammaUpdate
f := C

∥g∥1
g // Some classes might not be seen yet. Thus, some ∞ values may appear

Substitute eventual∞ values in f with the max value of f among the values <∞
Return Γt = diag (f)

D Privacy of FED3R

In the context of the FED3R algorithm, clients have to transmit the Ak and bk statistics, along with
the vector gk that reflects the distribution of their labels. Some may express concerns about the
potential information leakage inherent in sharing this data, which extends beyond the disclosure
associated with merely sharing model weights or gradients. However, it is crucial to note that any
information the clients send to the server only needs to be aggregated. In other words, the server
does not necessitate accessing individual values but rather needs solely to use the aggregated results.
Therefore, privacy can be easily addressed by employing the Secure Aggregation protocol [65].

E Implementation details

As explained in Section 3, FED3R with fixed feature extractor requires a single communication
with each client, which can happen once they are ready. However, to ensure a fair comparison with
gradient-based FL algorithms which are sensitive to different client samplings, we orchestrate the
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Table E.1: Communication costs and latent feature space dimensionality of the architectures adopted
in this work.

Architecture Classifier Feature Extractor Model Feature space
Dimensionality

MobileNetV2 [43] 12.00 MB 26.60 MB 38.6 MB 1280
ViT [45] 9.68 MB 1.22 GB 1.22 GB 1024
SWIN [46] 14.40 MB 901.44 MB 915.84 MB 1536
ConvNext [47] 14.40 MB 904.80 MB 919.20 MB 1536

training in rounds as in a standard FL setting in all the experiments, even the ones with the fixed
feature extractor. However, in this case, the total FED3R communication costs are overestimated
because we account for unnecessary communication when the same clients are sampled again due to
clients sharing the same statistics. Despite this, the communication requirements are typically less
than or comparable to the other methods.

We run all the experiments using an NVIDIA A100-SXM4-40GB on the Landmarks-Users-160K
[44] dataset using the FL clients partition provided by [3]. The dataset has a total of 2028 classes
and 164172 images distributed among the 1262 clients. When not differently stated, we use a
MobileNetV2 [43] network. We run all the experiments for 3000 rounds, always sampling 10 clients
per round except when differently declared. When we need to train the whole model or the classifier
only, we use SGD as the optimizer, with a learning rate of 0.1 and a weight decay of 4 · 10−5, a
batch size of 50 and 5 local epochs. When we need to aggregate the model parameters’ updates of
the clients at the end of the round, we use the classic SGD server optimizer [66] with a learning rate
equal to 1.0 and no momentum. Regarding the FED3R hyper-parameters, we always set λ = 0.01
and α = 0.8 because we found that these values consistently provide the best results.

Moreover, we compare our methods with two gradient-based algorithms from the literature, namely
FedAvg [1] and Scaffold [16]. We did not include Mime and MimeLite [15] because they failed to
converge in the FED3R-FT setting. Furthermore, we compare our results with a modified version of
the only partially non-gradient-based FL method found in the literature, FedNCM [28]. In contrast
to FED3R, FedNCM involves two phases. The first phase constructs a classification head using
Nearest Class Means, while the second phase fine-tunes the entire model with a gradient-based
algorithm. In our implementation, we exclude the second stage to be fair with our single-stage
algorithm. Additionally, we allow the use of FedNCM even when the feature extractor is not fixed,
adopting the same strategy as FED3R-FT for the feature maps. Specifically, we consider only the
most recent ones, even if they belong to different latent spaces due to the feature extractor updates.

Furthermore, as in [28], we conduct a study on the communication costs required by the different
methods to determine the applicability of the algorithms in real-world situations. Table E.1 illustrates,
for all the adopted feature extractors, the basic costs (in bytes) of the complete models, feature
extractors, and classifiers, which need to be communicated multiple times and in various modes
concerning different methods. Moreover, the table shows also the latent space’s embedding dimension.

In the forthcoming sections, we present a comparative analysis involving FED3R-FT, FED3R-
RF with 5000 random features (FED3R-RF D=5k), and FED3R-RF with 10000 random features
(FED3R-RF D=10k), for all the experiments.

F Communication costs computation

The costs presented in Tables 1, G.1, and G.2 have been derived from the initial values in E.1. In all
experiments, like in [28], we assume that the model’s parameters precision is FP32. The columns
labeled Downstr./k and Upstream/k represent the aggregate downstream and upstream communication
requirements per client per round, respectively. These values depend on the specific characteristics
of the algorithm under consideration. Likewise, the columns labeled Downstream and Upstream
reflect the overall downstream and upstream communication needs for all clients sampled in a given
round. Consequently, the Round/k and Round columns denote the respective sums of downstream
and upstream costs. Let m, b and c be the size of the whole model, the feature extractor, and the
classifier, respectively. From these provided definitions, it is evident that m = b+ c.

Below we briefly summarize how the Downstr./k and Upstream/k costs have been calculated per each
algorithm, and eventual additional costs:
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Table F.1: Pre-training strategies, total prior costs when the feature extractor is fixed and total costs
for FED3R algorithm with optimal sampling strategy of 1262 clients of the Landmarks-Users-160K
dataset [3]. All pre-trained models except MobileNetV2 are sourced from [67].

Architecture Pre-training strategy Feature Extractor size Prior costs Algorithm Round/k Total cost

MobileNetV2 [43] ImageNet-1k 26.6 MB 33.57 GB
FED3R 16.95 MB 21.39 GB

FED3R-RF D = 5k 140.57 MB 177.40 GB
FED3R-RF D = 10k 481.13 MB 607.19 GB

ViT [45]
Pre-trained on LAION-2B

1.22 GB 1.54 TB
FED3R 12.51 MB 15.79 GB

using CLIP [57], fine-tuned on FED3R-RF D = 5k 140.57 MB 177.40 GB
ImageNet-12k and ImageNet-1k FED3R-RF D = 10k 481.13 MB 607.19 GB

SWIN [46] ImageNet-22k [68] 901.44 MB 1.14 TB
FED3R 21.91 MB 27.65 GB

FED3R-RF D = 5k 140.57 MB 177.40 GB
FED3R-RF D = 10k 481.13 MB 607.19 GB

ConvNext [47] ImageNet-22k [68] 919.20 MB 1.16 TB
FED3R 21.91 MB 27.65 GB

FED3R-RF D = 5k 140.57 MB 177.40 GB
FED3R-RF D = 10k 481.13 MB 607.19 GB

• FedAvg [1]. Each sampled client downloads and uploads the model only once: Downstr./k = m,
Upstream/k = m.

• Scaffold [16]. Each sampled client downloads and uploads both the model and its control variate:
Downstr./k = 2m, Upstream/k = 2m.

• FED3R, FED3R-RF (fixed feature extractor). Each client needs to receive the feature extractor
parameters only once. If we do not assume clients already have the feature extractor parameters
before the training begins (though this assumption is reasonable in scenarios where the server,
as a business, deploys its application and may have already incorporated these parameters in the
clients’ software), there is an additional communication cost of bK. Except that for these costs,
each sampled client does not need to download any information from the server, but it needs to
upload the local statistics Ak, bk, gk to the server: Downstr./k = 0, Upstream/k = d2 + dC + C. If
we are using FED3R-RF the upstream costs per client are Upstream/k = D2 +DC + C instead.

• FED3R-FT, FED3R-RF (fine-tuned feature extractor). In this case, it is necessary to combine
both the downstream and upstream costs with the corresponding costs of the gradient-based FL
algorithm used to update the model parameters. The sole FED3R-FT or FED3R-RF contribution
is equivalent to the previous case.

• FedNCM [28]. As already specified in Section E, in our experiments we considered only the
first stage of the algorithm, without the phase of the fine-tuning of the feature extractor. If the
feature extractor is fixed, there are no downstream costs, but each sampled client still needs to
communicate the class centroids upstream: Downstr./k = 0, Upstream/k = dC. Likewise FED3R,
the eventual prior costs are bK. In addition, if the feature extractor is not fixed, we have to sum the
costs of the underlying gradient-based algorithm.

The total communication costs to share the feature extractor parameters with all the clients, and the
maximum optimal costs for all the architectures to sample all the clients once using FED3R, are
shown in Table F.1.

G Additional details on the experiments presented in the main paper

In this section, we expound upon additional considerations and experiments that supplement those
presented in the main paper.

G.1 Experiments with fine-tuned feature extractor

This section provides further details regarding the experiments with the fine-tuned feature extractor
presented in Section 4.

Table G.1 shows the communication costs and the accuracy achieved at round 3000. It is interesting
to note that the total costs to converge to 50% accuracy are just slightly higher in this case than with
the fixed feature extractor (see Table 1), but fewer rounds are required.

Moreover, Figure G.1 displays how, for the same experiments, the gap between FedAvg and Scaffold
is much higher for the methods that employ the softmax classifier, while it is relatively small for
the FED3R methods, meaning that Scaffold improves the classifier more than the feature extractor.
Therefore, FED3R can also be used as a tool to discern the quality of the feature maps.
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Table G.1: Communication costs and final performance for the experiments with fine-tuned feature
extractor.

Algorithm Downstr./k Upstream/k Round/k Downstream Upstream Round 30% acc 40% acc 50% acc 60% acc Acc r=3k (%)
FedAvg 38.60 MB 38.60 MB 77.20 MB 386.00 MB 386.00 MB 772.00 MB 228.51 GB 386.00 GB 771.23 GB - 58.17
Scaffold 77.20 MB 77.20 MB 154.40 MB 772.00 MB 772.00 MB 1.54 GB 273.29 GB 433.86 GB 747.30 GB 1.60 TB 62.32
FED3R-FT FedAvg 38.60 MB 55.55 MB 94.15 MB 386.00 MB 555.45 MB 941.45 MB 67.78 GB 161.93 GB 728.68 GB - 52.95
FED3R-FT Scaffold 77.20 MB 94.15 MB 171.35 MB 772.00 MB 941.45 MB 1.71 GB 116.51 GB 287.86 GB 937.26 GB - 54.02
FED3R-RF 5k FedAvg 38.60 MB 179.17 MB 217.77 MB 386.00 MB 1.79 GB 2.18 GB 113.24 GB 206.88 GB 699.04 GB - 58.6
FED3R-RF 5k Scaffold 77.20 MB 217.77 MB 294.97 MB 772.00 MB 2.18 GB 2.95 GB 153.38 GB 289.07 GB 755.12 GB 3.18 TB 60.11
FED3R-RF 10k FedAvg 38.60 MB 519.73 MB 558.33 MB 386.00 MB 5.20 GB 5.58 GB 262.41 GB 480.16 GB 1.18 TB 6.01 TB 61.61
FED3R-RF 10k Scaffold 77.20 MB 558.33 MB 635.53 MB 772.00 MB 5.58 GB 6.36 GB 305.05 GB 559.26 GB 1.13 TB 4.19 TB 62.69
FedNCM FedAvg 38.60 MB 48.98 MB 87.58 MB 386.00 MB 489.83 MB 875.83 MB 131.38 GB 367.85 GB 1.78 TB - 50.7
FedNCM Scaffold 77.20 MB 87.58 MB 164.78 MB 772.00 MB 875.83 MB 1.65 GB 229.05 GB 430.08 GB 1.35 TB - 53.49
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Figure G.1: FED3R-FT comparison between FedAvg and Scaffold.

G.2 Experiments with more complex architectures

This section provides additional details regarding the experiments in the Enabling Foundation Models
in FL paragraph of Section 4.

Figure G.2 visually emphasizes the notable speed advantage of the FED3R methods compared to
other approaches. Furthermore, Table G.2 provides insight into the associated communication costs.
It is noteworthy that the FED3R methods provide always the best performance while needing lower
communication expenses up to the target of 70% accuracy. Additionally, utilizing feature extractors
with enhanced generalization capabilities enables savings in total communication to achieve the target
accuracy compared to the use of lightweight networks like MobileNetV2 [43].

H Centralized RR results using the random features

The outcomes of centralized experiments employing random features to approximate the RBF kernel
empirically show that augmenting the number of random features significantly enhances performance.
Specifically, Figure H.1 illustrates how, with the random features approximation, the performance
of RR calculated over the feature maps provided by the feature extractor across the entire dataset
eventually approaches the upper bound established by the exact KRR solution on a subset of the
dataset, where a maximum of 40 images per class is considered. It is noteworthy that the exact KRR
solution was not computed over the entire dataset due to computational constraints. Indeed, the
exact solution would require storing a kernel matrix of dimensionality n × n, where n = 164172
for Landmarks-Users-160K. Nevertheless, utilizing the whole dataset or increasing the number of
random features should theoretically improve results further. In addition, Figure H.1b empirically
shows that KRR can even yield superior performance compared to a softmax classifier at convergence.

I Analysis on the number of clients sampled per round

In this section, we investigate the impact of varying the number of clients κ = |K′| sampled per round
with uniform probability on FED3R-FT. We reintroduce the concept of rounds even for FED3R for a
fair comparison with round-scheduled methods as in all the other FED3R experiments presented in
this paper, despite more advanced sampling strategies to reduce costs further would be preferable
(see Appendix F).
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Figure G.2: Number of rounds required to reach the target accuracy for the complex feature extractors
and the methods of the experiments presented in the Enabling Foundation Models in FL paragraph of
Section 4.

Table G.2: Communication costs and final performance for the experiments with the complex feature
extractors.

Architecture Algorithm Downstr./k Upstream/k Round/k Downstream Upstream Round 30% acc 40% acc 50% acc 60% acc 70% acc 80% acc Acc r=3k (%)

ViT [45]

FedAvg 9.60 MB 9.60 MB 19.20 MB 96.00 MB 96.00 MB 192.00 MB 18.05 GB 26.69 GB 40.90 GB 60.29 GB 103.49 GB 416.26 GB 81.23
FED3R 0.00 B 16.95 MB 16.95 MB 0.00 B 169.45 MB 169.45 MB 1.19 GB 1.69 GB 2.71 GB 4.91 GB 20.67 GB - 72.11

FED3R-RF D = 5k 0.00 B 140.57 MB 140.57 MB 0.00 B 1.41 GB 1.41 GB 9.84 GB 12.65 GB 19.68 GB 30.92 GB 57.63 GB - 79.45
FED3R-RF D = 10k 0.00 B 481.13 MB 481.13 MB 0.00 B 4.81 GB 4.81 GB 52.92 GB 72.17 GB 86.60 GB 110.66 GB 187.64 GB 793.86 GB 81.49

FedNCM 0.00 B 8.31 MB 8.31 MB 0.00 B 83.07 MB 83.07 MB 5.48 GB 5.73 GB 6.81 GB 7.14 GB 7.48 GB - 73.22

SWIN [46]

FedAvg 14.40 MB 14.40 MB 28.80 MB 144.00 MB 144.00 MB 288.00 MB 58.18 GB 89.28 GB 144.58 GB 269.86 GB 702.43 GB - 71.03
FED3R 0.00 B 21.91 MB 21.91 MB 0.00 B 219.05 MB 219.05 MB 1.97 GB 3.07 GB 5.48 GB 13.36 GB - - 65.35

FED3R-RF D = 5k 0.00 B 140.57 MB 140.57 MB 0.00 B 1.41 GB 1.41 GB 12.65 GB 19.68 GB 33.74 GB 61.85 GB 636.77 GB - 70.35
FED3R-RF D = 10k 0.00 B 481.13 MB 481.13 MB 0.00 B 4.81 GB 4.81 GB 72.17 GB 86.60 GB 115.47 GB 202.07 GB 596.60 GB - 73.17

FedNCM 0.00 B 12.46 MB 12.46 MB 0.00 B 124.60 MB 124.60 MB 8.47 GB 10.22 GB 10.84 GB 26.29 GB - - 61.23

ConvNext [47]

FedAvg 14.40 MB 14.40 MB 28.80 MB 144.00 MB 144.00 MB 288.00 MB 69.98 GB 117.50 GB 209.09 GB 410.11 GB - - 66.92
FED3R 0.00 B 21.91 MB 21.91 MB 0.00 B 219.05 MB 219.05 MB 1.97 GB 3.29 GB 6.57 GB 26.29 GB - - 62.69

FED3R-RF D = 5k 0.00 B 140.57 MB 140.57 MB 0.00 B 1.41 GB 1.41 GB 14.06 GB 22.49 GB 37.95 GB 70.28 GB - - 68.43
FED3R-RF D = 10k 0.00 B 481.13 MB 481.13 MB 0.00 B 4.81 GB 4.81 GB 72.17 GB 91.41 GB 129.90 GB 221.32 GB 1.05 TB - 71.43

FedNCM 0.00 B 12.46 MB 12.46 MB 0.00 B 124.60 MB 124.60 MB 8.60 GB 10.34 GB 10.96 GB - - - 58.47

Table I.1 details the communication costs when the feature extractor is non-fixed. Notably, to
minimize the overall communication required to achieve the target accuracy, reducing the number of
sampled clients κ is more effective. However, it is worth observing that performance improves with
more clients sampled per round.

Table I.2 presents the communication costs when the feature extractor is fixed. In this scenario,
variations in communication costs depend solely on the order in which clients are sampled. If the
sampling order remains consistent, we would expect that the total communication required to reach
the target performance remains the same, as the server only needs to collect statistics once from each
client. This is further evident when examining Figure I.1: while the FED3R-FT and FED3R-RF
curves are noisy when fine-tuning the feature extractor (Figure I.1a), they are much more stable and
exhibit performance proportionate to κ when the feature extractor is fixed (I.1b). Moreover, all the
curves converge to the same RR upper bound (or RR-RF upper bound for FED3R-RF), regardless of
the value of κ.

FED3R ensures convergence once each client has been sampled at least once. The expected number
of rounds needed to achieve this, employing uniform probability and sampling κ clients per round,
aligns with the Batch Coupon Collector’s Problem [69, 70, 71]. Figure I.2 illustrates the results of
our simulations for the Batch Coupon Collector’s Problem while varying κ with a total of K = 1262
clients. Comparing the outcomes in Figure I.1b and Figure I.2, it is evident that, in practice,
significantly fewer communication rounds are required to reach convergence. This discrepancy arises
because sampling new unseen clients becomes progressively more challenging as more distinct clients
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Figure H.1: (centralized) RR using D random features to approximate the RBF kernel compared to
the exact KRR solution with RBF kernel computed over a subset of the whole Landmarks-Users-160K
dataset where there are at most 40 images per class, using the MobileNetV2 [43] architecture. We
keep σ = 1000 for both KRR and RR-RF.

Table I.1: Comparative analysis of communication costs by varying the number of clients κ per round
the non-fixed feature extractor.

Algorithm κ Downstr./k Upstream/k Round/k Downstream Upstream Round 30% acc 40% acc 50% acc 60% acc Acc r=3k (%)
FedAvg 5 38.60 MB 38.60 MB 77.20 MB 193.00 MB 193.00 MB 386.00 MB 162.12 GB 325.01 GB 549.28 GB - 55.29
FED3R-FT 5 38.60 MB 55.55 MB 94.15 MB 193.00 MB 277.73 MB 470.73 MB 59.78 GB 152.04 GB 698.56 GB - 51.75
FED3R-RF D = 5k 5 38.60 MB 179.17 MB 217.77 MB 193.00 MB 895.84 MB 1.09 GB 105.62 GB 260.23 GB 908.09 GB - 57.83
FED3R-RF D = 10k 5 38.60 MB 519.73 MB 558.33 MB 193.00 MB 2.60 GB 2.79 GB 262.41 GB 519.25 GB 1.30 TB 6.92 TB 60.4
FedNCM 5 38.60 MB 48.98 MB 87.58 MB 193.00 MB 244.92 MB 437.92 MB 118.68 GB 358.22 GB 1.16 TB - 50.55

FedAvg 10 38.60 MB 38.60 MB 77.20 MB 386.00 MB 386.00 MB 772.00 MB 228.51 GB 386.00 GB 771.23 GB - 58.17
FED3R-FT 10 38.60 MB 55.55 MB 94.15 MB 386.00 MB 555.45 MB 941.45 MB 67.78 GB 161.93 GB 728.68 GB - 52.95
FED3R-RF D = 5k 10 38.60 MB 179.17 MB 217.77 MB 386.00 MB 1.79 GB 2.18 GB 113.24 GB 206.88 GB 699.04 GB - 58.6
FED3R-RF D = 10k 10 38.60 MB 519.73 MB 558.33 MB 386.00 MB 5.20 GB 5.58 GB 262.41 GB 480.16 GB 1.18 TB 6.01 TB 61.61
FedNCM 10 38.60 MB 48.98 MB 87.58 MB 386.00 MB 489.83 MB 875.83 MB 131.38 GB 367.85 GB 1.78 TB - 50.7

FedAvg 20 38.60 MB 38.60 MB 77.20 MB 772.00 MB 772.00 MB 1.54 GB 416.88 GB 628.41 GB 1.29 TB 3.57 TB 59.73
FED3R-FT 20 38.60 MB 55.55 MB 94.15 MB 772.00 MB 1.11 GB 1.88 GB 41.42 GB 182.64 GB 975.34 GB - 54.28
FED3R-RF D = 5k 20 38.60 MB 179.17 MB 217.77 MB 772.00 MB 3.58 GB 4.36 GB 82.75 GB 161.15 GB 779.61 GB 9.76 TB 60.16
FED3R-RF D = 10k 20 38.60 MB 519.73 MB 558.33 MB 772.00 MB 10.39 GB 11.17 GB 201.00 GB 335.00 GB 1.53 TB 10.43 TB 62.99
FedNCM 20 38.60 MB 48.98 MB 87.58 MB 772.00 MB 979.67 MB 1.75 GB 236.48 GB 555.28 GB 2.44 TB - 51.85

FedAvg 50 38.60 MB 38.60 MB 77.20 MB 1.93 GB 1.93 GB 3.86 GB 799.02 GB 1.44 TB 2.79 TB 7.80 TB 62.43
FED3R-FT 50 38.60 MB 55.55 MB 94.15 MB 1.93 GB 2.78 GB 4.71 GB 47.07 GB 178.88 GB 1.85 TB - 55.57
FED3R-RF D = 5k 50 38.60 MB 179.17 MB 217.77 MB 1.93 GB 8.96 GB 10.89 GB 98.00 GB 185.10 GB 990.84 GB 16.90 TB 60.95
FED3R-RF D = 10k 50 38.60 MB 519.73 MB 558.33 MB 1.93 GB 25.99 GB 27.92 GB 251.25 GB 390.83 GB 1.62 TB 13.51 TB 64.16
FedNCM 50 38.60 MB 48.98 MB 87.58 MB 1.93 GB 2.45 GB 4.38 GB 218.96 GB 1.06 TB 5.84 TB - 52.74

Table I.2: Comparative analysis of communication costs by varying the number of clients κ per round
with fixed feature extractor.

Algorithm κ Downstr./k Upstream/k Round/k Downstream Upstream Round 30% acc 40% acc 50% acc Acc r=3k (%)
FedAvg 5 12.00 MB 12.00 MB 24.00 MB 60.00 MB 60.00 MB 120.00 MB 149.76 GB 312.00 GB - 40.96
FED3R 5 0.00 B 16.95 MB 16.95 MB 0.00 B 84.73 MB 84.73 MB 4.58 GB 23.81 GB - 42.48
FED3R-RF D = 5k 5 0.00 B 140.57 MB 140.57 MB 0.00 B 702.84 MB 702.84 MB 30.92 GB 70.99 GB 487.07 GB 50.41
FED3R-RF D = 10k 5 0.00 B 481.13 MB 481.13 MB 0.00 B 2.41 GB 2.41 GB 108.25 GB 211.70 GB 683.20 GB 53.97
FedNCM 5 0.00 B 10.38 MB 10.38 MB 0.00 B 51.92 MB 51.92 MB 6.75 GB - - 35.94

FedAvg 10 12.00 MB 12.00 MB 24.00 MB 120.00 MB 120.00 MB 240.00 MB 237.36 GB 542.40 GB - 40.79
FED3R 10 0.00 B 16.95 MB 16.95 MB 0.00 B 169.45 MB 169.45 MB 5.42 GB 17.96 GB - 42.47
FED3R-RF D = 5k 10 0.00 B 140.57 MB 140.57 MB 0.00 B 1.41 GB 1.41 GB 37.95 GB 78.72 GB 560.87 GB 50.4
FED3R-RF D = 10k 10 0.00 B 481.13 MB 481.13 MB 0.00 B 4.81 GB 4.81 GB 129.90 GB 250.19 GB 553.30 GB 53.96
FedNCM 10 0.00 B 10.38 MB 10.38 MB 0.00 B 103.83 MB 103.83 MB 9.35 GB - - 35.93

FedAvg 20 12.00 MB 12.00 MB 24.00 MB 240.00 MB 240.00 MB 480.00 MB 402.24 GB 909.12 GB - 43.16
FED3R 20 0.00 B 16.95 MB 16.95 MB 0.00 B 338.90 MB 338.90 MB 4.07 GB 17.28 GB - 42.48
FED3R-RF D = 5k 20 0.00 B 140.57 MB 140.57 MB 0.00 B 2.81 GB 2.81 GB 28.11 GB 59.04 GB 390.78 GB 50.44
FED3R-RF D = 10k 20 0.00 B 481.13 MB 481.13 MB 0.00 B 9.62 GB 9.62 GB 96.23 GB 192.45 GB 500.37 GB 53.98
FedNCM 20 0.00 B 10.38 MB 10.38 MB 0.00 B 207.67 MB 207.67 MB 8.31 GB - - 35.94

FedAvg 50 12.00 MB 12.00 MB 24.00 MB 600.00 MB 600.00 MB 1.20 GB 950.40 GB 2.23 TB - 43.94
FED3R 50 0.00 B 16.95 MB 16.95 MB 0.00 B 847.25 MB 847.25 MB 7.63 GB 20.33 GB - 42.48
FED3R-RF D = 5k 50 0.00 B 140.57 MB 140.57 MB 0.00 B 7.03 GB 7.03 GB 56.23 GB 70.28 GB 400.62 GB 50.41
FED3R-RF D = 10k 50 0.00 B 481.13 MB 481.13 MB 0.00 B 24.06 GB 24.06 GB 192.45 GB 240.56 GB 625.47 GB 53.95
FedNCM 50 0.00 B 10.38 MB 10.38 MB 0.00 B 519.17 MB 519.17 MB 9.86 GB - - 35.94
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Figure I.1: FED3R-FT comparison varying the number clients sampled per round κ.
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(a) κ = 5
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(b) κ = 10
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(c) κ = 20
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(d) κ = 50

Figure I.2: Simulations of the expected number of clients we need to sample to extract each client at
least once, for the Landmarks-Users-160K federated datasets with 1262 clients.

have already been sampled. Therefore, we can assume that most of the clients have been sampled
earlier.

J FED3R-FT converges to the RR upper bound using WIMA

As highlighted in Section 3.2, FED3R-FT permits fine-tuning the feature extractor to enhance latent
space separability, albeit at the expense of perturbing the optimal solution achievable through FED3R.
To address this issue and stabilize the latent space, we leverage Window-based Weight Averaging
(WIMA) [72]. WIMA, initially designed for standard gradient-based optimization algorithms, offers a
straightforward yet effective approach to balance the training process and reduce convergence time. As
depicted in Figure J.1, using WIMA allows FED3R-FT to reach the RR upper-bound, simultaneously
enhancing overall performance. We opted for a moving window size of 370 rounds based on
the results of Figure I.1b, which shows how this number of rounds is sufficient for approaching
convergence with κ = 10. This suggests that, within a window of this size, a substantial portion of
the clients has likely been included in the sampling process.

Finally, Table J.1 provides the communication costs for the FED3R-FT experiments with WIMA.
Similarly to Table G.1, only Scaffold can provide comparable results with FED3R-FT (or FED3R-
RF), despite being much slower.

18



0 500 1000 1500 2000 2500 3000
Round

0

10

20

30

40

50

Ac
cu

ra
cy

RR FedAvg
Fed3R-FT FedAvg
Fed3R-FT FedAvg + WIMA

RR FedAvg
Fed3R-FT FedAvg
Fed3R-FT FedAvg + WIMA

(a) Feature extractor fine-tuned with FedAvg

0 500 1000 1500 2000 2500 3000
Round

0

10

20

30

40

50

60

Ac
cu

ra
cy

RR Scaffold
Fed3R-FT Scaffold
Fed3R-FT Scaffold + WIMA

RR Scaffold
Fed3R-FT Scaffold
Fed3R-FT Scaffold + WIMA

(b) Feature extractor fine-tuned with Scaffold

Figure J.1: FED3R-FT using WIMA [72].

Table J.1: Communication costs for the WIMA experiments.
Algorithm Downstr./k Upstream/k Round/k Downstream Upstream Round 30% acc 40% acc 50% acc 60% acc Acc r=3k (%)
FedAvg 38.60 MB 38.60 MB 77.20 MB 386.00 MB 386.00 MB 772.00 MB 328.10 GB 431.55 GB 646.94 GB 1.43 TB 63.05
Scaffold 77.20 MB 77.20 MB 154.40 MB 772.00 MB 772.00 MB 1.54 GB 443.13 GB 631.50 GB 822.95 GB 1.26 TB 68.30
FED3R-FT FedAvg 38.60 MB 55.55 MB 94.15 MB 386.00 MB 555.45 MB 941.45 MB 32.95 GB 84.73 GB 588.41 GB - 56.69
FED3R-FT Scaffold 77.20 MB 94.15 MB 171.35 MB 772.00 MB 941.45 MB 1.71 GB 61.68 GB 159.35 GB 772.77 GB - 59.01
FED3R-FT D = 5k FedAvg 38.60 MB 179.17 MB 217.77 MB 386.00 MB 1.79 GB 2.18 GB 65.33 GB 130.66 GB 389.80 GB 2.77 TB 62.56
FED3R-FT D = 5k Scaffold 77.20 MB 217.77 MB 294.97 MB 772.00 MB 2.18 GB 2.95 GB 91.44 GB 185.83 GB 492.60 GB 1.96 TB 64.98
FED3R-FT D = 10k FedAvg 38.60 MB 519.73 MB 558.33 MB 386.00 MB 5.20 GB 5.58 GB 161.92 GB 307.08 GB 575.08 GB 3.58 TB 65.75
FED3R-FT D = 10k Scaffold 77.20 MB 558.33 MB 635.53 MB 772.00 MB 5.58 GB 6.36 GB 190.66 GB 355.90 GB 667.30 GB 2.77 TB 67.99
FedNCM FedAvg 38.60 MB 48.98 MB 87.58 MB 386.00 MB 489.83 MB 875.83 MB 119.11 GB 423.03 GB 1.18 TB - 53.72
FedNCM Scaffold 77.20 MB 87.58 MB 164.78 MB 772.00 MB 875.83 MB 1.65 GB 224.11 GB 576.74 GB 1.16 TB - 56.60
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