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Abstract
In self-supervised contrastive learning, negative
pairs are typically constructed using an anchor
image and a sample drawn from the entire dataset,
excluding the anchor. However, this approach can
result in the creation of negative pairs with similar
semantics, referred to as “false negatives”, leading
to their embeddings being falsely pushed apart.
To address this issue, we introduce GLOFND, an
optimization-based approach that automatically
learns on the fly the threshold for each anchor
data to identify its false negatives during train-
ing. In contrast to previous methods for false
negative discovery, our approach globally detects
false negatives across the entire dataset rather than
locally within the mini-batch. Moreover, its per-
iteration computation cost remains independent
of the dataset size. Experimental results on im-
age and image-text data demonstrate the effective-
ness of the proposed method. Our implementa-
tion is available at “https://github.com/
vibalcam/GloFND”.

1. Introduction
Representation learning is a fundamental problem in ma-
chine learning that aims to learn a good representation of
the data for downstream tasks. Conventional supervised ap-
proaches rely on large quantities of high-quality labeled data,
which is hard to collect. Recently, self-supervised learning
has achieved promising performance for image represen-
tation learning (Chen et al., 2020a; Grill et al., 2020). Its
success extends to bimodal learning (Radford et al., 2021)
and semi-supervised learning (Chen et al., 2020b). These
methods exploit unlabeled data to acquire general-purpose
representations that exhibit robust performance and transfer-
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Figure 1: Examples of false negative images seen during
training on ImageNet. The left column is the anchor image
and the rest are observed false negative samples.

ability across diverse downstream tasks.

Notably, many self-supervised learning approaches center
around contrastive learning. Contrastive learning operates
on a straightforward principle: it seeks to bring together the
embeddings of positive (similar) pairs while simultaneously
pushing apart those of negative (dissimilar) pairs. This prin-
ciple is combined with well-chosen data augmentations to
improve the model’s invariance to non-semantic variations.

In the absence of reliable labels to determine whether a
pair of data is positive or negative, many methods resort to
instance discrimination. To this end, positive pairs are de-
fined as distinct augmented views of the anchor data, while
negative pairs are generated by sampling from the whole
dataset excluding the anchor data, irrespective of their se-
mantics (Chen et al., 2020a; Yuan et al., 2022). However,
negative pairs produced through this method lack reliabil-
ity. Specifically, augmented views from images sharing
similar semantic meanings are incorrectly deemed negative,
leading to their embeddings being pushed apart. This inad-
vertently encourages the model to discard crucial semantic
information. We term these undesirable negative pairs as
false negatives (FN). Figure 1 illustrates examples of false
negatives encountered during training on ImageNet, where
the anchor images are different from their negative samples
yet semantically similar.

The presence of false negatives detrimentally impacts the
representations learned through contrastive learning (Saun-
shi et al., 2019), with this effect becoming more pro-
nounced in large-scale datasets featuring numerous semantic
concepts (Chen et al., 2022). For instance, during Sog-
CLR (Yuan et al., 2022) pretraining on ImageNet100 (100
classes), approximately 1% of all negative pairs are false
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(a) SogCLR (b) GLOFND (Ours)

Figure 2: ImageNet100 features (t-SNE projected) learned
by SogCLR (Yuan et al., 2022) and GLOFND (this work).

negatives. This translates to around 20,000 false negatives
per batch with a batch size of 1024, and about 325 with a
batch size of 128. The presence of such false negatives dur-
ing training can significantly degrade the quality of learned
representations: a linear classifier trained on top of such
representations achieves up to 10% lower accuracy in a
semi-supervised setting compared to representations learned
without the false negatives.

Given an approach to identify false negatives, we can take
corrective actions such as filtering them from the training
set (i.e., false negative elimination) or incorporating them
as additional positive pairs (i.e., false negative attraction)
(Huynh et al., 2022). However, confidently identifying the
potential false negatives in the absence of labels poses a
challenging problem. The desire to eliminate false negatives
is motivated by the goal of improving representation learn-
ing, yet the identification of these instances may necessitate
some level of semantic knowledge to determine whether
two pairs are indeed negative. Looking at Figure 1, we can
observe some of the false negatives are not straightforward
to identify, especially after data augmentation.

Previous works addressing this problem fall into two cat-
egories: local (batch-wise) and global (dataset-wise) ap-
proaches. Local methods (Zheng et al., 2021; Huynh et al.,
2022) identify false negatives for an anchor by assessing
its similarities or adjacency to other data within the same
mini-batch. However, the most similar or adjacent item
to the anchor in the mini-batch may not necessarily be se-
mantically similar to the anchor in the entire data space,
particularly when the mini-batch size is small. The global
approach IFND (Chen et al., 2022) aims to discover false
negatives for each anchor in the whole dataset. However,
their method involves clustering the entire dataset at spe-
cific epochs, which could be computationally expensive for
large-scale datasets.

This paper addresses existing limitations in false negative
detection by introducing a novel algorithm, named Global
False Negative Discovery (GLOFND), which learns global
and dynamic thresholds for each anchor in the dataset. This
enables the selection of the top-α% most similar negative

data points from the entire dataset on the fly, with top-α%
being the set above the (1 − α)-quantile (α ∈ [0, 1]). The
GLOFND algorithm alternates between two key steps: i)
Updating the per-anchor thresholds by SGD to solve a con-
vex optimization problem of finding a threshold that can
filter out the top-α% of a set of scores. ii) Updating the
parameters of the encoder network by using a stochastic
gradient estimator of the modified contrastive loss that takes
care of the false negatives identified via the learned thresh-
olds (e.g., excluding them).

GLOFND can be integrated with various CL techniques
with minimal computational overhead. It effectively iden-
tifies false negatives for each sample, offering flexibility
in how these are addressed. We demonstrate the empirical
success of our method in unimodal, bimodal, and semi-
supervised contrastive learning on several CL techniques
without using a large batch size. Figure 2(a) and 2(b) quali-
tatively showcases that identifying and removing false nega-
tives using GLOFND achieves better separation between the
learned representations of different classes. One example of
this observation is that clusters close to the periphery appear
more tightly packed and distinct.

2. Related Work
Self-supervised learning (SSL). SSL has garnered substan-
tial attention for its capacity to generate general-purpose
representations from unlabeled data, facilitating scalability
to large-scale datasets (Gui et al., 2023). SSL learns a data
encoder network by leveraging intrinsic relationships within
the data. The encoder network is then used to learn predic-
tive models in downstream tasks through transfer learning.
Noteworthy applications span computer vision (Kolesnikov
et al., 2019), natural language processing (Lan et al., 2019),
and healthcare (Sowrirajan et al., 2021), among others.

Early efforts in SSL formulated pretext tasks to enable mod-
els to learn representations from unlabeled data. Examples
include predicting the relative offset between two patches
within the same image (Doersch et al., 2016), solving jigsaw
puzzles (Noroozi & Favaro, 2017), colorizing grayscale im-
ages (Zhang et al., 2016), and unsupervised deep clustering
(Caron et al., 2019). However, these methods necessitate
carefully crafted pretext tasks, which may not always apply
to diverse domains, leading to a lack of generality.

Contrastive learning (CL). CL has emerged as a prevalent
paradigm in SSL, primarily grounded in instance discrimi-
nation (Wu et al., 2018; Zhao et al., 2021). This approach
employs contrastive losses, compelling the model to bring
the embedding vectors of positive pairs closer while simul-
taneously pushing those of negative pairs apart. In essence,
it promotes the learning of representations with high similar-
ity among positive pairs and low similarity among negative
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pairs. Positive pairs can be easily generated from differ-
ent views of the same image. However, generating quality
negative pairs is more challenging. MoCo (He et al., 2020)
addresses this through (i) a momentum encoder network
that generates representations of images for contrast with
the anchor, and (ii) a long queue to provide a large number
of negative samples. SimCLR (Chen et al., 2020a) instead
uses a large batch size and data augmentations, generating
negative pairs with augmented views of images other than
the anchor image. However, its performance degrades a lot
as the batch size decreases. To address this issue, Yuan et al.
(2022) propose a stochastic algorithm called SogCLR that
does not rely on large batch size. Ge et al. (2024) gener-
ates negatives that preserve superfluous instead of semantic
features. Shah et al. (2022) introduced a max-margin crite-
rion inspired by support vector machines (SVMs). While
these methods have shown promising results, they overlook
the semantic relationship when generating negative pairs.
Despite two images being semantically similar, their aug-
mented views are treated as negative pairs, a phenomenon
referred to as “false negatives”. The false negatives result
in the loss of crucial semantic information, consequently
impacting representation learning (Saunshi et al., 2019).

Semantic-aware CL. Recently, several studies have en-
hanced instance-discrimination-based CL by leveraging the
underlying semantics. Qiu et al. (2023) introduce the iSog-
CLR algorithm that learns individualized temperatures for
each sample depending on the frequency of its semantics
to increase the tolerance of false negatives. In contrast,
GLOFND tackles the more challenging task of detecting
each sample’s false negatives, thus providing more free-
dom on how to deal with them. Supervised CL (SupCon)
(Khosla et al., 2021) has demonstrated that employing the
CL objective with labels to define positive and negative
pairs (i.e., avoiding false negatives) can be more effective
than the conventional supervised cross-entropy loss. Weakly
supervised CL (WCL) (Zheng et al., 2021) constructs an
undirected graph based on auxiliary embeddings of mini-
batch data, whose connected components are used to define
weak labels for the SupCon. Huynh et al. (2022) adopt a
different approach called FNC, addressing false negatives
for each anchor by selecting the top k similar samples in the
batch. The limitation of the last two works is that the top
similar negative samples in the batch may not be reliable
false negatives when the mini-batch size is small.

Instead of detecting false negatives within the mini-batch,
Chen et al. (2022) introduce an incremental dataset-wide
clustering-based approach. At specific epochs, embeddings
are computed for all samples in the dataset, followed by
clustering using k-means. Pairs of samples within the same
cluster are designated as false negatives. Nevertheless, this
approach entails high computational costs, particularly for
large-scale datasets, due to the necessity of computing em-

beddings for the entire dataset and subsequently applying
k-means clustering. Hence, there remains a need for a
global (dataset-wise) false-negative discovery approach that
is agnostic to batch size and scalable for large-scale datasets.

3. CL with Global False Negative
Identification

Let D = {x1, . . . ,xn} denote a dataset of size n, and let
P be a collection of data augmentation operators. Ew(·)
represents an encoder network parametrized by w ∈ Rd.

The global contrastive objective (Yuan et al., 2022)
LGCL(w) contrasts each xi ∈ D with negative data S−i =
{A(x) | ∀A ∈ P,∀x ∈ D\{xi}} in the whole dataset.
Let zi = Ew(A(xi)), z′i = Ew(A′(xi)) denote the embed-
dings and sim(·, ·) the cosine similarity. Then,

LGCL(w) = Exi∈D,A,A′∈P [ℓ(w;xi, A,A
′)] , (1)

ℓ(w;xi, A,A
′) = −τ log exp(sim(zi,z

′
i)/τ)∑

x∈S−
i

exp(sim(zi,Ew(x))/τ) ,

While GLOFND is not restricted to any CL technique, the
following sections present how GLOFND can be integrated
with the global contrastive loss. GLOFND’s application to
other CL techniques can be done in a similar manner and
we empirically show its effectiveness in Section 4. Since
GLOFND’s focus is on detecting false negatives, it does not
restrict what actions to take with the detected false negatives.
This paper will consider the straightforward approach of
filtering them from the loss, leaving how to make the best
use of false negatives for future work.

3.1. Learning Dynamic Per-Anchor Thresholds

The challenge in the false negative discovery problem ap-
pears akin to a chicken-and-egg dilemma: the reliable iden-
tification of false negatives demands good representations,
yet achieving quality representation learning necessitates de-
tecting and dealing with false negatives. Thus, our approach
starts with a sufficiently pre-trained encoder network Ew

(this can be done with a warm-up stage using existing CL
methods) and further refines it by systematically and dynam-
ically eliminating the identified false negatives. Moreover,
we assume that the top α% most similar negative data share
similar semantics with the anchor data based on their current
representations, where α is a hyper-parameter to be tuned
that allows adapting to different settings. We will identify
as false negatives of the anchor xi the negative data with
similarity scores above the (1− α)-quantile (α ∈ [0, 1]).

The hyperparameter α allows GLOFND to adapt to different
definitions of false negatives, which are inherently depen-
dent on the desired level of granularity. For example, in a
dataset like ImageNet, consider two classification settings:
(1) a coarse-grained task of classifying between cars and
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animals, and (2) fine-grained task of classifying dog breeds.
Two images of a dog from different breeds might be con-
sidered a false negative in the coarse-grained case (1), but
not in the fine-grained one (2). Consequently, the optimal
percentage of false negatives, controlled by α, varies with
the chosen granularity. By adjusting α, GLOFND can flex-
ibly align with different levels of semantic resolution, i.e.,
granularity. Its value can be set based on prior knowledge
(e.g., expected rate of false negatives or desired granularity
of learned representations) or tuned like other hyperparame-
ters, such as the temperature in contrastive learning.

Previous work (Huynh et al., 2022) either selects the top-
k most similar negatives or sets a threshold on similarity
scores. However, the former involves the expensive com-
putation and ranking of cosine similarities across the entire
dataset, while the latter presents challenges due to the need
for manually crafted scheduling of the threshold for each
anchor. Moreover, both approaches are problematic as simi-
larity scores change when we update the parameters of the
encoding network.

Instead, we choose an optimization-based approach to au-
tomatically learn the per-anchor threshold λi to select the
top α% most similar negative data for the i-th anchor. To
achieve this, we cast the problem of finding the (1 − α)-
quantile of all similarity scores between xi and all other
samples, i.e., Ri = {sim(Ew(xi), Ew(x)) | x ∈ S−i } as
the following optimization problem (Ogryczak & Tamir,
2003):

λi = arg min
ν∈[−1,1]

να+
1

|R|
∑
r∈Ri

(r − ν)+ (2)

Then, we will have a set of threshold {λi}i∈[|D|]. The fol-
lowing lemma shows that the solution λi to (2) can be used
to select the top-α% most similar negative data.
Lemma 3.1. Let k = ⌈α|S−i |⌉. The solution λi to (2) is
either the k-th largest value or between k-th and (k + 1)-th
largest value in the set Ri.

We modify the contrastive loss in (1) to eliminate the false
negatives, yielding the following optimization problem:

min
w
LGCL(w,λ) =

1

n

∑
xi∈D

EA,A′ [ℓ(w, λi;xi)], (3)

ℓ(w, λi;xi) = −sim(zi, z
′
i) + τ log(|S̃−i |g(w, λi;xi, S̃−i )),

g(w, λi;xi, S̃−i ) =
1

|S̃−i |

∑
x∈S̃−

i

exp(sim(zi, Ew(x))/τ),

where S̃−i = {x | x ∈ S−i , sim(zi, Ew(x)) ≤ λi} is
obtained by removing the false negatives (identified via the
threshold λi) in the negative dataset S−i for anchor xi.

Note that minw LGCL(w,λ) can be viewed as a stochas-
tic bilevel optimization problem (Ghadimi & Wang, 2018)

since the minimization of LGCL(w,λ) involves the solution
λ to a lower level problem in (2). However, the problem in
(3) is more challenging that most bilevel problems in the lit-
erature (Ghadimi & Wang, 2018; Ji et al., 2021) because the
lower-level problem in (2) is non-smooth and non-strongly
convex while the upper-level function LGCL(w,λ) is non-
differentiable to λ. To tackle this challenge, we just ignore
the hypergradient of λ in terms of w, which has been used
in model-agnostic meta-learning (Finn et al., 2017).

3.2. GLOFND for Unimodal CL

We propose an efficient algorithm called GLOFND for dy-
namically discovering and eliminating the false negatives in
contrastive learning. GLOFND can be combined with pre-
vious contrastive learning algorithms, e.g., SogCLR (Yuan
et al., 2022). In each iteration, SogCLR + GLOFND first
randomly samples a batch of data B ⊂ D and data augmen-
tations A,A′. Then, it alternatively executes two steps: (i)
updating the thresholds λi, i ∈ B; (ii) removing the iden-
tified false negatives from the loss function and updating
the parameters w of the encoding network. Notably, step
(i), GLOFND ’s computation of λi, is independent of the
specific contrastive loss used, as it relies solely on the em-
bedding similarity of negative pairs. The contrastive loss
only influences how the filtered false negatives are handled
during training.

3.2.1. UPDATING THE THRESHOLD λ

First, the threshold λi can be updated by calculating the
stochastic subgradient of (2) and employing the regular
SGD update. Given the predetermined sampled negative
data of xi in the mini-batch, i.e., B−i = {A(x), A′(x) | x ∈
B\{xi}} ⊂ S−i , we can compute an stochastic estimator
∇̂λi

of the subgradient of (2) w.r.t. λi. Then, we update
those λi’s that correspond to those sampled anchors xi ∈ B
while keeping others unchanged, i.e.,

∇̂λi
= α− 1

|B−i |
∑

x∈B−
i

I(sim(zi, Ew(x)) > λi)

λi ←

{
Π[−1,1]

[
λi − θ∇̂λi

]
, xi ∈ B,

λi, xi /∈ B,
(4)

where I(·) is the indicator function, Π[−1,1][·] denotes the
projection onto the interval [−1, 1] due to that are similarity
scores are in [−1, 1], and θ is the learning rate of λi. In this
way, we keep track of a threshold λi for detecting global
false negatives across the whole dataset for each anchor
xi ∈ D, while ensuring that computation remains mini-
batch-wise.
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3.2.2. UPDATING ENCODER NETWORK Ew

For each anchor xi ∈ B, we eliminate the false neg-
atives identified through the threshold λi from its neg-
ative data batch B−i , resulting in B̃−i = {x | x ∈
B−i , sim(zi, Ew(x)) ≤ λi}. Following the SogCLR algo-
rithm (Yuan et al., 2022), we use a moving average estimator
of g(w, λi;xi, S̃−i ) for each anchor xi ∈ D to alleviate the
requirement of a large batch size. For each xi, we maintain
a scalar ui to estimate g(w, λi;xi,S−i ) as

ui ←

{
(1− γ)ui + γĝ(w, λi;xi, B̃−i ), xi ∈ B,
ui, xi /∈ B,

(5)

ĝ(w, λi;xi, B̃−i ) =
1

|B̃−i |

∑
x∈B̃−

i

exp(sim(zi, Ew(x))/τ),

where γ ∈ [0, 1] is the parameter and ĝ(w, λi;xi, B̃−i ) is
an stochastic estimator of g(w, λi;xi, S̃−i ). Finally, we can
update w by computing a stochastic estimator of the gradi-
ent of LGCL(w,λ) in (3) w.r.t. the parameters of encoding
network w as:

∇̂w =
1

|B|
∑
xi∈B

−∇wsim(zi, z
′
i) +

τ∇wĝ(w, λi;xi, B̃−i )
ui

.

The whole algorithm, incorporating GLOFND to address the
false negative issue in SogCLR through filtering, is outlined
in Algorithm 1. Noteworthy differences compared to the
vanilla SogCLR algorithm are highlighted in blue. Note
that GLOFND adds little overhead, since it just requires
basic matrix computations and runs in O(B2), which is
relatively negligible compared to the cosine similarity and
forward/backward computations.

Algorithm 1 SogCLR + GLOFND

1: Initialize: w ∈ Rd, initialize u ∈ Rn and λ ∈ Rn

2: for t = 1, . . . , T do
3: Draw a batch of B samples B ⊂ D and data augmen-

tations A,A′, and construct B−i = {A(x), A′(x) |
x ∈ B\{xi}} for each xi ∈ B

4: for xi ∈ B do
5: Update λi according to (4)
6: Construct B̃−i by excluding the false negatives

identified via λi and compute ĝ(w;xi, A, B̃−i )
7: Update ui,t according to (5)
8: end for
9: Compute the gradient estimator ∇̂w

10: Update w by the momentum or Adam method
11: end for

3.3. Extension to Bimodal CL

Our approach GLOFND can be extended to resolve
the global false negative discovery in bimodal CL, e.g.,

CLIP (Radford et al., 2021). This can be achieved by learn-
ing a threshold for each instance for two modalities and
following the same general procedure as for unimodal CL.
In this section, we provide a brief overview of GLOFND’s
extension to bimodal CL.

Let D = {(x1, t1), . . . , (xn, tn)} be a set of image-text
pairs, and denote the encoder network by EI for images
and the encoder network by ET for text parametrized by
w. For each (xi, ti) ∈ D, the negative dataset for each
anchor image xi is S−I,i = {t | ∀(x, t) ∈ D \ {xi, ti}}
while the negative dataset for each anchor text ti is S−T,i =
{x | ∀(x, t) ∈ D \ {xi, ti}}. Let zI,i be the representation
of the i-th anchor image xi and zT,i be the representation
of the i-th anchor text ti, and λI,i, λT,i ∈ [−1, 1] their
respective associated thresholds defined through (2). Then,
the problem is formulated as:

min
w

1

n

∑
(xi,ti)∈D

E[ℓ(w, λI,i, λT,i;xi, ti)]

ℓ(w, λI,i, λT,i;xi, ti) = −2sim(zI,i, zT,i)

+ τ log|S̃−I,i|gI(w, λI,i;xi, S̃−I,i)

+ τ log|S̃−T,i|gT (w, λT,i; ti, S̃−T,i),

gI(w, λI,i;xi, S̃−I,i) =
1

|S̃−I,i|

∑
t∈S̃−

I,i

exp(sim(zI,i, ET (t))/τ),

gT (w, λT,i; ti, S̃−T,i) =
1

|S̃−T,i|

∑
x∈S̃−

T,i

exp(sim(EI(x), zT,i)/τ),

where S̃−I,i = {t | t ∈ S
−
I,i, sim(zI,i, ET (t)) ≤ λI,i} and

S̃−T,i = {x | x ∈ S
−
T,i, sim(EI(x), zT,i) ≤ λT,i}.

Then, we can easily extend the GLOFND to the bimodal
setting similarly as in the unimodal setting. We refer readers
to the Appendix B for more details.

4. Experiments
In this section, we evaluate GLOFND in unimodal, semi-
supervised unimodal, and bimodal scenarios. It is not our
focus to leverage multiple techniques for achieving state-
of-the-art performance, but to showcase GLOFND’s im-
provements in identifying false negatives across different
settings while being scalable to large-scale datasets (with
negligible overhead) and compatible with small batch sizes.
Additionally, we perform an ablation study to analyze the
effect of the different components of GLOFND. We report
the score average and standard deviation in parenthesis over
3 runs with different random seeds.

The unimodal experiments are run on a single NVIDIA A30
with 24GB memory size, while the bimodal experiments
make use of a multi-node setup with 2 nodes, each with 2
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Table 1: Linear evaluation results in unimodal semi-supervised scenario. We train the linear classifiers with different
percentages of randomly sampled labeled training data and present their top-1 accuracies (%) on the validation set. We
include the overall average and, in parentheses, its improvement WRT SogCLR baseline. We also report the average of
recall, precision, and f1-score of the identified false negatives over the final epoch of pretraining.

Method Top-1 Accuracy False Negatives Identification
100.0% 10.0% 1.0% 0.1% Average Precision Recall F1-Score

SogCLR 76.55 (0.09) 72.24 (0.14) 62.92 (0.34) 34.94 (0.60) 61.66 — — —
+ FNC 77.12 (0.14) 72.89 (0.25) 64.29 (0.34) 36.11 (0.70) 62.60 (+0.94) 27.57 (0.03) 53.67 (0.27) 36.42 (0.07)
+ GLOFND 77.59 (0.03) 73.36 (0.15) 65.09 (0.49) 37.38 (0.97) 63.36 (+1.70) 48.40 (0.65) 58.81 (0.60) 53.10 (0.31)

Table 2: Unimodal transfer learning results. We report the overall average and its improvement WRT SogCLR baseline.

Method CIFAR10 CIFAR100 Food101 Caltech101 Cars DTD Pets Flowers Average

SogCLR 82.46 (0.36) 60.2 (0.22) 59.66 (0.2) 77.73 (0.17) 25.99 (0.64) 57.80 (0.30) 60.63 (0.34) 76.91 (0.33) 62.67
+ FNC 82.77 (0.36) 60.96 (0.31) 59.82 (0.14) 78.34 (0.92) 26.28 (0.50) 58.60 (0.29) 61.67 (0.66) 78.77 (0.51) 63.40 (+0.73)
+ GLOFND 82.81 (0.23) 61.94 (0.24) 59.87 (0.16) 79.18 (0.52) 27.88 (0.44) 58.97 (0.96) 63.91 (0.22) 79.89 (0.09) 64.31 (+1.64)

NVIDIA A100 GPUs with 40GB each.

For unimodal and semi-supervised experiments, we use Sog-
CLR (Yuan et al., 2022) and compare with FNC (Huynh
et al., 2022). FNC computes the top k for negative data
within a mini-batch by utilizing a support set. The support
set includes additional views for each image, and the sim-
ilarity scores are averaged across these views. For a fair
comparison, we set k = α|D| and use a support set of size
1. For bimodal experiments, we compare GLOFND with
SogCLR and FastCLIP (Wei et al., 2024).

4.1. Unimodal and Semi-supervised Experiments

Dataset. We run our experiments on ImageNet100 (Wu
et al., 2019), a subset of ImageNet with 100 randomly se-
lected classes (about 128k images), and report scores on its
official validation split. Additionally, we examine the trans-
fer learning performance on Food-101 (Bossard et al., 2014),
CIFAR-10 and CIFAR-100 (Krizhevsky, 2009), Stanford
Cars (Krause et al., 2013), Describable Textures Dataset
(DTD) (Cimpoi et al., 2014), Oxford-IIIT Pets (Parkhi et al.,
2012), Caltech-101 (Li et al., 2022), and Oxford 102 Flow-
ers (Nilsback & Zisserman, 2008).

Experiment Setup. Following previous work (Yuan et al.,
2022), we pretrain ResNet-50 (He et al., 2015) with a 2-
layer 128 × 128 projection head on top of the backbone
encoder. We pretrain for 200 epochs with a batch size of
128 and the same set of augmentations as in SogCLR. We
use LARS optimizer (You et al., 2017) with square root
learning rate scaling (0.075 × sqrt(BatchSize)) and co-
sine decay schedule without restart. For SogCLR, we set
the temperature (τ ) to 0.1 and γ = 0.9. We start using
GLOFND when we reach 70 epochs. We use α = 0.01,
initialize λi = 1, and learn it with Adam with a learning
rate of 0.05 (β1 = 0.9, β2 = 0.98) during the remaining

epochs. For FNC, we set α = 0.01 and tune the start-
ing epoch in {10, 30, 50, 70, 90, 110, 130}, choosing the
value that achieves the best semi-supervised average perfor-
mance. More details on hyperparameters can be found in
Appendix D.1.

Evaluation. We evaluate our model in three ways: false
negative identification, semi-supervised linear evaluation,
and transfer learning. First, given that GLOFND’s main
objective is false negative identification, we assess its effec-
tiveness to correctly detect false negatives. To construct the
ground truth, we compare the labels of each sample pair, if
both samples have the same label they are considered a false
negative. We report precision, recall, and F1-scores for the
final epoch of pretraining. Second, we evaluate GLOFND’s
ability to achieve better representations through linear evalu-
ation. That is, we freeze the weights of the encoder at the last
iteration of pretraining, remove its projection head, and train
a linear classifier on top of the encoder’s output. We follow
a semi-supervised learning setup, where we use different
fractions of labeled training data during linear evaluation,
i.e., we train on random subsets of 100% (full dataset), 10%,
1%, and 0.1% of the training data. We report each top-1
accuracy on the validation set and average the performance
across percentages obtaining the overall semi-supervised
score. Lastly, we evaluate the transfer learning performance
of the learned representations. We train an ℓ2-regularized
logistic regression classifier on features extracted from the
frozen pretrained network after removing the projector head.
For each method, we report linear evaluation and transfer
learning results for the model that achieves the highest semi-
supervised average performance.

Results. We report false negative identification perfor-
mance and top-1 accuracies by linear evaluation in Table 1.
GLOFND achieves significant improvements in false nega-
tive identification over FNC, with a 20.83% and 5.14% in-
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Table 3: Results in bimodal zero-shot downstream tasks.
Datacomp provides the average across 38 tasks, Retrieval
averages the performance on 3 image-text retrieval datasets,
and IN & Variants averages 7 ImageNet datasets.

Method Datacomp Retrieval IN & Variants

SogCLR (Wei et al., 2024) 24.87 (0.13) 29.28 (0.30) 18.86 (0.09)
+ FNC 24.55 (0.20) 29.69 (0.19) 18.69 (0.62)
+ GLOFND 25.37 (0.16) 29.92 (0.35) 19.44 (0.16)

FastCLIP (Wei et al., 2024) 24.76 (0.26) 30.36 (0.18) 19.08 (0.16)
+ FNC 24.63 (0.72) 28.87 (0.93) 18.51 (0.19)
+ GLOFND 25.37 (0.13) 30.22 (0.32) 19.38 (0.15)

crease in mean precision and recall, leading to an F1-score
of 53.10%, which is 16.68% higher than FNC. Observe
that simply removing the false negatives identified by FNC
or GLOFND improves both the semi-supervised and trans-
fer learning performance of SogCLR. GLOFND achieves
greater improvements in both scenarios, achieving 1.04%-
2.44% improvement in the semi-supervised scenario and
an average 1.64% improvement in transfer learning, while
increasing the per-epoch computation by only 2% (from 427
s to 435 s). More details can be found in Appendix D.3.
Note these improvements are achieved by simply removing
the false negatives identified by GLOFND from the loss,
while a more careful treatment can potentially improve the
performance even further.

4.2. Bimodal Experiments

Datasets. For bimodal learning, we use the Conceptual Cap-
tions 3M (CC3M) (Sharma et al., 2018) dataset. We evaluate
the performance by leveraging the Datacomp Benchmark
(Gadre et al., 2023), which includes 38 zero-shot down-
stream tasks. We report the average performance, named
Datacomp. For each scenario, we select the model with the
best Datacomp average and also report its average perfor-
mance on two subsets of the tasks: zero-shot image classifi-
cation on ImageNet-1k (Russakovsky et al., 2015) and 6 Im-
ageNet distribution shift datasets (Wang et al., 2019; Recht
et al., 2019; Hendrycks et al., 2021b;a; Barbu et al., 2019)
(IN & Variants), and zero-shot cross-modal image-text re-
trieval on Flickr30K (Plummer et al., 2017), MSCOCO (Lin
et al., 2015), and WinoGAViL (Bitton et al., 2022).

Experiment Setup. Following previous work (Wei et al.,
2024), we use a 12-layer transformer (Vaswani et al., 2017)
as the text encoder, and ResNet50 as the vision encoder. All
experiments are conducted in a multi-node setting with 2
nodes, each with two A100 40GB GPUs. We pretrain for
37 epochs with a global batch size of 1024. For SogCLR,
we start using FNC/GLOFND after 15 epochs, setting α =
5e − 4, while for FastCLIP we start after 20 epochs with
α = 1e− 3. For both losses, we initialize λi = 1 and use
Adam updates with a learning rate of 0.05. More details on
hyperparameters can be found in Appendix D.2.
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Figure 3: Analysis of learned λi for GLOFND with α =
0.01. (a) Kernel density estimation of the distributions of
GLOFND’s λi, the approximated optimal λai , and 20 ran-
domly sampled FNC thresholds. (b) Average percentage of
negative pairs predicted to be false negatives during training
(i.e., 1− |S̃−i |/|S

−
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Figure 4: Linear evaluation (top-1 accuracy %) on Ima-
geNet100 for SogCLR without FN identification, with FNC
(top 1%), with a single learned threshold (α = 0.1), and
GLOFND (α = 0.01).

Results. We present the bimodal results in Table 3. Despite
using a larger batch compared to the unimodal case, the
bimodal scenario proves more challenging for FNC, which
generally underperforms compared to the baseline models.
In contrast, GLOFND enhances both SogCLR and Fast-
CLIP across most metrics. Notably, it improves the overall
Datacomp score for both models. These results highlight
the benefit of integrating false negative detection into bi-
modal contrastive losses, demonstrating that GLOFND is
an effective approach for this task.

4.3. Ablation Study

Verification of Algorithm Design. We empirically validate
three aspects of GLOFND’s design: (i) the necessity to
have a global threshold (as opposed to batch-wise), (ii) the
necessity to have a different λi for each anchor xi ∈ D, and
(iii) the quality of the learned λi threshold. We will cover
(ii) and (iii) in this section and (i) in the next section.
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(ii) Do we need a different threshold for each anchor?

We first examine the distribution of λi learned by GLOFND
after pretraining. Rather than being concentrated around a
single value, we expect it to span a range, indicating that
different anchors adopt different thresholds when comput-
ing their top (1 − α)-quantile. Figure 3(a) illustrates this
distribution for ImageNet100 (red line). As expected, λi
varies within the range [0.1, 0.6], highlighting the necessity
of a per-anchor threshold.

To empirically validate this, we compare GLOFND, which
assigns a distinct λi per anchor, against a variant that uses a
single λ for all anchors, referred to as “Single λ.” Figure 4
reports the semi-supervised performance on ImageNet100,
demonstrating that GLOFND with per-anchor λi consis-
tently outperforms the single-threshold variant.

(iii) How good are the learned λi thresholds?

We train SogCLR on ImageNet100 and apply GLOFND
(α = 0.01) with SGD updates starting at epoch 20. We
monitor the percentage of negative pairs predicted to be
false negatives, computed as 1 − |S̃−i |/|S

−
i |, throughout

training. We initialize λi = 1 (indicating no false negatives)
and expect the percentage to converge to the target α. As
shown in Figure 3(b), GLOFND successfully reaches and
maintains the desired α after a few epochs.

Next, we evaluate the error of the learned λi relative to its
optimal value. Since computing the exact optimal λi is in-
tractable, requiring similarity calculations for every anchor
against all other samples under different augmentations, we
approximate it instead. We freeze the network and estimate
the optimal threshold λai by randomly selecting 100,000
samples per anchor. Empirically, GLOFND approximates
the desired threshold significantly better than FNC with a
batch size of 128, achieving a Mean Absolute Error (MAE)
of 0.1 and a Root Mean Squared Error (RMSE) of 0.13
(λi ∈ [−1, 1]), whereas FNC obtains MAE and RMSE of
0.21 and 0.28, respectively. This means GLOFND has less
than half the error of FNC. Qualitatively, Figure 3(a) com-
pares the distribution of the learned λi, the approximated
λai , and the thresholds used by FNC. Since FNC computes
thresholds at the mini-batch level, we sample 20 random
batches per anchor and plot their respective distributions.
The results show that GLOFND learns a λi distribution that
more closely aligns with the desired threshold than FNC.

Impact of Starting Epoch. GLOFND requires a sufficiently
pre-trained network to ensure that the similarity between
embeddings reflects semantic similarity. This is achieved
by applying GLOFND after a certain number of training
epochs. However, the optimal start time involves a trade-off.
If GLOFND is applied too early, the embedding space may
not be well-formed, leading to incorrect classification of
pairs as false negatives. Conversely, if applied too late, the
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Figure 5: FNC and GLOFND comparison. (a): False nega-
tive prediction performance scores for ImageNet100 using
the labels as ground truth. We report the per-epoch mean pre-
cision, recall, and f1-score for SogCLR + FNC and SogCLR
+ GLOFND (α = 0.01). (b): Starting epoch comparison on
linear evaluation performance.

potential benefits of GLOFND may be limited due to insuf-
ficient training time. To assess the necessity and impact of
this “wait” period, we evaluate GLOFND’s semi-supervised
performance on ImageNet100 as we vary the start epoch in
{10, 30, 50, 70, 90, 110}, keeping the total number of train-
ing epochs fixed at 200. The linear evaluation results, pre-
sented in Figure 5(d), show that GLOFND’s performance
improves as the wait time increases, peaking at 70 epochs.
Beyond this point, performance begins to decline. FNC
shows a similar trend, with its performance degrading when
applied after 110 epochs.

Computational Efficiency. When using GloFND with a
contrastive method based on embedding similarity (e.g.,
SimCLR, SogCLR, and CLIP), pairwise similarities are
already computed as part of the loss function. Thus, the
only additional computations required are: (1) updating
the λi values for the mini-batch samples, which involves
a simple gradient computation (Equation 4), and (2) filter-
ing the false negatives, which can be done through simple
matrix operations. Both operations involve basic matrix
computations and run in linear time with respect to the
number of pairs in a batch (O(B2), where B is the batch
size). The computational overhead of GLOFND is mini-
mal compared to the cost of cosine similarity computation
and forward/backpropagation. Our experiments on Ima-
geNet100 with a batch size of 128 show that GLOFND
introduces only a 2% increase in per-epoch training time
for SogCLR (435.19 s for SogCLR + GLOFND vs. 426.67
s for SogCLR). This overhead is comparable to that of the
batch-wise method FNC (434.06 s).
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4.4. Comparison with Mini-batch Top-k Method

In this section, we assess the necessity of a global threshold
by comparing GLOFND’s global thresholds to FNC, which
computes a threshold for each mini-batch.

Semi-supervised Linear Evaluation. We present the semi-
supervised linear evaluation performance for different per-
centages of labeled training data in Figure 4. Both GLOFND
and FNC outperform not addressing false negatives, high-
lighting the importance of handling them. Furthermore,
GLOFND consistently outperforms FNC across all settings,
with improvements ranging from 0.47% to 1.27%. This
demonstrates the advantage of using a global threshold, as
opposed to a threshold specific to each mini-batch.

Quality of Found False Negatives. We analyze the quality
of the false negatives identified by GLOFND and FNC. In
Section 4.3 (iii), we discussed how GLOFND matches more
closely the optimal dataset-wide threshold than FNC, with
half the approximation error. Here, we examine how this
improved threshold alignment affects the quality of the false
negatives identified. To do so, we calculate the per-epoch
mean precision, recall, and F1-score for each method, using
the class labels as ground truth (i.e., a pair is considered
a false negative if both samples share the same label). As
training progresses and the embedding space improves, we
expect these metrics to increase, reflecting better alignment
between embedding and semantic similarity. Furthermore,
for GLOFND, we expect an increase in recall as λi reaches
the desired quantile, capturing more false negatives. This
should lead to a decrease in precision due to early repre-
sentations not being sufficiently pretrained. After some
oscillation, GLOFND should follow a steady upward trend.

The results are presented in Figure 5. We observe that
GLOFND behaves as expected, with the oscillations dimin-
ishing and becoming minimal around epoch 120. Regard-
less, GLOFND shows a 14.89% average improvement in
F1-score, surpassing FNC for all but 4 epochs (indicated
by the red area in Figure 5). Moreover, after epoch 120,
GLOFND consistently maintains a mean F1-score between
14.64% and 18.05% higher than FNC. This underscores
GLOFND’s superiority in identifying false negatives.

This is quantitatively illustrated in Figure 6, which shows
examples of false negatives identified in a mini-batch by
GLOFND and FNC. While the number of false negatives
identified by FNC remains constant across mini-batches,
GLOFND’s dynamic threshold allows this number to vary,
adapting to each mini-batch more effectively. For instance,
in the second and third rows, FNC’s fixed top-k approach
results in the selection of negative samples that are not
sufficiently similar, leading to errors. In contrast, GLOFND
is not constrained to a fixed number and instead selects only
the most similar samples according to λi. The opposite

Anchor False negatives GloFND False negatives FNC

Figure 6: Examples of false negatives identified for Ima-
geNet100 by GLOFND and FNC. The left column shows
the anchor images, while the middle and right columns
present the false negatives identified by GLOFND and FNC
respectively.

occurs in the first and last rows, where GLOFND identifies
more false negatives than FNC.

5. Conclusions
In this work, we have addressed the problem of identifying
global false negatives in self-supervised contrastive learn-
ing through an optimization-based approach. We propose
identifying as false negatives for a given anchor those nega-
tive samples whose similarity exceeds the desired quantile
across the entire dataset. We then introduce GLOFND,
an optimization-based method that automatically learns a
threshold for each anchor, enabling the identification of
its false negatives on the fly. Experimental results demon-
strate that GLOFND improves existing contrastive learn-
ing methods, both for unimodal and bimodal tasks, with
minimal computational overhead. An open question is
whether GLOFND could be extended to non-CL methods
and whether the parameter α could be individualized.

Limitations. Since the focus of this paper is on false neg-
ative detection for contrastive learning, we address false
negatives through filtering. While this straightforward ap-
proach has proven effective in our settings, future work
could explore more advanced methods that may further en-
hance downstream performance. Additionally, the benefits
of GLOFND and similar false-negative techniques on down-
stream tasks depend on the proportion of false negatives in
the pretraining dataset and how false negatives are defined
within the downstream task.
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A. Proof of Lemma 3.1
Proof. For simplicity, we denote that n−i = |S−

i | and sj is the j-th largest value in {sim(zi, Ew(x)) | x ∈ S−i }, i.e.,
s1 ≥ s2 ≥ . . . ≥ sn−

i
. A subgradient ϕ′i(λi) of the objective at λi in (2) is

ϕ′i(λi) = αn−i −
n−
i∑

j=1

ψ(sj − λi), ψ(sj − λi) =


1, sj > λi

ϵ, sj = λi

0, sj < λi,

where ϵ ∈ [0, 1]. We define k = ⌈αn−i ⌉. 0 ∈ ∂ϕi(λi) only happens when λi ∈ [sk′′ , sk′) since k − 1 < αn−
i ≤ k, where

k′ = max{j | sj > sk, j > k}, k′′ = min{k′′′, k + 1}, k′′′ = max{j | sj < sk, j > k}. Thus, sk is a solution to (2).
Besides, when αn−i is an integer (i.e. k = αn−i = ⌈αn−i ⌉), any value between [sk, sk+1] is also a solution to (2), which
could be different from sk.

B. More Details on Extension to Bimodal CL
Our approach GLOFND can be extended to resolve the global false negative discovery in bimodal CL, e.g., CLIP (Radford
et al., 2021). Consider a dataset of image-text pairs D = {(x1, t1), . . . , (xn, tn)}, a collection of image augmentation
operators PI , and a collection of text augmentation operators PT . Suppose that the encoder network EI for images
and the encoder network ET for text are parametrized by w. For each (xi, ti) ∈ D, the negative dataset for each
anchor image xi is S−I,i = {AT (t) | ∀AT ∈ PT ,∀(x, t) ∈ D} while the negative dataset for each anchor text ti
is S−T,i = {AI(x) | ∀AI ∈ PI ,∀(x, t) ∈ D}. For the i-th anchor image xi with representation zI,i, the threshold
λI,i ∈ [−1, 1] for finding the top α% text neighbors among all negatives S−I,i can be solved by

min
ν∈[−1,1]

ϕI,i(ν),

ϕI,i(ν) = να+
1

|S−I,i|
∑

t∈S−
I,i

(sim(zI,i, ET (t))− ν)+ .

Similarly, we can obtain the threshold λT,i ∈ [−1, 1] for the i-th anchor text ti. Given the thresholds λI ,λT , the bimodal
contrastive loss can be written as

LBGCL(w,λI ,λT ) =
1

n

∑
(xi,ti)∈D

E[ℓ(w, λI,i, λT,i;xi, ti)],

ℓ(w, λI,i, λT,i;xi, ti) = −2sim(zI,i, zT,i)

+ τ log|S−I,i|gI(w, λI,i;xi, S̃−I,i)

+ τ log|S−T,i|gT (w, λT,i; ti, S̃−T,i),

gI(w, λI,i;xi, S̃−I,i) =
1

|S̃−I,i|

∑
t∈S̃−

I,i

exp(sim(zI,i, ET (t))/τ),

gT (w, λT,i; ti, S̃−T,i) =
1

|S̃−T,i|

∑
x∈S̃−

T,i

exp(sim(EI(x), zT,i)/τ),

where S̃−I,i = {t | t ∈ S
−
I,i, sim(zI,i, ET (t)) ≤ λI,i}, S̃−T,i = {x | x ∈ S

−
T,i, sim(EI(x), zT,i) ≤ λT,i} are the negative

datasets for anchor (xi, ti) excluding the false negatives identified through the learned thresholds λI,i, λT,i.

We extend the GLOFND to the bimodal setting as follows. First, we sample a mini-batch of image-text pairs B ⊂ D,
sampled image augmentations AI , and text augmentations AT , we construct the sampled negative sets B−I,i = {AT (t) |
(x, t) ∈ B\{(xi, ti)}}, B−T,i = {AI(x) | (x, t) ∈ B\{(xi, ti)}} for each (xi, ti) ∈ B. Given the image embedding
zI,i = EI(AI(xi)) and text embedding zT,i = ET (AT (ti)) for anchor (xi, ti), the thresholds λI for images can be
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updated by

∇̂λI,i
= α− 1

|B−I,i|
∑

t∈B−
I,i

I(sim(zI,i, ET (t)) > λI,i),

λI,i ←

{
Π[−1,1]

[
λI,i − θ∇̂λI,i

]
, (xi, ti) ∈ B,

λI,i, (xi, ti) /∈ B,

Similarly, we can update the thresholds λT for texts. Given the thresholds λI for images and thresholds λT for texts, we
can construct B̃−I,i = {t | t ∈ B

−
I,i, sim(zI,i, ET (t)) ≤ λI,i} and B̃−T,i = {x | x ∈ B

−
T,i, sim(EI(x), zT,i) ≤ λT,i} by

excluding the false negative images and texts identified via the thresholds λI,i and λT,i.

Then, we employ the moving-average estimators uI,i, uT,i for gI(w, λI,i;xi, S̃−I,i), gT (w, λT,i; ti, S̃−T,i), respectively.

ĝI(w, λI,i;xi, B̃−I,i) =
1

|B̃−I,i|

∑
t∈B̃−

I,i

exp(sim(zI,i, ET (t))/τ),

ĝT (w, λT,i; ti, B̃−T,i) =
1

|B̃−T,i|

∑
x∈B̃−

T,i

exp(sim(EI(x), zT,i)/τ),

uI,i ←

{
(1− γ)uI,i + γĝ(w, λI,i;xi, B̃−I,i), (xi, ti) ∈ B,
uI,i, (xi, ti) /∈ B,

uT,i ←

{
(1− γ)uT,i + γĝ(w, λT,i; ti, B̃−T,i), (xi, ti) ∈ B,
uT,i, (xi, ti) /∈ B.

Finally, we can update the parameters w for image-text encoder networks by the stochastic gradient estimator.

∇̂w =
1

|B|
∑

(xi,ti)∈B

[
− 2∇wsim(zI,i, zT,i)

+
τ

uI,i
∇1ĝI(w, λI,i;xi, B̃−I,i)

+
τ

uT,i
∇1ĝT (w, λT,i; ti, B̃−T,i)

]
.

C. High-level Intuition for α Hyperparameter
The hyperparameter α allows GLOFND to adapt to different definitions of false negatives, which are inherently dependent
on the desired level of granularity. For example, in a dataset like ImageNet, consider two classification settings: (1) a
coarse-grained task of classifying between cars and animals, and (2) fine-grained task of classifying dog breeds. Two images
of a dog from different breeds might be considered a false negative in the coarse-grained case (1), but not in the fine-grained
one (2). Consequently, the optimal percentage of false negatives, controlled by α, varies with the chosen granularity. By
adjusting α, GLOFND can flexibly align with different levels of semantic resolution, i.e., granularity.

The value of α can be set based on prior knowledge (e.g., expected rate of false negatives or desired granularity of learned
representations) or tuned like other hyperparameters such as the temperature. If α is too low, GLOFND may fail to identify
sufficient false negatives, leading to minimal impact on the learned representations, though not degrading performance, as
setting α = 0 is equivalent to disabling GLOFND. Conversely, if α is too high, GLOFND may identify too many false
negatives. If these are filtered out during training, the reduced number of negative pairs can limit contrastive learning,
potentially harming performance. For tuning, it is recommended to start with a low α and gradually increase it until no
further performance gains are observed.
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D. More Details on Experiments
All the experiments are implemented using the PyTorch (Paszke et al., 2019) library. The unimodal experiments are run on a
single NVIDIA A30 with 24GB memory size, while the bimodal experiments make use of a multi-node setup with 2 nodes,
each with 2 NVIDIA A100 GPUs with 40GB each. The estimated amount of time to run a single experiment is 1.5 days for
ImageNet100, and 14 hours for CC3M.

D.1. Additional Details for Unimodal Experiments

Experiment Setup. Following prior work (Yuan et al., 2022), we pretrain a ResNet-50 (He et al., 2015) with a 2-layer
128× 128 projection head on top of the backbone encoder. We use square root learning rate scaling (0.075×

√
BatchSize)

with a cosine decay schedule without restart. Additionally, we apply a linear learning rate warm-up for 10 epochs, where the
learning rate linearly increases to its maximum value.

We adopt the same augmentation pipeline as in SogCLR (Yuan et al., 2022), utilizing the torchvision implementation.
This includes RandomResizedCrop (resizing to 224× 224), random ColorJitter, RandomGrayscale, random GaussianBlur,
RandomHorizontalFlip, and normalization using ImageNet statistics.

The network is pretrained for 200 epochs with a batch size of 128. We use the LARS optimizer (You et al., 2017) with
a weight decay of 1e − 6 and momentum of 0.9. The temperature (τ ) is set to 0.1, and for SogCLR, γ = 0.9. For
GLOFND, we set α = 0.01 and tune the starting epoch from {70, 90, 110}, after which we begin updating λi with Adam
updates using a learning rate of 0.05, β1 = 0.9, and β2 = 0.98. For FNC, α = 0.01 and the starting epoch is tuned from
{10, 30, 50, 70, 90, 110, 130}, selecting the value that yields the best semi-supervised average performance.

Linear Evaluation. We evaluate GLOFND’s ability to produce better representations through linear evaluation. Specifically,
we freeze the encoder’s weights at the last iteration of pretraining, remove its projection head, and train a linear classifier (a
single fully connected layer) on top of the encoder’s output.

Additionally, we employ a semi-supervised learning setup, using different fractions of labeled training data during linear
evaluation. We train on random subsets of 100% (full dataset), 10%, 1%, and 0.1% of the training data. For each fraction,
we report the top-1 accuracy on the validation set and average the performance across the different percentages to obtain the
overall semi-supervised performance.

We train for 90, 285, 900, and 900 epochs corresponding to 100%, 10%, 1%, and 0.1% labeled data, respectively, with
a batch size of 1024 and early stopping if the validation accuracy does not improve for 100 epochs. We use AdamW
(Loshchilov & Hutter, 2019) with a weight decay of 0, momentum of 0.9, and a learning rate of 0.1. The same augmentation
pipeline used in SogCLR is applied for linear evaluation. For training, we use RandomResizedCrop (resizing to 224× 224),
RandomHorizontalFlip, and normalization. For testing, we resize the images to 256× 256, apply CenterCrop to 224× 224,
and normalize.

Transfer Learning Datasets. We additionally examine the transfer learning performance on Food-101 (Bossard et al.,
2014), CIFAR-10 and CIFAR-100 (Krizhevsky, 2009), Stanford Cars (Krause et al., 2013), Describable Textures Dataset
(DTD) (Cimpoi et al., 2014), Oxford-IIIT Pets (Parkhi et al., 2012), Caltech-101 (Li et al., 2022), and Oxford 102 Flowers
(Nilsback & Zisserman, 2008). We follow the evaluation protocols in the papers introducing these datasets, i.e., we report
top-1 accuracy for Food-101, CIFAR-10, CIFAR-100, Stanford Cars, and DTD; and mean per-class accuracy for Oxford-IIIT
Pets, Caltech-101, and Oxford 102 Flowers. We report results on the test set and, for DTD, we report results only for the
first split. Caltech-101 defines no train/test split, so we randomly select 20% of images per class to create the test set.

Transfer Learning Evaluation. We train an ℓ2-regularized multinomial logistic regression classifier on features extracted
from the frozen pretrained network after removing the projector head. For each method, we select the pretrained network
that achieved the highest semi-supervised average performance, as used in the semi-supervised results.

We employ L-BFGS and apply the same preprocessing as during validation in the linear evaluation setting: resizing to 256,
center-cropping to 224, and normalizing. We report the best test performance across different ℓ2 regularization parameters,
selecting from a range of 10 logarithmically spaced values between 10−6 and 105.
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D.2. Additional Details for Bimodal Experiments

Datasets. For bimodal learning, we use the Conceptual Captions 3M (CC3M) (Sharma et al., 2018) dataset. Because some
links have expired, our downloaded training set of CC3M contains 2, 723, 840 image-text pairs. We evaluate the performance
by leveraging the Datacomp Benchmark (Gadre et al., 2023), which includes 38 zero-shot downstream tasks. We report the
average performance, named Datacomp. For each scenario, we select the model with the best Datacomp average and also
report its average performance on two subsets of the tasks: zero-shot image classification on ImageNet and its different
variants (IN & Variants), and zero-shot cross-modal image-text retrieval. IN & Variants includes ImageNet-1k (Russakovsky
et al., 2015) and 6 ImageNet distribution shift datasets (i.e., ImageNet-Sketch (Wang et al., 2019), ImageNet-V2 (Recht
et al., 2019), ImageNet-A (Hendrycks et al., 2021b), ImageNet-O (Hendrycks et al., 2021b), ImageNet-R (Hendrycks et al.,
2021a), and ObjectNet (Barbu et al., 2019)). Retrieval tasks consist of Flickr30K (Plummer et al., 2017), MSCOCO (Lin
et al., 2015), and WinoGAViL (Bitton et al., 2022).

Experiment Setup. Following previous work (Wei et al., 2024), we use a 12-layer transformer (Vaswani et al., 2017) as the
text encoder and ResNet50 as the vision encoder. All experiments are conducted in a multi-node setting with 2 nodes, each
equipped with two A100 40GB GPUs. We pretrain for 37 epochs with a global batch size of 1024. The AdamW (Loshchilov
& Hutter, 2019) optimizer is used with (β1, β2) = (0.9, 0.999), ϵ = 1e− 8, and a learning rate of 1e− 3.A weight decay of
0.1 is applied, with a warm-up period of 10k steps. The learning rate follows a cosine schedule, initially increasing linearly
during the warm-up phase and then decreasing according to a cosine function. A cosine γ schedule is employed, with a
minimum γ of 0.2 and decay epochs set to 18.

For SogCLR, the temperature parameter is set to 0.03. In FastCLIP, we set the initial temperature parameter to 0.07, ρ to
6.5,and the learning rate for τ to 2e− 4. Additionally, the learning rate of τ decays to one-third of its original value when
τ falls below 0.03. The complete set of hyperparameters is summarized in Table 4. We tune α ∈ {5e − 4, 1e − 3} and
the starting epoch in {15, 20}. For SogCLR, we start using FNC/GLOFND after 15 epochs with α = 5e − 4, while for
FastCLIP we start after 20 epochs with α = 1e − 3. For both losses, we initialize λi = 1 and use Adam updates with a
learning rate of 0.05.

Table 4: Hyperparameters for FastCLIP Training

Hyperparameter CC3M

Optimizer AdamW
β1, β2 (0.9, 0.999)
ϵ 1e-8
Learning rate 1e-3
Weight decay 0.1
Warm-up steps 10k
Cosine γ min 0.2
Decay epochs 18
Temperature (SogCLR) 0.03
Initial temperature (FastCLIP) 0.07
ρ (FastCLIP) 6.5
Learning rate of τ (FastCLIP) 2e-4

D.3. Additional Experimental Results

Statistical Significance.

We check for statistical significance between using the false negative approaches against not using them, which we consider
the baseline. Thus, we compute p-values via a paired t-test between SogCLR + FNC/GLOFND and SogCLR baseline across
multiple runs, with the alternative hypothesis testing for performance greater than the baseline.

We report in Tables 5 and 6 the p-values with respect to the baseline for the unimodal semi-supervised and transfer learning
experiments respectively, and consider a standard significance level of 5%. For the semi-supervised scenario, we can observe
GLOFND achieves a p-value below 0.018 on all scenarios, thus achieving statistically significant improvements in all
scenarios. Moreover, GLOFND achieves statistical significance below the 1 % level on both the 100% and 1% scenarios.
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For the transfer learning case, GLOFND achieves statistically significant improvements on 6 out of 8 datasets, while FNC
only achieves it on 2 of 8.

Table 5: Unimodal semi-supervised linear evaluation p-values WRT the baseline (SogCLR). We color red those above the
0.05 threshold. The p-values are calculated via a paired t-test across multiple runs with the alternative hypothesis testing for
performance greater than the baseline.

Method 100.0% 10.0% 1.0% 0.1%

SogCLR + FNC 0.011 0.035 0.014 0.024
SogCLR + GLOFND 0.002 0.011 <0.001 0.018

Table 6: Unimodal transfer learning evaluation p-values WRT the baseline (SogCLR). We color red those above the 0.05
threshold. The p-values are calculated via a paired t-test across multiple runs with the alternative hypothesis testing for
performance greater than the baseline.

Method CIFAR10 CIFAR100 Food101 Caltech101 Cars DTD Pets Flowers

SogCLR + FNC 0.158 0.056 0.219 0.249 0.235 0.080 0.032 0.036
SogCLR + GLOFND 0.143 0.005 0.021 0.024 0.006 0.123 0.002 0.005

SimCLR Experiment.

We evaluate the performance of GLOFND in conjunction with SimCLR. Unlike SogCLR, SimCLR identifies false negatives
only within each mini-batch, necessitating the use of a larger batch size. Table 7 presents the linear evaluation results for
SimCLR under the experimental setup described in Appendix D.1, using a batch size of 512.

Table 7: Linear evaluation results in unimodal semi-supervised scenario. We train the linear classifiers with different
percentages of randomly sampled labeled training data and present their top-1 accuracies (%) on the validation set. We
include the overall average and, in parentheses, its improvement WRT SimCLR baseline.

Method 100.0% 10.0% 1.0% 0.1% Average

SimCLR 76.88 73.38 66.40 33.56 62.56
+ FNC 76.90 73.10 64.88 34.20 62.27
+ GloFND 77.14 73.66 66.50 35.58 63.22

CLIP fine-tuning.

To evaluate the effectiveness of GLOFND in fine-tuning large pretrained models to mitigate the impact of false negatives,
we fine-tune OpenAI’s ResNet-50 CLIP model on CC3M. The experimental setup closely follows Appendix D.2, with the
key difference being that we initialize from OpenAI’s pretrained weights and train for 15 epochs, using FNC/GLOFND after
the first epoch (α = 10−4). Validation image-text retrieval results are reported in Table 8.

Table 8: We fine-tune OpenAI’s ResNet-50 CLIP model on CC3M and report image-text retrieval results on its validation
set.

Method IR@1 IR@5 IR@10 IR Average TR@1 TR@5 TR@10 TR Average

Base 27.58 48.17 57.53 44.43 26.30 48.14 57.69 44.04
GloFND 36.07 58.94 67.22 54.08 35.76 59.19 67.44 54.13
+ FNC 33.69 58.01 67.51 53.07 33.61 57.95 67.53 53.03
+ GloFND 36.52 59.44 68.02 54.66 35.71 59.27 67.97 54.32

More examples of false negatives identified by GLOFND.

Figure 7 shows examples of false negatives identified by GLOFND for ImageNet100 with α = 0.01 during training. We can
observe that the number of false negatives identified is not constant for all anchors since we are using a dynamic threshold
for each anchor, as opposed to a mini-batch top k approach. Moreover, the false negatives identified by GLOFND are
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Anchor False negatives Anchor False negatives

Figure 7: Examples of false negatives identified for ImageNet100 by GLOFND with α = 1%. The left column is the anchor
image and the rest are identified false negative samples.

semantically similar to the anchor image, which is what we aim to achieve.
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