
Incremental Gradient Descent with Small Epoch Counts
is Surprisingly Slow on Ill-Conditioned Problems

Yujun Kim * 1 Jaeyoung Cha * 1 Chulhee Yun 1

Abstract
Recent theoretical results demonstrate that the
convergence rates of permutation-based SGD
(e.g., random reshuffling SGD) are faster than
uniform-sampling SGD; however, these studies
focus mainly on the large epoch regime, where
the number of epochs K exceeds the condition
number κ. In contrast, little is known when K is
smaller than κ, and it is still a challenging open
question whether permutation-based SGD can
converge faster in this small epoch regime (Safran
& Shamir, 2021). As a step toward understanding
this gap, we study the naive deterministic variant,
Incremental Gradient Descent (IGD), on smooth
and strongly convex functions. Our lower bounds
reveal that for the small epoch regime, IGD can
exhibit surprisingly slow convergence even when
all component functions are strongly convex. Fur-
thermore, when some component functions are al-
lowed to be nonconvex, we prove that the optimal-
ity gap of IGD can be significantly worse through-
out the small epoch regime. Our analyses reveal
that the convergence properties of permutation-
based SGD in the small epoch regime may vary
drastically depending on the assumptions on com-
ponent functions. Lastly, we supplement the paper
with tight upper and lower bounds for IGD in the
large epoch regime.

1. Introduction
Many machine learning and deep learning tasks can be
formulated as finite-sum minimization problems:

min
x∈Rd

F (x) :=
1

n

n∑
i=1

fi(x),

*Equal contribution 1Kim Jaechul Graduate School of AI, Korea
Advanced Institute of Science and Technology. Correspondence
to: Chulhee Yun <chulhee.yun@kaist.ac.kr>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

where the objective F (x) is the average of a finite number
of component functions fi(x). In modern deep learning ap-
plications, the number of components n is often extremely
large, making full gradient optimization methods compu-
tationally expensive. To address this, stochastic gradient
descent (SGD) and its variants have gained attention for
their computational efficiency and scalability (Lan, 2020).

SGD methods can be categorized based on the strategy used
to select the component index i(t) at iteration t: (1) with-
replacement SGD, and (2) permutation-based SGD. In with-
replacement SGD, also known as uniform-sampling SGD,
each index is drawn independently from a uniform distribu-
tion over {1, 2, . . . , n}. This approach has been the primary
focus of theoretical studies, as it guarantees the stochastic
gradient at each step to be an unbiased estimator of the
gradient of the overall objective F (Bubeck et al., 2015).

In contrast, permutation-based SGD—where indices are
sampled in a shuffled order, also referred to as without-
replacement SGD or shuffling gradient methods—is more
commonly used in practice. Its popularity arises from strong
empirical performance and simplicity of implementation,
making it the standard choice for real-world machine learn-
ing applications. However, despite its widespread use, the
theoretical understanding of permutation-based SGD had
remained underdeveloped until recently, due to challenges
arising from the lack of independence between iterates.

Nevertheless, recent advances have successfully addressed
the theoretical challenges of permutation-based SGD
(Haochen & Sra, 2019; Nagaraj et al., 2019). For exam-
ple, Random Reshuffling (RR), one of the most common
permutation-based methods, randomly shuffles the indices at
the start of each epoch. It has been theoretically shown that
RR achieves a convergence rate of O(1/nK2) for smooth
and strongly convex objectives, which is faster than the rate
O(1/nK) of with-replacement SGD, where K is the num-
ber of epochs (Ahn et al., 2020; Mishchenko et al., 2020).

While these results suggest that RR is theoretically superior
to with-replacement methods, the story is far from complete.
Existing analyses of permutation-based SGD are mostly
restricted to the large epoch regime, where K is sufficiently
large relative to the problem’s condition number κ (defined

1

Incremental Gradient Descent with Small Epoch Counts is Surprisingly Slow on Ill-Conditioned Problems

in Section 2.1). However, this regime is often unrealistic
in practical machine learning scenarios, especially when
training large language models. Neural network training
typically involves highly ill-conditioned optimization land-
scapes (Li et al., 2018; Ghorbani et al., 2019), where κ is
large, and K is comparatively small due to computational
constraints. In such cases, the small epoch regime, where
K is smaller than κ, becomes significantly more relevant,
yet its convergence behavior remains poorly understood.

In fact, Safran & Shamir (2021) establish a lower bound in
strongly convex objectives for RR, revealing that RR can-
not outperform with-replacement SGD in the small epoch
regime. This highlights the need to further investigate
permutation-based methods under small epoch constraints
and explore whether they can outperform with-replacement
SGD in such settings. However, analyzing permutation-
based SGD in the small epoch regime poses significant
theoretical challenges (as explained in Section 2.4). Even
for Incremental Gradient Descent (IGD) (Bertsekas, 2011;
Gurbuzbalaban et al., 2019), the simplest permutation-based
SGD method where components are processed sequentially
and deterministically from indices 1 to n in each epoch, its
convergence behavior in this regime is not well-understood.

In this study, as an initial step toward understanding the
convergence behavior of permutation-based SGD in the
small epoch regime, we focus on the convergence analysis
of IGD. Our study presents convergence rates for both the
small epoch regime and the large epoch regime, offering a
result that highlights the distinct behavior of permutation-
based SGD in the small epoch regime.

1.1. Summary of Our Contributions

Our analysis focuses on the setting where the objective F is
smooth and strongly convex, and the step size is kept con-
stant throughout the optimization process. We summarize
our contributions as follows, where the convergence rates
reflect the function optimality gap at the final iterate. For a
clear overview, we refer readers to Table 1 and Figure 1.

• In Section 3, we provide convergence analyses of IGD in
the small epoch regime. We establish lower bound con-
vergence rates under three scenarios (Theorems 3.1, 3.3
and 3.5): (i) strongly convex components sharing the same
Hessian, (ii) strongly convex components, and (iii) allow-
ing nonconvex components. Additionally, we provide the
upper bound convergence rates for the first two cases (The-
orem 3.2, Proposition 3.4). Our results indicate that even
with stronger assumptions, IGD remains slower than the
known upper bound of with-replacement SGD. Further-
more, IGD exhibits surprisingly slow convergence even
when all components are strongly convex, and the inclusion
of nonconvex components further amplifies this slowdown.

• In Section 3.2, we study whether a suitable permutation
strategy can accelerate permutation-based SGD in the
small epoch regime. We prove that there exists a per-
mutation such that repeatedly using it in permutation-
based SGD can outperform with-replacement SGD (Theo-
rem 3.7). To our knowledge, this is the first result showing
the existence of a permutation-based SGD method that con-
verges faster than with-replacement SGD in this regime.

• In Section 4, we establish tight convergence rates for IGD
in the large epoch regime. We derive matching lower
and upper bound rates, up to polylogarithmic factors, for
scenarios where all components are convex or some are
nonconvex (Theorems 4.1, 4.3 and 4.4). Unlike in the small
epoch regime where nonconvex components significantly
slow convergence, the rate gap between these two scenarios
is only a factor of κ, revealing the clear distinction in the
behavior of IGD in the small and large epoch regimes.

2. Preliminaries
We start by introducing the basic notation used through-
out this paper. We use n to denote the number of com-
ponent functions and K to denote the total number of
epochs. The Euclidean norm is denoted by ∥ · ∥. For a
positive integer N ∈ N, we use [N] to represent the set
{1, 2, . . . , N}. The symbol q = poly(p1, . . . , ps) means
that q can be expressed as a finite sum of monomials of
the form pc1

1 pc2

2 · · · pcs
s , where each ci is a bounded real

number (which may be negative or non-integer). Similarly,
q = polylog(p1, . . . , ps) denotes a function expressible as
q =

∑
(c,c1,...,cs)

logc
∏

i∈[s] p
ci

i for bounded real c and ci.

Importantly, while existing works use O and Ω (or Õ and Ω̃
to hide polylogarithmic factors) to express the growth rates
of the convergence rates, we adopt the symbols ≲ and ≳ in
this paper to describe our results in better detail. Formally,
x ≲ y means that there exists a universal constant c > 0
such that x ≤ c · y · polylog(n,K, µ, L, . . .) holds for the
specified n, K, and other parameters; vice-versa, x ≳ y
means x ≥ c · y · polylog(n,K, µ, L, . . .). Unlike O and Ω,
which are often used to express the asymptotic behavior of
the rate as K → ∞, ≲ and ≳ here apply to all valid values
of K. The reason for using these symbols is that many of
the upper and lower bounds in this paper are established in
the small epoch regime, where the total number of epochs
K is explicitly bounded above by the condition number κ.

2.1. Definitions and Assumptions

We list definitions and assumptions that will be used to
describe the function class.

Definition 2.1 (Smoothness). A differentiable function F :
Rd → R is L-smooth, for some L > 0, if

∥∇F (x)−∇F (y)∥ ≤ L∥x− y∥, ∀x,y ∈ Rd.

2

Incremental Gradient Descent with Small Epoch Counts is Surprisingly Slow on Ill-Conditioned Problems

Table 1. Summary of our results. All upper bounds, except for Theorem 3.7, apply to arbitrary permutation-based SGD. Theorem 3.7
specifically applies to a permutation-based SGD method proposed in its theorem. All lower bound results apply to IGD.

Epoch Component Assumption Convergence Rate Gradient Assumption

Small
K ≲ κ

Strongly Convex
Identical Hessian

O
(

G2
∗

µK

)
, Theorem 3.2 ∥∇fi(x

∗)∥ ≤ G∗

Ω
(

G2

µK

)
, Theorem 3.1 ∥∇fi(x)−∇F (x)∥ ≤ G,∀x

Strongly Convex
O
(

L2G2
∗

µ3K2

)
, Mishchenko et al. (2020) ∥∇fi(x

∗)∥ ≤ G∗

Ω
(

LG2

µ2 min{1, L2

µ2K4 }
)

, Theorem 3.3 ∥∇fi(x)−∇F (x)∥ ≤ G+ ∥∇F (x)∥ , ∀x

Potentially Nonconvex Ω
(

G2

L

(
1 + L

2µnK

)n)
, Theorem 3.5 ∥∇fi(x)−∇F (x)∥ ≤ G+3 ∥∇F (x)∥ , ∀x

Strongly Convex O
(

H2L2G2
∗

µ3n2K2

)
, Theorem 3.71 ∥∇fi(x

∗)∥ ≤ G∗

Large

K ≳ κ

Convex
O
(

LG2
∗

µ2K2

)
, Liu & Zhou (2024a) 1

n

∑n
i=1 ∥∇fi(x

∗)∥ ≤ G∗

Ω
(

LG2

µ2K2

)
, Theorem 4.1 ∥∇fi(x)−∇F (x)∥ ≤ G,∀x

Potentially Nonconvex
O
(

L2G2

µ3K2

)
, Theorem 4.42 ∥∇fi(x)−∇F (x)∥ ≤ G+P ∥∇F (x)∥ , ∀x

Ω
(

L2G2

µ3K2

)
, Theorem 4.33 ∥∇fi(x)−∇F (x)∥ ≤ G+κ ∥∇F (x)∥ , ∀x

1 Only shows the existence of a permutation that guarantees this convergence, and H = Õ(
√
d).

2 Requires K ≳ (1+P)κ. 3 Requires K ≥ max{κ3/n2, κ3/2} and κ ≥ n.

Definition 2.2 (Strong Convexity). A differentiable function
F : Rd → R is µ-strongly convex, for some µ > 0, if

F (y) ≥ F (x) + ⟨∇F (x),y − x⟩+ µ

2
∥y − x∥2

for all x,y ∈ Rd. If this inequality holds with µ = 0, we
say that F is convex.

Now, we define a common assumption on the objective
function used in our analyses.
Assumption 2.3 (Common Assumption). The overall func-
tion F : Rd → R is µ-strongly convex and each component
function fi is L-smooth.

Additionally, we define the condition number of F as κ :=
L
µ , which is closely related to the problem geometry. We
note that component smoothness is commonly utilized in
the literature studying permutation-based SGD (Ahn et al.,
2020; Mishchenko et al., 2020; Lu et al., 2022a; Liu & Zhou,
2024a).

Lastly, we introduce assumptions on the gradients.
Assumption 2.4 (Bounded Gradient Errors). There exists
constants G ≥ 0 and P ≥ 0 such that, for all x ∈ Rd and
i ∈ [n],

∥∇fi(x)−∇F (x)∥ ≤ G+ P∥∇F (x)∥.

Assumption 2.5 (Bounded Gradients at the Optimum).
There exists a constant G∗ ≥ 0 such that, for all i ∈ [n], the
gradient norm of each component function satisfies

∥∇fi(x
∗)∥ ≤ G∗.

Our results require either Assumption 2.4 or Assumption 2.5.
Notably, whenever Assumption 2.4 holds, Assumption 2.5
also holds with G∗ = G because ∇F (x∗) = 0.

2.2. Algorithms

Algorithm 1 Permutation-Based SGD

Input: Initial point x0, Step size η, Number of epochs K
Initialize x1

0 = x0

for k = 1 to K do
Generate a permutation σk : [n] → [n]
for i = 1 to n do
xk
i = xk

i−1 − η∇fσk(i)(x
k
i−1)

end for
xk+1
0 = xk

n

end for
Output: xK

n

We present the basic pseudocode for permutation-based
SGD methods in Algorithm 1. At the start of k-th epoch, a
permutation σk : [n] → [n] is generated. The algorithm then
updates the iterate according to the component functions in
the order fσk(1), fσk(2), . . . , fσk(n). The method by which
the permutation σk is generated determines the specific
variant of permutation-based SGD. Here, we describe some
popular methods studied in the literature:

• Incremental Gradient Descent (IGD, Algorithm 2):
Each σk is the identity permutation.

• Single Shuffling (SS): The first permutation σ1 is drawn
uniformly at random and reused for all epochs.

• Random Reshuffling (RR): Each σk is independently
drawn uniformly at random in every epoch.

• Gradient Balancing (GraB (Lu et al., 2022a)): Each σk

is selected based on observations at the previous epoch.

It has been widely studied that the performance guaran-

3

Incremental Gradient Descent with Small Epoch Counts is Surprisingly Slow on Ill-Conditioned Problems

tees vary drastically with the choice of permutation strategy
(Mohtashami et al., 2022; Lu et al., 2022b). In general,
one might expect IGD to converge slowly, as the identity
mapping could represent the worst-case scenario for con-
vergence. In contrast, GraB can be faster than IGD, SS, or
RR as it adaptively selects effective permutations over time.

In this paper, we derive upper bound results for arbitrary
permutation-based SGD, and the lower bound results for
IGD. These results allow us to characterize how much the
convergence of permutation-based SGD deteriorates when
permutations are chosen in the worst-case manner. For
further clarification of the relationship between the upper
and the lower bound, we point readers to Appendix A.3.

2.3. What is known so far?

For simplicity, in this section, we use the conventional sym-
bols O(·) and Ω(·) (even for the small epoch regime) to
denote upper and lower bounds, respectively. The symbol
Õ(·) hides the dependency on polylogarithmic factors. Con-
vergence rates are expressed in terms of n, K, µ, and L to
represent the optimality gap of the function.

Permutation-Based SGD. Numerous studies have ex-
plored the convergence of permutation-based SGD (Bert-
sekas, 2011; Recht & Ré, 2012; Haochen & Sra, 2019;
Nagaraj et al., 2019; Gurbuzbalaban et al., 2019; Safran &
Shamir, 2020; 2021; Ahn et al., 2020; Mishchenko et al.,
2020; Rajput et al., 2020; 2022; Nguyen et al., 2021; Lu
et al., 2022a; Cha et al., 2023; Liu & Zhou, 2024a; Cai &
Diakonikolas, 2024). Here, we summarize recent advances
in the convergence analysis of the last iterate for strongly
convex objectives, and we refer readers to these works for a
more comprehensive understanding.

For both RR and SS, under the assumption of component
convexity, Mishchenko et al. (2020) derive a convergence
rate of Õ(L2

µ3nK2). Later, Liu & Zhou (2024a) improve this
result by a factor of κ, showing a rate of Õ(L

µ2nK2). The
corresponding lower bounds, Ω(L

µ2nK2), are established by
Cha et al. (2023) for RR and Safran & Shamir (2021) for
SS, thereby fully closing the gap between the upper and
lower bounds only up to polylogarithmic factors.

There are also several works that derive upper bounds appli-
cable to arbitrary permutation-based SGD, which naturally
encompass the convergence of IGD. Under the assumption
of component convexity, Liu & Zhou (2024a) establish a
rate of Õ(L

µ2K2), which is slower than the rate for RR by a
factor of n. For the matching lower bound, Safran & Shamir
(2020) derive a rate of Ω(1

µK2) for IGD, revealing a gap of
κ between the upper and lower bounds.

Recent research (Rajput et al., 2022; Lu et al., 2022b;
Mohtashami et al., 2022) has shifted toward exploring

permutation-based SGD methods that go beyond RR, focus-
ing on manually selecting permutations that induce faster
convergence rather than relying on random permutations.
A notable work by Lu et al. (2022a) proposes a practical
permutation-based SGD algorithm called GraB and pro-
vides a theoretical guarantee of convergence at the rate of
Õ(L2

µ3n2K2)—a strictly faster rate than RR. Later, Cha et al.
(2023) establishes a matching lower bound, confirming that
GraB is optimal (for low-dimensional functions).

We note that most of these works require a condition on K
of the form K ≥ κα log(nK) with α ≥ 1.

Small Epoch Analysis. The convergence behavior of
permutation-based in the small epoch regime was first ex-
plicitly investigated by Safran & Shamir (2021). They pro-
vide both upper and lower bounds for RR and SS in both the
small and large epoch regimes, with the rates matching ex-
actly up to polylogarithmic factors for quadratic objectives
with commuting component Hessians. Interestingly, in the
small epoch regime, both RR and SS achieve a convergence
rate of Θ(1

µnK), equivalent to the known rate of Õ(1
µT)

for with-replacement SGD, where the total number of itera-
tions T can be expressed as nK in the without-replacement
setting (Shamir & Zhang, 2013; Liu & Zhou, 2024b).

To the best of our knowledge, no meaningful upper bound
result with a rate of Õ(1

µnK) has been established for
permutation-based SGD in the small epoch regime. This
rate is of significant importance, as it corresponds to the
rate for with-replacement SGD and matches the best-known
lower bound for RR in this regime (Safran & Shamir, 2021;
Cha et al., 2023). The upper bounds provided by Safran
& Shamir (2021) for RR and SS are restricted to quadratic
objectives with additional assumptions, and therefore, do
not differ significantly from the scenario of a 1-dimensional
quadratic objective.

Some knowledgeable readers may point to the results
of Mishchenko et al. (2020), which present the conver-
gence rates for RR without imposing any constraint on
K. Specifically, under component convexity, Theorem 2 of
Mishchenko et al. (2020) states

E
[∥∥xK

n − x∗∥∥2] = Õ
(
exp

(
− µK√

2L

)
D2 +

L

µ3nK2

)
,

where D := ∥x0 − x∗∥. However, we believe that Theo-
rem 2 does not provide a tight bound in the small epoch
regime for two reasons. First, the polynomial term induces
the function optimality gap of Õ(L2

µ3nK2), which is slower

than the lower bound rate for RR by a factor of κ2

K . Sec-
ond, as K decreases below κ, the exponential term grows
rapidly and dominates, deviating substantially from the rate
of Õ(1

µnK). While their Theorem 1 improves the exponen-
tial term by assuming a strong convexity of components, it
leaves the polynomial term unchanged. Also, a more recent

4

Incremental Gradient Descent with Small Epoch Counts is Surprisingly Slow on Ill-Conditioned Problems

result by Liu & Zhou (2024a) (Theorem 4.6) refines the
polynomial term and also improves the exponential term
to exp (−K/κ)LD2

K . However, since the term inside the
exponential remains unchanged, this still fails to reveal a
tight bound when K is small.

While Koloskova et al. (2024) derive an upper bound con-
vergence rate for permutation-based SGD that does not rely
on large K for nonconvex objectives, we were unable to
extend their proof techniques to the strongly convex setting
to yield a rate of Õ(1

µnK).

2.4. Why Do Existing Bounds Require Large Epochs?

To understand the challenges in establishing upper bounds
for permutation-based SGD, it is important to observe that,
unlike with-replacement SGD, permutation-based SGD uses
each component function exactly once per epoch. There-
fore, n steps of update in permutation-based SGD can be
expressed as an approximation of gradient descent on the
overall objective, combined with a cumulative error term.
Much of the prior literature on establishing the upper bounds
for permutation-based SGD focuses on capturing the “cu-
mulative error” effect within a single epoch.

Technically, to show that the cumulative error within an
epoch is small, the step size must be sufficiently small
to ensure that the iterate does not move too far during
a single epoch. Specifically, the step size must be less
than O(1/nL), where L represents the smoothness parame-
ter (Mishchenko et al., 2020; Liu & Zhou, 2024a). However,
when the number of epochs K is small, the step size should
be larger in order to bring the iterate close to the optimal
point. In fact, the step size should be at least as large as a
value proportional to 1/K.

These two requirements—the need for a small step size to
control error within a single epoch and the need for a larger
step size to achieve fast convergence when K is small—lead
to a conflict. Consequently, existing analyses generally hold
only when K is sufficiently large. While some analyses are
valid even when K is small, their bounds are not tight as
discussed in the previous subsection.

3. IGD in Small Epoch Regime
We have highlighted that studying permutation-based SGD
in the small epoch regime, where the total number of epochs
K satisfies K ≲ κ, is both underexplored and highly
challenging, despite its practical relevance. As an initial
step toward understanding its convergence behavior in this
regime, we investigate IGD, the simplest and deterministic
permutation-based SGD method. We explore this regime un-
der three distinct scenarios: (i) each component is strongly
convex with a common Hessian, (ii) each component is
strongly convex, and (iii) some components may be noncon-

vex. For each scenario, we establish a convergence lower
bound and demonstrate degradation in convergence.

3.1. Convergence Analysis of IGD

We introduce our first lower bound result of IGD in the
small epoch regime.

Theorem 3.1. For any n ≥ 2, κ ≥ 2, and K ≤ 1
2κ, there ex-

ists a 3-dimensional function F satisfying Assumptions 2.3
and 2.4 with P = 0, where each component function shares
the same Hessian, i.e., ∇2fi(x) = ∇2F (x) for all i ∈ [n]
and x ∈ R3, along with an initialization point x0, such that
for any constant step size η, the final iterate xK

n obtained
by Algorithm 2 satisfies

F (xK
n)− F (x∗) ≳

G2

µK
.

The proof of Theorem 3.1 is presented in Appendix B.1.
Note that if all component functions share the same Hes-
sian, they are also µ-strongly convex. To the best of our
knowledge, the previous best lower bound rate for IGD in
this setting was G2

µK2 (Safran & Shamir (2020)), and Theo-
rem 3.1 improves it by a factor of K. Additionally, RR has
a lower bound of G2

µnK (Safran & Shamir (2021)), and the
optimal permutation-based SGD method has a lower bound
of LG2

µ2n2K2 (Cha et al. (2023)) in the same setting.

For with-replacement SGD, the known upper bound on
the function optimality gap is G2

µnK (Liu & Zhou, 2024b),

which is faster than the rate G2

µK in Theorem 3.1 by a factor
of n. We emphasize that this comparison is made under
conditions advantageous to IGD, as the lower bound from
Theorem 3.1 assumes all component functions share the
same Hessian, while the upper bound for with-replacement
SGD does not require such a condition. However, this
comparison has some subtleties: the upper bound rate is
derived under a varying step size scheme, leaving open
the possibility that IGD can converge faster under such a
scheme. For a more complete comparison, it would be
important to extend Theorem 3.1 to the varying step size
setting, which we leave for future work.

Next, we present the upper bound for arbitrary permutation-
based SGD methods when each component is 1-dimensional
and shares the same Hessian.

Theorem 3.2. Let n ≥ 1, κ
n ≲ K ≤ κ, and an initialization

point x0. Suppose F is a 1-dimensional function satisfying
Assumptions 2.3 and 2.5. Assume that each component
function fi shares the same Hessian for all i ∈ [n] and
x ∈ R. Then, for any choice of permutation σk in each
epoch, the final iterate xK

n obtained by Algorithm 1 with the

step size η = 1
µnK max

{
log
(

L|x0−x∗|
G∗

)
, 1
}

satisfies

F (xK
n)− F (x∗) ≲

G2
∗

µK
.

5

Incremental Gradient Descent with Small Epoch Counts is Surprisingly Slow on Ill-Conditioned Problems

The proof of Theorem 3.2 is in Appendix C.1. We note
that the minimum epoch requirement K ≳ κ

n is necessary
for valid analysis, as mentioned in Safran & Shamir (2021)
(Remark 2). While Theorem 3.2 additionally requires the
objective to be 1-dimensional due to technical challenges,
the bound can be directly applied to objectives with diagonal
Hessians, which aligns with the construction in the proof of
Theorem 3.1.

Indeed, the function class Theorems 3.1 and 3.2 apply to
is restrictive. However, our next theorem indicates that
the convergence of IGD deteriorates immediately when the
identical Hessian assumption is removed, even when each
component function remains strongly convex.

Theorem 3.3. For any n ≥ 3, κ ≥ 2, and K ≤ 1
16πκ,

there exists a 4-dimensional function F satisfying Assump-
tions 2.3 and 2.4 with P = 1, where each component func-
tion is µ-strongly convex, along with an initialization point
x0, such that for any constant step size η, the final iterate
xK
n obtained by running Algorithm 2 satisfies

F (xK
n)− F (x∗) ≳

LG2

µ2
min

{
1,

κ2

K4

}
.

Theorem 3.3 is a technically complex result, and we briefly
outline the key strategy here. We construct each compo-
nent function by applying a rotation, positioning each min-
imizer to form a regular n-polygon. The key idea is that,
with a carefully chosen initialization, the iterates preserve
rotational symmetry and also form a regular n-polygon,
maintaining a constant distance from the global minimizer
throughout the optimization process. The proof of Theo-
rem 3.3 is presented in Appendix B.2.

Compared to Theorem 3.1, Theorem 3.3 provides a consis-
tently larger lower bound. Specifically, depending on the
relationship between K and

√
κ, the bound in Theorem 3.3

is larger by a factor of either κK or κ3/K3, both exceeding
1 in the small epoch regime. When K = Θ(κ), both bounds
in Theorems 3.1 and 3.3 become G2

L .

Theorem 5 of Mishchenko et al. (2020) provides an upper
bound for IGD when all component functions are strongly
convex. We restate this result in Proposition 3.4, with a
slight modification to extend its applicability to arbitrary
permutation-based SGD methods.

Proposition 3.4 (Mishchenko et al. (2020), Theorem 5).
Let n ≥ 1, K ≳ κ

n , and x0 be the initialization point.
Suppose F is a function satisfying Assumptions 2.3 and 2.5
where each component function is µ-strongly convex. Then,
for any choice of permutation σk in each epoch, the final
iterate xK

n obtained by running Algorithm 1 with a step size

η = 2
µnK max

{
log
(

∥x0−x∗∥µK√
κG∗

)
, 1
}

, satisfies∥∥xK
n − x∗∥∥2 ≲

LG2
∗

µ3K2
.

The proof of Proposition 3.4 is presented in Appendix C.2.
The squared distance bound in Proposition 3.4 naturally
translates to a function optimality gap of L2G2

∗
µ3K2 . Although

Theorem 3.3 and Proposition 3.4 do not match in general,
they do align when K = Θ(

√
κ): in this case, both bounds

become the rates LG2

µ2 and LG2
∗

µ2 , achieving a tight match up
to polylogarithmic factors.

Now, we present the result for the case where nonconvex
components exist. While some slowdown in convergence is
expected, Theorem 3.5 reveals that it is far more drastic.

Theorem 3.5. For any n ≥ 4, κ ≥ 4, and K ≤ κ
4 , there ex-

ists a 2-dimensional function F satisfying Assumptions 2.3
and 2.4 with P = 3 such that for any constant step size
η, the final iterate xK

n obtained by running Algorithm 2
starting from the initialization point x0 = (D, 0) satisfies

F (xK
n)− F (x∗) ≳ min

{
µD2,

G2

L

(
1 +

L

2µnK

)n}
.

Our construction involves component functions that are con-
cave in particular directions. The proof of Theorem 3.5 is
presented in Appendix B.3. One distinction of this statement
is the explicit inclusion of the initial distance D. This depen-
dence cannot be removed unless the initial point is placed
exponentially far from the global minimum, which would
lead to an unfair comparison with upper bound theorems, as
they typically include a logD term in their bounds.

Roughly, an expression of the form (1+ a)b can be approxi-
mated by exp(ab). Applying this to (1 + κ

2nK)n, we obtain
the approximation exp(κ

2K). Thus, when K = Θ(κ), the
second term scales as G2

L , and as K decreases, it grows at
a rate exponential in κ

K . This contrasts with other bounds,
which typically exhibit polynomial dependence on κ

K .

To validate our findings, we conduct experiments on our
lower bound constructions in Appendix G. For Theorem 3.3,
we confirm that the iterates follow a circular trajectory, as in-
tended by the original design. For Theorem 3.5, we observe
that the function optimality gap for IGD skyrockets whereas
other permutation-based SGD methods remain robust in the
small epoch regime. To our knowledge, no upper bound
exists for RR in this setting with nonconvex components.
Based on experimental results for Theorem 3.5, we conjec-
ture that RR will theoretically exhibit robust convergence
in this nonconvex component setting, unlike IGD.

While our lower bound results are stated in terms of the func-
tion optimality gap to align with the form of upper bounds,
our proof can be directly extended to derive lower bounds
in terms of the distance to the optimal solution. Specifically,
the lower bounds on the distance metric

∥∥xK
n − x∗

∥∥ are:

G
µK , G

µ ·min
{
1, κ

K2

}
, and min

{
D, G

L

(
1 + L

2µnK

)n/2}
for Theorems 3.1, 3.3 and 3.5, respectively.

6

Incremental Gradient Descent with Small Epoch Counts is Surprisingly Slow on Ill-Conditioned Problems

3.2. Breaking the Barrier of With-Replacement SGD

Up to this point, we have analyzed the worst-case conver-
gence behavior of permutation-based SGD with respect to
the permutation choice in the small epoch regime. A natural
question that follows is: what happens in the best case?

Unlike the large epoch regime where the question has been
sufficiently explored (Lu et al., 2022a; Cha et al., 2023), the
small epoch regime remains less understood. In this section,
we slightly deviate from the main topic and demonstrate
that a well-designed permutation can enable permutation-
based SGD to achieve a faster convergence rate than with-
replacement SGD in the small epoch regime—which RR
has been proven not to do so (Safran & Shamir, 2021).

Before presenting our finding, we introduce an additional
lemma that is used in deriving our result.

Lemma 3.6 (Herding Algorithm (Bansal & Garg, 2017)).
Let z1, · · · , zn ∈ Rd satisfy ∥zi∥ ≤ 1 for all i ∈ [n] and∑n

i=1 zi = 0. Then, there exists an algorithm, Herding,
that outputs a permutation σ : [n] → [n] such that

maxi∈[n]

∥∥∥∑i
j=1 zσ(j)

∥∥∥ ≤ H, whereH = Õ(
√
d).

The Herding algorithm was used in Lu et al. (2022a) for
designing GraB. Our next theorem leverages Herding in a
different way to show the existence of a permutation-based
SGD method (but impractical) that achieves acceleration
even in the small epoch regime.

Theorem 3.7 (Herding at Optimum). Let n ≥ 1, K ≳ κ
n ,

and x0 be the initialization point. Suppose F is a func-
tion satisfying Assumptions 2.3 and 2.5 where each com-
ponent function is µ-strongly convex. Then, there exists a
permutation σ such that the final iterate xK

n obtained by
running Algorithm 1 with K epochs of σ and a step size
η = 2

µnK max
{
log
(

∥x0−x∗∥µnK√
κHG∗

)
, 1
}

, satisfies∥∥xK
n − x∗∥∥2 ≲

H2LG2
∗

µ3n2K2
.

Unlike GraB which dynamically adapts the permutation
at each epoch based on the gradient observations, Theo-
rem 3.7 applies a fixed σ consistently throughout entire
epochs. The permutation σ is obtained by running Herding
for the scaled component gradients at the global optimum
x∗, ensuring maxi∈[n] ∥

∑i
j=1 ∇fσ(j)(x

∗) ∥ ≤ HG∗. The
proof of Theorem 3.7 is presented in Appendix C.3.

By L-smoothness, it immediately follows that the function
optimality gap is bounded as F (xK

n)− F (x∗) ≲ H2L2G2
∗

µ3n2K2 .
We make two key observations regarding this result. First,
Cha et al. (2023) prove the lower bound rate of LG2

µ2n2K2 appli-
cable to arbitrary permutation-based SGD without any con-
straint on K. This confirms that Theorem 3.7 achieves opti-

mal performance in terms of n and K among permutation-
based SGD methods. Second, this rate outperforms the rate
of G2

µnK for with-replacement SGD (Liu & Zhou, 2024b)
whenever n ≥ H2κ2/K. In particular, even when K ≲ κ,
problems involving a large number of component functions
with small input dimensions can still satisfy this condition.

To our knowledge, this is the first result showing that
a permutation-based SGD method may outperform with-
replacement SGD in the small epoch regime. However, we
identify two key limitations. First, Theorem 3.7 is not an
implementable algorithm, as it requires prior knowledge of
component gradients at x∗. Second, the upper bound in
Theorem 3.7 and the lower bound established by Cha et al.
(2023) still differ by a factor of H2κ. An interesting future
direction would be to design a practical permutation-based
SGD method that tightly matches this lower bound.

We conclude by suggesting a setting where we can effi-
ciently obtain this permutation. Suppose all component
functions have the same Hessian so that ∇2fi −∇2F ≡ 0.
Then, the gradient difference ∇fi −∇F remains constant
across the domain, leading to the following equation:

∇fi(x
∗) = ∇fi(x

∗)−∇F (x∗) = ∇fi(x0)−∇F (x0).

In this scenario, we can use scaled gradient errors at the
initialization (∇fi(x0)−∇F (x0))/G∗, which can be effi-
ciently obtained, as inputs to Herding to attain the desired
permutation σ. Furthermore, the lower bound construction
of Cha et al. (2023), which achieves a rate of LG2

µ2n2K2 , also
satisfies the identical Hessian assumption. This confirms
the algorithmically optimal convergence for this specific
function class, up to a factor of H2κ gap.

4. IGD in Large Epoch Regime
We now shift focus to the large epoch regime, where
K ≳ κ. We examine convergence under two distinct scenar-
ios: (i) each component is convex, and (ii) some components
may be nonconvex. While the presence of nonconvex com-
ponents significantly deteriorates convergence in the small
epoch regime, we observe that this effect diminishes in the
large epoch regime.

4.1. Convergence with Component Convexity

We first focus on the case where all components are convex.

Theorem 4.1. For any n ≥ 2, κ ≥ 2, and K ≥ κ, there ex-
ists a 3-dimensional function F satisfying Assumptions 2.3
and 2.4 with P = 0, where each component function shares
the same Hessian, along with an initialization point x0, such
that for any constant step size η, the final iterate obtained
by running Algorithm 2 satisfies

F (xK
n)− F (x∗) ≳

LG2

µ2K2
.

7

Incremental Gradient Descent with Small Epoch Counts is Surprisingly Slow on Ill-Conditioned Problems

The detailed proof of the theorem is provided in Ap-
pendix D.1. As previously discussed in Theorem 3.1, since
the overall function is strongly convex and each component
function shares the same Hessian, it follows that each com-
ponent function is also µ-strongly convex. The previous
best lower bound for IGD in this setting was G2

µK2 (Safran &
Shamir, 2020), and our result improves upon this by a factor
of κ. Also, when K = Θ(κ), this bound simplifies to G2

L ,
thereby continuously interpolating the lower bound results
in the small epoch regime (Theorems 3.1, 3.3 and 3.5).

Next, we present a complementary upper bound result, orig-
inally established in Theorem 4.6 of Liu & Zhou (2024a).
For consistency with the assumptions used throughout this
paper, we restate it under slightly stronger assumptions.

Proposition 4.2 (Liu & Zhou (2024a), Theorem 4.6). Let
n ≥ 1, K ≳ κ, and x0 be the initialization point. Sup-
pose F is a function satisfying Assumptions 2.3 and 2.5
where each component function is convex. Then, for
any choice of permutation σk in each epoch, the final
iterate obtained by Algorithm 1 with the step size η =

1
µnK max

{
log
(

∥x0−x∗∥2µ3K2

LG2(1+logK)

)
, 1
}

satisfies

F (xK
n)− F (x∗) ≲

LG2
∗

µ2K2
.

We observe that the lower bound in Theorem 4.1 and the
upper bound in Proposition 4.2 match exactly, up to poly-
logarithmic factors. The component functions for the lower
bound satisfy strictly stronger assumptions than those re-
quired for the upper bound. Unlike upper bounds where
stronger assumptions may improve the convergence rate, ful-
filling stronger assumptions in lower bound analyses rather
strengthens the result of the bound. Thus, Theorem 4.1
remains a valid lower bound matching Proposition 4.2.

4.2. Convergence without Component Convexity

In this section, we investigate the case where the assump-
tion of component convexity is removed. Our next theorem,
Theorem 4.3, establishes a lower bound for IGD, quantify-
ing the degradation in convergence rate when nonconvex
components are included in the large epoch setting.

Theorem 4.3. For any n ≥ 4, κ ≥ n, and K ≥
max

{
κ3/n2, κ3/2

}
, there exists a 4-dimensional function

F satisfying Assumptions 2.3 and 2.4 with P = κ, along
with an initialization point x0, such that for any constant
step size η, the final iterate obtained by running Algorithm 2
satisfies

F (xK
n)− F (x∗) ≳

L2G2

µ3K2
.

The proof of Theorem 4.3 is presented in Appendix D.2. Ad-
ditional assumptions on n and K are introduced for techni-
cal reasons. Since the construction in Theorem 4.3 involves

nonconvex components, Proposition 4.2 is no longer appli-
cable for direct comparison. Theorem 4.4 addresses this by
providing an upper bound allowing nonconvex component
functions for arbitrary permutation-based SGD.

Theorem 4.4. Let n ≥ 1, K ≳ (1 + P)κ, and
x0 be the initialization point. Suppose F is a func-
tion satisfying Assumptions 2.3 and 2.4. Then, for any
choice of permutation σk in each epoch, the final iter-
ate xK

n obtained by Algorithm 1 with a step size η =
2

µnK max
{
log
(

(F (x0)−F (x∗))µ3K2

L2G2

)
, 1
}

satisfies

F (xK
n)− F (x∗) ≲

L2G2

µ3K2
.

The proof of Theorem 4.4 is in Appendix E.1. This upper
bound aligns with the lower bound in Theorem 4.3, differ-
ing only by polylogarithmic factors, when the objective is
sufficiently ill-conditioned and the number of epochs K is
sufficiently large, specifically K ≳ max

{
κ3/n2, κ2

}
.

Importantly, the convergence rate in this setting degrades
by only a factor of κ compared to the convex components
case. These results highlight an intriguing behavior of IGD:
allowing nonconvex components significantly degrades con-
vergence in the small epoch regime; however, this slowdown
is much less severe in the large epoch regime.

Similar to the small epoch case, the lower bounds in the
large epoch regime can also be expressed in terms of the
distance to the optimum. Specifically, the lower bounds on∥∥xK

n − x∗
∥∥ are G

µK and LG
µ2K (for K ≥ max{κ3/n2, κ2})

for Theorems 4.1 and 4.3, respectively.

4.3. Comparison with Other Methods

Here, we provide a detailed comparison of the convergence
rates across different permutation-based SGD methods.

Random Reshuffling. In the large epoch regime, Liu &
Zhou (2024a) show that RR achieves an upper bound of
LG2

∗
µ2nK2 , while Cha et al. (2023) establish a tight matching
lower bound under the same setting. Both results assume
that the component functions are convex. This implies that
in settings where all component functions are convex, RR
outperforms IGD by a factor of n in terms of convergence
rate in the large epoch regime.

Optimal Permutation-based SGD. Lu et al. (2022a)
demonstrate that GraB achieves an upper bound of H2L2G2

µ3n2K2 ,

where H is a constant that scales as
√
d (Lemma 3.6). Simi-

larly, Cha et al. (2023) establish a lower bound of L2G2

µ3n2K2 ,
for any permutation strategy over K epochs, assuming suf-
ficiently ill-conditioned problems and a large number of
epochs. Both results are derived without assuming compo-
nent convexity. Together, these results indicate that, when
nonconvex components exist and d is fixed, the optimal con-

8

Incremental Gradient Descent with Small Epoch Counts is Surprisingly Slow on Ill-Conditioned Problems

vergence rate for permutation-based SGD in the large epoch
regime is L2G2

µ3n2K2 . This implies that in settings where some
components are nonconvex, IGD converges at a rate slower
than optimal permutation-based SGD by a factor of n2.

5. Conclusion
We provide a detailed analysis of IGD across both small
and large epoch regimes, considering various assumptions
on the component functions. Our results show that, unlike in
the large epoch regime, even when the component functions
are strongly convex, the convergence can be significantly
slow. Furthermore, the presence of nonconvex components
exacerbates this slowdown exponentially. We also demon-
strate the existence of a permutation-based SGD method
that allows faster convergence in the small epoch regime.

Finally, we highlight two promising directions for future
work. The first is to establish a tight convergence bound
for RR in the small epoch regime, similar to our analy-
sis for IGD in Section 3. We discuss the current state of
research and the key challenges in this direction in Ap-
pendix A.4. The second is to develop an efficient and prac-
tical permutation-based SGD method that enjoys provable
fast convergence in this regime.

Acknowledgements
This work was partly supported by a National Research
Foundation of Korea (NRF) grant funded by the Korean
government (MSIT) (No. RS-2023-00211352) and an Insti-
tute for Information & communications Technology Plan-
ning & Evaluation (IITP) grant funded by the Korean gov-
ernment (MSIT) (No. RS-2019-II190075, Artificial Intelli-
gence Graduate School Program (KAIST)). CY acknowl-
edges support from a grant funded by Samsung Electronics
Co., Ltd.

Impact Statement
This paper aims to advance the theoretical understanding of
convex optimization in machine learning. While optimiza-
tion methods have broad applications, we do not foresee
any specific ethical concerns or societal implications arising
directly from this work.

References
Ahn, K., Yun, C., and Sra, S. SGD with shuffling: optimal

rates without component convexity and large epoch re-
quirements. Advances in Neural Information Processing
Systems, 33:17526–17535, 2020.

Bansal, N. and Garg, S. Algorithmic discrepancy beyond
partial coloring. In Proceedings of the 49th Annual ACM

SIGACT Symposium on Theory of Computing, pp. 914–
926, 2017.

Bertsekas, D. P. Incremental proximal methods for large
scale convex optimization. Mathematical programming,
129(2):163–195, 2011.

Bubeck, S. et al. Convex optimization: Algorithms and com-
plexity. Foundations and Trends® in Machine Learning,
8(3-4):231–357, 2015.

Cai, X. and Diakonikolas, J. Last iterate convergence of in-
cremental methods and applications in continual learning.
arXiv preprint arXiv:2403.06873, 2024.

Cha, J., Lee, J., and Yun, C. Tighter lower bounds for
shuffling SGD: Random permutations and beyond. In
International Conference on Machine Learning, pp. 3855–
3912. PMLR, 2023.

Garrigos, G. and Gower, R. M. Handbook of conver-
gence theorems for (stochastic) gradient methods. arXiv
preprint arXiv:2301.11235, 2023.

Ghorbani, B., Krishnan, S., and Xiao, Y. An investigation
into neural net optimization via hessian eigenvalue den-
sity. In International Conference on Machine Learning,
pp. 2232–2241. PMLR, 2019.

Gurbuzbalaban, M., Ozdaglar, A., and Parrilo, P. A. Con-
vergence rate of incremental gradient and incremental
newton methods. SIAM Journal on Optimization, 29(4):
2542–2565, 2019.

Haochen, J. and Sra, S. Random shuffling beats SGD after
finite epochs. In International Conference on Machine
Learning, pp. 2624–2633. PMLR, 2019.

Koloskova, A., Doikov, N., Stich, S. U., and Jaggi, M.
On convergence of incremental gradient for non-convex
smooth functions. In Forty-first International Confer-
ence on Machine Learning, 2024. URL https://
openreview.net/forum?id=ZRMQX6aTUS.

Lan, G. First-order and stochastic optimization methods for
machine learning, volume 1. Springer, 2020.

Li, H., Xu, Z., Taylor, G., Studer, C., and Goldstein, T.
Visualizing the loss landscape of neural nets. Advances
in neural information processing systems, 31, 2018.

Liu, Z. and Zhou, Z. On the last-iterate convergence of
shuffling gradient methods. In Forty-first International
Conference on Machine Learning, 2024a. URL https:
//openreview.net/forum?id=Xdy9bjwHDu.

Liu, Z. and Zhou, Z. Revisiting the last-iterate conver-
gence of stochastic gradient methods. In The Twelfth
International Conference on Learning Representations,

9

https://openreview.net/forum?id=ZRMQX6aTUS
https://openreview.net/forum?id=ZRMQX6aTUS
https://openreview.net/forum?id=Xdy9bjwHDu
https://openreview.net/forum?id=Xdy9bjwHDu

Incremental Gradient Descent with Small Epoch Counts is Surprisingly Slow on Ill-Conditioned Problems

2024b. URL https://openreview.net/forum?
id=xxaEhwC1I4.

Lu, Y., Guo, W., and Sa, C. D. Grab: Finding provably
better data permutations than random reshuffling. In Oh,
A. H., Agarwal, A., Belgrave, D., and Cho, K. (eds.),
Advances in Neural Information Processing Systems,
2022a. URL https://openreview.net/forum?
id=nDemfqKHTpK.

Lu, Y., Meng, S. Y., and De Sa, C. A general analysis
of example-selection for stochastic gradient descent. In
International Conference on Learning Representations
(ICLR), volume 10, 2022b.

Mishchenko, K., Khaled, A., and Richtárik, P. Random
reshuffling: Simple analysis with vast improvements. Ad-
vances in Neural Information Processing Systems, 33:
17309–17320, 2020.

Mohtashami, A., Stich, S., and Jaggi, M. Character-
izing & finding good data orderings for fast conver-
gence of sequential gradient methods. arXiv preprint
arXiv:2202.01838, 2022.

Nagaraj, D., Jain, P., and Netrapalli, P. SGD without replace-
ment: Sharper rates for general smooth convex functions.
In International Conference on Machine Learning, pp.
4703–4711. PMLR, 2019.

Nguyen, L. M., Tran-Dinh, Q., Phan, D. T., Nguyen, P. H.,
and Van Dijk, M. A unified convergence analysis for
shuffling-type gradient methods. Journal of Machine
Learning Research, 22(207):1–44, 2021.

Rajput, S., Gupta, A., and Papailiopoulos, D. Closing the
convergence gap of SGD without replacement. In Interna-
tional Conference on Machine Learning, pp. 7964–7973.
PMLR, 2020.

Rajput, S., Lee, K., and Papailiopoulos, D. Permutation-
based SGD: Is random optimal? In International Confer-
ence on Learning Representations, 2022. URL https:
//openreview.net/forum?id=YiBa9HKTyXE.

Recht, B. and Ré, C. Toward a noncommutative arithmetic-
geometric mean inequality: Conjectures, case-studies,
and consequences. In Conference on Learning Theory,
pp. 11–1. JMLR Workshop and Conference Proceedings,
2012.

Safran, I. and Shamir, O. How good is SGD with random
shuffling? In Conference on Learning Theory, pp. 3250–
3284. PMLR, 2020.

Safran, I. and Shamir, O. Random shuffling beats SGD
only after many epochs on ill-conditioned problems. In
Beygelzimer, A., Dauphin, Y., Liang, P., and Vaughan,

J. W. (eds.), Advances in Neural Information Processing
Systems, 2021. URL https://openreview.net/
forum?id=fNKwtwJHjx.

Shamir, O. and Zhang, T. Stochastic gradient descent for
non-smooth optimization: Convergence results and opti-
mal averaging schemes. In International conference on
machine learning, pp. 71–79. PMLR, 2013.

Yun, C., Rajput, S., and Sra, S. Minibatch vs local SGD
with shuffling: Tight convergence bounds and beyond. In
International Conference on Learning Representations,
2022. URL https://openreview.net/forum?
id=LdlwbBP2mlq.

10

https://openreview.net/forum?id=xxaEhwC1I4
https://openreview.net/forum?id=xxaEhwC1I4
https://openreview.net/forum?id=nDemfqKHTpK
https://openreview.net/forum?id=nDemfqKHTpK
https://openreview.net/forum?id=YiBa9HKTyXE
https://openreview.net/forum?id=YiBa9HKTyXE
https://openreview.net/forum?id=fNKwtwJHjx
https://openreview.net/forum?id=fNKwtwJHjx
https://openreview.net/forum?id=LdlwbBP2mlq
https://openreview.net/forum?id=LdlwbBP2mlq

Incremental Gradient Descent with Small Epoch Counts is Surprisingly Slow on Ill-Conditioned Problems

A. Supplementary Details
In this section, we provide additional details omitted from the main text.

A.1. Visualization of Upper and Lower Bounds

We begin by presenting a plot that summarizes our theoretical findings. Theorems 3.1 to 3.5 (and the result from Mishchenko
et al. (2020)) apply to the small epoch regime (K ≲ κ), and Theorems 4.1 to 4.4 (and the result from Liu & Zhou (2024a))
apply to the large epoch regime (K ≳ κ). In the figure, solid lines indicate upper bounds and dash-dot lines represent lower
bounds. Each color represents a pair of upper and lower bounds derived under similar assumptions—what we refer to as
matching bounds. The vertical line at K = κ marks the transition between the small and large epoch regimes. Both axes are
log-scaled for better visualization of rate differences.

1 n max{ 3/n2, 3/2}
Epoch

G2/L

G2/

LG2/ 2

L2G2/ 3

Op
tim

al
ity

 G
ap

Theorem 3.2 (UB)
Theorem 3.1 (LB)
Mishchenko et al. (2020) (UB)
Theorem 3.3 (LB)
Theorem 3.5 (LB)
Liu & Zhou (2024a) (UB)
Theorem 4.1 (LB)
Theorem 4.4 (UB)
Theorem 4.3 (LB)

Figure 1. Visualization of the bounds in Table 1. Both axes are log-scaled. Upper bounds (UB) are represented using a solid line, and
lower bounds (LB) are depicted with a dash-dot line. The small and large epoch results are combined into a single figure with a separation
by the vertical line K = κ. Upper bound results for the small epoch regime only hold under K ≳ κ/n, while lower bound results hold
for K greater than some constant.

A.2. Pseudeocode of IGD

Next, we provide the pseudocode for IGD as Algorithm 2.

11

Incremental Gradient Descent with Small Epoch Counts is Surprisingly Slow on Ill-Conditioned Problems

Algorithm 2 Incremental Gradient Descent

Input: Initial point x0, Step size η, Number of epochs K
Initialize x1

0 = x0

for k = 1 to K do
for i = 1 to n do
xk
i = xk

i−1 − η∇fi(x
k
i−1)

end for
xk+1
0 = xk

n

end for
Output: xK

n

A.3. Connecting IGD Lower Bounds with Upper Bounds of General Permutation-Based SGD

In this paper, we derive upper bound results for arbitrary permutation-based SGD, and the lower bound results for IGD. To
clarify the connection between these results, we explain why the lower bounds derived for IGD are relevant to the upper
bounds for arbitrary permutation-based SGD. Intuitively, deriving the upper bound for arbitrary permutation-based SGD can
be viewed as bounding the following inf-sup problem from above:

inf
step size η

sup
function F (x)

permutation {σk}K
k=1

F (xK
n)− F (x∗). (1)

On the other hand, the corresponding lower bound is one that bounds the following sup-inf problem from below:

sup
function F (x)

permutation {σk}K
k=1

inf
step size η

F (xK
n)− F (x∗). (2)

Notably, in the lower bound formulation, the permutations {σk}Kk=1 appear in the supremum term. This implies that the
lower bound for IGD, which can be formulated as:

sup
function F (x)

inf
step size η

F (xK
n)− F (x∗), (3)

where every σk is an identity mapping, is at most equation (2). Therefore, our lower bound results, derived specifically for
IGD, also provide valid lower bounds for the upper bound results established for any permutation-based SGD.

To further clarify, we compare it with the work of Lu et al. (2022a). In Lu et al. (2022a), the authors introduce a permutation-
based SGD algorithm called GraB that provably converges faster by carefully selecting permutations at each epoch. This
problem can be formulated as bounding the following inf-sup problem:

inf
step size η

permutation {σk}K
k=1

sup
function F (x)

F (xK
n)− F (x∗). (4)

In addition, Cha et al. (2023) proves that GraB is an optimal permutation-based SGD by providing a lower bound that holds
for every possible combination of permutations over K epochs:

sup
function F (x)

inf
step size η

permutation {σk}K
k=1

F (xK
n)− F (x∗). (5)

Clearly, equation (4) and equation (5) are smaller than equation (1) and equation (2), respectively.

A.4. Status and Open Challenges in Establishing Tight Bounds for RR in the Small Epoch Regime

We begin by summarizing the current state of research on RR in the small epoch regime. To the best of our knowledge,
there are two noteworthy results (under the assumption that the overall function is strongly convex and each component is
smooth):

12

Incremental Gradient Descent with Small Epoch Counts is Surprisingly Slow on Ill-Conditioned Problems

1. (Mishchenko et al., 2020): When all component functions are also strongly convex, an upper bound of Õ(L2

µ3nK2) is
provided.

2. (Safran & Shamir, 2021): When all component functions are quadratic and their Hessians commute, a tight convergence
rate of Θ(1

µnK) is established.

Unlike scenario (2) where the authors provide matching UB and LB (up to polylogarithmic factor), the lower bound in
scenario (1) is unknown, and it remains open whether the rate Õ(L2

µ3nK2) can be improved or not.

Given this context, there are two clear directions for future exploration in small epoch RR literature:

• Upper Bound Direction. Improve the existing bound of Õ(L2

µ3nK2) under the strongly convex component assumption,
or derive new bounds under weaker assumptions (e.g., convexity, or even without convexity).

• Lower Bound Direction. Develop a matching lower bound (under the strongly convex component case) to close the
gap with the existing upper bound Õ(L2

µ3nK2).

The primary challenge on the upper bound side is that deriving new upper bounds in the small epoch regime appears to
require sophisticated analytical techniques (due to challenges discussed in Section 2.4). As can be found in Safran & Shamir
(2021), even the proof for 1D quadratic is highly technical. One promising technique we explored is from Koloskova et al.
(2024). In contrast to traditional analyses that group updates within a single epoch (i.e., chunks of size n), this method
groups updates into chunks of size τ := 1/ηL. While this chunk-based approach can be successfully applied to derive upper
bounds for IGD, it becomes problematic for RR. Specifically, when the chunk size τ does not align neatly within epochs,
handling the dependencies between iterates becomes extremely difficult.

Regarding the lower bound direction, we believe any progress beyond current results will likely require more complicated
constructions that go beyond simple quadratic functions. This is because for simple quadratic functions where the Hessians
commute with each other (e.g., fi(x1, x2) =

L
2 x

2
1 + aix1 +

µ
2x

2
2 + bix2), the tight rate of Θ(1

µnK) is already established by
Safran & Shamir (2021). Therefore, to surpass the existing LB barrier Ω(1

µnK), future constructions must involve quadratic
functions with non-commuting Hessians or even non-quadratic functions, necessitating more advanced analytical techniques.
While our own lower bound construction in Theorem 3.3 is based on quadratic functions with non-commuting Hessians, it is
tailored to IGD, and we do not see a clear way to extend this idea to RR.

13

Incremental Gradient Descent with Small Epoch Counts is Surprisingly Slow on Ill-Conditioned Problems

B. Proofs for Small Epoch Lower Bounds
In this section, we present the detailed proofs for Theorems 3.1, 3.3 and 3.5 which are the lower bound results in the small
epoch regime. To establish these results, we construct a specific function F that achieves the stated lower bound for each
theorem. We note that constructing a lower-bound function for SGD presents a significant challenge, as it must exhibit poor
convergence for any choice of step size η. The difficulty lies in the fact that the convergence behavior of SGD is highly
sensitive to η: a small step size leads to slow updates, whereas a large step size can cause divergence.

To overcome this challenge, we partition the positive real line of possible step sizes into three regimes: small, moderate, and
large. For each regime, we design a distinct lower-bound function tailored to follow the stated convergence behavior within
that range. Finally, we combine these functions across dimensions, ensuring that the resulting function satisfies the stated
lower bound for any choice of η. This “dimension-aggregating” technique has been developed in the recent literature (e.g.,
Safran & Shamir (2021); Yun et al. (2022); Cha et al. (2023)).

B.1. Proof of Theorem 3.1

Theorem 3.1. For any n ≥ 2, κ ≥ 2, and K ≤ 1
2κ, there exists a 3-dimensional function F satisfying Assumptions 2.3

and 2.4 with P = 0, where each component function shares the same Hessian, i.e., ∇2fi(x) = ∇2F (x) for all i ∈ [n]
and x ∈ R3, along with an initialization point x0, such that for any constant step size η, the final iterate xK

n obtained by
Algorithm 2 satisfies

F (xK
n)− F (x∗) ≳

G2

µK
.

Proof. We divide the range of step sizes η > 0 into three regimes that will be specified subsequently. For each regime, we
construct the overall functions F1, F2, and F3 respectively, along with their respective component functions and an initial
point. Each function is 1-dimensional and satisfies Assumption 2.3. F1 and F3 satisfy Assumption 2.4 with G = P = 0, and
F2 satisfies with P = 0. Also, the component functions within each overall function share the same Hessian. Importantly,
each function is designed to satisfy the following properties:

• (Small step size regime) There exists an initialization point x0 = poly(µ,L, n,K,G) such that for any choice of
η ∈

(
0, 1

µnK

)
, the final iterate xK

n obtained by running Algorithm 2 satisfies F1(x
K
n)− F1(x

∗) ≳ G2

µK .

• (Moderate step size regime) There exists an initialization point y0 = poly(µ,L, n,K,G) such that for any choice of
η ∈

[
1

µnK , 2
L

)
, the final iterate yKn obtained by running Algorithm 2 satisfies F2(y

K
n)− F2(y

∗) ≳ G2

µK .

• (Large step size regime) There exists an initialization point z0 = poly(µ,L, n,K,G) such that for any choice of
η ∈

[
2
L ,∞

)
, the final iterate zKn obtained by running Algorithm 2 satisfies F3(z

K
n)− F3(z

∗) ≳ G2

µK .

Here, x∗, y∗, z∗ denote the minimizers of F1, F2, and F3, respectively. Detailed constructions of F1, F2, and F3, as well as
the verification of the assumptions and the stated properties are presented in Appendices B.1.1 to B.1.3.

We now aggregate these functions across dimensions: F (x) := F (x, y, z) = F1(x) + F2(y) + F3(z) and fi(x) =
f1i(x) + f2i(y) + f3i(z) for all i ∈ [n]. Here, fi, f1i, f1i, f3i denote the i-th component function of F , F1, F2, and F3,
respectively. Since each dimension is independent, it is obvious that x∗ = (x∗, y∗, z∗) minimizes F .

Finally, by choosing the initialization point as x0 = (x0, y0, z0), the final iterate xK
n = (xK

n , yKn , zKn) obtained by running
Algorithm 2 on F satisfies

F (xK
n)− F (x∗) ≳

G2

µK
,

regardless of the choice of η > 0.

Note that F satisfies the stated assumptions as

µI ⪯ min{∇2F1(x),∇2F2(y),∇2F3(z)} ⪯ ∇2F (x) ⪯ max{∇2F1(x),∇2F2(y),∇2F3(z)} ⪯ LI,

14

Incremental Gradient Descent with Small Epoch Counts is Surprisingly Slow on Ill-Conditioned Problems

and

∥∇fi(x)−∇F (x)∥ ≤ ∥∇f1i(x)−∇F1(x)∥+ ∥∇f2i(y)−∇F2(y)∥+ ∥∇f3i(z)−∇F3(z)∥ ≤ 0 +G+ 0 = G.

Moreover, ∇2fi(x) = diag(∇2f1i(x),∇2f2i(y),∇2f3i(z)) = diag(∇2fi(x),∇2fi(y),∇2fi(z)) = ∇2F (x) holds,
since the component functions within each overall function share the same diagonal Hessian. This concludes the proof of
Theorem 3.1.

In the following subsections, we present the specific construction of F1, F2, and F3, and demonstrate that each satisfies
the stated lower bound within its corresponding step size regime. For simplicity of notation, we omit the index of the
overall function when referring to its component functions, e.g., we write fi(x) instead of f1i(x). Moreover, we use the
common variable notation x while constructing functions for each dimension, though we use different variables in the
“dimension-aggregation” step.

B.1.1. CONSTRUCTION OF F1

Let F1(x) =
µ
2x

2 with component functions fi(x) = F1(x) for all i ∈ [n]. It is clear that F1 satisfies Assumption 2.3,
Assumption 2.4 with P = 0, and its component functions share an identical Hessian. Also, we note that x∗ = 0 and
F1(x

∗) = 0.

Let the initialization be x0 = G
µ
√
K

. For all η ∈
(
0, 1

µnK

)
, the final iterate is given by

xK
n = (1− ηµ)nKx0 ≥

(
1− 1

nK

)nK

x0 ≥ G

4µ
√
K

,

where the last inequality uses the fact that (1− 1
m)m ≥ 1

4 for all m ≥ 2.

Thus, we have

F1(x
K
n)− F1(x

∗) =
µ

2
(xK

n)2 ≳
G2

µK
.

B.1.2. CONSTRUCTION OF F2

We construct the function by dividing the cases by the parity of n. We first consider the case where n is even, and address
the case where n is odd later in this subsection. Let F2(x) =

µK
2 x2 with component functions

fi(x) =

{
µK
2 x2 +Gx if i ≤ n/2,

µK
2 x2 −Gx otherwise.

It is clear that fi satisfies Assumption 2.4 with P = 0 and shares the same Hessian. From the assumption K ≤ 1
2κ, we have

µ ≤ µK ≤ L
2 . Hence, each fi is L-smooth and µ-strongly convex. Also, we note that x∗ = 0 and F2(x

∗) = 0.

By Lemma F.1, the final iterate obtained by running Algorithm 2 is given by

xK
n = (1− ηµK)

nK
x0 +

G

µK
· 1− (1− ηµK)

n
2

1 + (1− ηµK)
n
2

(
1− (1− ηµK)

nK
)
. (6)

For any η ∈
[

1
µnK , 2

L

)
, it follows that 1

n ≤ ηµK < 2µK
L = 2K

κ ≤ 1. Then, we have (1 − ηµK)nK ≤
(
1− 1

n

)nK ≤
e−K ≤ e−1 which implies 1− (1− ηµK)nK ≥ 1− e−1. Moreover, we have (1− ηµK)

n
2 ≤ (1− 1

n)
n
2 ≤ e−

1
2 and thus,

1− (1− ηµK)
n
2

1 + (1− ηµK)
n
2

≥ 1− e−
1
2

2
.

Substituting these inequalities into equation (6) and setting x0 = 0, we obtain

xK
n ≥

(
1− e−1

) (
1− e−

1
2

)
G

2µK
,

15

Incremental Gradient Descent with Small Epoch Counts is Surprisingly Slow on Ill-Conditioned Problems

and

F2(x
K
n)− F2(x

∗) =
µK

2
(xK

n)2 ≳
G2

µK
.

We now consider the case where n is odd. Let F2(x) =
µK
2 x2 with component functions

fi(x) =


µK
2 x2 if i = 1,

µK
2 x2 +Gx if 2 ≤ i ≤ (n+ 1)/2,

µK
2 x2 −Gx if (n+ 3)/2 ≤ i ≤ n.

Compared to the case of even n, f1(x) = µK
2 x2 is introduced newly. It is clear that fi satisfies Assumption 2.4 with P = 0

and shares the same Hessian. From the assumption K ≤ 1
2κ, we have µ ≤ µK ≤ L

2 . Hence, each fi is L-smooth and
µ-strongly convex. Also, we note that x∗ = 0 and F2(x

∗) = 0.

By Lemma F.2, the final iterate obtained by running Algorithm 2 is given by

xK
n = (1− ηµK)nKx0 +

G

µK
· 1− (1− ηµK)nK

1− (1− ηµK)n

(
1− (1− ηµK)

n−1

2

)2
. (7)

For any η ∈
[

1
µnK , 2

L

)
, it follows that 1

n ≤ ηµK < 2µK
L = 2K

κ ≤ 1. Then, we have (1 − ηµK)nK ≤
(
1− 1

n

)nK ≤

e−K ≤ e−1. Moreover, (1− ηµK)
n−1

2 ≤ (1− 1
n)

n−1

2 ≤ e−
n−1

2n ≤ e−
1
4 holds for n ≥ 2. Substituting these inequalities into

equation (7) and setting x0 = 0, we have

xK
n ≥ G

µK
· 1− e−1

1
(1− e−

1
4)2.

Thus, we obtain the following optimality gap:

F2(x
K
n)− F2(x

∗) =
µK

2
(xK

n)2 ≳
G2

µK
.

B.1.3. CONSTRUCTION OF F3

Let F3(x) =
L
2 x

2 with component functions fi(x) = F3(x) for all i ∈ [n]. It is clear that F1 satisfies Assumption 2.3,
Assumption 2.4 with P = 0, and its component functions share an identical Hessian. Also, we note that x∗ = 0 and
F3(x

∗) = 0.

For all η ∈
[
2
L ,∞

)
, the final iterate is given by

xK
n = (1− ηL)

nK
x0.

In this regime, the step size is excessively large, resulting in

1− ηL ≤ 1− 2

L
· L ≤ −1,

which implies
∣∣(1− ηL)nK

∣∣ ≥ 1. Thus, the iterate does not converge and satisfies
∣∣xK

n

∣∣ ≥ |x0|.

By setting the initialization x0 = G√
µLK

, we have

F3(x
K
n)− F3(x

∗) =
L

2
(xK

n)2 ≥ L

2
(x0)

2 ≳
G2

µK
.

16

Incremental Gradient Descent with Small Epoch Counts is Surprisingly Slow on Ill-Conditioned Problems

B.2. Proof of Theorem 3.3

Theorem 3.3. For any n ≥ 3, κ ≥ 2, and K ≤ 1
16πκ, there exists a 4-dimensional function F satisfying Assumptions 2.3

and 2.4 with P = 1, where each component function is µ-strongly convex, along with an initialization point x0, such that
for any constant step size η, the final iterate xK

n obtained by running Algorithm 2 satisfies

F (xK
n)− F (x∗) ≳

LG2

µ2
min

{
1,

κ2

K4

}
.

Proof. Similar to the approach in Theorem 3.1, we divide the range of step sizes into three regimes. For each regime, we
construct the overall functions F1, F2, and F3 respectively, along with their respective component functions and an initial
point. Finally, we aggregate these functions across different dimensions to derive the stated lower bound.

The functions F1 and F3 are 1-dimensional, and F2 is a 2-dimensional function. Each function is carefully designed to
satisfy the following properties:

• (Small step size regime) There exists an initialization point x0 = poly(µ,L, n,K,G) such that for any choice of
η ∈

(
0, 1

µnK

)
, the final iterate xK

n obtained by running Algorithm 2 satisfies F1(x
K
n)− F1(x

∗) ≳ LG2

µ2 min
{
1, κ2

K4

}
.

• (Moderate step size regime) There exists an initialization point (y0, z0) = poly(µ,L, n,K,G) such that for any choice
of η ∈

[
1

µnK , 2
L

)
, the final iterate (yKn , zKn) obtained by running Algorithm 2 satisfies F2(y

K
n , zKn)− F2(y

∗, z∗) ≳

LG2

µ2 min
{
1, κ2

K4

}
.

• (Large step size regime) There exists an initialization point w0 = poly(µ,L, n,K,G) such that for any choice of
η ∈

[
2
L ,∞

)
, the final iterate wK

n obtained by running Algorithm 2 satisfies F3(w
K
n)− F3(w

∗) ≳ LG2

µ2 min
{
1, κ2

K4

}
.

Here, x∗, (y∗, z∗), and w∗ denote the minimizers of F1, F2, and F3, respectively. All these functions are designed to
satisfy Assumption 2.3. F1 and F3 satisfy Assumption 2.4 with G = P = 0, and F2 satisfies with P = 1. Moreover, each
component function within each overall function is µ-strongly convex. Detailed constructions of F1, F2, and F3, as well as
the verification of the assumptions and the stated properties are presented in Appendices B.2.1 to B.2.3.

By following a similar approach to the proof of Theorem 3.1, we can conclude that the aggregated 4-dimensional function
F (x) := F (x, y, z, w) = F1(x) + F2(y, z) + F3(w) and its component functions satisfy Assumption 2.3. Additionally,

∥∇fi(x)−∇F (x)∥ ≤ ∥∇f1i(x)−∇F1(x)∥+ ∥∇f2i(y)−∇F2(y)∥+ ∥∇f3i(z)−∇F3(z)∥
≤ 0 + (G+ ∥∇F2(y)∥) + 0 ≤ G+ ∥∇F (x)∥ ,

thus satisfying Assumption 2.4 with P = 1. Also, since each dimension is independent, it is obvious that x∗ =
(x∗, y∗, z∗, w∗) minimizes F . Moreover, by choosing the initialization point as x0 = (x0, y0, z0, w0), the final iterate
xK
n = (xK

n , yKn , zKn , wK
n) obtained by running Algorithm 2 on F satisfies

F (xK
n)− F (x∗) ≳

LG2

µ2
min

{
1,

κ2

K4

}
,

regardless of the choice of η > 0.

This concludes the proof of Theorem 3.3.

In the following subsections, we present the specific construction of F1, F2, and F3, and demonstrate that each satisfies
the stated lower bound within its corresponding step size regime. For simplicity of notation, we omit the index of the
overall function when referring to its component functions, e.g., we write fi(x) instead of f1i(x). Moreover, we use the
common variable notation x (and y) while constructing functions for each dimension, though we use different variables in
the “dimension-aggregation” step.

17

Incremental Gradient Descent with Small Epoch Counts is Surprisingly Slow on Ill-Conditioned Problems

B.2.1. CONSTRUCTION OF F1

Let F1(x) =
µ
2x

2 with component functions fi(x) = F1(x) for all i ∈ [n]. It is clear that F1 satisfies Assumption 2.3,
Assumption 2.4 with G = P = 0, and has µ-strongly convex component functions. Also, we note that x∗ = 0 and
F1(x

∗) = 0.

Let the initialization be x0 =
√
κmin

{
1, κ

K2

}
G
µ . For all η ∈

(
0, 1

µnK

)
, the final iterate is given by

xK
n = (1− ηµ)nKx0 ≥

(
1− 1

nK

)nK

x0 ≥
√
κmin

{
1,

κ

K2

} G

4µ
,

where the last inequality uses the fact that (1− 1
m)m ≥ 1

4 for all m ≥ 2.

Thus, we have

F1(x
K
n)− F1(x

∗) =
µ

2
(xK

n)2 ≳
LG2

µ2
min

{
1,

κ2

K4

}
.

B.2.2. CONSTRUCTION OF F2

In this subsection, we let L′ denote L/2. We introduce the design of each component function as follows:

fi(x, y) =

{
µ
2x

2 + L′

2 y
2 −Gx if i = 1,(

f1 ◦ (Ri−1)
−1
)
(x, y) if 2 ≤ i ≤ n,

where

Ri :=

[
cos θi − sin θi
sin θi cos θi

]
is the matrix for the counter-clock wise rotation in R2 by an angle θi = iδ with δ := 2π

n .

Using these component functions, the overall function F2 := 1
n

∑n
i=1 fi is given by µ+L′

4 (x2 + y2). This result can be
verified by expanding the closed form of fi:

fi(x, y) =
µ

2
(x cos θi−1 + y sin θi−1)

2 +
L′

2
(−x sin θi−1 + y cos θi−1)

2 −G(x cos θi−1 + y sin θi−1)

=
1

2

(
µ cos2 θi−1 + L′ sin2 θi−1

)
x2 +

1

2

(
µ sin2 θi−1 + L′ cos2 θi−1

)
y2

+ (µ− L′) sin θi−1 cos θi−1xy −G(x cos θi−1 + y sin θi−1).

Since n ≥ 3, we can utilize Lemmas B.1 and B.2, and obtain

1

n

n∑
i=1

sin θi−1 =
1

n

n∑
i=1

cos θi−1 = 0,

1

n

n∑
i=1

sin2 θi−1 =
1

n

n∑
i=1

cos2 θi−1 =
1

2
,

1

n

n∑
i=1

sin θi−1 cos θi−1 =
1

2n

n∑
i=1

sin θ2(i−1) = 0.

Using these results, the overall function is simplified to

F2(x, y) =
µ+ L′

4
(x2 + y2),

which has a minimizer (x∗, y∗) = (0, 0).

18

Incremental Gradient Descent with Small Epoch Counts is Surprisingly Slow on Ill-Conditioned Problems

Note that each component function fi is obtained by rotating f1, and hence fi inherits the properties of f1. We can easily
check that f1 is both µ-strongly convex and L-smooth. Also, the gradient difference between the component function f1
and the overall function F2 can be expressed as

∥∇f1(x, y)−∇F2(x, y)∥ =

∥∥∥∥((µx−G)− µ+ L′

2
x, Ly − µ+ L′

2
y

)∥∥∥∥
=

∥∥∥∥(µ− L′

2
x−G,

L′ − µ

2
y

)∥∥∥∥
≤ G+

∥∥∥∥(µ− L′

2
x,

L′ − µ

2
y

)∥∥∥∥
= G+

∥∥∥∥(L′ − µ

2
x,

L′ − µ

2
y

)∥∥∥∥
≤ G+

∥∥∥∥(L′ + µ

2
x,

L′ + µ

2
y

)∥∥∥∥ = G+ ∥∇F2(x, y)∥ ,

proving that the construction satisfies Assumption 2.4 with P = 1.

Before delving into the detailed proof, we outline the intuition for the construction. We start by designing a step-size-
dependent initialization point (u0(η), v0(η)), where η ∈

[
1

µnK , 2
L

)
. For i ∈ [n], we define (ui(η), vi(η)) as the result of

running a single step of gradient descent on fi with a step size η, starting from (ui−1(η), vi−1(η)).

The key idea is to carefully design (u0(η), v0(η)) so that each subsequent iterate (ui(η), vi(η)) is obtained by rotating
(ui−1(η), vi−1(η)) by an angle δ = 2π

n . This aligns with our construction of the component functions fi, which are also
generated by continually rotating f1 by the same angle δ. As a result, the relative position between each iterate and the
component function used to compute the next iterate is preserved throughout the entire update process. This symmetry
ensures that the trajectory of the iterates (ui(η), vi(η)) forms a regular n-sided polygon. Consequently, after running
Algorithm 2, the final iterate and the initialization point (u0(η), v0(η)) are identical.

At the last step of the proof, we will show that the choice of the initialization point (u0(
1

µnK), v0(
1

µnK)) can be made in a
step-size-independent manner without significantly affecting the final optimality gap, even when the step size η is chosen
from

(
1

µnK , 2
L

)
rather than being fixed at 1

µnK .

We now proceed to describe the exact construction of (u0(η), v0(η)). Consider the gradient of the component function
f1(x, y), which is given by:

∇xf1(x, y) = µx−G and ∇yf1(x, y) = L′y.

A single iteration of gradient descent on f1 using the step size η yields:

u1(η) = u0(η)− η(µu0(η)−G),

v1(η) = v0(η)− ηL′v0(η).
(8)

To maintain the rotational relationship between successive iterates, we require that the updated iterate (u1(η), v1(η)) satisfies
the following relationship: [

u1(η)
v1(η)

]
=

[
cos δ − sin δ
sin δ cos δ

] [
u0(η)
v0(η)

]
. (9)

As mentioned earlier, this rotational relationship ensures that the trajectory of the iterates forms a regular n-sided polygon.
Recall that the component function fi is defined as:

fi(x, y) =
(
f1 ◦ (Ri−1)

−1
)
(x, y).

Additionally, let Λ =

[
µ 0
0 L

]
. Since

∇f1(x, y) = Λ

[
x
y

]
−G

[
1
0

]
,

19

Incremental Gradient Descent with Small Epoch Counts is Surprisingly Slow on Ill-Conditioned Problems

the gradient of fi can then be expressed as

∇fi(x, y) = Ri−1

(
Λ(Ri−1)

−1

[
x
y

]
−G

[
1
0

])
. (10)

If (u1(η), v1(η)) satisfies both equation (8) and equation (9), then the subsequent iterate (u2(η), v2(η)) satisfies:[
u2(η)
v2(η)

]
=
(
I − ηR1Λ(R1)

−1
) [u1(η)

v1(η)

]
+ ηGR1

[
1
0

]
=
(
I − ηR1Λ(R1)

−1
)
R1

[
u0(η)
v0(η)

]
+ ηGR1

[
1
0

]
= R1

(
(I − ηΛ)

[
u0(η)
v0(η)

]
+ ηG

[
1
0

])
= R1

[
u1(η)
v1(η)

]
= R2

[
u0(η)
v0(η)

]
.

Thus, if the initial point (u0(η), v0(η)) and its successive iterate (u1(η), v1(η)) satisfies the rotational relationship, this
relation persists throughout the entire update process. Consequently, the trajectory of the iterates forms a regular n-sided
polygon.

To enforce this rotational relationship, we solve the following system of equations:

u0(η) cos δ − v0(η) sin δ = (1− ηµ)u0(η) + ηG,

u0(η) sin δ + v0(η) cos δ = (1− ηL′)v0(η).

From these, we derive:

u0(η) =
ηL′ − (1− cos δ)

(1− cos δ)(2− (µ+ L′)η) + η2µL′ · ηG, (11)

v0(η) = − sin δ

(1− cos δ)(2− (µ+ L′)η) + η2µL′ · ηG. (12)

Note that the numerator of u0(η) is positive as shown below:

ηL′ − (1− cos δ)
(a)

≥ ηL′

2
+

L′

2µnK
− δ2

2

(b)
=

ηL′

2
+

L

4µnK
− 2π2

n2

=
ηL′

2
+

nL− 8π2µK

4µn2K
(c)
>

ηL′

2
, (13)

where we apply η ≥ 1
µnK and the inequality 1 − cos θ ≤ θ2

2 at (a), substitute L′ = L
2 and δ = 2π

n at (b), and apply
n ≥ 3 > π

2 and κ ≥ 16πK at (c). Also, we have 2− (µ+ L′)η ≥ 0 for η < 2
L . Thus, u0(η) is always positive and v0(η)

is always negative for η ∈
[

1
µnK , 2

L

)
.

Let (uk
i (η), v

k
i (η)) denote the i-th iterate at the k-th epoch of Algorithm 2 using the step size η and the initialization point

(u0(η), v0(η)). By definition, (uK
n (η), vKn (η)) represents the final iterate after K epochs. Due to rotational symmetry,

(uK
n (η), vKn (η)) is identical to (u0(η), v0(η)). Thus, the distance between the final iterate and the minimizer of F2 can be

lower bounded by the x-coordinate of the initialization point:∥∥(uK
n (η), vKn (η))

∥∥ = ∥(u0(η), v0(η))∥ ≥ u0(η).

20

Incremental Gradient Descent with Small Epoch Counts is Surprisingly Slow on Ill-Conditioned Problems

We now derive a lower bound for u0(η). We begin by upper bounding its denominator:

(1− cos δ)(2− (µ+ L′)η) + η2µL′ <
δ2

2
· 2 + η2µL′ =

4π2

n2
+ η2µL′.

Substituting this result into equation (11) gives

u0(η) ≥
(ηL′ − (1− cos δ))ηG

4π2

n2 + η2µL′ >
η2L′G

8π2

n2 + 2η2µL′ := φ(η),

where we apply equation (13) at the second inequality. We can easily check that φ(η) is an increasing function of η and thus
the minimum value is attained at η = 1

µnK . Substituting η = 1
µnK , we have

φ(
1

µnK
) =

L′G
8π2

n2 · µ2n2K2 + 2µL′

=
LG

16π2µ2K2 + 2µL
(∵ L′ =

L

2
)

=
G

µ
·

L
µK2

16π2 + 2L
µK2

.

In summary, the distance between the final iterate and the minimizer of F2 is bounded as:

∥∥(uK
n (η), vKn (η))

∥∥ = ∥(u0(η), v0(η))∥ ≥ u0(η) ≥ φ(η) ≥ φ(
1

µnK
)
(a)

≥ G

32π2µ
min

{
1,

κ

K2

}
, (14)

where (a) is derived through the following process:

φ(
1

µnK
) =

G

µ

L
µK2

16π2 + 2L
µK2

=
G

2µ

κ
8π2K2

1 + κ
8π2K2

(b)

≥ G

4µ
min

{
1,

κ

8π2K2

}
≥ G

32π2µ
min

{
1,

κ

K2

}
.

Here, we use the inequality u
1+u ≥ 1

2 min {1, u} for all u ≥ 0 at (b). The function optimality gap can then be bounded as:

F2(u
K
n (η), vKn (η))− F2(x

∗, y∗) =
µ+ L′

4

∥∥(uK
n (η), vKn (η))

∥∥2 ≳
LG2

µ2
min

{
1,

κ2

K4

}
,

for η ∈
[

1
µnK , 2

L

)
. However, one caveat is that the initialization point (u0(η), v0(η)) depends on the choice of η. Our goal

is to identify a unified, step-size-independent initialization point (x0, y0) that achieves the same lower bound (up to a scaling
factor). Specifically, we aim to ensure:

F2(x
K
n , yKn) ≳

LG

µ2
min

{
1,

κ2

K4

}
for any choice of η ∈

[
1

µnK , 2
L

)
.

We claim that this goal can be achieved by setting the initialization point as (x0, y0) = (u0(
1

µnK), v0(
1

µnK)). To prove
this claim, consider two sequences of iterates: {(xk

i , y
k
i)}i∈[n],k∈[K] and {(uk

i (η), v
k
i (η))}i∈[n],k∈[K]. Both sequences are

generated using the same permutation idn and the same step size η, but they differ in their initialization points. Specifically,
(xk

i , y
k
i) starts from the initial point (u0(

1
µnK), v0(

1
µnK)), while (uk

i (η), v
k
i (η)) starts from the initial point (u0(η), v0(η)).

Recall the gradient of fi from equation (10):

∇fi(x, y) = Ri−1

(
Λ(Ri−1)

−1

[
x
y

]
−G

[
1
0

])
.

21

Incremental Gradient Descent with Small Epoch Counts is Surprisingly Slow on Ill-Conditioned Problems

The update rule for the iterates generated by IGD is:[
xk
i

yki

]
=
(
I − ηRi−1Λ(Ri−1)

−1
) [xk

i−1

yki−1

]
+ ηGRi−1

[
1
0

]
and[

uk
i (η)

vki (η)

]
=
(
I − ηRi−1Λ(Ri−1)

−1
) [uk

i−1(η)
vki−1(η)

]
+ ηGRi−1

[
1
0

]
.

Taking the difference between the two sequences of iterates, we have:[
xk
i − uk

i (η)
yki − vki (η)

]
=
(
I − ηRi−1Λ(Ri−1)

−1
) [xk

i−1 − uk
i−1(η)

yki−1 − vki−1(η)

]
.

Since Ri−1 is an unitary matrix, it follows that Ri−1Λ(Ri−1)
−1 ⪰ µI . Thus, we obtain the inequality I − ηRi−1ΛR

−1
i−1 ⪯

(1− ηµ)I , which leads to the following bound:∥∥(xk
i − uk

i (η), y
k
i − vki (η))

∥∥ ≤ (1− ηµ)
∥∥(xk

i−1 − uk
i−1(η), y

k
i−1 − vki−1(η))

∥∥ .
Based on this inequality, we will demonstrate that

∥∥(xK
n − uK

n (η), yKn − vKn (η))
∥∥ is not significant. This can be interpreted

as the gap between the initialization points shrinking progressively throughout the optimization process. Specifically, we
have ∥∥(xK

n − uK
n (η), yKn − vKn (η))

∥∥ ≤ (1− ηµ)nK ∥(x0 − u0(η), y0 − v0(η))∥
≤ e−ηµnK ∥(x0 − u0(η), y0 − v0(η))∥
(a)

≤ e−1

∥∥∥∥(u0(
1

µnK
)− u0(η), v0(

1

µnK
)− v0(η))

∥∥∥∥
≤ e−1

(∣∣∣∣u0(
1

µnK
)− u0(η)

∣∣∣∣+ ∣∣∣∣v0(1

µnK
)− v0(η)

∣∣∣∣)
(b)

≤ e−1

(
u0(η) +

∣∣∣∣v0(1

µnK
)

∣∣∣∣+ |v0(η)|
)

(c)

≤ e−1

(
u0(η) +

8πK

κ
u0(

1

µnK
) +

8πK

κ
u0(η)

)
(d)

≤
1 + 16πK

κ

e
u0(η)

(e)

≤ 2

e
u0(η)

(f)

≤ 2

e

∥∥(uK
n (η), vKn (η))

∥∥ .
Here, we apply:

• (a): η ≥ 1
µnK and (x0, y0) =

(
u0

(
1

µnK

)
, v0

(
1

µnK

))
.

• (b), (d): u0(η) is positive and increasing (shown in Lemma B.3).

• (c): Follows from Lemma B.4.

• (e): K ≤ κ
16π .

• (f): u0(η) = uK
n (η).

In summary, the distance between (xK
n , yKn) and the minimizer of F2 can be bounded as:∥∥(xK

n , yKn)
∥∥ ≥

∥∥(uK
n (η), vKn (η))

∥∥− ∥∥(xK
n − uK

n (η), yKn − vKn (η))
∥∥ ≥

(
1− 2

e

)∥∥(uK
n (η), vKn (η))

∥∥ ,
22

Incremental Gradient Descent with Small Epoch Counts is Surprisingly Slow on Ill-Conditioned Problems

where we have already derived that
∥∥(uK

n (η), vKn (η))
∥∥ ≥ G

32π2µ min
{
1, κ

K2

}
in equation (14). Thus, we conclude

∥∥(xK
n , yKn)

∥∥ ≥
(
1− 2e−1

)
G

32π2µ
min

{
1,

κ

K2

}
and consequently,

F2(x
K
n , yKn)− F2(x

∗, y∗) =
L′ + µ

4

∥∥(xK
n , yKn)

∥∥2 ≥ L

8

∥∥(xK
n , yKn)

∥∥2 ≳
LG2

µ2
min

{
1,

κ2

K4

}
.

B.2.3. CONSTRUCTION OF F3

Let F3(x) =
L
2 x

2 with component functions fi(x) = F3(x) for all i ∈ [n]. It is clear that F1 satisfies Assumption 2.3,
Assumption 2.4 with G = P = 0 and has µ-strongly convex component functions. Also, we note that x∗ = 0 and
F3(x

∗) = 0.

For all η ∈
[
2
L ,∞

)
, the final iterate is given by

xK
n = (1− ηL)

nK
x0.

In this regime, the step size is excessively large, resulting in

1− ηL ≤ 1− 2

L
· L ≤ −1,

which implies
∣∣(1− ηL)nK

∣∣ ≥ 1. Thus, the iterate does not converge and satisfies
∣∣xK

n

∣∣ ≥ |x0|.

By setting the initialization x0 = G
µ min

{
1, κ

K2

}
, we have

F3(x
K
n)− F3(x

∗) =
L

2
(xK

n)2 ≥ L

2
(x0)

2 ≳
LG2

µ2
min

{
1,

κ2

K4

}
.

B.3. Proof of Theorem 3.5

Theorem 3.5. For any n ≥ 4, κ ≥ 4, and K ≤ κ
4 , there exists a 2-dimensional function F satisfying Assumptions 2.3

and 2.4 with P = 3 such that for any constant step size η, the final iterate xK
n obtained by running Algorithm 2 starting

from the initialization point x0 = (D, 0) satisfies

F (xK
n)− F (x∗) ≳ min

{
µD2,

G2

L

(
1 +

L

2µnK

)n}
.

Proof. Similar to the approach in Theorem 3.1, we divide the range of step sizes into two regimes. For each regime, we
construct the overall functions F1 and F2, respectively, along with their respective component functions and an initial point.
Finally, we aggregate these functions across different dimensions to derive the stated lower bound.

Each function is 1-dimensional and carefully designed to satisfy the following properties:

• (Small step size regime) For any choice of the initialization point x0 = D and step size η ∈
(
0, 1

µnK

)
, the final iterate

xK
n obtained by running Algorithm 2 satisfies F1(x

K
n)− F1(x

∗) ≳ µD2.

• (Moderate & Large step size regime) There exists an initialization point y0 = poly(µ,L, n,K,G) such that for
any choice of η ∈

[
1

µnK ,∞
)

, the final iterate yKn obtained by running Algorithm 2 satisfies F2(y
K
n) − F2(y

∗) ≳

G2

L

(
1 + L

2µnK

)n
.

Here, x∗ and y∗ denote the minimizer of F1 and F2, respectively. Both functions are designed to satisfy Assumption 2.3. F1

satisfies Assumption 2.4 with G = P = 0, and F2 satisfies with P = 3. Detailed constructions of F1 and F2, as well as the
verification of the assumptions and the stated properties are presented in Appendices B.3.1 and B.3.2.

23

Incremental Gradient Descent with Small Epoch Counts is Surprisingly Slow on Ill-Conditioned Problems

By following a similar approach to the proof of Theorems 3.1 and 3.3, we can conclude that the aggregated 2-dimensional
function F (x) := F (x, y) = F1(x) + F2(y) and its component functions satisfy the stated assumptions. Also, since each
dimension is independent, it is obvious that x∗ = (x∗, y∗) minimizes F . Finally, by starting from the initialization point as
x0 = (D, 0), the final iterate xK

n = (xK
n , yKn) obtained by running Algorithm 2 on F satisfies

F (xK
n)− F (x∗) ≳ min

{
µD2,

G2

L

(
1 +

L

2µnK

)n}
,

for any choice of D ∈ R and η > 0.

This concludes the proof of Theorem 3.5.

One key distinction of Theorem 3.5 compared to other lower bound theorems is the explicit inclusion of D in the statement.
While it is possible to express the lower bounds in other theorems with a dependency on D, we chose to leave this dependency

only for Theorem 3.5 due to the unique behavior of the term G2

L

(
1 + L

2µnK

)n
.

Unlike typical bounds, this expression cannot be simplified into a clear, closed-form polynomial expression. Its proportional
degree with respect to µ, L, n, and K varies depending on their values. In particular, when K is small (e.g., near κ

n), the
term exhibits exponential growth, scaling as cn · G2

L where c is a constant greater than 1.1.

This exponential growth introduces challenges when attempting to express the bound without the “min” operator, as in other
theorems. Specifically, the first coordinate of the initialization point, x0, would need to grow to an exponential scale, which
is undesirable to when comparing to the upper bound theorems that hide logarithmic dependency. For these reasons, we
leave the dependency on D explicitly in the bound.

In the following subsections, we present the specific construction of F1 and F2, and demonstrate that each satisfies the stated
lower bound within its corresponding step size regime. For simplicity of notation, we omit the index of the overall function
when referring to its component functions, e.g., we write fi(x) instead of f1i(x). Moreover, we use the common variable
notation x while constructing functions for each dimension, though we use different variables in the “dimension-aggregation”
step.

B.3.1. CONSTRUCTION OF F1

Let F1(x) =
µ
2x

2 with component functions fi(x) = F1(x) for all i ∈ [n]. It is clear that F1 satisfies Assumptions 2.3
and 2.5 with G = P = 0. Also, we note that x∗ = 0 and F1(x

∗) = 0.

For all η ∈
(
0, 1

µnK

)
, the final iterate is given by

xK
n = (1− ηµ)nKx0 ≥

(
1− 1

nK

)nK

x0 ≥ x0

4
,

where the last inequality uses the fact that (1− 1
m)m ≥ 1

4 for all m ≥ 2.

Thus, for x0 = D, we have

F1(x
K
n)− F1(x

∗) =
µ

2
(xK

n)2 ≳ µD2.

B.3.2. CONSTRUCTION OF F2

In this section, we focus on the case when n is even. If n is odd, we set n− 1 components satisfying the argument, and
introduce an additional zero component function. This adjustment does not affect the final result, but only modifies the
parameters µ, L, n by at most a constant factor.

Let F2(x) =
L
8 x

2 with component functions

fi(x) =

{
L
2 x

2 +Gx if i ≤ n/2,

−L
4 x

2 −Gx otherwise.

24

Incremental Gradient Descent with Small Epoch Counts is Surprisingly Slow on Ill-Conditioned Problems

Note that the first n/2 component functions are strongly convex, while the remaining component functions are concave. The
overall function F2 is µ-strongly convex, since L

4 ≥ µ holds from the assumption κ ≥ 4, thereby satisfying Assumption 2.3.
Also, it is clear that fi satisfies Assumption 2.4 with P = 3. We note that x∗ = 0 and F2(x

∗) = 0.

We now consider the relationship between xk
0 and xk+1

0 . Applying Lemma F.3, we have

xk+1
0 =

(
1 +

ηL

2

) n
2

(1− ηL)
n
2 xk

0 +
G

L

((
1 +

ηL

2

) n
2 (

1 + (1− ηL)
n
2

)
− 2

)
. (15)

From K ≤ κ
4 , we have η ≥ 1

µnK ≥ 4
nL . We now derive the lower bound for

(
1 + ηL

2

) n
2

. To do this, we consider the first
three terms of its binomial expansion, which is possible because n

2 ≥ 2:(
1 +

ηL

2

) n
2

≥
(
1 +

2

n

) n
2

≥ 1 +
2

n
·
(n

2

1

)
+

(
2

n

)2

·
(n

2

2

)
= 1 + 1 +

4

n2
· n(n− 2)

8
=

5

2
− 1

n
≥ 9

4
,

where the last inequality uses n ≥ 4. Equivalently, the following inequality holds:(
1 +

ηL

2

) n
2

≥ 2 +
1

9

(
1 +

ηL

2

) n
2

.

Using this inequality, the numerical term in equation (15) becomes(
1 +

ηL

2

) n
2 (

1 + (1− ηL)
n
2

)
− 2 >

(
1 +

ηL

2

) n
2

− 2 ≥ 1

9

(
1 +

ηL

2

) n
2

.

Substituting this back to equation (15) yields

xk+1
0 ≥

(
1 +

ηL

2

) n
2

(1− ηL)
n
2 xk

0 +
G

9L

(
1 +

ηL

2

) n
2

.

Note that if xk
0 is non-negative, we have xk+1

0 ≥ G
9L

(
1 + ηL

2

) n
2 ≥ 0. By setting the initialization point x0 as 0, each xk

0

remains non-negative throughout the process, and therefore the final iterate xK
n satisfies:

xK
n ≥ G

9L

(
1 +

ηL

2

) n
2

≥ G

9L

(
1 +

L

2µnK

) n
2

,

where we apply η ≥ 1
µnK at the last step. Consequently, the optimality gap is lower bounded as:

F2(x
K
n)− F2(x

∗) =
L

8
(xK

n)2 ≳
G2

L

(
1 +

L

2µnK

)n

.

B.4. Technical Lemmas

Lemma B.1. For any n ≥ 2, the following holds:

n−1∑
j=0

e
2πj

n
i = 0.

where i denotes the imaginary unit. In particular, the following equations hold:

n−1∑
j=0

cos
2πj

n
= 0, and

n−1∑
j=0

sin
2πj

n
= 0.

25

Incremental Gradient Descent with Small Epoch Counts is Surprisingly Slow on Ill-Conditioned Problems

Proof. Let ζ = e
2π
n
i. Then, ζn − 1 = e2πi − 1 = 0 holds. Moreover, we have

ζn − 1 =

n−1∑
j=0

ζj

 (ζ − 1) = 0.

Since ζ − 1 ̸= 0, it follows that
∑n−1

j=0 ζj = 0. This leads to the results
∑n−1

j=0 cos 2πj
n = 0 and

∑n−1
j=0 sin 2πj

n = 0.

Lemma B.2. For any n ≥ 3, the following equations hold:

1

n

n−1∑
j=0

cos2
2πj

n
=

1

2
,
1

n

n−1∑
j=0

sin2
2πj

n
=

1

2
, and

1

n

n−1∑
j=0

sin
4πj

n
= 0.

Proof. First, notice that

cos2
2πj

n
=

1

2
(1 + cos

4πj

n
).

sin2
2πj

n
=

1

2
(1− cos

4πj

n
).

Hence, it suffices to prove
∑n−1

j=0 cos 4πj
n = 0 and

∑n−1
j=0 sin 4πj

n = 0. Let ζ = e
4π
n
i where i denote the imaginary number.

Then, ζn − 1 = e4πi − 1 = 0 holds. Moreover, we have

ζn − 1 =

n−1∑
j=0

ζj

 (ζ − 1) = 0.

Since ζ ̸= 1 for n ≥ 3, it follows that
∑n−1

j=0 ζj = 0. This leads to the results
∑n−1

j=0 cos 4πj
n = 0 and

∑n−1
j=0 sin 4πj

n =
0.

Lemma B.3. For η ∈
[

1
µnK , 2

L

)
, u0(η) is an increasing function of η.

Proof. Recall the expression for u0(η) given in equation (11):

u0(η) =
ηL′ − (1− cos δ)

(1− cos δ)(2− (µ+ L′)η) + η2µL′ · ηG.

For simplicity of the notation, let a = 1 − cos δ, b(η) = (ηL′ − a)η, and c(η) = a(2 − η(µ + L′)) + η2µL′. Then,
u0(η) can be expressed as b(η)

c(η)G and u′
0(η) becomes (b′(η)c(η)− b(η)c′(η))G/c(η)2. It suffices to prove the numerator

b′(η)c(η)− b(η)c′(η) is non-negative.

Expanding the numerator, we obtain

b′(η)c(η)− b(η)c′(η) = (2ηL′ − a)(η2µL′ − ηa(µ+ L′) + 2a)− (η2L′ − ηa)(2ηµL′ − a(µ+ L′))

= (2η3µL′2 − η2aL′(3µ+ 2L′) + ηa(4L′ + a(µ+ L′))− 2a2)

− (2η3µL′2 − η2aL′(3µ+ L′) + ηa2(µ+ L′))

= −η2aL′2 + 4ηaL′ − 2a2

= a(4ηL′ − η2L′2 − 2a). (16)

Since ηL′ = ηL
2 ≤ 1, we have η2L′2 ≤ ηL′. Moreover, we have a = 1− cos δ ≤ ηL′

2 from equation (13).

Substituting these results into equation (16), we have

b′(η)c(η)− b(η)c′(η) = a(4ηL′ − η2L′2 − 2a) ≥ a(4ηL′ − ηL′ − ηL′) = 2ηaL′ ≥ 0.

Therefore, we conclude that u0(η) is an increasing function with respect to η.

26

Incremental Gradient Descent with Small Epoch Counts is Surprisingly Slow on Ill-Conditioned Problems

Lemma B.4. For η ∈
[

1
µnK , 2

L

)
, the absolute value of v0(η) is bounded by u0(η) as follows:

|v0(η)| ≤
8πK

κ
u0(η).

Proof. Starting from equations (11) and (12), we have

|v0(η)| =
sin δ

ηL′ − (1− cos δ)
u0(η)

≤ 2π

n
· 2

ηL′u0(η)

=
4π

ηnL′u0(η)

=
8π

ηnL
u0(η),

where we employ sin δ ≤ δ = 2π
n , 1 − cos δ ≤ ηL′

2 from equation (13), and L′ = L
2 . Finally, applying the condition

η ≥ 1
µnK completes the proof of desired inequality.

27

Incremental Gradient Descent with Small Epoch Counts is Surprisingly Slow on Ill-Conditioned Problems

C. Proofs for Small Epoch Upper Bounds
In this section, we provide detailed proofs for Theorem 3.2, Proposition 3.4, and Theorem 3.7 which correspond to upper
bound results in the small epoch regime.

C.1. Proof of Theorem 3.2

Theorem 3.2. Let n ≥ 1, κ
n ≲ K ≤ κ, and an initialization point x0. Suppose F is a 1-dimensional function satisfying

Assumptions 2.3 and 2.5. Assume that each component function fi shares the same Hessian for all i ∈ [n] and x ∈ R.
Then, for any choice of permutation σk in each epoch, the final iterate xK

n obtained by Algorithm 1 with the step size

η = 1
µnK max

{
log
(

L|x0−x∗|
G∗

)
, 1
}

satisfies

F (xK
n)− F (x∗) ≲

G2
∗

µK
.

Proof. Since each fi has the identical Hessian, we have ∇2fi(x) = ∇2F (x) for every x ∈ R. Consequently, for all i ∈ [n],
we can express the gradient difference as follows:

∇fi(x)−∇F (x) = ∇fi(x
∗)−∇F (x∗) +

∫ x

x∗

(
∇2fi(α)−∇2F (α)

)
dα = ∇fi(x

∗).

For simplicity, let ai = −∇fi(x
∗) for i ∈ [n]. Then, from the definition of F (x) = 1

n

∑n
i=1 fi(x), we have

∑n
i=1 ai = 0.

Furthermore, it follows from Assumption 2.5 that |ai| ≤ G∗. To further classify the indices, we define

I+ = {i ∈ [n] | ai ≥ 0} and I− = {i ∈ [n] | ai < 0} .

Here, I+ represents the collection of component functions whose minima are greater than or equal to x∗, while I− consists
of the remaining functions.

We begin by presenting the following lemma:

Lemma C.1. Let p, q ∈ R with p < q, and let p′ and q′ denote the results of performing a single step of gradient descent on
a µ-strongly convex and L-smooth 1-dimensional function f , starting from p and q, respectively, with a step size η < 1

L .
Then, it holds that 0 < q′ − p′ ≤ (1− ηµ)(q − p).

The proof for Lemma C.1 is presented in Appendix C.4. Now, let z0 = x∗, initialized at the minima of the overall function
F , and define zki as the i-th iterate of the k-th epoch, using the same permutations employed for xk

i but instead starting
from the initial point z0. Since the distance between xk

i and zki decreases by at least a factor of (1− ηµ) at each iteration
(Lemma C.1), we have ∣∣xK

n − zKn
∣∣ ≤ (1− ηµ)nK

∣∣x0 − z10
∣∣ ≤ e−ηµnK |x0 − x∗| ≤ G∗

L
, (17)

where we substitute η = 1
µnK max

{
log
(

L|x0−x∗|
G∗

)
, 1
}

in the last step. This demonstrates that xK
n and zKn remain

sufficiently close. For the rest of the analysis, we mainly focus on how far zKn can deviate from x∗. The bound for F (xK
n)

will later be controlled by leveraging L-smoothness between xK
n and zKn .

In the special case where I− = ∅, all ai are equal to 0 since
∑n

i=1 ai = 0. In this scenario, zKn remains at x∗ because
∇fi(z

1
0) = 0 holds for all i ∈ [n], resulting in zKn = x∗. Using this, we have

F (xK
n) ≤ F (zKn) +

〈
∇F (zKn), xK

n − zKn
〉
+

L

2

∣∣xK
n − zKn

∣∣2 (∵ L-smoothness)

= F (x∗) +
L

2

(
G∗

L

)2

= F (x∗) +
G2

∗
2L

≤ F (x∗) +
G2

∗
2µK

,

where we apply K ≤ κ in the last inequality. This concludes the proof for this special case. For the remainder of the proof,
we assume I− ̸= ∅.

28

Incremental Gradient Descent with Small Epoch Counts is Surprisingly Slow on Ill-Conditioned Problems

For each k ∈ [K], define zk+ as the maximum possible final iterate obtained after running Algorithm 1 starting from x∗,
i.e., the largest value among the (n!)k possible options. Similarly, for each k ∈ [K], let zk− denote the minimum among the
(n!)k options, also starting from x∗. Consequently, by convexity of F , F (zKn) can naturally be upper bounded by

max
{
F (zK+), F (zK−)

}
.

The following lemma helps us to establish upper bounds for zK+ − x∗ and −(zK− − x∗).

Lemma C.2. Let {σ+
k }Kk=1 denote the sequence of permutations applied over K epochs to generate zK+ . These permutations

and the corresponding zK+ satisfy the following properties:

• The permutations {σ+
k }

K−1
k=1 , applied during the first K − 1 epochs, produce zK−1

+ .

• For any k ∈ [K], all indices in I+ appear before all indices in I− in the permutation σ+
k .

• For any k ∈ [K], let zk,I−
+ denote the |I−|-th iterate in the k-th epoch, i.e., obtained after processing all indices in I−.

Then, the inequality z
k,I−
+ ≤ x∗ ≤ zk+ holds.

For zK− and its corresponding permutations {σ−
k }kk=1, the following properties hold:

• The permutations {σ−
k }

K−1
k=1 , applied during the first K − 1 epochs, produce zK−1

− .

• For any k ∈ [K], all indices in I− appear before all indices in I+ in the permutation σ−
k .

• For any k ∈ [K], let zk,I+

− denote the |I+|-th iterate in the k-th epoch, i.e., obtained after processing all indices in I+.
Then, the inequality z

k,I+

− ≥ x∗ ≥ zk− holds.

The proof for Lemma C.2 is presented in Appendix C.4. Define π+ : [|I+|] → [n] as the ordering of I+ used during the
K-th epoch to generate zK+ from z

K,I−
+ . We then define the sequence of iterates u0, u1, . . . u|I+| where u0 = x∗ and each

subsequent ui is obtained by applying a gradient update using the component function fπ+(i) to ui−1. We emphasize the
following two key points:

1. z
K,I−
+ ≤ x∗ = u0.

2. The sequences of iterates zK,I−
+ , . . . , zK+ and u0, . . . u|I+| are generated by the same component function ordering.

From these observations, we conclude that zK+ ≤ u|I+| as Lemma C.1 ensures that the relationship p ≤ q is preserved
under gradient descent (i.e., if p ≤ q, then p′ ≤ q′ after each update). Together with x∗ ≤ zK+ from Lemma C.2, we obtain
0 ≤ zK+ − x∗ ≤ u|I+| − x∗.

Similarly, define π− : [|I−|] → [n] as the ordering of I− used during the K-th epoch to generate zK− from z
K,I+

− . Also, define
the sequence of iterates v0, v1, . . . , v|I−| where v0 = x∗ and each subsequent vi is obtained by applying a gradient update
using the component function fπ−(i) to vi−1. Then, we have x∗ ≥ zK− ≥ v|I−|, leading to 0 ≤ −(zK− −x∗) ≤ −(v|I−|−x∗).

To summarize the process so far, we aim to upper bound
∣∣zKn − x∗

∣∣ where zKn is the final iterate obtained using the same
permutations as xK

n but starting from z0 = x∗ instead of x0 = x0. Since zK+ and zK− represent the maximum and minimum
possible final iterate of zKn , respectively, the followings hold:∣∣zKn − x∗∣∣ ≤ max

{
zK+ − x∗,−(zK− − x∗)

}
≤ max

{
u|I+| − x∗,−(v|I−| − x∗)

}
and therefore, by convexity of F ,

F (zKn) ≤ max
{
F (u|I+|), F (v|I−|)

}
. (18)

We now focus on providing the upper bound for max
{
F (u|I+|), F (v|I−|)

}
. To this end, we introduce the following lemma:

Lemma C.3. With a step size η < 1
L , 0 ≤ ∇F (ui) ≤ 2G∗ holds for all i ∈ {0} ∪ [|I+|] and 0 ≥ ∇F (vj) ≥ −2G∗ holds

for all j ∈ {0} ∪ [|I−|].

29

Incremental Gradient Descent with Small Epoch Counts is Surprisingly Slow on Ill-Conditioned Problems

The proof for Lemma C.3 is presented in Appendix C.4. Using Lemma C.3, we can upper bound the increments in the
per-iteration function evaluation as follows:

F (ui) = F (ui−1) +

∫ ui

ui−1

∇F (α) dα

≤ F (ui−1) + |ui − ui−1| · |∇F (ui−1 + ci · (ui − ui−1))|
= F (ui−1) + η

∣∣∇fπ+(i)(ui−1)
∣∣ · |∇F (ui−1 + ci · (ui − ui−1))|

= F (ui−1) + η
∣∣∇F (ui−1)− aπ+(i)

∣∣ · |∇F (ui−1 + ci · (ui − ui−1))|
≤ F (ui−1) + η · 4G2

∗, (19)

where 0 ≤ ci ≤ 1 by Mean Value Theorem. The last inequality follows from the bounds 0 ≤ ∇F (ui−1) ≤ 2G∗ and
0 ≤ aπ+(i) ≤ G∗ (since π+(i) ∈ I+). Additionally, min {∇F (ui−1),∇F (ui)} ≤ ∇F (ui−1 + ci · (ui − ui−1)) ≤
max {∇F (ui−1),∇F (ui)} holds as ∇F is a strictly increasing function.

Unrolling equation (19) for i = 1, 2, . . . , |I+|, we obtain:

F (u|I+|) ≤ F (x∗) + 4ηnG2
∗.

By applying a similar argument, we can derive a corresponding bound for v|I−|:

F (v|I−|) ≤ F (x∗) + 4ηnG2
∗.

Therefore, equation (18) becomes

F (zKn) ≤ F (x∗) + 4ηnG2
∗.

We now proceed to derive the upper bound for F (xK
n). We already established in equation (17) that

∣∣xK
n − zKn

∣∣ ≤ G∗/L.
Consequently, by applying L-smoothness,

F (xK
n) ≤ F (zKn) +

〈
∇F (zKn), xK

n − zKn
〉
+

L

2

∣∣xK
n − zKn

∣∣2
≤
(
F (x∗) + 4ηnG2

∗
)
+ 2G∗ ·

G∗

L
+

L

2

(
G∗

L

)2

= F (x∗) +
4G2

∗
µK

max

{
log

(
L |x0 − x∗|

G∗

)
, 1

}
+

5G2
∗

2L
,

where we used the fact that
∣∣∇F (zKn)

∣∣ ≤ max
{
∇F (zK+),−∇F (zK−)

}
< max

{
∇F (u|I+|),−∇F (v|I−|)

}
≤ 2G∗ and

η = 1
µnK max

{
log
(

L|x0−x∗|
G∗

)
, 1
}

. Since K ≤ κ, we have L ≥ µK, and therefore,

F (xK
n)− F (x∗) ≲

G2
∗

µK
.

This concludes the proof of Theorem 3.2.

C.2. Proof of Proposition 3.4

Proposition 3.4 (Mishchenko et al. (2020), Theorem 5). Let n ≥ 1, K ≳ κ
n , and x0 be the initialization point. Suppose

F is a function satisfying Assumptions 2.3 and 2.5 where each component function is µ-strongly convex. Then, for
any choice of permutation σk in each epoch, the final iterate xK

n obtained by running Algorithm 1 with a step size

η = 2
µnK max

{
log
(

∥x0−x∗∥µK√
κG∗

)
, 1
}

, satisfies

∥∥xK
n − x∗∥∥2 ≲

LG2
∗

µ3K2
.

30

Incremental Gradient Descent with Small Epoch Counts is Surprisingly Slow on Ill-Conditioned Problems

Proof. The original statement by Theorem 5 in (the appendix of) Mishchenko et al. (2020) holds only for IGD. We here
extend the theorem to hold for arbitrary permutation-based SGD, and reorganize some terms to facilitate clear comparison
to the proof of Theorem 3.7.

We begin by noting the specific epoch condition stated as K ≳ κ
n in the theorem statement:

K ≥ 2κ

n
max

{
log

(
∥x0 − x∗∥µK√

κG∗

)
, 1

}
.

Under this condition, the specified step size η = 2
µnK max

{
log
(

∥x0−x∗∥µK√
κG∗

)
, 1
}

satisfies η ≤ 1
L .

For each k ∈ [K], we use the permutation σk to define a sequence of iterates {x∗
k,i}ni=0 as follows:

x∗
k,0 = x∗,

x∗
k,i = x∗

k,i−1 − η∇fσk(i)(x
∗).

The sequence x∗
k,i can be interpreted as the sequence starting from x∗ obtained by using the component gradients in the

same order as xk
i , but the gradients are being evaluated at x∗ instead of xk

i−1. From
∑n

i=1 ∇fσk(i)(x
∗) = n∇F (x∗) = 0,

we can easily deduce that x∗
k,n = x∗ = x∗

k+1,0.

We analyze the square norm distance
∥∥∥xk

i − x∗
k,i

∥∥∥2 using an iteration-wise recursive inequality:

∥∥xk
i − x∗

k,i

∥∥2 =
∥∥xk

i−1 − η∇fσk(i)(x
k
i−1)−

(
x∗
k,i−1 − η∇fσk(i)(x

∗)
)∥∥2

=
∥∥xk

i−1 − x∗
k,i−1

∥∥2 − 2η
〈
xk
i−1 − x∗

k,i−1,∇fσk(i)(x
k
i−1)−∇fσk(i)(x

∗)
〉

+ η2
∥∥∇fσk(i)(x

k
i−1)−∇fσk(i)(x

∗)
∥∥2

(a)
=
∥∥xk

i−1 − x∗
k,i−1

∥∥2 − 2η
(
Dfσk(i)

(xk
i−1,x

∗) +Dfσk(i)
(x∗

k,i−1,x
k
i−1)−Dfσk(i)

(x∗
k,i−1,x

∗)
)

+ η2
∥∥∇fσk(i)(x

k
i−1)−∇fσk(i)(x

∗)
∥∥2 . (20)

Here, Df (x,y) := f(x)− f(y)− ⟨∇f(y), x− y⟩ denotes the Bregman divergence of f between x and y. At (a), we
apply the three-point identity of the Bregman divergence.

The term Dfσk(i)
(x∗

k,i−1,x
k
i−1) in equation (20) can be bounded as follows:

Dfσk(i)
(x∗

k,i−1,x
k
i−1) ≥

µ

2

∥∥x∗
k,i−1 − xk

i−1

∥∥2 ,
by the µ-strong convexity of the component function. Moreover, from Lemma 2.29 of Garrigos & Gower (2023), we have∥∥∇fσk(i)(x

k
i−1)−∇fσk(i)(x

∗)
∥∥2 ≤ 2LDfσk(i)

(xk
i−1,x

∗).

Substituting these inequalities into equation (20), we derive∥∥xk
i − x∗

k,i

∥∥2 ≤
∥∥xk

i−1 − x∗
k,i−1

∥∥2 − 2η(1− ηL)Dfσk(i)
(xk

i−1,x
∗)− ηµ

∥∥xk
i−1 − x∗

k,i−1

∥∥2 + 2ηDfσk(i)
(x∗

k,i−1,x
∗)

(a)

≤ (1− ηµ)
∥∥xk

i−1 − x∗
k,i−1

∥∥2 + 2ηDfσk(i)
(x∗

k,i−1,x
∗)

(b)

≤ (1− ηµ)
∥∥xk

i−1 − x∗
k,i−1

∥∥2 + η3Ln2G2
∗, (21)

where we apply 1 − ηL ≥ 0 and Dfσk(i)
(xk

i−1,x
∗) ≥ 0 at (a). At (b), we utilize the L-smoothness of the component

function and the triangle inequality:

Dfσk(i)
(x∗

k,i−1,x
∗) ≤ L

2

∥∥x∗
k,i−1 − x∗∥∥2 =

η2L

2

∥∥∥∥∥∥
i−1∑
j=1

∇fσk(j)(x
∗)

∥∥∥∥∥∥
2

≤ η2L

2
· (nG∗)

2.

31

Incremental Gradient Descent with Small Epoch Counts is Surprisingly Slow on Ill-Conditioned Problems

Thus, by unrolling equation (21) over all k ∈ [K] and all i ∈ [n], and noting that x∗
k,n = x∗ = x∗

k+1,0, we obtain

∥∥xK
n − x∗∥∥2 ≤ (1− ηµ)nK

∥∥x1
0 − x∗∥∥2 + η3Ln2G2

∗

nK∑
t=1

(1− ηµ)
t−1

= (1− ηµ)nK ∥x0 − x∗∥2 + η3Ln2G2
∗
1− (1− ηµ)

nK

ηµ

≤ e−ηµnK ∥x0 − x∗∥2 + η2Ln2G2
∗

µ
.

We now substitute η = 2
µnK max

{
log
(

∥x0−x∗∥µK√
κG∗

)
, 1
}

. When ∥x0 − x∗∥ is sufficiently large, the above inequality
simplifies to ∥∥xK

n − x∗∥∥2 ≤ LG2
∗

µ3K2

(
1 + 4 log2

(
∥x0 − x∗∥µK√

κG∗

))
≲

LG2
∗

µ3K2
.

On the other hand, when ∥x0 − x∗∥ is small so that 1 is chosen after the max operation, the above inequality simplifies to∥∥xK
n − x∗∥∥2 ≤ 1

e2
· e2 κG2

∗
µ2K2

+
4LG2

∗
µ3K2

≲
LG2

∗
µ3K2

,

where we use ∥x0 − x∗∥ ≤ e ·
√
κG∗

µK .

In particular, using the L-smoothness of F , the function optimality gap can be bounded as:

F (xK
n)− F (x∗) ≤ L

2

∥∥xK
n − x∗∥∥2 ≲

L2G2
∗

µ3K2
.

This ends the proof of Proposition 3.4.

C.3. Proof of Theorem 3.7

Theorem 3.7 (Herding at Optimum). Let n ≥ 1, K ≳ κ
n , and x0 be the initialization point. Suppose F is a func-

tion satisfying Assumptions 2.3 and 2.5 where each component function is µ-strongly convex. Then, there exists a
permutation σ such that the final iterate xK

n obtained by running Algorithm 1 with K epochs of σ and a step size

η = 2
µnK max

{
log
(

∥x0−x∗∥µnK√
κHG∗

)
, 1
}

, satisfies∥∥xK
n − x∗∥∥2 ≲

H2LG2
∗

µ3n2K2
.

Proof. We begin by noting the specific epoch condition stated as K ≳ κ
n in the theorem statement:

K ≥ 2κ

n
max

{
log

(
∥x0 − x∗∥µnK√

κHG∗

)
, 1

}
.

Under this condition, the specified step size η = 2
µnK max

{
log
(

∥x0−x∗∥µnK√
κHG∗

)
, 1
}

satisfies η ≤ 1
L .

Next, we consider the scaled gradient of each component function at x∗:{
∇f1(x

∗)

G∗
,
∇f2(x

∗)

G∗
, . . . ,

∇fn(x
∗)

G∗

}
.

From Assumption 2.5, we have ∥∇fi(x
∗)∥ ≤ G∗ for all i ∈ [n]. Thus, the norm of each element is bounded by 1. Also,

since
∑n

i=1 ∇fi(x
∗) = n∇F (x∗) = 0, it follows that these elements sum to 0. Therefore, we can apply the Herding

algorithm, as stated in Lemma 3.6, to obtain a permutation σ∗ : [n] → [n] satisfying

max
i∈[n]

∥∥∥∥∥∥
i∑

j=1

∇fσ∗(j)(x
∗)

∥∥∥∥∥∥ ≤ HG∗, (22)

32

Incremental Gradient Descent with Small Epoch Counts is Surprisingly Slow on Ill-Conditioned Problems

where H = Õ(
√
d). We will demonstrate that this permutation σ∗ is the desired one: the final iterate xK

n obtained by
running Algorithm 1 for K epochs of σ∗ satisfies the desired upper bound.

Using σ∗, we define a sequence of iterates {x∗
i }ni=0 as follows:

x∗
0 = x∗,

x∗
i = x∗

i−1 − η∇fσ∗(i)(x
∗).

Note that the sequence is obtained by using the component gradients at the minimizer x∗. From
∑n

i=1 ∇fσ∗(i)(x
∗) =

n∇F (x∗) = 0, we can easily deduce that x∗
n = x∗

0 = x∗.

The proof follows the approach used in Theorem 1 in Mishchenko et al. (2020) with several modifications using the property
from the Herding algorithm. We analyze the square norm distance

∥∥xk
i − x∗

i

∥∥2 using an iteration-wise recursive inequality:∥∥xk
i − x∗

i

∥∥2 =
∥∥xk

i−1 − η∇fσ∗(i)(x
k
i−1)−

(
x∗
i−1 − η∇fσ∗(i)(x

∗)
)∥∥2

=
∥∥xk

i−1 − x∗
i−1

∥∥2 − 2η
〈
xk
i−1 − x∗

i−1,∇fσ∗(i)(x
k
i−1)−∇fσ∗(i)(x

∗)
〉

+ η2
∥∥∇fσ∗(i)(x

k
i−1)−∇fσ∗(i)(x

∗)
∥∥2

(a)
=
∥∥xk

i−1 − x∗
i−1

∥∥2 − 2η
(
Dfσ∗(i)

(xk
i−1,x

∗) +Dfσ∗(i)
(x∗

i−1,x
k
i−1)−Dfσ∗(i)

(x∗
i−1,x

∗)
)

+ η2
∥∥∇fσ∗(i)(x

k
i−1)−∇fσ∗(i)(x

∗)
∥∥2 . (23)

Here, Df (x,y) := f(x)− f(y)− ⟨∇f(y), x− y⟩ denotes the Bregman divergence of f between x and y. At (a), we
apply the three-point identity of the Bregman divergence.

The term Dfσ∗(i)
(x∗

i−1,x
k
i−1) in equation (23) can be bounded as follows:

Dfσ∗(i)
(x∗

i−1,x
k
i−1) ≥

µ

2

∥∥x∗
i−1 − xk

i−1

∥∥2 ,
by the µ-strong convexity of the component function. Moreover, from Lemma 2.29 of Garrigos & Gower (2023), we have∥∥∇fσ∗(i)(x

k
i−1)−∇fσ∗(i)(x

∗)
∥∥2 ≤ 2LDfσ∗(i)

(xk
i−1,x

∗).

Substituting these inequalities into equation (23), we derive∥∥xk
i − x∗

i

∥∥2 ≤
∥∥xk

i−1 − x∗
i−1

∥∥2 − 2η(1− ηL)Dfσ∗(i)
(xk

i−1,x
∗)− ηµ

∥∥xk
i−1 − x∗

i−1

∥∥2 + 2ηDfσ∗(i)
(x∗

i−1,x
∗)

(a)

≤ (1− ηµ)
∥∥xk

i−1 − x∗
i−1

∥∥2 + 2ηDfσ∗(i)
(x∗

i−1,x
∗)

(b)

≤ (1− ηµ)
∥∥xk

i−1 − x∗
i−1

∥∥2 +H2η3LG2
∗, (24)

where we apply 1 − ηL ≥ 0 and Dfσ∗(i)
(xk

i−1,x
∗) ≥ 0 at (a). At (b), we utilize the L-smoothness of the component

function and the property of the Herding algorithm, given in equation (22):

Dfσ∗(i)
(x∗

i−1,x
∗) ≤ L

2

∥∥x∗
i−1 − x∗∥∥2 =

η2L

2

∥∥∥∥∥∥
i−1∑
j=1

∇fσ∗(j)(x
∗)

∥∥∥∥∥∥
2

≤ η2L

2
· (HG∗)

2.

Thus, by unrolling equation (24) over all k ∈ [K] and all i ∈ [n], and noting that x∗
n = x∗

0 = x∗, we obtain

∥∥xK
n − x∗∥∥2 ≤ (1− ηµ)nK

∥∥x1
0 − x∗∥∥2 +H2η3LG2

∗

nK∑
t=1

(1− ηµ)
t−1

= (1− ηµ)nK ∥x0 − x∗∥2 +H2η3LG2
∗
1− (1− ηµ)

nK

ηµ

33

Incremental Gradient Descent with Small Epoch Counts is Surprisingly Slow on Ill-Conditioned Problems

≤ e−ηµnK ∥x0 − x∗∥2 + H2η2LG2
∗

µ
.

We now substitute η = 2
µnK max

{
log
(

∥x0−x∗∥µnK√
κHG∗

)
, 1
}

. When ∥x0 − x∗∥ is sufficiently large, the above inequality
simplifies to

∥∥xK
n − x∗∥∥2 ≤ H2LG2

∗
µ3n2K2

(
1 + 4 log2

(
∥x0 − x∗∥µnK√

κHG∗

))
≲

H2LG2
∗

µ3n2K2
.

On the other hand, when ∥x0 − x∗∥ is small so that 1 is chosen after the max operation, the above inequality simplifies to

∥∥xK
n − x∗∥∥2 ≤ 1

e2
· e2 κH

2G2
∗

µ2n2K2
+

4H2LG2
∗

µ3n2K2
≲

H2LG2
∗

µ3n2K2
,

where we use ∥x0 − x∗∥ ≤ e ·
√
κHG∗

µnK .

In particular, using the L-smoothness of F , the function optimality gap can be bounded as:

F (xK
n)− F (x∗) ≤ L

2

∥∥xK
n − x∗∥∥2 ≲

H2L2G2
∗

µ3n2K2
.

This ends the proof of Theorem 3.7.

C.4. Technical Lemmas

Lemma C.1. Let p, q ∈ R with p < q, and let p′ and q′ denote the results of performing a single step of gradient descent on
a µ-strongly convex and L-smooth 1-dimensional function f , starting from p and q, respectively, with a step size η < 1

L .
Then, it holds that 0 < q′ − p′ ≤ (1− ηµ)(q − p).

Proof. Using the gradient descent update rule, we obtain:

p′ = p− η∇f(p),

q′ = q − η∇f(q).

The difference between q′ and p′ can then be written as:

q′ − p′ = (q − p)− η (∇f(q)−∇f(p))

= (q − p)− η

∫ q

p

∇2f(u) du. (25)

Since ∇2f(u) satisfies µ ≤ ∇2f(u) ≤ L, we have µ(q − p) ≤
∫ q

p
∇2f(u) du ≤ L(q − p). Substituting this inequality to

equation (25) yields

0 < (1− ηL)(q − p) ≤ q′ − p′ ≤ (1− ηµ)(q − p),

where the first inequality holds due to η < 1
L .

Lemma C.2. Let {σ+
k }Kk=1 denote the sequence of permutations applied over K epochs to generate zK+ . These permutations

and the corresponding zK+ satisfy the following properties:

• The permutations {σ+
k }

K−1
k=1 , applied during the first K − 1 epochs, produce zK−1

+ .

• For any k ∈ [K], all indices in I+ appear before all indices in I− in the permutation σ+
k .

• For any k ∈ [K], let zk,I−
+ denote the |I−|-th iterate in the k-th epoch, i.e., obtained after processing all indices in I−.

Then, the inequality z
k,I−
+ ≤ x∗ ≤ zk+ holds.

34

Incremental Gradient Descent with Small Epoch Counts is Surprisingly Slow on Ill-Conditioned Problems

For zK− and its corresponding permutations {σ−
k }kk=1, the following properties hold:

• The permutations {σ−
k }

K−1
k=1 , applied during the first K − 1 epochs, produce zK−1

− .

• For any k ∈ [K], all indices in I− appear before all indices in I+ in the permutation σ−
k .

• For any k ∈ [K], let zk,I+

− denote the |I+|-th iterate in the k-th epoch, i.e., obtained after processing all indices in I+.
Then, the inequality z

k,I+

− ≥ x∗ ≥ zk− holds.

Proof. We provide the proof for zK+ and its corresponding permutations {σ+
k }Kk=1. The proof for zK− and {σ−

k }Kk=1 is
analogous, as flipping the sign of a’s leads to identical circumstances.

Step 1: The First Property. Let wK−1
+ denote the iterate obtained by running Algorithm 1 with the sequence of

permutations {σ+
k }

K−1
k=1 , starting from x∗ with a step size η. Since zK−1

+ is defined as the maximum possible iterate after
running Algorithm 1 with K − 1 epochs, it follows that wK−1

+ ≤ zK−1
+ .

Assume for contradiction that wK−1
+ < zK−1

+ . By Lemma C.1, the iterate obtained by applying σK
+ starting from zK−1

+

exceeds zK+ . This contradicts the definition of zK+ , which is the maximum possible final iterate after K epochs. Therefore,
we conclude that wk−1

+ = zk−1
+ .

By recursively applying this reasoning, we deduce that for all l ∈ [K], running Algorithm 1 with permutations {σ+
k }lk=1

generates zl+.

Step 2: The Second Property. We now prove the following claim:

Claim. Consider two steps of gradient updates using two component functions fi(x) and fj(x) with ai < aj , starting
from the initialization u. Then, regardless of the choice of the step size η, applying fi first, followed by fj , results in a larger
iterate than applying fj first, followed by fi.

Proof of the claim. The update equations are:

ui = u− η (∇F (u)− ai) ,

uij = ui − η (∇F (ui)− aj) ,

uj = u− η (∇F (u)− aj) ,

uji = uj − η (∇F (uj)− ai) .

Since ai < aj , we have ui < uj . Also, because ∇F is a monotonically increasing function, it follows that ∇F (ui) <
∇F (uj). Now, we can check that subtracting uji from uij yields positive difference:

uij − uji = (ui − η (∇F (ui)− aj))− (uj − η (∇F (uj)− ai))

= η (∇F (uj)−∇F (ui)) + (ui + ηaj)− (uj + ηai)︸ ︷︷ ︸
=0

= η (∇F (uj)−∇F (ui)) > 0.

Thus, uji > uij holds, completing the proof of the claim.

From the claim, we conclude in σ+
k , all indices in I− (indices corresponding to negative a values) must appear before

indices in I+ (indices corresponding to positive a values). Otherwise, if there exists an index in I− that immediately follows
an index in I+, switching these two indices would result in a larger final iterate (due to Lemma C.1), contradicting the
optimality of σ+

k . This concludes the proof of the second property.

Step 3: The Third Property. Define M :=
∑

i∈I+
ai = −

∑
i∈I−

ai. We claim that:

Claim. If 0 ≤ zk+ − x∗ ≤ ηM , then −ηM ≤ z
k+1,I−
+ − x∗ ≤ 0 holds.

Proof of the claim. Note that the iterate z
k+1,I−
+ is obtained by applying gradient update starting from zk+ using the first I−

component functions of the permutation σk. Let σf
k denote the first I− parts of the permutation σk. We verify the bound as

follows:

Lower Bound: −ηM ≤ z
k+1,I−
+ − x∗.

35

Incremental Gradient Descent with Small Epoch Counts is Surprisingly Slow on Ill-Conditioned Problems

By Lemma C.1, the iterate z
k+1,I−
+ is at least as large as the iterate obtained by applying gradient updates following σf

k ,
starting from x∗.

Also, if p < x∗ holds, then

−∇F (p) = ∇F (x∗)−∇F (p) =

∫ x∗

p

∇2F (α) dα ≤ L(x∗ − p).

Hence, p− η∇F (p) ≤ x∗ holds. Thus, if the iterate falls below x∗, the next iterate obtained by applying the gradient update
from the component in I− will also remain below x∗.

This property guarantees that when the gradient update starts x∗ and follows σf
k , every iterate remains below x∗. Moreover,

the total contribution of the gradient updates towards the negative direction by indices in I− when starting from x∗ is at
most −η

∑
i∈I−

ai = ηM . Hence, zk+1,I−
+ − x∗ ≥ −ηM holds.

Upper Bound: zk+1,I−
+ − x∗ ≤ 0.

Again, by Lemma C.1, the iterate zk+1,I−
+ is at most the iterate obtained by applying gradient updates following σf

k , starting
from x∗ + ηM .

Assume by contradiction that zk+1,I−
+ > x∗ holds. This means that the iterate obtained by following σf

k starting from
x∗ + ηM is also greater than x∗. Due to the property stated in the proof of lower bounding z

k+1,I−
+ , all intermediate iterates

should be greater than x∗ as well. This leads to a contradiction, as the total contribution of the gradient updates towards the
negative direction by indices in I− when starting from x∗ + ηM will exceed ηM , leading z

k+1,I−
+ to fall below x∗. Hence,

z
k+1,I−
+ − x∗ ≤ 0 holds.

Combining these two bounds, we obtain

−ηM ≤ z
k+1,I−
+ − x∗ ≤ 0,

and this ends the proof of the claim.

The claim shows that if 0 ≤ zk+ − x∗ ≤ ηM , then −ηM ≤ z
k+1,I−
+ − x∗ ≤ 0 holds. By analogous reasoning,

if −ηM ≤ z
k+1,I−
+ − x∗ ≤ 0, then 0 ≤ zk+1

+ − x∗ ≤ ηM holds. Combining these two statements, we have: if
0 ≤ zk+ − x∗ ≤ ηM , then 0 ≤ zk+1

+ − x∗ ≤ ηM and z
k+1,I−
+ ≤ x∗ ≤ zk+1

+ hold.

Using these, we now proceed by induction to prove the third property. For the base case, the initialization point is z0 = x∗,
satisfying the initial condition by z0 − x∗ = 0. By induction, it follows that

z
k,I−
+ ≤ x∗ ≤ zk+.

for all k ∈ [K]. This concludes the proof of the third property.

Lemma C.3. With a step size η < 1
L , 0 ≤ ∇F (ui) ≤ 2G∗ holds for all i ∈ {0} ∪ [|I+|] and 0 ≥ ∇F (vj) ≥ −2G∗ holds

for all j ∈ {0} ∪ [|I−|].

Proof. Recall that the sequence of iterate {ui}|I+|
i=0 is defined as u0 = x∗ and each subsequent ui is obtained by applying a

gradient update using the component function fπ+(i) to ui−1. Specifically, we have

ui = ui−1 − η∇fπ+(i)(ui−1)

= ui−1 − η
(
∇F (ui−1)− aπ+(i)

)
,

for i ∈ [|I+|].

Now, we will prove by induction that 0 ≤ ∇F (ui) ≤ 2G∗ holds for all i ∈ [|I+|]. Initially, we have u0 = x∗ and thus
∇F (u0) = 0. Now, assume that 0 ≤ ∇F (uj−1) ≤ 2G∗. We divide the proof into two cases based on the value of
∇F (uj−1).

Case 1. ∇F (uj−1) ≤ aπ+(j).

36

Incremental Gradient Descent with Small Epoch Counts is Surprisingly Slow on Ill-Conditioned Problems

In this case, the update equation becomes:

uj = uj−1 − η
(
∇F (uj−1)− aπ+(j)

)
≥ uj−1,

meaning that the iterate increases. Since ∇F is an increasing function, we have ∇F (uj) ≥ ∇F (uj−1) ≥ 0.

Also, using the fact that all |ai| is bounded by G∗, we can bound the difference of the gradient between successive iterates
via the L-smoothness of F :

|∇F (uj)−∇F (uj−1)| ≤ L |uj − uj−1| ≤ ηLG∗ < G∗.

Thus, the deviation of ∇F (uj) from ∇F (uj−1) is at most G∗, leading to the following inequality:

∇F (uj) ≤ ∇F (uj−1) +G∗ ≤ aπ+(j) +G∗ ≤ 2G∗.

Case 2. ∇F (uj−1) > aπ+(j).

In this case, the update equation becomes:

uj = uj−1 − η
(
∇F (uj−1)− aπ+(j)

)
≤ uj−1,

meaning that the iterate decreases. Since ∇F is an increasing function, we have ∇F (uj) ≤ ∇F (uj−1) ≤ 2G∗.

Furthermore, by L-smoothness of F , we have ∇F (uj−1) = ∇F (uj−1)−∇F (x∗) ≤ L (uj−1 − x∗). Then, we can ensure
that uj is greater than or equal to x∗ as follows:

uj = uj−1 − η∇
(
F (uj−1)− aπ+(j)

)
≥ uj−1 − η∇F (uj−1)

≥ uj−1 −
1

L
· L (uj−1 − x∗) = x∗.

For both cases, we have shown that 0 ≤ ∇F (uj) ≤ 2G∗.

We can apply the same approach for {vi}|I−|
i=1 . The key difference is that the sign of aπ−(j) is negative. This leads to the

result 0 ≥ ∇F (vj) ≥ −2G∗ for all j ∈ [|I−|]. This concludes the proof of Lemma C.3.

37

Incremental Gradient Descent with Small Epoch Counts is Surprisingly Slow on Ill-Conditioned Problems

D. Proofs for Large Epoch Lower Bounds
D.1. Proof of Theorem 4.1

Theorem 4.1. For any n ≥ 2, κ ≥ 2, and K ≥ κ, there exists a 3-dimensional function F satisfying Assumptions 2.3
and 2.4 with P = 0, where each component function shares the same Hessian, along with an initialization point x0, such
that for any constant step size η, the final iterate obtained by running Algorithm 2 satisfies

F (xK
n)− F (x∗) ≳

LG2

µ2K2
.

Proof. Similar to the approach in Theorem 3.1, we divide the range of step size into three regimes. For each regime, we
construct the overall function F1, F2, and F3, respectively, along with their respective component functions and an initial
point. Finally, we aggregate these functions across different dimensions to derive the stated lower bound.

Each overall function is 1-dimensional, and carefully designed to satisfy the following properties:

• (Small step size regime) There exists an initialization point x0 = poly(µ,L, n,K,G) such that for any choice of
η ∈

(
0, 1

µnK

)
, the final iterate xK

n obtained by running Algorithm 2 satisfies F1(x
K
n)− F1(x

∗) ≳ LG2

µ2K2 .

• (Moderate step size regime) There exists an initialization point y0 = poly(µ,L, n,K,G) such that for any choice of
η ∈

[
1

µnK , 2
L

)
, the final iterate yKn obtained by running Algorithm 2 satisfies F2(y

K
n)− F2(y

∗) ≳ LG2

µ2K2 .

• (Large step size regime) There exists an initialization point z0 = poly(µ,L, n,K,G) such that for any choice of
η ∈

[
2
L ,∞

)
, the final iterate zKn obtained by running Algorithm 2 satisfies F3(z

K
n)− F3(z

∗) ≳ LG2

µ2K2 .

Here, x∗, y∗, z∗ denote the minimizers of F1, F2, and F3, respectively. All these functions are designed to satisfy
Assumption 2.3. F1 and F3 satisfy Assumption 2.4 with G = P = 0, and F2 satisfies with P = 0. Moreover, each
component function within each overall function shares the same Hessian. Detailed constructions of F1, F2, and F3, as well
as the verification of the assumptions and the stated properties are presented in Appendices D.1.1 to D.1.3.

By following a similar approach to the proof of Theorems 3.1 and 3.3, we can conclude that the aggregated 3-dimensional
function F (x) := F (x, y, z) = F1(x) + F2(y) + F3(z) and its component functions satisfy the stated assumptions. Also,
since each dimension is independent, it is obvious that x∗ = (x∗, y∗, z∗) minimizes F . Finally, by choosing the initialization
point as x0 = (x0, y0, z0), the final iterate xK

n = (xK
n , yKn , zKn) obtained by running Algorithm 2 on F satisfies

F (xK
n)− F (x∗) ≳

LG2

µ2K2
,

regardless of the choice of η > 0.

This concludes the proof of Theorem 4.1.

In the following subsections, we present the specific construction of F1, F2, and F3, and demonstrate that each satisfies
the stated lower bound within its corresponding step size regime. For simplicity of notation, we omit the index of the
overall function when referring to its component functions, e.g., we write fi(x) instead of f1i(x). Moreover, we use the
common variable notation x while constructing functions for each dimension, though we use different variables in the
“dimension-aggregation” step.

D.1.1. CONSTRUCTION OF F1

Let F1(x) =
µ
2x

2 with component functions fi(x) = F1(x) for all i ∈ [n]. It is clear that F1 satisfies Assumption 2.3 and
Assumption 2.4 with G = P = 0, and its component functions share an identical Hessian. Also, we note that x∗ = 0 and
F1(x

∗) = 0.

Let the initialization be x0 =
√
κ G
µK . For all η ∈

(
0, 1

µnK

)
, the final iterate is given by

xK
n = (1− ηµ)nKx0 ≥

(
1− 1

nK

)nK

x0 ≥
√
κG

4µK
,

38

Incremental Gradient Descent with Small Epoch Counts is Surprisingly Slow on Ill-Conditioned Problems

where the last inequality uses the fact that (1− 1
m)m ≥ 1

4 for all m ≥ 2.

Thus, we have

F1(x
K
n)− F1(x

∗) =
µ

2
(xK

n)2 ≳
LG2

µ2K2
.

D.1.2. CONSTRUCTION OF F2

In this subsection, we let L′ denote L/2. We construct the function by dividing the cases by the parity of n. We first consider
the case where n is even, and address the case where n is odd later in this subsection. Let F2(x) =

L′

2 x
2 with component

functions

fi(x) =

{
L′

2 x
2 +Gx if i ≤ n/2,

L′

2 x
2 −Gx otherwise.

Since κ ≥ 2, we have L′ = L
2 ≥ µ. Thus, it is clear that fi satisfies Assumptions 2.3 and 2.4 with P = 0, and shares the

same Hessian. By Lemma F.1, the final iterate obtained by running Algorithm 2 is given by

xK
n = (1− ηL′)nKx0 +

G

L′ ·
1− (1− ηL′)

n
2

1 + (1− ηL′)
n
2

(
1− (1− ηL′)nK

)
.

By applying η ≥ 1
µnK and setting x0 = 0, we derive

xK
n =

G

L′ ·
1− (1− ηL′)

n
2

1 + (1− ηL′)
n
2

(
1− (1− ηL′)nK

)
≥ G

2L′

(
1− (1− ηL′)

n
2

) (
1− (1− ηµ)nK

)
≥ G

2L′

(
1− (1− ηL′)

n
2

)(
1−

(
1− 1

nK

)nK
)

≥ G

2L′

(
1− (1− ηL′)

n
2

) (
1− e−1

)
. (26)

We analyze equation (26) by dividing the range of η into two regimes.

Regime 1. η ∈
[

1
µnK , 1

nL′

)
.

In this regime, we can bound 1− (1− ηL′)
n
2 as:

1− (1− ηL′)
n
2 ≥ 1− e−

ηnL′

2 ≥ 1−
(
1− ηnL′

4

)
=

ηnL′

4
≥ L′

4µK
,

where the second inequality uses e−u ≤ 1− u
2 for all u ∈ [0, 1]. Substituting this inequality into equation (26) gives

xK
n ≥ (1− e−1)G

8µK
.

Consequently, the function optimality gap satisfies

F2(x
K
n)− F2(x

∗) =
L′

2
(xK

n)2 ≳
LG2

µ2K2
.

Regime 2. η ∈
[

1
nL′ ,

1
L′

)
.

39

Incremental Gradient Descent with Small Epoch Counts is Surprisingly Slow on Ill-Conditioned Problems

In this regime, we can bound 1− (1− ηL′)
n
2 as:

1− (1− ηL′)
n
2 ≥ 1−

(
1− 1

n

) n
2

≥ 1− e−
1
2 .

Substituting this inequality into equation (26) gives

xK
n ≥

(
1− e−1

) (
1− e−

1
2

)
G

2L′ .

Since K ≥ κ, we have 1
L′ =

2
L ≥ 2

µK . Therefore, the final iterate xK
n can be bounded as:

xK
n ≥

(
1− e−1

) (
1− e−

1
2

)
G

µK
.

Consequently, the function optimality gap satisfies

F2(x
K
n)− F2(x

∗) =
L′

2
(xK

n)2 ≳
LG2

µ2K2
.

We now focus on the case where n is odd. Let F2(x) =
L′

2 x
2 with component functions

fi(x) =


L′

2 x
2 if i = 1,

L′

2 x
2 +Gx if 2 ≤ i ≤ (n+ 1)/2,

L′

2 x
2 −Gx if (n+ 3)/2 ≤ i ≤ n.

Compared to the case of even n, f1(x) = L′

2 x
2 is introduced newly. By Lemma F.2, the final iterate xK

n obtained by running
Algorithm 2 satisfies the following equation:

xK
n = (1− ηL′)nKx0 +

G

L′ ·
1− (1− ηL′)nK

1− (1− ηL′)n

(
1− (1− ηL′)

n−1

2

)2
.

By applying η ≥ 1
µnK and setting x0 = 0, we have

xK
n =

G

L′ ·
1− (1− ηL′)nK

1− (1− ηL′)n

(
1− (1− ηL′)

n−1

2

)2
=

G

L′

(
1− (1− ηL′)nK

) 1− (1− ηL′)n−1

1− (1− ηL′)n

(
1− (1− ηL′)

n−1

2

)2
1− (1− ηL′)n−1

≥ G

L′

(
1− (1− ηµ)nK

) 1− (1− ηL′)n−1

1− (1− ηL′)n
1− (1− ηL′)

n−1

2

1 + (1− ηL′)
n−1

2

≥ G

2L′

(
1− e−ηµnK

) 1− (1− ηL′)n−1

1− (1− ηL′)n

(
1− (1− ηL′)

n−1

2

)
≥ G

2L′

(
1− e−1

) 1− (1− ηL′)n−1

1− (1− ηL′)n

(
1− (1− ηL′)

n−1

2

)
.

Note that the inequality

1− (1− ηL′)n−1

1− (1− ηL′)n
≥ 1

2

40

Incremental Gradient Descent with Small Epoch Counts is Surprisingly Slow on Ill-Conditioned Problems

holds for n ≥ 2 since

2− 2(1− ηL′)n−1 ≥ 1− (1− ηL′)n ⇔ 1 ≥ 2(1− ηL′)n−1 − (1− ηL′)n

⇔ 1 ≥ (1− ηL′)n−1(2− (1− ηL′))

⇔ 1 ≥ (1− ηL′)n−2(1− η2L′2).

Hence, we deduce that

xK
n ≥ G

4L′

(
1− e−1

) (
1− (1− ηL′)

n−1

2

)
. (27)

We again analyze equation (27) by dividing the range of η into two regimes.

Regime 1. η ∈
[

1
µnK , 1

nL′

)
.

In this regime, we can bound 1− (1− ηL′)
n−1

2 as:

1− (1− ηL′)
n−1

2 ≥ 1− e−
η(n−1)L′

2 ≥ 1−
(
1− η(n− 1)L′

4

)
=

η(n− 1)L′

4
≥ ηnL′

8
≥ L′

8µK
,

where the second inequality uses e−u ≤ 1− u
2 for all u ∈ [0, 1]. Substituting this inequality into equation (27) gives

xK
n ≥

(
1− e−1

)
G

32µK
.

Consequently, the function optimality gap satisfies

F2(x
K
n)− F2(x

∗) =
L′

2
(xK

n)2 ≳
LG2

µ2K2
.

Regime 2. η ∈
[

1
nL′ ,

1
L′

)
.

In this regime, we can bound 1− (1− ηL′)
n−1

2 as:

1− (1− ηL′)
n−1

2 ≥ 1−
(
1− 1

n

) n−1

2

≥ 1− e−
n−1

2n ≥ 1− e−
1
4 .

Substituting this inequality into equation (27) gives

xK
n ≥

(
1− e−1

) (
1− e−

1
4

)
G

4L′ .

Since K ≥ κ, we have 1
L′ =

2
L ≥ 2

µK . Therefore, the final iterate xK
n can be bounded as:

xK
n ≥

(
1− e−1

) (
1− e−

1
4

)
G

2µK
.

Consequently, the function optimality gap satisfies

F2(x
K
n)− F2(x

∗) =
L′

2
(xK

n)2 ≳
LG2

µ2K2
.

41

Incremental Gradient Descent with Small Epoch Counts is Surprisingly Slow on Ill-Conditioned Problems

D.1.3. CONSTRUCTION OF F3

Let F3(x) =
L
2 x

2 with component functions fi(x) = F3(x) for all i ∈ [n]. It is clear that F1 satisfies Assumption 2.3,
Assumption 2.4 with G = P = 0 and its component functions share an identical Hessian. Also, we note that x∗ = 0 and
F3(x

∗) = 0.

For all η ∈
[
2
L ,∞

)
, the final iterate is given by

xK
n = (1− ηL)

nK
x0.

In this regime, the step size is excessively large, resulting in

1− ηL ≤ 1− 2

L
· L ≤ −1,

which implies
∣∣(1− ηL)nK

∣∣ ≥ 1. Thus, the iterate does not converge and satisfies
∣∣xK

n

∣∣ ≥ |x0|.

By setting the initialization x0 = G
µK , we have

F3(x
K
n)− F3(x

∗) =
L

2
(xK

n)2 ≥ L

2
(x0)

2 ≳
LG2

µ2K2
.

D.2. Proof of Theorem 4.3

Theorem 4.3. For any n ≥ 4, κ ≥ n, and K ≥ max
{
κ3/n2, κ3/2

}
, there exists a 4-dimensional function F satisfying

Assumptions 2.3 and 2.4 with P = κ, along with an initialization point x0, such that for any constant step size η, the final
iterate obtained by running Algorithm 2 satisfies

F (xK
n)− F (x∗) ≳

L2G2

µ3K2
.

Proof. Similar to the approach in Theorem 3.1, we divide the range of step sizes. However, unlike the previous theorems
where the range is divided into three regimes, we divide the range into four regimes in this case. For each regime, we
construct the overall functions F1, F2, F3, and F4, along with their respective component functions and an initial point.
Finally, we aggregate these functions across different dimensions to derive the stated lower bound.

Each function is 1-dimensional, and carefully designed to satisfy the following properties:

• (Small step size regime) There exists an initial point x0 = poly(µ,L, n,K,G) such that for any choice of η ∈(
0, 1

µnK

)
, the final iterate xK

n obtained by running Algorithm 2 satisfies F1(x
K
n)− F1(x

∗) ≳ L2G2

µ3K2 ,

• (Moderate step size regime 1) There exists an initial point y0 = poly(µ,L, n,K,G) such that for any choice of
η ∈

[
1

µnK , 1
nL

)
, the final iterate yKn obtained by running Algorithm 2 satisfies F2(y

K
n)− F2(y

∗) ≳ L2G2

µ3K2 .

• (Moderate step size regime 2) There exists an initial point z0 = poly(µ,L, n,K,G) such that for any choice of
η ∈

[
1
nL ,

2
L

)
, the final iterate zKn obtained by running Algorithm 2 satisfies F3(z

K
n)− F3(z

∗) ≳ L2G2

µ3K2 .

• (Large step size regime) There exists an initial point w0 = poly(µ,L, n,K,G) such that for any choice of η ∈
[
1
L ,∞

)
,

the final iterate wK
n obtained by running Algorithm 2 satisfies F4(w

K
n)− F4(w

∗) ≳ L2G2

µ3K2 .

Here, x∗, y∗, z∗, and w∗ denote the minimizers of F1, F2, F3, and F4, respectively. All these functions are designed to
satisfy Assumption 2.3. F1 and F4 satisfy Assumption 2.4 with G = P = 0, F3 satisfies with P = 0, and F2 satisfies with
P = κ. Detailed constructions for F1 through F4, as well as the verification of the assumptions and the stated properties are
presented in Appendices D.2.1 to D.2.4.

By following a similar approach to the proof of Theorems 3.1 and 3.3, we can conclude that the aggregated 4-dimensional
function F (x) := F1(x) + F2(y) + F3(z) + F4(w) satisfy the stated assumptions (additional scalar in G can be absorbed

42

Incremental Gradient Descent with Small Epoch Counts is Surprisingly Slow on Ill-Conditioned Problems

by rescaling G in each overall function). Also, since each dimension is independent, it is obvious that x∗ = (x∗, y∗, z∗, w∗)
minimizes F . Finally, by choosing the initial point as x0 = (x0, y0, z0, w0), the final iterate xK

n = (xK
n , yKn , zKn , wK

n)
obtained by running Algorithm 2 on F satisfies

F (xK
n)− F (x∗) ≳

L2G2

µ3K2
,

regardless of the choice of η > 0.

This concludes the proof of Theorem 4.3.

In the following subsections, we present the specific construction of F1, F2, F3, and F4, and demonstrate that each satisfies
the stated lower bound within its corresponding step size regime. For simplicity of notation, we omit the index of the
overall function when referring to its component functions, e.g., we write fi(x) instead of f1i(x). Moreover, we use the
common variable notation x while constructing functions for each dimension, though we use different variables in the
“dimension-aggregation” step.

D.2.1. CONSTRUCTION OF F1

Let F1(x) =
µ
2x

2 with component functions fi(x) = F1(x) for all i ∈ [n]. It is clear that F1 satisfies Assumption 2.3 and
Assumption 2.4 with G = P = 0. Also, we note that x∗ = 0 and F1(x

∗) = 0.

Let the initialization be x0 = LG
µ2K . For all η ∈

(
0, 1

µnK

)
, the final iterate is given by

xK
n = (1− ηµ)nKx0 ≥

(
1− 1

nK

)nK

x0 ≥ LG

4µ2K
,

where the last inequality uses the fact that (1− 1
m)m ≥ 1

4 for all m ≥ 2.

Thus, we have

F1(x
K
n)− F1(x

∗) =
µ

2
(xK

n)2 ≳
L2G2

µ3K2
.

D.2.2. CONSTRUCTION OF F2

In this section, we focus on the case when n is a multiple of 4. Otherwise, we set 4⌊n
4 ⌋ components satisfying the argument,

and introduce at most three zero component functions. This adjustment does not affect the final result, but only modifies the
parameters µ and L by at most a constant factor.

Let F2(x) =
µ
2x

2 with component functions

fi(x) =


Gx if 1 ≤ i ≤ n/4,
L
2 x

2 if n/4 + 1 ≤ i ≤ n/2,

−Gx if n/2 + 1 ≤ i ≤ 3n/4,

−L−4µ
2 x2 if 3n/4 + 1 ≤ i ≤ n.

For simplicity of the notation, let a denote L− 4µ. Since κ ≥ 4, we have 0 ≤ a < L. Thus, each fi is L-smooth, ensuring
that the construction satisfies Assumption 2.3. The gradient difference between the component function fi and the overall
function F2 is bounded as

∥∇fi(x)−∇F2(x)∥ ≤

{
∥µx∥+G if 1 ≤ i ≤ n/4 or n/2 + 1 ≤ i ≤ 3n/4,

∥(L− µ)x∥ if n/4 + 1 ≤ i ≤ n/2 or 3n/4 + 1 ≤ i ≤ n.

Since ∇F2(x) = µx, it follows that ∥(L− µ)x∥ < κ ∥∇F2(x)∥. Therefore, the construction satisfies Assumption 2.4
with P = κ. Additionally, we note that x∗ = 0 and F2(x

∗) = 0. Using these component functions, we first derive the
closed-form expression for the iterates obtained by running Algorithm 2:

xk
n/4 = xk

0 − ηnG

4
,

43

Incremental Gradient Descent with Small Epoch Counts is Surprisingly Slow on Ill-Conditioned Problems

xk
n/2 = (1− ηL)

n
4 xk

n/4 = (1− ηL)
n
4 xk

0 − (1− ηL)
n
4
ηnG

4
,

xk
3n/4 = xk

n/2 +
ηnG

4
= (1− ηL)

n
4 xk

0 +
(
1− (1− ηL)

n
4

) ηnG

4
,

xk
n = (1 + ηa)

n
4 xk

3n/4 = (1 + ηa)
n
4 (1− ηL)

n
4 xk

0 + (1 + ηa)
n
4

(
1− (1− ηL)

n
4

) ηnG
4

.

Let p := (1− ηL)
n
4 and q := (1 + ηa)

n
4 . Using these definitions, the epoch-wise recursion equation can be expressed as:

xk+1
0 = pqxk

0 + q(1− p)
ηnG

4
.

By unrolling the above equation over k ∈ [K], we obtain the final iterate xK
n :

xK
n = (pq)Kx0 +

1− (pq)K

1− pq
· q(1− p)

ηnG

4
. (28)

We now state key inequalities regarding p and q:

Lemma D.1. Under the conditions K ≥ κ ≥ n ≥ 3, the following inequalities hold for η ∈
[

1
µnK , 1

nL

)
:

1. 1− p ≥

{
L

8µK if η ∈
[

1
µnK , µ

L2

)
,

nµ
8L if η ∈

[
µ
L2 ,

1
nL

)
.

2. 1− (pq)K ≥ 1− e−1.

3. 1
1−pq ≥

{
4

5ηnµ if η ∈
[

1
µnK , µ

L2

)
,

4
5η2nL2 if η ∈

[
µ
L2 ,

1
nL

)
.

The proof of Lemma D.1 is presented in Appendix D.3. Setting the initialization point x0 = 0, equation (28) simplifies to

xK
n =

1− (pq)K

1− pq
· q(1− p)

ηnG

4
≥ 1− e−1

1− pq
· 1 · (1− p) · ηnG

4
=

1− e−1

4
· 1− p

1− pq
· ηnG. (29)

Now, we divide the range of step size into two regimes:
[

1
µnK , µ

L2

)
and

[
µ
L2 ,

1
nL

)
.

Regime 1. η ∈
[

1
µnK , µ

L2

)
.

In this regime, we have 1− p ≥ L
8µK and 1

1−pq ≥ 4
5ηnµ . Substituting these inequalities to equation (29) results

xK
n ≥

(
1− e−1

)
LG

40µ2K
.

Regime 2. η ∈
[

µ
L2 ,

1
nL

)
.

In this regime, we have 1− p ≥ nµ
8L and 1

1−pq ≥ 4
5η2nL2 . Substituting these inequalities to equation (29) results

xK
n ≥ 1− e−1

40
· nµG
ηL3

≥ 1− e−1

40
· n

2µG

L2
.

Using the assumption K ≥ κ3

n2 , it follows that n2 ≥ κ3

K , resulting

xK
n ≥

(
1− e−1

)
LG

40µ2K
.

44

Incremental Gradient Descent with Small Epoch Counts is Surprisingly Slow on Ill-Conditioned Problems

Combining the results for the two subdivided step size regimes, we have

xK
n ≥

(
1− e−1

)
LG

40µ2K
.

for all η ∈
[

1
µnK , 1

nL

)
.

Finally, the function optimality gap is

F2(x
K
n)− F2(x

∗) =
µ

2

(
xK
n

)2
≳

L2G2

µ3K2
.

D.2.3. CONSTRUCTION OF F3

We focus on the case where n is even. If n is odd, we introduce an additional zero component function. This does not affect
the final result but only modifies each parameter at most by a constant factor.

In this subsection, we let L′ denote L/2. Let F3 = L′

2 x
2 with component functions

fi(x) =

{
L′

2 x
2 +Gx if i ≤ n/2,

L′

2 x
2 −Gx otherwise.

It is clear that each fi is L-smooth. Since κ ≥ 2, we have L′ = L
2 ≥ µ. Thus, F3 is µ-strongly convex, satisfying

Assumption 2.3. Also, we can easily verify that the construction satisfies Assumption 2.4 with P = 0. We note that x∗ = 0
and F3(x

∗) = 0.

By Lemma F.1, the final iterate obtained by running Algorithm 2 is given by

xK
n = (1− ηL′)

nK
x0 +

G

L′ ·
1− (1− ηL′)

n
2

1 + (1− ηL′)
n
2

(
1− (1− ηL′)

nK
)
.

Recall that 1
nL = 1

2nL′ and 2
L = 1

L′ . Since η ∈
[

1
2nL′ ,

1
L′

)
, it follows that

(1− ηL′)
n
2 ≤

(
1− 1

2n

) n
2

≤ e−
1
4 , and (1− ηL′)nK ≤ e−

K
4 .

Using these inequalities and setting the initialization as x0 = 0, the final iterate xK
n is expressed as:

xK
n =

G

L′ ·
1− (1− ηL′)

n
2

1 + (1− ηL′)
n
2

(
1− (1− ηL′)

nK
)
≥ G

L′
1− e−

1
4

2

(
1− e−

K
4

)
≥ G

L′

(
1− e−

1
4

)2
2

.

Finally, the function optimality gap becomes

F3(x
K
n)− F3(x

∗) =
L′

2

(
xK
n

)2
≳

G2

L
≥ L2G2

µ3K2
,

where the last inequality holds since K ≥ κ3/2.

D.2.4. CONSTRUCTION OF F4

Let F4(x) =
L
2 x

2 with component functions fi(x) = F4(x) for all i ∈ [n]. It is clear that F4 satisfies Assumption 2.3,
Assumption 2.4 with G = P = 0. Also, we note that x∗ = 0 and F4(x

∗) = 0.

For all η ∈
[
2
L ,∞

)
, the final iterate is given by

xK
n = (1− ηL)

nK
x0.

45

Incremental Gradient Descent with Small Epoch Counts is Surprisingly Slow on Ill-Conditioned Problems

In this regime, the step size is excessively large, resulting in

1− ηL ≤ 1− 2

L
· L ≤ −1,

which implies
∣∣(1− ηL)nK

∣∣ ≥ 1. Thus, the iterate does not converge and satisfies
∣∣xK

n

∣∣ ≥ |x0|.

By setting the initialization x0 =
√
κ G
µK , we have

F4(x
K
n)− F4(x

∗) =
L

2
(xK

n)2 ≥ L

2
(x0)

2 ≳
L2G2

µ3K2
.

D.3. Technical Lemmas

Lemma D.1. Under the conditions K ≥ κ ≥ n ≥ 3, the following inequalities hold for η ∈
[

1
µnK , 1

nL

)
:

1. 1− p ≥

{
L

8µK if η ∈
[

1
µnK , µ

L2

)
,

nµ
8L if η ∈

[
µ
L2 ,

1
nL

)
.

2. 1− (pq)K ≥ 1− e−1.

3. 1
1−pq ≥

{
4

5ηnµ if η ∈
[

1
µnK , µ

L2

)
,

4
5η2nL2 if η ∈

[
µ
L2 ,

1
nL

)
.

Proof. Recall the definitions of p and q:

p = (1− ηL)
n
4 ,

q = (1 + ηa)
n
4 = (1 + η(L− 4µ))

n
4 .

To prove the first inequality, we divide the range of step size into two regimes:
[

1
µnK , µ

L2

)
and

[
µ
L2 ,

1
nL

)
. Note that the first

regime may be empty depending on the condition on K, but remains valid (i.e. 1
µnK ≤ µ

L2) under the condition K ≥ κ2/n
in the current theorem.

Regime 1. η ∈
[

1
µnK , µ

L2

)
.

In this regime, we can bound p as:

p = (1− ηL)
n
4 ≤

(
1− L

µnK

) n
4

≤ e−
L

4µK ≤ 1− L

8µK
.

Here, the first step holds because η ≥ 1
µnK . In the final step, we utilize the inequalities L

4µK < 1 and e−u ≤ 1− 1
2u for all

u ∈ [0, 1]. Hence, we can obtain 1− p ≥ L
8µK .

Regime 2. η ∈
[

µ
L2 ,

1
nL

)
.

In this regime, we can bound p as:

p = (1− ηL)
n
4 ≤

(
1− µ

L

) n
4 ≤ e−

nµ

4L ≤ 1− nµ

8L
.

Here, the first step holds because η ≥ µ
L2 . At the final step, we utilize the inequalities nµ

4L < 1 and e−u ≤ 1− 1
2u for all

u ∈ [0, 1]. Hence, we can obtain 1− p ≥ nµ
8L .

To bound 1− (pq)K , we first establish bounds for pq:

pq = (1− ηL)
n
4 (1 + ηa)

n
4 ≤ e−

ηnL

4 · e
ηna

4 = e−
ηn(L−a)

4 = e−ηnµ ≤ e−
1
K ,

46

Incremental Gradient Descent with Small Epoch Counts is Surprisingly Slow on Ill-Conditioned Problems

where we apply η ≥ 1
µnK at the last step. Therefore, we can obtain

1− (pq)K ≥ 1−
(
e−

1
K

)K
= 1− e−1.

The last inequality requires more careful analysis. We further refine the bounds for pq. Using a = L− 4µ < L, it follows
that

1− η(L− a)− η2aL ≥ 1− 4ηµ− η2L2 ≥ 1− 4

nκ
− 1

n2
≥ 0,

where the second step is due to η ≤ 1
nL and last step holds by the condition κ ≥ n ≥ 3. Hence,

pq = (1− ηL)
n
4 (1 + ηa)

n
4 = (1− η(L− a)− η2aL)

n
4 ≥ (1− 4ηµ− η2L2)

n
4 . (30)

We again divide the range of step size into two regimes:
[

1
µnK , µ

L2

)
and

[
µ
L2 ,

1
nL

)
.

Regime 1. η ∈
[

1
µnK , µ

L2

)
.

In this regime, we have η2L2 ≤ ηµ. Hence, equation (30) becomes

pq ≥ (1− 4ηµ− η2L2)
n
4 ≥ (1− 5ηµ)

n
4 ≥ 1− 5

4
ηnµ,

since 5ηµ ≤ 5µ2

L2 < 1 (assuming κ ≥ n ≥ 3). Therefore, we obtain the following inequality:

1

1− pq
≥ 4

5ηnµ
.

Regime 2. η ∈
[

µ
L2 ,

1
nL

)
.

In this regime, we have η2L2 ≥ ηµ. Hence, equation (30) becomes

pq ≥ (1− 4ηµ− η2L2)
n
4 ≥ (1− 5η2L2)

n
4 ≥ 1− 5

4
η2nL2,

since 5η2L2 < 5
n2 < 1 (assuming n ≥ 3). Therefore, we obtain the following inequality:

1

1− pq
≥ 4

5η2nL2
.

This concludes the proof of the lemma.

47

Incremental Gradient Descent with Small Epoch Counts is Surprisingly Slow on Ill-Conditioned Problems

E. Proofs for Large Epoch Upper Bounds
In this section, we provide detailed proof for Theorem 4.4.

E.1. Proof of Theorem 4.4

Theorem 4.4. Let n ≥ 1, K ≳ (1 + P)κ, and x0 be the initialization point. Suppose F is a function satisfying
Assumptions 2.3 and 2.4. Then, for any choice of permutation σk in each epoch, the final iterate xK

n obtained by Algorithm 1

with a step size η = 2
µnK max

{
log
(

(F (x0)−F (x∗))µ3K2

L2G2

)
, 1
}

satisfies

F (xK
n)− F (x∗) ≲

L2G2

µ3K2
.

Proof. We begin by noting the specific epoch condition used to prove the statement:

K ≥ 8κmax {1, P}max

{
log

(
(F (x0)− F (x∗))µ3K2

L2G2

)
, 1

}
.

Given this epoch condition and the choice of step size η specified in the theorem statement, we have ηnL ≤ 1
4 min

{
1, 1

P

}
,

which will be repeatedly utilized throughout the proof.

Consider the following epoch-wise recursive inequality for the objective function:

F
(
xk+1
0

)
≤ F

(
xk
0

)
+
〈
∇F

(
xk
0

)
,xk+1

0 − xk
0

〉
+

L

2

∥∥xk+1
0 − xk

0

∥∥2
= F

(
xk
0

)
− ηn

〈
∇F

(
xk
0

)
,
1

n

n∑
i=1

∇fσk(i)

(
xk
i−1

)〉
+

η2n2L

2

∥∥∥∥∥ 1n
n∑

i=1

∇fσk(i)

(
xk
i−1

)∥∥∥∥∥
2

= F
(
xk
0

)
− ηn

2

∥∥∇F
(
xk
0

)∥∥2 − ηn

2

∥∥∥∥∥ 1n
n∑

i=1

∇fσk(i)

(
xk
i−1

)∥∥∥∥∥
2

+
ηn

2

∥∥∥∥∥∇F
(
xk
0

)
− 1

n

n∑
i=1

∇fσk(i)

(
xk
i−1

)∥∥∥∥∥
2

+
η2n2L

2

∥∥∥∥∥ 1n
n∑

i=1

∇fσk(i)

(
xk
i−1

)∥∥∥∥∥
2

(a)

≤ F
(
xk
0

)
− ηn

2

∥∥∇F
(
xk
0

)∥∥2 + ηn

2

∥∥∥∥∥∇F
(
xk
0

)
− 1

n

n∑
i=1

∇fσk(i)

(
xk
i−1

)∥∥∥∥∥
2

(b)

≤ F
(
xk
0

)
− ηn

2

∥∥∇F
(
xk
0

)∥∥2 + ηL2

2

n∑
i=1

∥∥xk
0 − xk

i−1

∥∥2 , (31)

where (a) holds due to ηnL ≤ 1
4 < 1 and (b) follows from the inequality:∥∥∥∥∥∇F

(
xk
0

)
− 1

n

n∑
i=1

∇fσk(i)

(
xk
i−1

)∥∥∥∥∥
2

=

∥∥∥∥∥ 1n
n∑

i=1

(
∇fσk(i)

(
xk
0

)
−∇fσk(i)

(
xk
i−1

))∥∥∥∥∥
2

≤ 1

n

n∑
i=1

∥∥∇fσk(i)

(
xk
0

)
−∇fσk(i)

(
xk
i−1

)∥∥2
≤ L2

n

n∑
i=1

∥∥xk
0 − xk

i−1

∥∥2 .
Next, we need to derive an upper bound for

∥∥xk
0 − xk

i−1

∥∥2. For t ∈ [n], we have

∥∥xk
0 − xk

t

∥∥2 = η2

∥∥∥∥∥
t∑

i=1

∇fσk(i)

(
xk
i−1

)∥∥∥∥∥
2

48

Incremental Gradient Descent with Small Epoch Counts is Surprisingly Slow on Ill-Conditioned Problems

≤ 3η2

∥∥∥∥∥
t∑

i=1

(
∇fσk(i)

(
xk
i−1

)
−∇fσk(i)

(
xk
0

))∥∥∥∥∥
2

+ 3η2

∥∥∥∥∥
t∑

i=1

(
∇fσk(i)

(
xk
0

)
−∇F

(
xk
0

))∥∥∥∥∥
2

+ 3η2

∥∥∥∥∥
t∑

i=1

∇F
(
xk
0

)∥∥∥∥∥
2

(a)

≤ 3η2t

t∑
i=1

L2
∥∥xk

0 − xk
i−1

∥∥2 + 6η2t2
(
G2 + P 2

∥∥∇F (xk
0)
∥∥2)+ 3η2t2

∥∥∇F
(
xk
0

)∥∥2
= 3η2tL2

t∑
i=1

∥∥xk
0 − xk

i−1

∥∥2 + 6η2t2G2 + 3η2t2(1 + 2P 2)
∥∥∇F

(
xk
0

)∥∥2 . (32)

Here, (a) is derived by applying Assumption 2.4 through the following sequence of inequalities:∥∥∥∥∥
t∑

i=1

(
∇fσk(i) (x)−∇F (x)

)∥∥∥∥∥
2

≤ t

t∑
i=1

∥∥∇fσk(i) (x)−∇F (x)
∥∥2

≤ t

t∑
i=1

(G+ P ∥∇F (x)∥)2

≤ t

t∑
i=1

(
2G2 + 2P 2 ∥∇F (x)∥2

)
≤ 2t2

(
G2 + P 2 ∥∇F (x)∥2

)
.

Summing equation (32) over t = 1, . . . , n− 1, we have

n∑
i=1

∥∥xk
0 − xk

i−1

∥∥2 ≤ 3η2
(n− 1)n

2
L2

n∑
i=1

∥∥xk
0 − xk

i−1

∥∥2 + 6η2
(n− 1)n(2n− 1)

6
G2

+ 3η2
(n− 1)n(2n− 1)

6
(1 + 2P 2)

∥∥∇F
(
xk
0

)∥∥2
≤ 3η2n2L2

n∑
i=1

∥∥xk
0 − xk

i−1

∥∥2 + 2η2n3G2 + η2n3(1 + 2P 2)
∥∥∇F

(
xk
0

)∥∥2 .
Given ηnL ≤ 1

4 , it follows that 3η2n2L2 ≤ 1
2 and the above inequality simplifies to

n∑
i=1

∥∥xk
0 − xk

i−1

∥∥2 ≤ 4η2n3G2 + 2η2n3(1 + 2P 2)
∥∥∇F

(
xk
0

)∥∥2 . (33)

Substituting equation (33) to equation (31) results in

F
(
xk+1
0

)
≤ F

(
xk
0

)
− ηn

2

∥∥∇F
(
xk
0

)∥∥2 + ηL2

2

n∑
i=1

∥∥xk
0 − xk

i−1

∥∥2
≤ F (xk

0)−
ηn

2

∥∥∇F (xk
0)
∥∥2 + ηL2

2

(
4η2n3G2 + 2η2n3(1 + 2P 2)

∥∥∇F (xk
0)
∥∥2)

≤ F (xk
0)−

ηn

2

(
1− 2η2n2L2

(
1 + 2P 2

)) ∥∥∇F (xk
0)
∥∥2 + 2η3n3L2G2

(a)

≤ F (xk
0)−

ηn

4

∥∥∇F (xk
0)
∥∥2 + 2η3n3L2G2

(b)

≤ F (xk
0)−

ηnµ

2

(
F (xk

0)− F (x∗)
)
+ 2η3n3L2G2,

49

Incremental Gradient Descent with Small Epoch Counts is Surprisingly Slow on Ill-Conditioned Problems

where at (a), we use ηnL ≤ 1
4 and ηnL ≤ 1

4P , ensuring η2n2L2
(
1 + 2P 2

)
≤ 1

16 + 1
8 ≤ 1

4 , and at (b), we utilize the
assumption that F satisfies µ-strongly convexity. We note that (b) is the only step where µ-strong convexity of F is utilized,
and it also holds under the weaker assumption that F satisfies the Polyak-Łojasiewicz condition. Thus, Theorem 4.4 remains
valid when F satisfies the PŁ condition.

Rearranging this inequality leads to

F
(
xk+1
0

)
− F (x∗) ≤

(
1− ηnµ

2

) (
F
(
xk
0

)
− F ∗)+ 2η3n3L2G2,

and we can obtain

F
(
xK
n

)
− F (x∗) ≤

(
1− ηnµ

2

)K
(F (x0)− F (x∗)) + 2η3n3L2G2 ·

K∑
k=1

(
1− ηnµ

2

)k−1

≤
(
1− ηnµ

2

)K
(F (x0)− F (x∗)) + 2η3n3L2G2 · 2

ηnµ

≤ e−
ηµnK

2 (F (x0)− F ∗) +
4η2n2L2G2

µ
.

We now substitute η = 2
µnK max

{
log
(

(F (x0)−F (x∗))µ3K2

L2G2

)
, 1
}

. For the case when F (x0)− F (x∗) is sufficiently large,
the above inequality becomes

F
(
xK
n

)
− F (x∗) ≤ L2G2

µ3K2
+

16L2G2

µ3K2
· log2

(
(F (x0)− F (x∗))µ3K2

L2G2

)
≲

L2G2

µ3K2
.

For the case when F (x0)− F (x∗) is small so that 1 is chosen after the max operation, the above inequality then becomes

F
(
xK
n

)
− F (x∗) ≤ 1

e
· e · L

2G2

µ3K2
+

16L2G2

µ3K2
≲

L2G2

µ3K2
,

where we utilize F (x0)− F (x∗) ≤ e · L2G2

µ3K2 . This ends the proof of Theorem 4.4.

50

Incremental Gradient Descent with Small Epoch Counts is Surprisingly Slow on Ill-Conditioned Problems

F. Lemmas
Lemma F.1. Let n be an even number. Define F (x) = a

2x
2 with component functions

fi(x) =

{
a
2x

2 +Gx if i ≤ n/2,
a
2x

2 −Gx otherwise.

Then, the final iterate xK
n obtained by running Algorithm 2 for K epochs with a step size η starting from the initialization

point x0, satisfies:

xK
n = (1− ηa)

nK
x0 +

G

a
· 1− (1− ηa)

n
2

1 + (1− ηa)
n
2

(
1− (1− ηa)

nK
)
.

Proof. For i ≤ n
2 , the update rule is given as:

xk
i = xk

i−1 − η(axk
i−1 +G) = (1− ηa)xk

i−1 − ηG.

For i ≥ n
2 + 1, the update rule is given as:

xk
i = xk

i−1 − η
(
axk

i−1 −G
)
= (1− ηa)xk

i−1 + ηG.

By sequentially applying the component functions, we derive the following epoch-wise recursion equation:

xk+1
0 = (1− ηa)nxk

0 − ηG

n
2∑

i=1

(1− ηa)n−i + ηG

n∑
i= n

2
+1

(1− ηa)n−i

= (1− ηa)nxk
0 +

G

a

(
1− (1− ηa)

n
2

)2
, (34)

where the last equality follows from the following observation:

−ηG

n
2∑

i=1

(1− ηa)n−i + ηG

n∑
i= n

2
+1

(1− ηa)n−i = ηG
(
1− (1− ηa)

n
2

) n∑
i= n

2
+1

(1− ηa)
n−i

= ηG
(
1− (1− ηa)

n
2

) 1− (1− ηa)
n
2

ηa

=
G

a

(
1− (1− ηa)

n
2

)2
.

By unrolling equation (34) over k ∈ [K], we obtain the equation for the final iterate xK
n :

xK
n = (1− ηa)nKx0 +

G

a
· 1− (1− ηa)

nK

1− (1− ηa)
n

(
1− (1− ηa)

n
2

)2
= (1− ηa)nKx0 +

G

a
· 1− (1− ηa)

n
2

1 + (1− ηa)
n
2

(
1− (1− ηa)

nK
)
.

Lemma F.2. Let n be an odd number. Define F (x) = a
2x

2 with component functions

fi(x) =


a
2x

2 if i = 1,
a
2x

2 +Gx if 2 ≤ i ≤ (n+ 1)/2,
a
2x

2 −Gx if (n+ 3)/2 ≤ i ≤ n.

Then, the final iterate xK
n obtained by running Algorithm 2 for K epochs with a step size η starting from the initialization

point x0, satisfies:

xK
n = (1− ηa)nKx0 +

G

a
· 1− (1− ηa)nK

1− (1− ηa)n

(
1− (1− ηa)

n−1

2

)2
.

51

Incremental Gradient Descent with Small Epoch Counts is Surprisingly Slow on Ill-Conditioned Problems

Proof. Compared to Lemma F.1, we have an additional component function f1(x) =
a
2x

2 at the beginning of each epoch.
For this function, the update for xk

1 is given as:

xk
1 = xk

0 − ηaxk
0 = (1− ηa)xk

0 .

Thus, the epoch-wise equation in equation (34) of Lemma F.1 is modified as follows:

xk+1
0 = (1− ηa)n−1xk

1 +
G

a

(
1− (1− ηa)

n−1

2

)2
= (1− ηa)nxk

0 +
G

a

(
1− (1− ηa)

n−1

2

)2
.

By unrolling the above inequality over k ∈ [K], we obtain the equation for the final iterate xk
n:

xK
n = (1− ηa)nKx0 +

G

a
· 1− (1− ηa)nK

1− (1− ηa)n

(
1− (1− ηa)

n−1

2

)2
.

Lemma F.3. Let n be an even number. Define F (x) = a
8x

2 with component functions

fi(x) =

{
a
2x

2 +Gx if i ≤ n/2,

−a
4x

2 −Gx otherwise.

Consider applying Algorithm 2 for a single epoch, starting from xk
0 . The updated iterate xk+1

0 satisfies the following
equation:

xk+1
0 =

(
1 +

ηa

2

) n
2

(1− ηa)
n
2 xk

0 +
G

a

((
1 +

ηa

2

) n
2 (

1 + (1− ηa)
n
2

)
− 2

)
.

Proof. For i ≤ n
2 , the update rule is given as:

xk
i = xk

i−1 − η(axk
i−1 +G) = (1− ηa)xk

i−1 − ηG.

By sequentially applying the first half of the component functions, we obtain

xk
n
2
= (1− ηa)

n
2 xk

0 − ηG

n
2
−1∑

i=0

(1− ηa)i = (1− ηa)
n
2 xk

0 − ηG · 1− (1− ηa)
n
2

ηa

= (1− ηa)
n
2 xk

0 − G

a

(
1− (1− ηa)

n
2

)
. (35)

For i ≥ n
2 + 1, the update rule is given as:

xk
i = xk

i−1 − η
(
−a

2
xk
i−1 −G

)
=
(
1 +

ηa

2

)
xk
i−1 + ηG.

Substituting the result from equation (35) into the update rule for the second half of the component functions, we obtain
xk+1
0 (equivalently, xk

n) as follows:

xk+1
0 =

(
1 +

ηa

2

) n
2

xk
n
2
+ ηG

n
2
−1∑

i=0

(
1 +

ηa

2

)i
=
(
1 +

ηa

2

) n
2

xk
n
2
+ ηG ·

2
((

1 + ηa
2

) n
2 − 1

)
ηa

=
(
1 +

ηa

2

) n
2

xk
n
2
+

2G

a

((
1 +

ηa

2

) n
2 − 1

)
=
(
1 +

ηa

2

) n
2

(
(1− ηa)

n
2 xk

0 − G

a

(
1− (1− ηa)

n
2

))
+

2G

a

((
1 +

ηa

2

) n
2 − 1

)
=
(
1 +

ηa

2

) n
2

(1− ηa)
n
2 xk

0 +
G

a

((
1 +

ηa

2

) n
2 (

1 + (1− ηa)
n
2

)
− 2

)
.

52

Incremental Gradient Descent with Small Epoch Counts is Surprisingly Slow on Ill-Conditioned Problems

G. Experiments
In this section, we validate the lower bound convergence rates for the functions used in the lower bound construction of
Theorems 3.3 and 3.5. We compare the performance of four permutation-based SGD methods: IGD, RR, Herding at
Optimum, and with-replacement SGD. Here, Herding at Optimum refers to the instance of Algorithm 1 using the permutation
suggested from Theorem 3.7 satisfying equation (22). As mentioned in Section 3.2, this permutation is generally unknown
without prior knowledge of x∗. However, for the specific functions used in the lower bound construction, we can explicitly
determine a permutation σ that satisfies equation (22). Thus, the plot for Herding represents the convergence rate achieved
by a well-chosen permutation in permutation-based SGD.

Additionally, we conduct experiments using the MNIST (appendix G.3) and CIFAR-10 (appendix G.4) datasets. For
the real-world dataset, we compare the performance of IGD, RR, and with-replacement SGD. Training loss and the test
accuracy of both MNIST and CIFAR-10 reveal the significant slowdown of IGDat the early stages of the training. For
details of the experiments, we refer readers to the corresponding subsections.

G.1. Results for the Function in Theorem 3.3

Recall that the proof of Theorem 3.3 uses 4-dimensional functions, formulated through the “dimension aggregation” step.
For a clear observation, we conduct experiments using the construction for the “Moderate” step size regime, and remove the
first and the last dimension.

We use the parameters µ = 1.0× 100, L = 1.0× 104, G = 1.0× 100, n = 1.0× 103, and choose the step size as η = 1
µnK

which corresponds to the moderate step size regime. First, we examine the trajectory of IGD when initialized at x∗ in
Figure 2. Recall that our construction is carefully designed so that the trajectory forms a regular n-polygon when starting
from (u0(η), v0(η)) (see Appendix B.2 for definitions). As illustrated in Figure 2, even when the iterate starts at x∗, it
gradually drifts outward and rotates along a circular path.

0.2 0.1 0.0 0.1 0.2
X Position

0.2

0.1

0.0

0.1

0.2

Y
Po

sit
io

n

Optimization Trajectory of IGD
Initial Point
Start of Epochs
Final Iterate

Figure 2. Trajectory of IGD with the function for Theorem 3.3, starting from the x∗ (the origin, purple dot), when K = 20. Blue dots
starting point of each epoch, xk

0 , while the cyan dot indicates the final iterate xK
0 .

Figure 3 reports the function optimality gap for different permutation-based SGD methods, when initialized at
(u0(

1
µnK , v0(

1
µnK))). Results for RR and with-replacement SGD, which involves randomness, are reported after av-

eraging over 20 trials for each number of epochs k. The shaded region represents the first and the third quartiles across the
20 trials.

53

Incremental Gradient Descent with Small Epoch Counts is Surprisingly Slow on Ill-Conditioned Problems

One might wonder why the trend of IGD does not match the rate derived in Theorem 3.3, given by LG2

µ2 min
{
1, κ2

K4

}
. We

believe this occurs because the theoretical rate serves as a lower bound on the true convergence rate, and the empirical
performance of IGD in this experiment can be influenced by additional factors not captured in the theoretical bound.

101 102 103 104

Epoch

10 17

10 14

10 11

10 8

10 5

10 2

101

Op
tim

al
ity

 G
ap

Incremental Gradient Descent
Random Reshuffling
Herding
With-replacement

Figure 3. Experiments on Theorem 3.3 for IGD, RR, Herding at Optimum, and with-replacement SGD. Both axes are log-scaled.

G.2. Results for the Function in Theorem 3.5

Recall that the proof of Theorem 3.5 uses 4-dimensional functions, formulated through the “dimension aggregation” step.
For a clear observation, we conduct experiments using the construction for the “Moderate & Large” step size regime, and
remove the first dimension.

We use the parameters µ = 1.0× 100, L = 1.0× 104, G = 1.0× 100, n = 1.0× 102, and choose the step size as η = 1
µnK .

102 103 104

Epoch

10 8

10 5

10 2

101

104

107

1010

1013

Op
tim

al
ity

 G
ap

Incremental Gradient Descent
Random Reshuffling
Herding
With-replacement

Figure 4. Experiments on Theorem 3.5 for IGD, RR, Herding at Optimum, and with-replacement SGD. Both axes are log-scaled.

Figure 4 reports the function optimality gap for different permutation-based SGD methods, when initialized at (0, 0). Results
for RR and with-replacement SGD, which involves randomness, are reported after averaging over 20 trials for each number
of epochs, k. The shaded region represents the first and the third quartiles over the 20 trials. As suggested by Theorem 3.5,
the function optimality gap increases sharply as K decreases. In contrast, RR remains robust even for small K.

54

Incremental Gradient Descent with Small Epoch Counts is Surprisingly Slow on Ill-Conditioned Problems

G.3. Experiments on MNIST Dataset

For the MNIST dataset, we consider the binary classification using only the data corresponding to the labels 0 and 1. We
consider the natural data ordering where all 0 images are followed by all 1 images. In this configuration, we have a total of
5,923 + 6,742 = 12,665 training data. We use a step size η = 0.01 throughout every part of the training.

0 2 4 6 8 10
Epochs

10 4

10 3

10 2

10 1

100

Tr
ai

ni
ng

 L
os

s

IGD
RR
SGD

(a) Training loss

0 2 4 6 8 10
Epochs

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Te
st

 A
cc

ur
ac

y

IGD
RR
SGD

(b) Test accuracy

Figure 5. Experiments on MNIST dataset for IGD, RR, and with-replacement SGD. y-axis for the training loss is log-scaled.

Figure 5 reports the training loss and the test accuracy for different permutation-based SGD methods, with a random
initialization. Results are reported after averaging over 10 trials for each number of epochs, k. The shaded region represents
the 95% confidence interval over 10 trials. Unlike the experiments on the functions corresponding to the theorems using a
fixed initialization, the randomness in the initialization for this experiment introduces a confidence interval even to IGD.
Both the loss and the accuracy show no significant difference between RR and with-replacement SGD, while IGD shows a
significantly slower convergence compared to the other two methods.

G.4. Experiments on CIFAR-10 Dataset

For the CIFAR-10 dataset, we also consider the binary classification using only the data corresponding to the labels airplane
and automobile. We consider the natural data ordering where all airplane images are followed by all automobile images. In
this configuration, we have a total of 5,000 + 5,000 = 10,000 training data. We use a step size η = 0.001 throughout every
part of the training.

One slight difference from the experiment on the MNIST dataset is that we use a mini-batch of size 16 for the training. This
is due to the instability of IGD training. To ensure convergence of IGD with a reasonable step size—such that the loss
function decreases even with a small number of training epochs—we employ its mini-batch variant. For a fair comparison,
we also adopt the corresponding mini-batch versions of RR and with-replacement SGD.

Figure 6 reports the training loss and the test accuracy for different permutation-based SGD methods, with a random
initialization. Results are reported after averaging over 10 trials for each number of epochs, k. The shaded region represents
the 95% confidence interval over 10 trials. Both the loss and the accuracy show no significant difference between RR and
with-replacement SGD, while IGD shows a significantly slower convergence compared to the other two methods.

55

Incremental Gradient Descent with Small Epoch Counts is Surprisingly Slow on Ill-Conditioned Problems

0 5 10 15 20
Epochs

5 × 10 1

6 × 10 1

7 × 10 1

Tr
ai

ni
ng

 L
os

s

IGD
RR
SGD

(a) Training loss

0 5 10 15 20
Epochs

0.5

0.6

0.7

0.8
Te

st
 A

cc
ur

ac
y

IGD
RR
SGD

(b) Test accuracy

Figure 6. Experiments on CIFAR-10 dataset for IGD, RR, and with-replacement SGD. y-axis for the training loss is log-scaled.

56

