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ABSTRACT

Graph Contrastive learning (GCL) has achieved great success in learning repre-
sentations from unlabeled graph-structure data. However, how to automatically
obtain the optimal contrastive views w.r.t specific downstream tasks is little stud-
ied. Theoretically, a downstream task can be causally correlated to particular sub-
structures in graphs. The existing GCL methods may fail to enhance model perfor-
mance on a given task when the task-related semantics are incomplete/preserved in
the positive/negative views. To address this problem, we propose G-CENSOR, i.e.,
Graph Contrastive lEarniNg with taSk-oriented cOunteRfactual views, a model-
agnostic framework designed for node property prediction tasks. G-CENSOR can
simultaneously generate the optimal task-oriented counterfactual positive/negative
views for raw ego-graphs and train graph neural networks (GNNs) with a con-
trastive objective between the raw ego-graphs and their corresponding counterfac-
tual views. Extensive experiments on eight real-world datasets demonstrate that
G-CENSOR can consistently outperform existing state-of-the-art GCL methods to
improve the task performance and generalizability of a series of typical GNNs. To
the best of our knowledge, this is a pioneer investigation to explore task-oriented
graph contrastive learning from a counterfactual perspective in node property pre-
diction tasks. We will release the source code after the review process.

1 INTRODUCTION

Inspired by the convincing success of contrastive learning in the domain of computer vision (Chen
et al., 2020; He et al., 2020) and natural language processing (Gao et al., 2021), graph contrastive
learning (GCL) has become an emerging field that extends the idea to graph data (You et al., 2020a;
Hassani & Ahmadi, 2020; Zhu et al., 2021; Li et al., 2022), leading to generalizable, transferable
and robust representations from unlabeled graph data (You et al., 2021).

Nevertheless, the generation mechanism of contrastive views, which has been recognized as an es-
sential component in GCL (Zhu et al., 2021; Yin et al., 2022; You et al., 2021), is still facing the
following challenges: (a) Independent of downstream tasks. Although GCL is originally pro-
posed for self-supervised learning, how to obtain the optimal positive view when downstream tasks
are available can be an important question Xie et al. (2022). However, most prior works, whether
based on graph diffusion (Hassani & Ahmadi, 2020), uniform sampling (Zhu et al., 2020), or adap-
tive sampling (Zhu et al., 2021; You et al., 2021), ignore the downstream tasks’ information. As
shown in Figure 1, whether a generated view is a appropriate positive view depends critically on
the downstream tasks Chen et al. (2020). (b) Fitting spurious correlations. To introduce task in-
formation, learnable data augmentation has been investigated to automatically obtain the positive
views for downstream tasks (Yin et al., 2022). While these techniques have achieved promising
performance, they are prone to be plagued by spurious correlations between graph structures and
downstream tasks like general supervised methods, thus hurting the generalizability of representa-
tion model. (c) Difficulty in negative views selection. Beside positive views, negative sampling is
also a vital component in GCL. Contrastive learning can benefit from hard negative samples (Joshua
et al., 2021). Meanwhile, negative samples, actually similar to the raw instances, can lead to a per-
formance drop (Chuang et al., 2020). Therefore, it can be hard to select suitable negative samples.
Some works (He et al., 2020) utilize a great number of negative samples to avoid this trade-off but
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may cause scalability problems. These challenges can become more non-trivial with graph data
since graph data are far more complex due to the non-Euclidean property (Zhu et al., 2021).

Figure 1: An illustration for task-oriented contrastive views. Task A is to predict whether a node is
in a triangle and task B is to predict the color of a node. A task-oriented view is positive if and only
if it contains the credible evidence for the task label, otherwise it should be negative.

In this paper, we propose a novel model-agnostic framework for node property prediction tasks,
namely G-CENSOR, i.e., Graph Contrastive lEarniNg with taSk-oriented cOunteRfactual views. G-
CENSOR generates high-quality positive and negative views simultaneously from a counterfactual
perspective. In other words, a task-oriented counterfactual question about the contrastive views
could be asked: “Would a judgment on the task label of an ego-graph change if part of the structure
of the ego-graph were erased?” The answer no should be assigned to a positive view while the an-
swer to a negative view should be yes. Technically, G-CENSOR adopts the learnable view generation
approach and leverages an original counterfactual optimization objective to decompose an ego-graph
into the sub-structures causally correlated to the downstream tasks and the sub-structures spuriously
correlated to the downstream tasks. This two parts can further be regarded as positive and negative
views, respectively. Learning representation model with such contrastive views can enhance both
the model’s task performance and generalizability. Notably, G-CENSOR doesn’t need to contrast
in-batch negative samples, this characteristic can help G-CENSOR get rid of performance-memory
trade-off inherent in most prior GCL methods.

The core contribution of this paper can be three-fold: (a) To the best of our knowledge, this is
a pioneer investigation to explore task-oriented graph contrastive learning from a counterfactual
perspective in node property prediction tasks. (b) We develop a novel model-agnostic framework,
G-CENSOR, an approach to automatically generate both task-oriented counterfactual positive and
negative views to enable sufficient and efficient graph contrastive learning. (c) We conduct extensive
experiments on eight real-world datasets to demonstrate the superiority of G-CENSOR over existing
state-of-the-art GCL methods to improve the performance and generalizability of typical GNNs.

2 RELATED WORKS

2.1 GRAPH CONTRASTIVE LEARNING

Inspired by the success of data augmentation and contrastive learning in texts and images to address
the data noise and data scarcity issues, Many graph contrastive learning (GCL) frameworks have
been proposed lately (Liu et al., 2022; Xie et al., 2022). GCL works usually consist of a graph
views generation component to construct positive and negative views, and a contrastive objective
to discriminate positive pairs from negative pairs (Xie et al., 2022). Most works generate positive
views by uniform random transformation, e.g. node dropping, edge perturbation and subgraph sam-
pling (Zhu et al., 2020; You et al., 2020b; Yu et al., 2020; Zhao et al., 2021; You et al., 2020a; Hassani
& Ahmadi, 2020; Sun et al., 2020; Velickovic et al., 2019). Zhu et al. (2021) proposed the adap-
tive data augmentation strategies to reflect input graph’s intrinsic patterns, i.e., assign larger drop
probabilities to unimportant edges. Recently, several works have proposed trainable augmentation
strategies (You et al., 2021; Li et al., 2022; Yin et al., 2022) to learn drop probability distribution over
nodes or edges. However, few works have discussed on how to generate an optimal task-oriented
positive and negative views for graph data, and no learnable augmentation strategy has been pro-
posed for node property prediction task. Table 1 lists the comparison between G-CENSOR and the
other state-of-the-art GCL models on 4 different properties.
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Table 1: The comparison between G-CENSOR and the other state-of-the-art GCL models.

Property MVGRL GRACE GCA BGRL AutoGCL RGCL G-CENSOR

Primary task node&graph node node node graph graph node
Task-oriented no no no no yes no yes
Positive views uniform uniform adaptive uniform learnable learnable learnable
Negative views in-batch in-batch in-batch - in-batch learnable&in-batch learnable

2.2 COUNTERFACTUAL GRAPH EXPLANATION

Recently, the research on explainability of GNNs is experiencing a rapid development (Yuan et al.,
2021). Most of GNN explanation methods (Ying et al., 2019; Luo et al., 2020) focus on identifying
a subgraph of the original graph that contributes most to the prediction of a trained GNN. There
are also works make explanations based on retrieving similar existed instances (Faber et al., 2020).
Since removing the explanation subgraph from the input graph does not necessarily change the
prediction(Bajaj et al., 2021), some counterfactual GNN explanation techniques (Lucic et al., 2022;
Bajaj et al., 2021) have been proposed. These techniques address a problem that identifies a small
subset of edges of the input graph instance such that removing those edges significantly result in an
alternative prediction (Lucic et al., 2019; 2022; Bajaj et al., 2021). While all above works deal with
post hoc explanations of estimated GNNs, this study emphasizes ad hoc detection of the causally
correlated subgraph with respect to tasks. See Section 4.2 for details.

3 PRELIMINARIES AND PROBLEM FORMULATION

In this section, we provide formal definitions of the optimal task-oriented counterfactual posi-
tive/negative views with insightful explanations, and formulate the research problems.

Let G = (V, E) be an undirected graph with nodes vi ∈ V and edges (vi, vj) ∈ E . For each
node vi, a feature description xvi = [x1, x2, · · · , xi, · · · , xd] and a task label yvi ∈ {1, . . . , c} are
assigned, where d is feature dimension and c is the number of classes. A k-hop ego-graph (Daly &
Haahr, 2007) of a node vi can be defined as Gvi,k = (Vvi,k, Evi,k, vi), where vi indicates the ego,
Vvi,k ⊆ V is the set of all the nodes that are at most k hops away from vi, and Evi,k ⊆ E is the set of
interconnected edges between nodes in Vvi,k. G

′

vi,k
= (V

′

vi,k
, E

′

vi,k
, vi) can be an ego-subgraph of

Gvi,k, where E
′

vi,k
⊆ Evi,k , and V

′

vi,k
is nodes involved in E

′

vi,k
. The complement of G

′

vi,k
w.r.t

Gvi,k is defined by Ḡ
′

vi,k
= (V̄

′

vi,k
, Ē

′

vi,k
, vi), where Ē

′

vi,k
is Evi,k\E

′

vi,k
, and V̄

′

vi,k
is the nodes

involved in Ē
′

vi,k
. Note that G+

vi,k
and G−

vi,k
must be connected subgraphs thus isolated edges in

them will be removed. For brevity, we will omit vi and k in the subsequent sections.

Definition 1 (Optimal Task-oriented Counterfactual Positive View G+). An ego-subgrah G
′

is the
optimal task-oriented counterfactual positive view G+ for an ego-graph instance G if and only if E

′

contains and only contains all the edges that are causally correlated to the task label.

Definition 2 (Optimal Task-oriented Counterfactual Negative View G−). An ego-subgrah G
′

is the
optimal task-oriented counterfactual negative view G− for an ego-graph instance G if and only if
Ḡ

′
is the complement of the optimal task-oriented counterfactual positive view G+ w.r.t G.

Figure 2 explains G+ and G− from a perspective of ego-graph generation process for node property
prediction tasks. In both cases, the relationship between E1 and y can be stable since E1 is the
direct cause or effect of y, i.e., causally-correlated to y. The joint distribution of E0 with y would be
different if ego set changes, since E0 and y are spuriously correlated(Schölkopf et al., 2012; Joshi
& He, 2022) conditioned on ego, i.e.v. Therefore, according to the Definition 1, G+ should be
G1 = (V1,E1, v); according to the Definition 2, G− should be G0 = (V0,E0, v).

Now let ϕ (G) : {G | vi ∈ V} → Rc be any GNN that maps an ego-graph G to a probability distri-
bution p of the ego over the label space Rc. Contrastive learning with task-oriented counterfactual
views is defined as:
Definition 3 (Graph Contrastive Learning with Task-oriented Counterfactual Views). Given a
G with its G+ and G−, learning a function ϕ that maximizes the consistency between pair
(ϕ(G), ϕ(G+)) compared with pair (ϕ(G), ϕ(G−)).
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(a) Graph structure determines label. (b) Label of ego causes graph structure.

Figure 2: Causal diagrams (Pearl, 2009) for the 1-hop ego-graph generation process. A solid arrow
from a to b represents a causal relationship from a to b. The two dashed lines with text of GNN
represent that the whole observed graph (G) is used to predict task label (y). (a) The attributes of
the ego (v) can cause two kinds of edges: E0 (with nodes V0) and E1 (with nodes V1). Only the
structure of (E1) determines the label (y). (b) The label (y) is an inherited property of the ego (v) and
this property causes E1 (with nodes V1). Meanwhile, other properties of v would cause (E0). For
interpretative examples, refer to Appendix A.1; for the causal diagrams of k-hop (k > 1) ego-graph
generation process, refer to Appedix A.2.

As Figure 2 shows, GNNs trained in a normal flow may fit the spurious correlations between G−

and y since they take the whole observed graph G as input. Learning such non-causal association
would reduce the reliability and the generalizability of the GNNs. In this study, we train GNNs with
the auxiliary graph contrasting learning with task-oriented counterfactual views. Our goal is to make
the learned representation to be as independent as possible from G−, so that the model can achieve
better generalizability.

Assuming that we can have a ϕ that is a sufficient encoder (Chen et al., 2020), where an input graph
G can be encoded without information loss. Let R(ϕ) represents the empirical risk of estimation
and L(ϕ(G), y) represents the estimation loss, we can make a following assumption:

Assumption 1. Given a set {(G, y)}, ϕ estimated with {(G−, y)} suffers a greater empirical risk
compared to ϕ estimated with {(G+, y)} if ϕ is sufficient, i.e., R(ϕ̂−) = E[L(ϕ̂−(G−), y)] >

R(ϕ̂+) = E[L(ϕ̂+(G+), y)], where ϕ̂ = argmin
ϕ

R(ϕ) and L(ϕ(G), y) can be 1argmax
i

[ϕ(G)]i ̸=y.

In Appedix A.1, we provide an example to explain the reasonableness of Assumption 1. Let φ (G; Λ)
be a function parameterized by Λ, which takes G as input and produces the optimal task-oriented
positive/negative views. We can enforce φ satisfy the signature in Assumption 1. Based on the above
definitions and assumption, in this paper, we investigate the following two research questions:

Question 1. How to design and learn a model-agnostic φ under the Assumption 1 to conduct graph
contrastive learning with task-oriented counterfactual views?

Question 2. Can we really enhance ϕ on given tasks with graph contrastive learning with task-
oriented counterfactual views produced by φ?

4 METHODOLOGY

To answers the Question 1, we illustrate the proposed framework G-CENSOR in this section. The
overall architecture of G-CENSOR is shown in Figure 3.

4.1 BASE GNN MODELS

We select GraphSAGE Hamilton et al. (2017) (abbreviated as SAGE), GAT Veličković et al. (2018)
and GIN Xu et al. (2019) as base GNN models, i.e., ϕ, to validate the G-CENSOR. These three
models were chosen because they are representative and have been applied in many real scenarios.
For details of these three models, refer to Appendix B.

Then we can minimize a general prediction loss Lpred, e.g., the negative log likelihood (NLL), to
get the estimated model ϕ̂ as follows:

Lpred(ϕ) = E{Gv|∀v∈V} [NLL(ϕ(Gv; Θ), yv)] (1)
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Figure 3: The overall architecture of the G-CENSOR. The solid lines represent a normal flow to
train a GNN ϕ with the raw ego-graphs by minimizing a general prediction loss (Section 4.1). The
dashed lines represent the flow to train a counterfactual transformation module φ that generates
task-oriented counterfactual positive/negative views by minimizing a designed counterfactual loss
(Section 4.2). The dotted line is conducting graph contrastive learning with task-oriented counter-
factual views (Section 4.3). We jointly optimize the three objectives to learn ϕ and φ (Section 4.4).

4.2 COUNTERFACTUAL TRANSFORMATION MODULE (CTM)

Figure 4 depicts the proposed counterfactual transformation module for ego-graph, i.e., φ, to esti-
mate the probability that an edge is part of the optimal task-oriented counterfactual positive view
G+ for a G.

(a) (b) (c)

Figure 4: Counterfactual Transformation Module. (a) Solid blue square is original node feature x,
dashed gray square is landing probability of random walk from the ego to a node, i.e., r, and dotted
pink square is whether a node is the ego, i.e., 1u=v . (b) The estimation of the probability that an
edge belongs to G+. (c) Sampling G+ according to the estimated probability of all the edges and
constructing G− based on G+. Only original node feature x keeps in both G+ and G−.

Representation of an edge. To make an edge as distinguishable as possible, we preserve both the
feature and structural information in the representation of an edge. Technically, for a node u in an
ego-graph Gv , we first assign an ego identifier defined as 1u=v and then construct auxiliary structural
information leveraging Distance Encoding (DE) Li et al. (2020) defined as landing probabilities of
random walks of different lengths from ego v to the node u, which is denoted by ru. Therefore, a
new node feature vector for u is given as

x̃u|Gv
= xu ∥ ru|Gv

∥ 1u=v, where ru|Gv
= [(AD−1)u,v, (AD−1)2u,v, . . . , (AD−1)lu,v]. (2)

A is the adjacency matrix for Gv such that Au,ς = 1 iff (u, ς) ∈ Ev and D is the degree (diagonal)
matrix for Gv where Du,u is the degree of node u. l indicates the length of random walks, which is
set to the same as k. Then an edge (u, ς) in Gv is represented as

euς|Gv
= x̃v|Gv

∥ x̃u|Gv
∥ x̃ς|Gv

. (3)

Probability that an edge belongs to G+
v . For simplicity, we assume the binary variable 1(u,ς)∈E+

v

follows a Bernoulli distribution, i.e., 1(u,ς)∈E+
v
∼ Ber(θuς|Gv

) and θuς|Gv
is estimated by multiple

multilayer perceptrons (MLPs) as follows:
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P
(
(u, ς) ∈ E+

v

)
= θuς|Gv

= S

(
1

m

m∑
i=1

MLPi

(
euς|Gv

; Λi

))
, (4)

where S = ex

1+ex is the sigmoid funtion.

Assuming all the edges are independent of each other, the probability of a sub-egograph G
′

v being
G+

v , i.e., P (G+
v = G

′

v) can be obtained by

P (G+
v = G

′

v) = Π(u,ς)∈E′
v
P
(
(u, ς) ∈ E+

v

)
Π(u,ς)∈Ev\E′

v

(
1− P

(
(u, ς) ∈ E+

v

))
. (5)

Note that once G+
v has been obtained, we can further construct G−

v = Ḡ+
v . Due to the discrete

nature, we adopt the reparameterization trick Jang et al. (2017); Maddison et al. (2017) to enable
updating parameters in the MLPs with general gradient-based optimizer. See Appendix C for details.

Computational Complexity. The complexity for the edge representation euς|Gv
is O(l · |Vv| · |Ev|)

due to the computation of x̃u|Gv
(Yuster & Zwick, 2005) and the complexity for the probability

estimation is O((1 + h−1
m ) · |Ev| · d2), where we assume the hidden dimension in MLPi is equal to

d
m and h is the number of layers in MLPi. As a comparison, the complexity for GNN-based flow
used in learnable views generation (Yin et al., 2022; Li et al., 2022) is O(k · |Ev| ·Ce+k · |Vv| ·Cv+
h · |Ev| · d2) where Ce and Cv are the complexity of message passing and combination respectively.
In practice, the latter is likely to be greater than the former due to large Ce and Cv . See Appendix D
for the real runtime evaluation.

Optimization objective. To satisfy the signature of G+
v in Definition 1, the minimum NLL loss on

ϕ+(G+
v ; Θ

+) can be minimized to encourage G+
v sufficient to predict the correct label yv as follows:

Lsuff (φ | ϕ̂+) =EG+
v ∼P (G+

v =G′
v)

[
Lpred(ϕ̂

+)
]
, (6)

where ϕ̂+ = argmin
ϕ+

Lpred(ϕ
+).

Under Assumption 1, the relationship between G+
v and G−

v can be established by a marginal rank
loss that enforces ϕ̂−(G−

v ; Θ̂
−) results in a greater empirical risk.

Lrank(φ | ϕ̂+, ϕ̂−) =EG+
v ∼P (G+

v =G′
v)

[
max

(
0,−Lpred(ϕ̂

−) + Lpred(ϕ̂
+) + δmargin

)]
, (7)

where ϕ̂− = argmin
ϕ−

Lneg(ϕ
−).

Additionally, to enforce φ to find the most significant edges, G+
v should be as sparse as possible,

which aligns with the findings of previous studies in causal discovery and counterfactual explana-
tion (Zheng et al., 2018; Wachter et al., 2017).A L1 regularization Lsize is applied on the probability
of being selected into E+

v for all edges:

Lsize(φ) = E∀(u,ς)∈E+
v

[
P
(
(u, ς) ∈ E+

v

)]
. (8)

Note that the prior proportion of the causally-correlated part is different in different domains. With
a parameter α to control Lsize(φ), the counterfactual loss for the counterfactual transformation
module can be formulated as:

Lcf (φ) = Lsuff (φ | ϕ̂+) + Lrank(φ | ϕ̂+, ϕ̂−) + α · Lsize(φ). (9)

The Difference with Counterfactual Explanation. To address task rather than model, Lsuff max-
imizes the mutual information between G+

v and yv while counterfactual explanation works maxi-
mize the mutual information between G+

v and ϕ̂(Gv; Θ). Counterfactual explanation works directly
maximize the empirical risk Lpred(ϕ

−), which is helpful to explain an estimated model but can
sort spurious structures into G+

v since spurious structures is also correlated to label. Therefore, we
choose a rank loss to ensure consistency with Assumption 1.
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4.3 CONTRASTIVE LEARNING WITH TASK-ORIENTED COUNTERFACTUAL VIEWS

Contrasting the raw ego-graphs to both the positive and negative counterfactual views can inject
task knowledge from φ into ϕ and lead to better model performance and generalizability. An In-
foNCE (van den Oord et al., 2018) style loss is formulated as

Lcl(ϕ) =E{(Gv,G
+
v ,G−

v )|∀v∈V} − log

(
exp (sim(Gv, G

+
v )/τ)

exp(sim(Gv, G
+
v )/τ) + exp

(
sim(Gv, G

−
v )/τ

)) , (10)

where sim(Gv, G
′

v) = 1−JSD(ϕ(Gv), ϕ(G
′

v)) and JSD is the Jensen–Shannon divergence. τ is the
temperature parameter and plays a role in controlling the strength of penalties on the task-oriented
counterfactual negative views. The larger the τ is, the smaller the influence of similarity between
original ego-graphs and the task-oriented counterfactual negative views is.

Scalability. Similar to BGRL (Thakoor et al., 2021), this contrastive loss doesn’t need to contrast in-
batch negative samples and has time and space complexities scaling linearly to the batch size. Thus,
G-CENSOR can get rid of performance-memory trade-off inherent in most prior GCL methods.

4.4 JOINT LEARNING OF GNN AND CTM

For simplicity and efficiency, we empirically share ϕ with ϕ+ and ϕ−, and jointly learn ϕ and φ with
a weight parameter β for the contrastive learning. Therefore, a final joint loss can be formulated as:

Ljoint(ϕ, φ) = Lpred(ϕ) + Lcf (φ | ϕ) + βLcl(ϕ). (11)

5 EXPERIMENTS

To answer the Question 2, we conduct extensive experiments on eight real-world datasets from two
perspectives: task performance and model generalizability.

5.1 EXPERIMENTAL SETUP

Dataset. Eight open benchmark datasets across three domains are investigated: (a) five citation
networks (Bojchevski & Günnemann, 2018) including CoraFull, CoraML, CiteSeer, DBLP and
PubMed. (b) two product networks (Shchur et al., 2018) including Computers and Photo. (3) an
image network (Zeng et al., 2020) Flickr. See Appendix E.1 for more details of datasets.

Baselines. Three types of baselines are compared: (a) base models, i.e., SAGE, GAT and GIN.
(b) GCL methods with uniform or adaptive data augmentation, i.e., MVGRL(Hassani & Ahmadi,
2020), GRACE(Zhu et al., 2020), GCA (Zhu et al., 2021) and BGRL (Thakoor et al., 2021). (c)
GCL methods with learnable data augmentation, i.e., AUTOGCL (Yin et al., 2022) and RGCL (Li
et al., 2022). For more details, refer to Appendix E.2.

Implementation. For a fair comparison, the architecture of base GNNs and batch training setting
were the same for all methods. All the experiments were run 5 times with random seeds from 0 to
4. For more implementation details, refer to Appendix E.3.

5.2 IMPROVEMENT ON PERFORMANCE

As shown in Table 2, G-CENSOR can significantly enhance the performance of base GNNs (best
in 23 out of 24 settings). Specifically, G-CENSOR improves the accuracy of the base GNNs from
0.4% (GraphSAGE on CiteSeer) to 20.67% (GraphSAGE on CiteSeer). Considering all settings, the
average gain of G-CENSOR is around 4.6%. Morever, G-CENSOR can consistently outperform the
SOTA methods from 0.06% (GAT on Computers) to 14.59% (GIN on Flickr) except for setting of
GAT on Flickr, where G-CENSOR got the second best performance. The average gain of G-CENSOR
against SOTA is 1.87%. Note that on datasets like Photo, though the SOTA methods have already
achieved a high performance (>93%), G-CENSOR can still pushes the boundary forward (>94%).
All these results can prove the ability of G-CENSOR to enhance model performance. Meanwhile,
GCA, an approach that adopts adaptive data augmentation and thus enables models learn important
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Table 2: Comparison in node classification accuracy on test set with independent and identical
distribution. Bold and underline indicate the best and second performance, respectively.

Method CiteSeer Computers Cora Full Cora ML DBLP Flickr Photo PubMed

SAGE

BASE 91.25±0.28 85.62±2.05 55.72±1.17 83.83±1.48 80.97±0.99 42.38±0.24 92.99±0.35 85.34±0.70

MVGRL 65.83±1.48 OOM OOM 44.36±7.12 74.19±0.97 TLE OOM 86.16±0.71
GRACE 89.83±0.45 86.67±1.40 56.47±0.88 84.13±1.57 81.74±0.71 49.30±0.56 93.48±1.07 86.86±0.39
GGA 90.20±0.88 84.71±1.74 56.87±1.34 84.52±0.90 81.81±0.56 49.76±1.00 92.50±1.04 86.85±0.33

BGRL 90.17±1.00 86.25±0.65 56.40±1.25 83.64±2.43 81.35±0.32 50.69±0.25 91.90±1.83 86.50±0.29

RGCL 89.29±0.87 58.31±12.38 49.00±1.89 80.68±1.66 80.24±0.61 38.91±7.54 81.26±7.22 81.85±0.52
AUTOGCL 90.26±0.39 85.73±0.88 56.30±0.72 83.98±0.79 81.33±1.21 40.99±1.80 92.40±0.93 86.45±0.69

G-CENSOR 91.65±0.26 88.65±0.47 58.10±0.91 85.19±1.06 84.01±0.46 51.14±0.15 94.52±0.25 88.17±0.39

GAT

BASE 90.19±0.51 89.60±0.38 58.11±1.19 83.56±1.39 81.20±0.58 47.31±4.31 92.88±0.71 85.25±0.70

MVGRL 88.64±0.39 OOM OOM 81.96±1.11 81.25±0.77 TLE OOM 86.10±0.81
GRACE 89.77±0.33 90.15±0.41 59.28±0.74 84.22±2.21 82.52±0.49 51.56±0.29 93.32±0.45 86.34±0.62
GGA 90.22±0.71 90.56±0.45 59.62±0.52 84.49±0.73 82.60±0.54 51.91±0.69 93.49±0.68 86.75±0.27

BGRL 90.09±1.17 89.46±0.88 58.13±0.78 84.44±1.29 81.52±0.83 50.55±1.12 92.50±0.70 85.99±0.40

RGCL 88.94±1.56 61.64±23.22 45.60±0.92 79.64±1.58 80.06±1.55 42.38±0.24 86.56±3.32 80.83±1.93
AUTOGCL 90.27±0.87 89.54±0.80 58.69±1.33 82.73±0.85 82.14±0.66 49.97±0.87 93.16±0.65 86.20±0.42

G-CENSOR 91.26±0.68 90.61±0.34 60.21±0.24 85.85±1.15 84.06±0.65 51.66±0.22 94.13±0.46 87.28±0.35

GIN

BASE 89.36±0.80 82.97±2.20 56.40±0.61 81.84±0.96 79.52±0.74 45.31±2.56 88.25±1.66 86.05±0.41

MVGRL 85.90±1.14 OOM OOM 71.27±3.32 81.47±0.76 TLE OOM 85.18±0.78
GRACE 88.74±0.85 88.35±0.86 55.96±0.68 83.01±0.95 79.64±1.00 44.11±1.19 93.21±0.69 86.83±0.21
GGA 89.53±0.22 85.96±1.69 56.45±0.89 83.77±1.03 80.12±0.81 42.76±1.18 92.75±1.49 86.80±0.51

BGRL 89.93±0.85 88.45±1.34 56.83±0.85 82.98±1.05 80.66±0.97 43.49±1.15 91.95±1.47 86.86±0.26

RGCL 88.50±1.36 82.95±1.80 52.19±0.75 80.42±0.83 79.85±0.62 43.90±2.66 89.34±1.06 81.61±0.25
AUTOGCL 89.17±1.11 88.46±1.87 55.21±0.89 82.39±1.34 79.91±0.55 37.66±1.93 92.40±1.87 86.69±0.92

G-CENSOR 90.98±0.56 90.36±0.54 58.46±0.70 84.52±0.72 83.42±0.23 51.92±0.17 94.57±0.06 87.66±0.23
1 OOM means Out Of Memory (>32GB) and TLE means Time Limit Exceeded (seconds per epoch > 1000s)

structures, outperforms other baselines in most settings. This may imply the effectiveness of G-
CENSOR to auto-select the task-oriented positive structures. As for learnable data augmentation
methods, i.e., AUTOGCL and RGCL, they didn’t achieve satisfactory performance on most settings
probably because of the task shift from graph classification to node classification.

5.3 IMPROVEMENT ON GENERALIZABILITY

To verify the ability of G-CENSOR to boost the generalizability of GNNs, we further conduct ex-
periments on out-of-distribution data split setting based on the confounder discussed in 3, i.e.,
the ego. For each dataset, we first run a NODE2VEC (Grover & Leskovec, 2016) to get nodes’
embeddings and cluster the nodes to two clusters by K-MEANS (Lloyd, 1982). The cluster with
larger sample size is randomly divided into training and validation sets and the other is regarded
as testing set. As shown in Table 3, G-CENSOR still significantly enhanced the performance of
base GNNs up to 18.26% with an average improvement of 6.02% and consistently outperformed the
SOTA methods up to 7.40% with an average improvement of 1.62%. While a larger performance
degradation suggests a larger distribution gap between the test set and the training/validation set,
it’s observed that base GNNs can benifit more from G-CENSOR compared to SOTA methods. For
example, Cora Full, Photo and Flickr are the three datasets with the most significant performance
degradation but G-CENSOR outperformed the best SOTA the most on these three datasets. All these
results demonstrate the superiority of G-CENSOR to enhance the generalizability of various GNNs.

5.4 SENSITIVITY ANALYSIS

G-CENSOR’s sensitivity w.r.t. hyperparameters α, δ, τ and β (with GAT as base model) is evaluated
by presenting the median performances in Figure 5. It’s observed that (a) α plays a crucial role
in G-CENSOR. Different tasks prefer to different α, e.g., the best α is around 0.1 on Cora but is
around 0.005 on Photo. And increasing α constantly can potentially hurt the performance, e.g., the
accuracy tends to go down after α exceeds 0.005 on Flickr. This is reasonable since α implies a prior
proportion of the causally-correlated part in a particular network as discussed in Equation 9. (b) G-
CENSOR is relatively robust to β. It’s seen that G-CENSOR can improve base models’ performance
under various values of β. For sensitivity analysis with GraphSAGE and GIN, refers to Appendix F.
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Table 3: Comparison in node classification accuracy on out-of-distribution test set. Bold and
underline indicate the best the second best performance, respectively. ∆ represents the average
accuracy degradation of base GNNs on the testing set compared to the accuracy on the validation
set. ↑ represents the average gain of G-CENSOR against the best SOTA GCL methods.

Method CiteSeer Computers Cora Full Cora ML DBLP Flickr Photo PubMed

∆ -1.21% 4.76% -46.81% -5.18% 15.80% -12.31% -19.19% -0.09%
↑ 1.08% 0.88% 2.89% 0.54% 0.80% 2.95% 3.05% 0.74%

SAGE

BASE 90.29±0.68 82.89±12.99 31.88±5.88 80.05±4.98 91.22±0.83 46.66±0.37 75.57±6.13 87.26±0.52

MVGRL 68.41±2.60 OOM OOM 51.24±6.09 86.90±1.43 TLE OOM 87.65±0.73
GRACE 89.77±0.48 91.15±1.12 32.34±2.88 83.24±3.70 91.67±0.52 46.58±0.56 77.65±5.59 87.88±0.56
GGA 89.77±1.60 88.85±3.26 33.78±4.04 83.64±2.92 91.97±1.46 46.29±0.43 76.12±8.19 88.06±0.62

BGRL 89.65±0.73 88.58±3.45 33.93±2.19 83.11±3.58 92.42±0.58 46.55±0.30 80.22±6.55 88.11±0.87

RGCL 89.29±1.69 51.95±40.35 25.46±4.34 79.63±5.02 91.99±0.99 36.80±0.10 49.18±28.98 86.86±0.33
AUTOGCL 89.61±0.75 86.44±7.83 32.12±1.32 82.27±5.09 91.74±0.60 36.69±4.84 74.76±3.27 87.02±0.58

G-CENSOR 91.15±1.03 92.62±0.23 36.44±3.38 84.36±3.99 93.31±0.30 47.51±0.24 84.42±2.11 88.77±0.39

GAT

BASE 89.98±0.91 89.98±4.48 36.99±3.82 83.30±2.96 91.70±1.13 43.96±4.17 74.74±9.61 87.46±1.06

MVGRL 88.45±0.96 OOM OOM 81.96±3.96 92.07±1.04 TLE OOM 87.81±0.63
GRACE 88.93±1.00 93.15±1.08 39.87±4.66 84.19±2.74 93.14±0.32 47.38±0.60 86.14±2.50 87.74±0.34
GGA 90.05±0.97 93.27±0.49 40.28±1.63 84.75±2.73 92.96±0.45 46.79±0.44 86.80±3.12 88.26±0.29

BGRL 90.37±0.60 91.96±0.79 39.49±3.42 83.81±3.45 92.74±0.68 44.94±0.68 81.15±3.33 88.04±0.69

RGCL 88.37±1.61 55.5±37.86 22.75±3.24 79.01±4.49 92.40±0.71 37.67±3.49 66.25±10.34 86.94±0.36
AUTOGCL 89.96±0.64 91.97±1.02 37.96±3.01 82.67±4.03 92.41±0.42 46.20±2.46 85.35±3.06 87.44±0.48

G-CENSOR 91.44±0.75 93.29±0.45 40.19±2.00 85.35±1.84 93.40±0.50 47.22±0.35 85.98±1.73 88.62±0.32

GIN

BASE 88.97±1.17 90.15±1.84 31.24±3.57 80.51±5.39 89.93±1.16 44.54±2.47 72.64±10.94 88.17±0.61

MVGRL 86.85±1.82 OOM OOM 69.85±6.36 92.02±1.24 TLE OOM 87.64±0.75
GRACE 89.57±1.02 92.81±0.87 32.82±1.03 82.98±3.37 86.43±1.42 38.11±7.02 81.99±2.22 87.72±0.77
GGA 89.29±1.33 90.47±2.27 33.59±1.02 83.11±3.53 88.62±1.34 41.04±1.11 81.21±4.00 87.98±0.60

BGRL 89.49±0.49 91.96±0.73 34.74±2.35 82.29±3.29 91.02±1.37 38.22±5.15 77.82±10.65 88.19±0.54

RGCL 88.08±1.00 86.98±2.55 31.11±2.97 81.96±2.34 92.18±0.53 41.46±3.70 80.43±1.63 86.72±0.45
AUTOGCL 87.68±1.30 90.48±0.93 28.27±5.45 78.89±4.57 88.54±0.64 33.57±1.67 77.12±13.32 87.19±2.11

G-CENSOR 90.56±0.45 93.75±0.53 35.26±1.00 83.16±3.13 93.26±0.35 47.82±0.41 85.98±1.03 89.13±0.34
1 OOM means Out Of Memory (>32GB) and TLE means Time Limit Exceeded (seconds per epoch > 1000s)

(a) Sensitivity w.r.t hyperparameter α and β on all i.i.d split datasets with GAT.

(b) Sensitivity w.r.t hyperparameter α and β on all o.o.d split datasets with GAT.

Figure 5: Sensitivity analysis on hyperparameters with GAT as base model.

6 CONCLUSION

This paper proposes a novel graph contrastive learning framework G-CENSOR, an approach leverag-
ing task-oriented counterfactual views generation, to enhance the performance and generalizability
of GNNs on node property prediction tasks without any change on the model structure and the in-
ference flow. Through extensive experiments with in-depth analysis, we demonstrate the superiority
of G-CENSOR. However, the counterfactual data synthesis can further be improved based on coun-
terfactual inference, i.e., the three steps of abduction, action and prediction in a structural causal
model (Pearl, 2009). We will explore it in the future work.
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Valko. Bootstrapped representation learning on graphs. In ICLR 2021 Workshop on Geometrical and Topo-
logical Representation Learning, 2021.
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Appendices
A EGO-GRAPH GENERATION PROCESS

A.1 INTERPRETATIVE EXAMPLES FOR 1-HOP EGO-GRAPH

Example 1 (For Figure 2a). Assuming this is a paper impact (y) prediction task defined on a citation
graph. Generally, the type of v affects the graph structure composed of cited papers (E1 with V1),
e.g., survey papers are more likely to be cited than general papers. Meanwhile the type of v affects
the graph structure composed of references (E0 with V0), e.g., survey papers have more references
than general papers. While being cited more (E1) stably indicating higher impact (y), a GNN use
all observed structures (G) is prone to learn that papers with more reference (E0) tend to get higher
impact (y), and this relationship can be considered as a spurious correlation.

Example 2 (For Figure 2b). Assuming this is an image category (y) prediction task, e.g. landscape
and city, defined on an image graph. In this graph, an edge exists if two images share some common
properties, e.g., location, producer and object (McAuley & Leskovec, 2012). (E1 with V1) can be
images with same objects (related to category) and (E0 with V0) can be images with same producers
or locations. While category (y) stably indicating specific objects thus generate connections between
(y) and (E1), a GNN use all observed structures (G) may learn a joint probability distribution on
category (y) and images sharing same producers or locations (E0). This joint probability distribution
can be considered as a spurious correlation.

Example 3 (For Assumption 1). In Example 1, all highly-cited papers are necessarily considered as
high-impact papers, but there can exist a high-impact paper without many references. Similarly, in
Example 2, an image must have connections to those images that belong to the same category, but
an landscape image can be produced by a photographer who often takes pictures of human models.
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A.2 CAUSAL DIAGRAMS FOR K-HOP EGO-GRAPH GENERATION PROCESS

Let us explain a k-hop ego-graph generation process by a hierarchical traversal allowing revisiting
a node or an edge. The causal diagrams for k-hop ego-graph are shown in Figure 6.

Figure 6a. In this case we assume an edge must have at least one path to the ego, where edges on
the path are all causal w.r.t a task, when the edge itself is an causal edge w.r.t. the task. This ensures
that the causal ego-subgraph is a connected graph. Now if the ego-graph is acyclic, there are three
type of edges: (a) edges whose path(s) to the ego only include causal edges (i.e., edges indicated
by the arrows in the upper row), (b) edges whose path(s) to the ego include no causal edges (i.e.,
edges indicated by the arrows in the bottom row), and (c) edges whose path(s) to the ego include
both causal and non-causal edges (i.e., edges formed by the slanted arrows). Edges of the first type
can be causally-correlated since they determine the label y, but edges of the second type can be
spuriously-correlated since the association path from them to the label y exist fork (confounding)
patterns joined by v. As for edges of the last type, they and label y can be also confounded by Vi,1,
where i ∈ {0, 1, . . . , k− 1}. If the ego-graph has cycles, which means there exists at least one edge
can be included in multiple Ei,j, where j ∈ {0, 1}. This edge is causally-correlated to the label y if
and only if max(j) = 1, which indicates that this edge is part of causes of the label y, otherwise it is
spuriously-correlated to the label y since it can be confounded by v like other normal edges in Ei,0.

Figure 6b. Actually high-order edges in this case has no causal relationship to the label y and they
can be confounded by either v or V1,1.

(a)

(b)

Figure 6: Causal diagrams (Pearl, 2009) for the k-hop (k > 1) ego-graph generation process. A
solid arrow from a to b represents a causal relationship from a to b. The two dashed line with text
GNN mean that we usually use the whole observed graph (G) to predict task label y.

B BASE MODELS

GraphSAGE (abbreviated as SAGE). Hamilton et al. Hamilton et al. (2017) proposed three vari-
ants and we utilize the simple but popular version, SAGE-mean, which directly aggregates neighbors
by averaging the embeddings of them. In particular, the strategy of SAGE-mean is defined as fol-
lows:

hk
v ← σ

(
W k ·

(
hk−1
v

∥∥Mean
(
{hk−1

v } ∪ {hk−1
u ,∀u ∈ N (v)}

)))
,

where W k is the linear transformation weight matrix in the k-th layer, hk
v is the embedding of node

v in the k-th layer and N (v) is the neighbors of node v.

GAT. A graph attention network model employs a multi-head attention mechanism on the ag-
gregation of neighbors’ features, which enables specifying different weights to different neigh-
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bors Veličković et al. (2018). The aggregation strategy is defined as:

hk
v ←

M∥∥∥∥
m=1

σ1

 ∑
∀u∈{v}∪N (v)

αmk
vu Wmkhk−1

u

 ,

where σ1 is the ELU Clevert et al. (2016) function, Wmk is the linear transformation weight matrix
of m-th head in the k-th layer, and

αmk
vu =

exp
(
σ2
(
amk

[
Wmkhk−1

v ∥Wmkhk−1
u

]))∑
∀i∈{v}∪N(v) exp

(
σ2
(
amk

[
Wmkhk−1

v ∥Wmkhk−1
i

])) ,
where σ2 is the LeakyReLU Maas et al. (2013) function and amk is the weight vector of the m-th
head in the k-th layer.

GIN. Graph Isomorphism Network, abbreviated as GIN, captures graph structure differences by
summing neighbors’ features, which provably maps any two graphs that the Weisfeiler-Lehman
test Leman & Weisfeiler (1968) of isomorphism decides as non-isomorphic, to different embed-
dings Xu et al. (2019). The updating strategy is shown below

hk
v ← MLPk

(1 + ϵk
)
hk−1
v +

∑
∀u∈N(v)

hk−1
u

 ,

where MLPk is a multi-layer perceptrons Hornik et al. (1989) for the k-th layer, and ϵk can be a
learnable parameter or a fixed scalar in the k-th layer.

C REPARAMETERIZATION TRICK

Following (Maddison et al., 2017), denoting 1
m

∑m
i=1 MLPi

(
euς|Gv

; Λi

)
in Equation (4) by suς|Gv

,
in the training stage, the probability of the edge (u, ς) being part of E+

v is given by

θtrainuς|Gv
= S

(
log(ϵ)− log(1− ϵ) + suς|Gv

λ

)
,

where S(x) = 1
1+e−x and ϵ ∼ U(0, 1) is an independent random variable that obeys a standard

uniform distribution. λ is the temperature parameter to control the approximation. When λ → 0,
θtrainuς|Gv

is binarized with

lim
τ→0

P
(
θtrainuς|Gv

= 1
)
=

exp
(
suς|Gv

)
1 + exp

(
suς|Gv

) .
D REAL RUNTIME EVALUATION

The real runtime of a model on a dataset is calculated by averaging the minimum one-epoch runtime
of the three base GNNs at all settings on the dataset (As shown in Table 4). Note that all the experi-
ments were conducted on the same platform described in Appendix E.3. It’s seen that G-CENSOR
actually achieves a very fast speed compared to other baselines. This should be attributed to
the two reasons mentioned before, i.e., simple edge probability estimator and no need to contrast
in-batch samples.

E EXPERIMENTAL SETUP

E.1 DATASETS

In the five citation networks, i.e., Cora Full, Cora ML, CiteSeer, DBLP and PubMed, nodes rep-
resent papers and edges represent citation links. Given paper text as bag-of-words node features,
the task is to predict the topic of a paper. In the two product networks, i.e., Computers and Photo,
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Table 4: Real runtime (seconds per epoch) of all the methods on all the datasets.

Dataset BASE MVGRL GRACE GCA BGRL RGCL AUTOGCL G-CENSOR

CiteSeer 2.04±0.09 2.50±0.41 1.75±0.10 3.05±0.16 2.80±0.57 1.71±0.07 2.03±0.13 2.61±0.52
Computers 5.02±0.11 OOM 13.13±2.64 10.35±0.19 12.16±0.23 53.4±12.15 8.16±0.49 9.95±0.22
Cora Full 8.41±0.11 OOM 29.43±6.99 22.80±4.71 31.25±11.73 31.6±0.47 12.6±1.17 12.31±0.94
Cora ML 2.10±0.17 3.25±0.12 2.60±0.46 2.87±0.74 2.71±0.16 2.12±0.06 2.05±0.07 2.36±0.54

DBLP 3.66±0.17 23.36±0.53 9.67±0.70 16.17±5.19 9.22±0.55 11.15±0.57 5.04±0.15 4.92±0.85
Flickr 9.81±0.59 >1000 28.35±3.13 46.36±15.96 59.72±36.26 110.66±15.47 17.91±1.00 14.93±2.43
Photo 3.06±0.06 OOM 5.64±1.28 4.45±0.07 5.53±0.09 15.35±2.49 4.01±0.11 4.42±0.18

PubMed 3.13±0.15 27.12±1.32 8.20±1.23 7.37±1.59 8.10±1.22 10.02±0.19 4.49±0.26 4.56±0.42

nodes represent products and edges represent that two goods are frequently bought together. Given
product reviews as bag-of-words node features, the task is to map goods to their respective product
category. In the image network, i.e., Flickr, nodes represent images and edges represent that two
images share some common properties (e.g., same geographic location and comments by the same
user, etc.). Given bag-of-word representation of the images as node features, the task is to predict
the type of an image.

Table 5: Datasets statistics

Dataset #nodes #edges #features #classes

Cora Full 19,793 126,842 8,710 70
Cora ML 2,995 16,316 2,879 7
CiteSeer 4,230 10,674 602 6
DBLP 17,716 105,734 1,639 4

PubMed 19,717 88,648 500 3
Computers 13,752 491,722 767 10

Photo 7,650 238,162 745 8
Flickr 89,250 899,756 500 7

E.2 BASELINES

Base models, i.e., SAGE, GAT and GIN, refer to Appendix B.

GCL methods with uniform or adaptive data augmentation:

1. MVGRL(Hassani & Ahmadi, 2020): Multi-View Graph Representation Learning, an ap-
proach contrasting encodings from first-order neighbors and a general graph diffusion and
also contrasting node and graph encodings across views.

2. Grace(Zhu et al., 2020): GRAph Contrastive rEpresentation learning, an approach gen-
erating two graph views by corruption and learn node representation by maximizing the
agreement of node representations in these two views.

3. GCA(Zhu et al., 2021): Graph Contrastive representation learning with Adaptive augmen-
tation, an approach designing augmentation scheme based on node centrality measures to
highlight important connective structures.

4. BGRL(Thakoor et al., 2021): Bootstrapped Graph Latents, an graph representation learn-
ing method that learns by predicting alternative augmentations of the input. BGRL uses
only simple augmentations and alleviates the need for contrasting with negative examples,
and is thus scalable by design.

GCL methods with learnable data augmentation:

1. RGCL(Li et al., 2022): Rationale-aware Graph Contrastive Learning, an unsupervised
approach using a rationale generator to reveal salient structures about graph instance-
discrimination as the rationale, and then creating rationale-aware views for contrastive
learning. Note that this method, designed for graph property prediction tasks, integrates
the views generation module and the inference flow of the predictor. Therefore, we re-
gard node property prediction tasks as ego-graph property prediction tasks to adapt to this
method.
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2. AutoGCL(Yin et al., 2022): Automated Graph Contrastive Learning, an approach employ-
ing a set of learnable graph view generators orchestrated by an auto augmentation strategy,
where every graph view generator learns a probability distribution of graphs conditioned
by the input. This method is proposed for graph property prediction tasks. However, it can
be directly transferred to node property tasks since its views generator and task predictor
are separates.

Note that while our work can be easily enhanced by considering node feature transformation in
views generation, we focus on structure transformation in this work, thus feature transformation is
disabled in all models including G-CENSOR.

E.3 IMPLEMENTATION DETAILS

Experiments were conducted on a Ubuntu 18.04 server with one Nvidia Tesla V100-32G GPU. And
the code was implemented using python 3.8 with PyG 2.0.4 and Pytorch 1.11 that used CUDA
version 11.3. For all datasets, the number of sampled neighbors was set to 64. The batch size was
set to 64 for all models and an AdamW optimizer (Loshchilov & Hutter, 2019) with learning rate
0.01 was used to train all models.

For a fair comparison, the number of layers of base GNNs was set to 2 for all baselines and all
contrastive baselines were used as an auxiliary task (Xie et al., 2022). The weight of the contrastive
loss was searched from 0.1 to 0.9. Moreover, for all baselines with hyperparameters of edge drop
probabilities and temperature, we searched edge drop probabilities over [0.1, 0.2, 0.3, 0.4] and
searched temperatures over [0.1, 0.2], unless the original paper reported the best choices on the
datasets. As for G-CENSOR, m in Equation 4 was simply set to 4, α in Equation 9 was searched
from 1e-5 to 1e-1, δmargin in Equation 7 was searched over [0.5, 0.1], τ in Equation 10 was searched
over [0.05, 0.1, 0.15, 0.2], and β in Equation 11 was searched from 0.1 to 0.5.

F SENSITIVITY ANALYSIS

This section displays the sensitivity analysis on hyperparameters for GraphSAGE and GIN.
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(a) Sensitivity w.r.t hyperparameter α and β on all i.i.d split datasets with GraphSAGE.

(b) Sensitivity w.r.t hyperparameter α and β on all o.o.d split datasets with GraphSAGE.

(c) Sensitivity w.r.t hyperparameter α and β on all i.i.d split datasets with GIN.

(d) Sensitivity w.r.t hyperparameter α and β on all o.o.d split datasets with GIN.

Figure 7: Sensitivity analysis on hyperparameters with GraphSAGE and GIN.
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