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Abstract

In this article, we present Biologically Annotated Neural Networks (BANNs), a nonlinear

probabilistic framework for association mapping in genome-wide association (GWA) stud-

ies. BANNs are feedforward models with partially connected architectures that are based

on biological annotations. This setup yields a fully interpretable neural network where the

input layer encodes SNP-level effects, and the hidden layer models the aggregated effects

among SNP-sets. We treat the weights and connections of the network as random variables

with prior distributions that reflect how genetic effects manifest at different genomic scales.

The BANNs software uses variational inference to provide posterior summaries which allow

researchers to simultaneously perform (i) mapping with SNPs and (ii) enrichment analyses

with SNP-sets on complex traits. Through simulations, we show that our method improves

upon state-of-the-art association mapping and enrichment approaches across a wide range

of genetic architectures. We then further illustrate the benefits of BANNs by analyzing real

GWA data assayed in approximately 2,000 heterogenous stock of mice from the Wellcome

Trust Centre for Human Genetics and approximately 7,000 individuals from the Framing-

ham Heart Study. Lastly, using a random subset of individuals of European ancestry from

the UK Biobank, we show that BANNs is able to replicate known associations in high and

low-density lipoprotein cholesterol content.

Author summary

A common goal in genome-wide association (GWA) studies is to characterize the rela-

tionship between genotypic and phenotypic variation. Linear models are widely used tools

PLOS GENETICS

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1009754 August 19, 2021 1 / 53

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Demetci P, Cheng W, Darnell G, Zhou X,

Ramachandran S, Crawford L (2021) Multi-scale

inference of genetic trait architecture using

biologically annotated neural networks. PLoS

Genet 17(8): e1009754. https://doi.org/10.1371/

journal.pgen.1009754

Editor: Vincent Plagnol, University College London,

UNITED KINGDOM

Received: November 23, 2020

Accepted: July 31, 2021

Published: August 19, 2021

Copyright: © 2021 Demetci et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: The mice dataset

from the Wellcome Trust Centre for Human

Genetics can be found at http://mtweb.cs.ucl.ac.uk/

mus/www/mouse/index.shtml. Data from the UK

Biobank Resource (https://www.ukbiobank.ac.uk)

was made available under Application Number

22419. The Framingham Heart Study genotype and

phenotype data is available in dbGaP (https://www.

ncbi.nlm.nih.gov/gap) with accession number

phs000007.

https://orcid.org/0000-0001-5126-8929
https://orcid.org/0000-0003-0425-940X
https://orcid.org/0000-0002-4331-7599
https://orcid.org/0000-0002-9588-7964
https://orcid.org/0000-0003-0178-8242
https://doi.org/10.1371/journal.pgen.1009754
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pgen.1009754&domain=pdf&date_stamp=2021-08-31
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pgen.1009754&domain=pdf&date_stamp=2021-08-31
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pgen.1009754&domain=pdf&date_stamp=2021-08-31
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pgen.1009754&domain=pdf&date_stamp=2021-08-31
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pgen.1009754&domain=pdf&date_stamp=2021-08-31
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pgen.1009754&domain=pdf&date_stamp=2021-08-31
https://doi.org/10.1371/journal.pgen.1009754
https://doi.org/10.1371/journal.pgen.1009754
http://creativecommons.org/licenses/by/4.0/
http://mtweb.cs.ucl.ac.uk/mus/www/mouse/index.shtml
http://mtweb.cs.ucl.ac.uk/mus/www/mouse/index.shtml
https://www.ukbiobank.ac.uk
https://www.ncbi.nlm.nih.gov/gap
https://www.ncbi.nlm.nih.gov/gap


in GWA analyses, in part, because they provide significance measures which detail how

individual single nucleotide polymorphisms (SNPs) are statistically associated with a trait

or disease of interest. However, traditional linear regression largely ignores non-additive

genetic variation, and the univariate SNP-level mapping approach has been shown to be

underpowered and challenging to interpret for certain trait architectures. While nonlinear

methods such as neural networks are well known to account for complex data structures,

these same algorithms have also been criticized as “black box” since they do not naturally

carry out statistical hypothesis testing like classic linear models. This limitation has pre-

vented nonlinear regression approaches from being used for association mapping tasks in

GWA applications. Here, we present Biologically Annotated Neural Networks (BANNs):

a flexible class of feedforward models with partially connected architectures that are based

on biological annotations. The BANN framework uses approximate Bayesian inference

to provide interpretable probabilistic summaries which can be used for simultaneous (i)
mapping with SNPs and (ii) enrichment analyses with SNP-sets (e.g., genes or signaling

pathways). We illustrate the benefits of our method over state-of-the-art approaches using

extensive simulations. We also demonstrate the ability of BANNs to recover novel and

previously discovered genomic associations using quantitative traits from the Wellcome

Trust Centre for Human Genetics, the Framingham Heart Study, and the UK Biobank.

Introduction

Over the two last decades, a considerable amount of methodological research in statistical

genetics has focused on developing and improving the utility of linear models [1–13]. The flex-

ibility and interpretability of linear models make them a widely used tool in genome-wide

association (GWA) studies, where the goal is to test for statistical associations between individ-

ual single nucleotide polymorphisms (SNPs) and a phenotype of interest. In these cases,

traditional variable selection approaches provide a set of P-values or posterior inclusion proba-

bilities (PIPs) which lend statistical evidence on how important each variant is for explaining

the overall genetic architecture of a trait. However, this univariate SNP-level mapping

approach can be underpowered for “polygenic” traits which are generated by many mutations

of small effect [14–19]. To mitigate this issue, more recent work has extended variable selection

techniques to identify enriched gene or pathway-level associations, where groups of SNPs

within a particular genomic region are combined (commonly known as a SNP-set) to detect

biologically relevant disease mechanisms underlying the trait [20–27]. Still, the performance of

standard SNP-set methods can be hampered by strict additive modeling assumptions; and the

most powerful of these statistical approaches rely on algorithms that are computationally inef-

ficient and unreliable for large-scale sets of data [28].

The explosion of large-scale genomic datasets has provided the unique opportunity to

move beyond the traditional linear regression framework and integrate nonlinear modeling

techniques as standard statistical tools within GWA analyses. Indeed, nonlinear methods such

as neural networks are well known to be most powered in settings when large training data is

available [29]. This includes GWA applications where consortiums have data sets that include

hundreds of thousands of individuals genotyped at millions of markers and phenotyped for

thousands of traits [30, 31]. It is also well known that these nonlinear statistical approaches

often exhibit greater predictive accuracy than linear models, particularly for complex traits

with broad-sense heritability that is driven by non-additive genetic variation (e.g., gene-by-

gene interactions) [32, 33]. One of the key characteristics that leads to better predictive
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performance from nonlinear approaches is the automatic inclusion of higher order interac-

tions between variables being put into the model [34, 35]. For example, neural networks lever-

age activation functions between layers that implicitly enumerate all possible (polynomial)

interaction effects [36]. While this is a partial mathematical explanation for model improve-

ment, in many biological applications, we often wish to know precisely which subsets of

variants are most important in defining the architecture of a trait. Unfortunately, the classic

statistical idea of variable selection and hypothesis testing is lost within nonlinear methods

since they do not naturally produce interpretable significance measures (e.g., P-values or PIPs)

like traditional linear regression [35, 37].

In this work, we develop biologically annotated neural networks (BANNs), a nonlinear

probabilistic framework for mapping and variable selection in high-dimensional genomic

association studies (Fig 1). BANNs are a class of feedforward Bayesian models with partially

connected architectures that are guided by predefined SNP-set annotations (Fig 1A). The

interpretability of our approach stems from a combination of three key properties. First, the

partially connected network architecture yields a hierarchical model where the input layer

encodes SNP-level effects, and the single hidden layer models the effects among SNP-sets

(Fig 1B). Second, inspired by previous work in the Bayesian neural network literature [38–42],

we treat the weights and connections of the network as random variables with sparse prior

distributions, which flexibly allows us to model a wide range of sparse and polygenic genetic

architectures (Fig 1C). Third, we perform an integrative model fitting procedure where the

enrichment of SNP-sets in the hidden layer are directly influenced by the distribution of asso-

ciated SNPs with nonzero effects on the input layer. These three components collectively make

for an effective nonlinear variable selection strategy for conducting association mapping and

Fig 1. Biologically annotated neural networks (BANNs) allow for efficient multi-scale genotype-phenotype analyses in a unified probabilistic framework by

leveraging the hierarchical nature of enrichment studies to define network architecture. (A) The BANNs framework requires an N × J matrix of individual-level

genotypes X = [x1, . . ., xJ], an N-dimensional phenotypic vector y, and a list of G-predefined SNP-sets fS1; . . . ;SGg. In this work, SNP-sets are defined as genes and

intergenic regions (between genes) given by the NCBI’s Reference Sequence (RefSeq) database in the UCSC Genome Browser [50]. (B) A partially connected

Bayesian neural network is constructed based on the annotated SNP groups. In the first hidden layer, only SNPs within the boundary of a gene are connected to the

same node. Similarly, SNPs within the same intergenic region between genes are connected to the same node. Completing this specification for all SNPs gives the

hidden layer the natural interpretation of being the “SNP-set” layer. (C) The hierarchical nature of the network is represented as nonlinear regression model. The

corresponding weights in both the SNP (θ) and SNP-set (w) layers are treated as random variables with biologically motivated sparse prior distributions. Posterior

inclusion probabilities PIP(j)� Pr[θj 6¼ 0 | y, X] and PIP(g)� Pr[wg 6¼ 0 | y, X, θg] summarize associations at the SNP and SNP-set level, respectively. The BANNs

framework uses variational inference for efficient network training and incorporates nonlinear processing between network layers for accurate estimation of

phenotypic variance explained (PVE).

https://doi.org/10.1371/journal.pgen.1009754.g001
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enrichment analyses simultaneously on complex traits. With detailed simulations, we assess

the power of BANNs to identify significant SNPs and SNP-sets under a variety of genetic

architectures, and compare its performance against multiple competing approaches [21, 23,

25–27, 43–46]. We also apply the BANNs framework to six quantitative traits assayed in a

heterogenous stock of mice from Wellcome Trust Centre for Human Genetics [47], and two

quantitative traits in individuals from the Framingham Heart Study [48]. For the latter, we

include an additional study where we independently analyze the same traits in a subset of indi-

viduals of European ancestry from the UK Biobank [31].

Results

BANNs framework overview

Biologically annotated neural networks (BANNs) are feedforward models with partially con-

nected architectures that are inspired by the hierarchical nature of biological enrichment

analyses in GWA studies (Fig 1). The BANNs software takes in one of two data types: (i) indi-

vidual-level data D ¼ fX; yg where X is an N × J matrix of genotypes with J denoting the num-

ber of single nucleotide polymorphisms (SNPs) encoded as {0, 1, 2} copies of a reference allele

at each locus and y is an N-dimensional vector of quantitative traits (Fig 1A); or (ii) GWA

summary statistics D ¼ fR; θ̂g where R is a J × J empirical linkage disequilibrium (LD) matrix

of pairwise correlations between SNPs and θ̂ are marginal effect size estimates for each SNP

computed using ordinary least squares (OLS) (S1 Fig). In both settings, the BANNs software

also requires a predefined list of SNP-set annotations fS1; . . . ;SGg to construct partially con-

nected network layers that represent different scales of genomic units. Structurally, sequential

layers of the BANNs model represent different scales of genomic units. The first layer of the

network takes SNPs as inputs, with each unit corresponding to information about a single

SNP. The second layer of the network represents SNP-sets. All SNPs that have been annotated

for the same SNP-set are then connected to the same neuron in the second layer (Fig 1B).

In this section, we review the hierarchical probabilistic specification of the BANNs frame-

work for individual data; however, note that extensions to summary statistics is straightfor-

ward and only requires substituting the genotypes X for the LD matrix R and substituting the

phenotypes y for the OLS effect sizes θ̂ (see Materials and methods). Without loss of generality,

let SNP-set g represent an annotated collection of SNPs j 2 Sg with cardinality jSg j. The

BANNs framework is probabilistically represented as a nonlinear regression model

y ¼
XG

g¼1

hðXgθg þ 1bð1Þg Þwg þ 1bð2Þ; ð1Þ

where Xg ¼ ½x1; . . . ; xjSg j
� is the subset of SNPs annotated for SNP-set g; θg ¼ ðy1; . . . ; yjSg j

Þ

are the corresponding inner layer weights; h(•) denotes the nonlinear activations defined for

neurons in the hidden layer; w = (w1, . . ., wG) are the weights for the G-predefined SNP-sets in

the hidden layer; bð1Þ ¼ ðbð1Þ1 ; . . . ; bð1ÞG Þ and b(2) are deterministic biases that are produced dur-

ing the network training phase in the input and hidden layers, respectively; and 1 is an N-

dimensional vector of ones. Here, we define h(•) to be a Leaky rectified linear unit (Leaky

ReLU) activation function [49], where h(x) = x if x> 0 and 0.01x otherwise. Lastly, for conve-

nience, we assume that the genotype matrix (column-wise) and trait of interest have been

mean-centered and standardized.

In this work, we define SNP-sets as collections of contiguous regions of the genome that

contain variants within some chromosomal window or neighborhood. More specifically, when

PLOS GENETICS Biologically Annotated Neural Networks

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1009754 August 19, 2021 4 / 53

https://doi.org/10.1371/journal.pgen.1009754


studying real mice and human GWA data, we use gene annotations as defined by the Mouse

Genome Informatics database [51] and the NCBI’s Reference Sequence (RefSeq) database in

the UCSC Genome Browser [50], respectively (Materials and methods). The BANNs frame-

work flexibly allows for overlapping annotations. In this way, SNPs may be connected to mul-

tiple hidden layer units if they are located within the intersection of multiple gene boundaries.

SNPs that are unannotated, but located within the same genomic region, are connected to

their own units in the second layer and represent the intergenic region between two annotated

genes. Given the natural biological interpretation of both layers, the partially connected archi-

tecture of the BANNs model creates a unified framework for comprehensibly understanding

SNP and SNP-set level contributions to the broad-sense heritability of complex traits and phe-

notypes. Notably, this framework may be easily extended to other biological annotations and

applications.

The framing of the BANNs methodology as a Bayesian nonlinear model helps facilitate

our ability to perform classic variable selection (Fig 1C; see Materials and methods). Here, we

leverage the fact that using nonlinear activation functions for the neurons in the hidden layer

implicitly accounts for both additive and non-additive effects between SNPs within a given

SNP-set (S1 Text). Following previous work in the literature [38–42], we treat the weights and

connections of the neural network as random variables with prior distributions that reflect

how genetic effects are manifested at different genomic scales. For the input layer, we assume

that the effect size distribution of non-null SNPs can take vastly different forms depending on

both the degree and nature of trait polygenicity [28]. For example, polygenic traits are gener-

ated by many mutations of small effect, while other phenotypes can be driven by just a few

clusters of SNPs with effect sizes much larger in magnitude [19]. To this end, we place a nor-

mal mixture prior on the input layer weights to flexibly estimate a wide range of SNP-level

effect size distributions [10, 52–54]

yj � py

XK

k¼1

Zyk N ð0; s2

ykÞ þ ð1 � pyÞd0 ð2Þ

where δ0 is a point mass at zero; σ2
y
¼ ðs2

y1
; . . . ; s2

yKÞ are variance of the K-nonzero mixture

components; ηθ = (ηθ1, . . ., ηθK) represents the marginal (unconditional) probability that a

randomly selected SNP belongs to the k-th mixture component such that ∑k ηθk = 1; and πθ
denotes the total proportion of SNPs that have a nonzero effect on the trait of interest. Here,

we fix K = 3 which emulates the hypothesis that SNPs can have large, moderate, and small non-

zero effects on phenotypic variation [28]. Similarly, we follow other previous work and assume

that enriched SNP-sets contain at least one SNP with a nonzero effect on the trait of interest

[26]. This is formulated by placing a spike and slab prior distribution on the weights in the sec-

ond layer

wg � pwN ð0; s2
wÞ þ ð1 � pwÞd0 ð3Þ

where, in addition to previous notation, πw denotes the total proportion of SNP-sets that have

a nonzero effect on the trait of interest.

By using these point mass mixture distributions in Eqs (2) and (3), we assume that each

connection in the neural network has a nonzero weight with: (i) probability πθ for SNP-to-

SNP-set connections, and (ii) probability πw for SNP-set-to-phenotype connections. By modi-

fying a variational inference algorithm assuming point-normal priors in multiple linear regres-

sion [55, 56] to the neural network setting, we jointly infer posterior inclusion probabilities

(PIPs) for SNPs and SNP-sets. These quantities are defined as the posterior probability that the

weight of a given connection in the neural network is nonzero, PIP(j)� Pr[θj 6¼ 0 | y, X] and
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PIP(g)� Pr[wg 6¼ 0 | y, X, θg]. We use this information to prioritize statistically associated

SNPs and SNP-sets that significantly contribute to the broad-sense heritability of the trait of

interest. With biologically annotated units and the ability to perform statistical inference on

explicitly defined parameters, our model presents a fully interpretable extension of neural net-

works to GWA applications. Additional details and derivations of the BANNs framework can

be found in Materials and methods and Supporting information.

Power to detect SNPs and SNP-sets in simulation studies

In order to assess the performance of models under the BANNs framework, we simulated

complex traits under multiple genetic architectures using real genotype data on chromosome 1

from ten thousand randomly sampled individuals of European ancestry in the UK Biobank

[31] (see Materials and methods and previous work [9, 28]). After quality control procedures,

our simulations included 36,518 SNPs (S1 Text). Next, we used the NCBI’s Reference Sequence

(RefSeq) database in the UCSC Genome Browser [50] to annotate SNPs with the appropriate

genes. Unannotated SNPs located within the same genomic region were labeled as being

within the “intergenic region” between two genes. Altogether, this left a total of G = 2,816

SNP-sets to be included in the simulation study.

After the annotation step, we assume a linear model to generate quantitative traits while

varying the following parameters: broad-sense heritability (modestly set to H2 = 0.2 and 0.6);

the proportion of broad-sense heritability that is being contributed by additive effects versus

pairwise cis-interaction effects (ρ = 1 and 0.5); and the percentage of enriched SNP-sets that

influence the trait (set to 1% for sparse and 10% for polygenic architectures, respectively). We

use the parameter ρ to assess the neural network’s robustness in the presence of non-additive

genetic effects between causal SNPs. To this end, ρ = 1 represents the limiting case where the

variation of a trait is driven by solely additive effects. For ρ = 0.5, the additive and pairwise

interaction effects are assumed to equally contribute to the phenotypic variance.

In each simulation scenario, we consider traits being generated with and without additional

population structure (Materials and methods, and Supporting information). To do so, we con-

sider two different data compositions with individuals from the UK Biobank. In the first, we

simulate synthetic traits only using individuals who self-identify as being of “white British”

ancestry. In the second, we simulate traits by randomly subsampling 3,000 individuals who

self-identify as being of “white British” ancestry, 3,000 individuals who self-identify as being of

“white Irish” ancestry, and 4,000 individuals who identify as being of “any other white back-

ground”. Note that the latter composition introduces additional population structure into the

problem. In the main text and Supporting information, we refer to these datasets as the “Brit-

ish” and “European” cohorts, respectively.

Throughout this section, we assess the performance for two versions of the BANNs frame-

work. The first takes in individual-level genotype and phenotype data; while, the second

models GWA summary statistics (hereafter referred to as BANN-SS). For the latter, GWA

summary statistics are computed by fitting a single-SNP univariate linear model (via ordinary

least squares) after quality control to obtain: effect size estimates, standard errors, and P-values

for all SNPs in the data. We also use the in-sample genotypes to compute the LD matrix

between SNPs. All results are based on 100 different simulated phenotypes for each parameter

combination (S1 Text).

The main utility of the BANNs framework is having the ability to detect associated SNPs

and enriched SNP-sets simultaneously. Therefore, we compare the performance of BANNs to

state-of-the-art SNP and SNP-set level approaches [21, 23, 25–27, 43–46], with the primary

idea that our method should be competitive in both settings. For each method, we assess the
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empirical power and false discovery rates (FDR) for identifying either the correct causal SNPs

or the correct SNP-sets containing causal SNPs (S1–S8 Tables). Frequentist approaches are

evaluated at a Bonferroni-corrected threshold for multiple hypothesis testing (e.g., P = 0.05/

36518 = 1.37 × 10−6 at the SNP-level and P = 0.05/2816 = 1.78 × 10−5 at the SNP-set level,

respectively); while, Bayesian methods are evaluated according to the median probability

model (PIPs and posterior enrichment probability� 0.5) [57]. We also compare each meth-

od’s ability to rank true positives over false positives via receiver operating characteristic

(ROC) and precision-recall curves (Fig 2 and S2–S16 Figs). Specific results about these analy-

ses are given below.

Fig 2. Receiver operating characteristic (ROC) curves comparing the performance of the BANNs (red) and BANN-SS (black) models with competing SNP

and SNP-set mapping approaches in simulations (British cohort). Here, quantitative traits are simulated to have broad-sense heritability of H2 = 0.6 with only

contributions from additive effects set (i.e., ρ = 1). We show power versus false positive rate for two different trait architectures: (A, B) sparse where only 1% of

SNP-sets are enriched for the trait; and (C, D) polygenic where 10% of SNP-sets are enriched. We set the number of causal SNPs with nonzero effects to be 1%

and 10% of all SNPs located within the enriched SNP-sets, respectively. To derive results, the full genotype matrix and phenotypic vector are given to the BANNs

model and all competing methods that require individual-level data. For the BANN-SS model and other competing methods that take GWA summary statistics,

we compute standard GWA SNP-level effect sizes and P-values (estimated using ordinary least squares). (A, C) Competing SNP-level mapping approaches

include: CAVIAR [45], SuSiE [46], and FINEMAP [44]. The software for SuSiE requires an input ℓ which fixes the maximum number of causal SNPs in the

model. We display results when this input number is high (ℓ = 3000) and when this input number is low (ℓ = 10). (B, D) Competing SNP-set mapping

approaches include: RSS [26], PEGASUS [25], GBJ [27], SKAT [21], GSEA [43], and MAGMA [23]. Note that the upper limit of the x-axis has been truncated at

0.1. All results are based on 100 replicates (see S1 Text).

https://doi.org/10.1371/journal.pgen.1009754.g002
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Mapped SNP-level results. For SNP-level comparisons, we used three fine-mapping

methods as benchmarks: CAVIAR [45], SuSiE [46], and FINEMAP [44]. Each of these meth-

ods implement Bayesian variable selection strategies, in which different sparse prior distribu-

tions are placed on the “true” effect sizes of each SNP and posterior inclusion probabilities

(PIPs) are used to summarize their statistical relevance to the trait of interest. Notably, both

CAVIAR (exhaustively) and FINEMAP (approximately) search over different models to find

the best combination of associated SNPs with nonzero effects on a given phenotype. On the

other hand, the software for SuSiE requires an input ℓ which fixes the maximum number of

causal SNPs to include in the model. In this section, we consider results when this input num-

ber is high (ℓ = 3000) and when this input number is low (ℓ = 10). While SuSiE is applied to

individual-level data, both CAVIAR and FINEMAP require summary statistics where mar-

ginal z-scores are treated as a phenotype and modeled with in-sample estimate of the LD

matrix.

Overall, BANNs, BANN-SS, and SuSiE (with high ℓ = 3000) generally achieve the greatest

empirical power and lowest FDR across all genetic architectures we considered (S1–S8 Tables).

These three approaches also stand out in terms of true-versus-false positive rates and preci-

sion-versus-recall (Fig 2 and S2–S16 Figs). Notably, the choice of the ℓ parameter largely influ-

enced the performance of SuSiE, as it was consistently the worst performing method when we

underestimated the number of causal SNPs with nonzero effects a priori (i.e., ℓ = 10). Impor-

tantly, these performance gains come with a cost: the computational run time of SuSiE

becomes much slower as ℓ increases (S9 Table). For more context, an analysis on just 4,000

individuals and 10,000 SNPs takes the BANNs methods an average of 319 seconds to run on a

CPU; while, SuSiE can take up to nearly twice as long to complete as ℓ increases (e.g., average

runtimes of 23 and 750 seconds for ℓ = 10 and 3000, respectively).

Training BANNs on individual-level data relatively becomes the best approach when the

broad-sense heritability of complex traits is partly made up of pairwise genetic interaction

effects between causal SNPs (e.g., ρ = 0.5; see S5–S8 Figs and S13–S16 Figs)—particularly

when traits have low heritability with polygenic architectures (e.g., H2 = 0.2). A direct compari-

son of the PIPs derived by BANNs and SuSiE shows that the proposed neural network training

procedure enables the ability to identify associated SNPs even in these more complex pheno-

typic architectures (Fig 3 and S17–S23 Figs). It is important to note that the inclusion probabil-

ities were not perfectly calibrated for either BANNs or SuSiE in our simulations (S24 Fig),

despite FDR still being reasonably well controlled for both methods (S1–S8 Tables). We

hypothesize that the quality of PIP calibration for BANNs is a direct consequence of its varia-

tional inference algorithm which tends to favor sparse solutions and can lead to greater type II

versus type I error rates [46, 55]. To investigate how choices in the BANNs model setup con-

tributed to improved variable selection over SuSiE, we also performed an “ablation analysis”

[58, 59] where we modified parts of the algorithm independently and observed their direct

effect on method performance (S25 Fig). Ultimately, these results for BANNs were enabled by

a combination of (i) using ReLU activation functions in the hidden layers of the BANNs

framework, which implicitly enumerates the interactions between SNPs within a given SNP-

set, and (ii) using model averaging to estimate the inclusion probabilities for the network

weights (S1 Text). Note the absence of the nonlinear activation function only affected the

power of BANNs in simulations where there were non-additive genetic effects (e.g., S25(C)

and S25(D) Fig).

As a final comparison, the BANN-SS, CAVIAR, and FINEMAP methods see a decline in

performance for these same scenarios with genetic interactions. Assuming that the additive

and non-additive genetic effects are uncorrelated, this result is also expected since summary

statistics are often derived from simple linear additive regression models that (in theory)
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partition or marginalize out proportions of the phenotypic variance that are contributed by

nonlinearities [9, 13].

Enriched SNP-set level results. For comparisons between SNP-set level methods, we con-

sider six gene or SNP-set enrichment approaches including: RSS [26], PEGASUS [25], GBJ

[27], SKAT [21], GSEA [43], and MAGMA [23]. SKAT, VEGAS, and PEGASUS fall within

the same class of frequentist approaches, in which SNP-set GWA P-values are assumed to be

Fig 3. Scatter plots comparing how the integrative neural network training procedure enables the ability to identify associated SNPs and enriched

SNP-sets in simulations (British cohort). Quantitative traits are simulated to have broad-sense heritability of H2 = 0.6 with only contributions from

additive effects set (i.e., ρ = 1). We consider two different trait architectures: (A, B) sparse where only 1% of SNP-sets are enriched for the trait; and (C,

D) polygenic where 10% of SNP-sets are enriched. We set the number of causal SNPs with nonzero effects to be 1% and 10% of all SNPs located within

the enriched SNP-sets, respectively. Results are shown comparing the posterior inclusion probabilities (PIPs) derived by the BANNs model on the x-

axis and (A, C) SuSiE [46] and (B, D) RSS [26] on the y-axis, respectively. Here, SuSie is fit while assuming a high maximum number of causal SNPs (ℓ
= 3000). The blue horizontal and vertical dashed lines are marked at the “median probability criterion” (i.e., PIPs for SNPs and SNP-sets greater than

0.5) [57]. True positive causal variants used to generate the synthetic phenotypes are colored in red, while non-causal variants are given in grey. SNPs

and SNP-sets in the top right quadrant are selected by both approaches; while, elements in the bottom right and top left quadrants are uniquely

identified by BANNs and SuSie/RSS, respectively. Each plot combines results from 100 simulated replicates (see S1 Text).

https://doi.org/10.1371/journal.pgen.1009754.g003
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drawn from a correlated chi-squared distribution with covariance estimated using an empiri-

cal LD matrix [60]. MAGMA is also a frequentist approach in which gene-level P-values are

derived from distributions of SNP-level effect sizes using an F-test [23]. GBJ attempts to

improve upon the previously mentioned methods by generalizing the Berk-Jones statistic to

account for complex correlation structures and adaptively adjust the size of annotated SNP-

sets to only SNPs that maximize power [61]. Lastly, RSS is a Bayesian linear regression method

which places a likelihood on the observed SNP-level GWA effect sizes (using their standard

errors and LD estimates), and assumes a spike-and-slab shrinkage prior on the true SNP effects

to derive a probability of enrichment for genes or other annotated units [62]. It is worth noting

that, while RSS and the BANNs framework are conceptually different, the two methods utilize

very similar variational approximation algorithms for posterior inference [55] (Materials and

methods, and Supporting information).

Similar to the conclusions drawn during the SNP-level assessments, both the BANNs and

BANN-SS implementations had among the best tradeoffs between true and false positive rates

for detecting enriched SNP-sets across all simulations—once again, including those scenarios

which also considered pairwise interactions between causal SNPs (Fig 2 and S2–S16 Figs, and

S1–S8 Tables). Since RSS is an additive model, it sees a decline in performance for the more

complex genetic architectures that we simulated. A direct comparison between the PIPs from

BANNs and RSS can be found in Fig 3 and S17–S24 Figs. Once again, training BANNs on indi-

vidual-level data becomes the best approach when the broad-sense heritability of complex

traits is partly made up of non-additive genetic variation. Our ablation analysis results suggest

that the nonlinear activation function plays an important role here (S25 Fig). While RSS also

performs generally well for the additive trait architectures, the algorithm for the model often

takes twice as long than either of the BANNs implementations to converge (S10 Table). PEGA-

SUS, GBJ, SKAT, and MAGMA are score-based methods and, thus, are expected to take the

least amount of time to run. BANNs and RSS are hierarchical regression-based methods and

the increased computational burden of these approaches results from their need to do (approx-

imate) Bayesian posterior inference. Previous work has suggested that, when using GWA sum-

mary statistics to identify genotype-phenotype associations at the SNP-set level, having the

ability to adaptively account for possibly inflated SNP-level effect sizes and/or P-values is cru-

cial [28]. Therefore, it is understandable why the score-based methods consistently struggle

relative to the regression-based approaches even in the simplest simulation cases where traits

are generated to have high broad-sense heritability, sparse phenotypic architectures that are

dominated by additive genetic effects, and total phenotypic variance that is not confounded by

additional population structure (Fig 2 and S2–S16 Figs). Both the BANN-SS and RSS methods

use shrinkage priors to correct for potential inflation in GWA summary statistics and recover

estimates that are better correlated with the true generative model for the trait of interest.

Estimating total phenotypic variance explained in simulation studies

While our main focus is on conducting multi-scale inference of genetic trait architecture,

because the BANNs framework provides posterior estimates for all weights in the neural net-

work, we are able to also provide an estimate of phenotypic variance explained (PVE). Here,

we define PVE as the total proportion of phenotypic variance that is explained by genetic

effects, both additive and non-additive, collectively [16]. Within the BANNs framework, this

estimation can be done on both the SNP and SNP-set level while using either genotype-pheno-

type data or summary statistics (S1 Text). As a reminder, for our simulation studies, the true

PVE is set to H2 = 0.2 and 0.6, respectively. We assess the ability of BANNs to recover these

true estimates using root mean square error (RMSE) (S26 and S27 Figs). In order to be
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successful at this task, the neural network needs to accurately estimate both the individual

effects of causal SNPs in the input layer, as well as their cumulative effects for SNP-sets in the

outer layer. BANNs and BANN-SS exhibit the most success with traits have additive sparse

architectures (with and without additional population structure)—achieving PVE estimates

with RMSEs as low as 4.54 × 10−3 and 4.78 × 10−3 on the SNP and SNP-set levels for highly

heritable phenotypes, respectively. However, both models underestimate the total PVE in poly-

genic traits and traits with pairwise SNP-by-SNP interactions. Therefore, even though the

BANNs framework is still able to correctly prioritize the appropriate SNPs and SNP-sets, in

these more complicated settings, we misestimate the approximate posterior means for the net-

work weights and overestimate the variance of the residual training error (S1 Text). Similar

observations have been noted when using variational inference [63, 64]. Results from other

work also suggest that the sparsity assumption on the SNP-level effects can lead to the underes-

timation of the PVE [16, 65].

Mapping genomic enrichment in heterogenous stock of mice

We apply the BANNs framework to individual-level genotypes and six quantitative traits in a

heterogeneous stock of mice dataset from the Wellcome Trust Centre for Human Genetics

[47]. This data contains approximately 2,000 individuals genotyped at approximately 10,000

SNPs—with specific numbers varying slightly depending on the quality control procedure for

each phenotype (S1 Text). For SNP-set annotations, we used the Mouse Genome Informatics

database (http://www.informatics.jax.org) [51] to map SNPs to the closest neighboring gene

(s). Unannotated SNPs located within the same genomic region were labeled as being within

the “intergenic region” between two genes. Altogether, a total of 2,616 SNP-sets were analyzed.

The six traits that we consider are grouped based on their category and include: body mass

index (BMI) and body weight; percentage of CD8+ cells and mean corpuscular hemoglobin

(MCH); and high-density and low-density lipoprotein (HDL and LDL, respectively). We

choose to analyze these particular traits because their architectures represent a realistic mixture

of the simulation scenarios we detailed in the previous section (i.e., varying different values of

ρ). Specifically, the mice in this study are known to be genetically related with population

structure and these particular traits have been shown to have various levels of broad-sense her-

itability with different contributions from both additive and non-additive genetic effects [35,

37, 47, 66–68].

For each trait, we provide a summary table which lists the PIPs for SNPs and SNP-sets after

fitting the BANNs model to the individual-level genotypes and phenotype data (S11–S16

Tables). We use Manhattan plots to visually display the variant-level mapping results across

each of the six traits, where chromosomes are shown in alternating colors for clarity and asso-

ciated SNPs with PIPs above the median probability model threshold are highlighted (S28

Fig). As a comparison, we also report the corresponding SNP and SNP-set level PIPs after run-

ning SuSiE [46] and RSS [26] on these same data, respectively. Across all traits, BANNs identi-

fied 71 associated SNPs and 57 enriched SNP-sets (according to the median probability model

threshold). In comparison, SuSiE identified 22 associated SNPs (11 of which were also identi-

fied by BANNs) and RSS identified 14 enriched SNP-sets (6 of which were also identified by

BANNs). Importantly, many of the candidate genes and intergenic regions selected by the

BANNs model have been previously discovered by past publications as having some functional

relationship with the traits of interest (Table 1). For example, BANNs reports the genes Btbd9
and hlb156 as being enriched for the percentage of CD8+ cells in mice (PIP = 0.87 and 0.72

versus RSS PIP = 0.02 and 0.68, respectively). This same chromosomal region on chromosome

17 was also reported in the original study as having highly significant quantitative trait loci and
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contributing non-additive variation for CD8+ cells (bootstrap posterior probability equal to

1.00) [47]. Similarly, the X chromosome is well known to strongly influence adiposity and

metabolism in mice [66]. As expected, in body weight and BMI, our approach identified signif-

icant enrichment in this region—headlined by the dystrophin gene Dmd in both cases [69].

Finally, we note that including intergenic regions in our analyses allows us to discover trait rel-

evant genomic associations outside the immediate gene annotations provided by the Mouse

Genome Informatics database. This proved important for BMI where BANNs reported the

region between Gm22219 and Mc4r on chromosome 18 as having a relatively high PIP of 0.74

(versus an RSS PIP = 1 × 10−3 for reference). Recently, a large-scale GWA study on individuals

from the UK Biobank showed that variants around MC4R protect against obesity in humans

[70].

Overall, the results from this smaller GWA study highlight three key characteristics result-

ing from the sparse probabilistic assumptions underlying the BANNs framework. First, the

variational spike and slab prior placed on the weights of the neural network will select no more

than a few variants in a given LD block [55]. This is important since traditional naïve SNP-set

methods will often exhibit high false positive rates due to many of these correlated regions

along the genome [28]. Second, we see that the enrichment of a SNP-set is influenced by the

relative posterior distribution of zero and nonzero SNP-level effect sizes within its annotated

genomic window (S11–S16 Tables). In other words, a SNP-set is not guaranteed to have a high

inclusion probability just because it contains one SNP with a large nonzero effect; however,

Table 1. Notable enriched SNP-sets after applying the BANNs framework to six quantitative traits in heterogenous stock of mice from the Wellcome Trust Centre

for Human Genetics. [47]. The traits include: body mass index (BMI), percentage of CD8+ cells, high-density lipoprotein (HDL), low-density lipoprotein (LDL), mean

corpuscular hemoglobin (MCH), and body weight. Here, SNP-set annotations are based on gene boundaries defined by the Mouse Genome Informatics database (see

URLs). Unannotated SNPs located within the same genomic region were labeled as being within the “intergenic region” between two genes. These regions are labeled as

Gene1-Gene2 in the table. Posterior inclusion probabilities (PIP) for the input and hidden layer weights are derived by fitting the BANNs model on individual-level data. A

SNP-set is considered enriched if it has a PIP(g)� 0.5 (i.e., the “median probability model” threshold [57]). We report the “top” associated SNP within each region and its

corresponding PIP(j). We also report the corresponding SNP and SNP-set level results after running SuSiE [46] and RSS [26] on these same traits, respectively. The last col-

umn details references and literature sources that have previously suggested some level of association or enrichment between the each genomic region and the traits of

interest. See S11–S16 Tables for the complete list of SNP and SNP-set level results.

Trait SNP-Set Chr PIP(g) Rank RSS PIP RSS Rank Top SNP PIP(j) SuSiE PIP SuSiE Rank Ref(s)

BMI Dmd X 0.900 1 0.862 2 rs3090667 0.600 0.140 10 [69]

Mir466q-Slc2a2 3 0.816 3 0.371 3 rs6269713 0.477 0.009 124 [71]

Gm22219-Mc4r 18 0.740 5 0.001 81 rs3696955 0.039 0.264 7 [70]

CD8+ Gm46177-Gm30088 1 0.968 1 0.307 4 mhcCD8a3 1.000 0.998 3 [72–74]

Btbd9 17 0.866 7 0.019 7 CEL-17_31069801 1.000 0.080 38 [75, 76]

hlb156 17 0.720 8 0.683 3 CEL-17_31069801 1.000 0.080 38 [51]

HDL Pphc2 4 0.976 3 0.395 6 rs3724711 1.000 0.136 16 [77]

Ctnna2 6 0.886 8 0.908 2 rs3710419 1.000 0.712 4 [78]

hlb156 17 0.589 9 0.481 4 CEL-17_31069801 1.000 0.142 15 [51]

LDL Btbd9 17 0.983 1 0.275 6 CEL-17_31069801 1.000 0.163 6 [79, 80]

Pphc2 4 0.941 3 0.428 4 rs3724711 1.000 0.452 2 [77]

Syt14 1 0.852 7 0.070 47 rs3654706 0.001 0.002 626 [81–84]

MCH Btbd9 17 0.905 2 0.387 5 CEL-17_31069801 1.000 0.421 9 [75, 76]

Picalm 7 0.648 8 0.723 3 rs3704554 0.070 0.263 13 [85]

Ebf1 11 0.500 10 0.108 11 rs3693846 0.009 2.82 × 10−4 424 [86]

Weight Wdpcp 11 0.969 1 0.412 6 rs13481023 1.000 0.391 12 [79, 80]

Chrm2 6 0.882 3 0.195 13 rs3676478 0.012 0.102 26 [87, 88]

Csmd1 8 0.759 5 0.408 7 rs3709567 0.001 1.32 × 10−9 2166 [89]

https://doi.org/10.1371/journal.pgen.1009754.t001
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BANNs will report a SNP-set as insignificant if the total ratio of non-causal SNPs within the

set heavily outweighs the number of causal SNPs that have been annotated for the same region.

To this end, in the presence of large SNP-sets, the BANNs framework will favor preserving

false discovery rates at the expense of having slightly more false negatives. Lastly, the careful

modeling of the SNP-level effect size distributions and considering genetic interactions

enhances our ability to conduct multi-scale genomic inference. In this particular study, we

show the power to still find trait relevant SNP-sets with variants that are not marginally strong

enough to be detected individually, but have notable genetic signal when their weights are

aggregated together (again see Table 1 and S28 Fig).

Analyzing lipoproteins in the Framingham Heart Study

Next, we apply the BANNs framework to two continuous plasma trait measurements—high-

density lipoprotein (HDL) and low-density lipoprotein (LDL) cholesterol—assayed in 6,950

individuals from the Framingham Heart Study [48] genotyped at 394,174 SNPs genome-

wide. Following quality control procedures, we regressed out the top ten principal compo-

nents of the genotype data from each trait to control for population structure (S1 Text).

Next, we used the gene boundaries listed in the NCBI’s RefSeq database from the UCSC

Genome Browser [50] to define SNP-sets. In this analysis, we define genes with boundaries

in two ways: (a) we use the UCSC gene boundary definitions directly, or (b) we augment the

gene boundaries by adding SNPs within a ±500 kilobase (kb) buffer to account for possible

regulatory elements. Genes with only 1 SNP within their boundary were excluded from

either analysis. Unannotated SNPs located within the same genomic region were labeled as

being within the “intergenic region” between two genes. Altogether, a total of G = 18,364

SNP-sets were analyzed—which included 8,658 intergenic SNP-sets and 9,706 annotated

genes—using the UCSC boundaries. When including the 500kb buffer, a total of G = 35,871

SNP-sets were analyzed.

For each trait, we again fit the BANNs model to the individual-level genotype-phenotype

data and used the median probability model threshold as evidence of statistical significance for

all weights in the neural network (S17–S19 Tables). We also again report the corresponding

SNP and SNP-set level PIPs after running SuSiE and RSS on these same data. Note that while

BANNs is run on the genome-wide data jointly, for computational considerations, SuSiE and

RSS are run on a chromosome-by-chromosome basis. A complete breakdown of the overlap of

findings between BANNs, SuSiE, and RSS can be found on the first page of S20 Table. In Fig 4,

we show Manhattan plots of the variant-level association mapping results for BANNs, where

each significant SNP is color coded according to its SNP-set annotation. As an additional vali-

dation step, we took the enriched SNP-sets identified by BANNs in each trait and used the

gene set enrichment analysis tool Enrichr [90, 91] to identify the categories that they overre-

present in the database of Genotypes and Phenotypes (dbGaP) and the NHGRI-EBI GWAS

Catalog (S29 and S30 Figs). Similar to our results in the previous section, the BANNs frame-

work identified many SNPs and SNP-sets that have been shown to be associated with choles-

terol-related processes in past publications (Table 2 with UCSC gene boundary definitions and

S17 Table with augmented buffer). For example, in HDL, BANNs identified an enriched inter-

genic region between the genes HERPUD1 and CETP (PIP = 1.00 versus RSS PIP = 0.78)

which has been also replicated in multiple GWA studies with diverse cohorts [92–95]. The

Enrichr analyses were also consistent with published results (S29 and S30 Figs). For example,

the top ten significant enriched categories in the GWAS Catalog (i.e., Bonferroni-correct

threshold P-value < 1 × 10−5 or Q-value < 0.05) for HDL-associated SNP-sets selected by the

BANNs model are either directly related to lipoproteins and cholesterol (e.g., “Alpolipoprotein
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A1 levels”, “HDL cholesterol levels”) or related to metabolic functions (e.g., “Lipid metabolism

phenotypes”, “Metabolic syndrome”).

As in the previous analysis, the results from this analysis also highlight insight into complex

trait architecture enabled by the variational inference used in the BANNs software. SNP-level

and SNP-set results remain consistent with the qualitative assumptions underlying our proba-

bilistic hierarchical model. For instance, previous studies have estimated that rs599839

(chromosome 1, bp: 109822166) and rs4970834 (chromosome 1, bp: 109814880) explain

Fig 4. Manhattan plot of variant-level association mapping results for high-density and low-density lipoprotein (HDL and LDL, respectively) traits in the

Framingham Heart Study [48]. Posterior inclusion probabilities (PIP) for the neural network weights are derived from the BANNs model fit on individual-level

data and are plotted for each SNP against their genomic positions. Chromosomes are shown in alternating colors for clarity. The black dashed line is marked at 0.5

and represents the “median probability model” threshold [57]. SNPs with PIPs above that threshold are color coded based on their SNP-set annotation. Here, SNP-

set annotations are based on gene boundaries defined by the NCBI’s RefSeq database in the UCSC Genome Browser [50]. Unannotated SNPs located within the

same genomic region were labeled as being within the “intergenic region” between two genes. These regions are labeled as Gene1-Gene2 in the legend. Double

daggers (‡) denote SNPs that are also identified when using SuSiE [46] to analyze the same traits, and hashtag symbols (#) denote SNP-sets that are identified by RSS

[26]. Stars ($) denote SNPs and SNP-sets identified by BANNs that replicate in our analyses of HDL and LDL using ten thousand randomly sampled individuals of

European ancestry from the UK Biobank [31]. Gene set enrichment analyses for these SNP-sets identified by BANNs can be found in S29 and S30 Figs. A complete

list of PIPs for all SNPs and SNP-sets computed in these two traits can be found in S18 and S19 Tables. Results for the additional study with the independent UK

Biobank dataset [31] are illustrated in S31–S33 Figs and full results are listed in S21 and S22 Tables.

https://doi.org/10.1371/journal.pgen.1009754.g004
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approximately 1% of the phenotypic variation in circulating LDL levels [96]. Since these

two SNPs are physically closed to each other and sit in a high LD block (r2� 0.63 with

P< 1 × 10−4 [97]), the spike and slab prior in the BANNs framework will maintain the non-

zero weight for one and penalize the estimated effect of the other. Indeed, in our analysis,

rs4970834 was reported to be associated with LDL (PIP = 0.95 versus SuSiE PIP = 1.12 × 10−4),

while the effect size of rs599839 was shrunk towards 0 (PIP = 1 × 10−4 versus SuSiE PIP =

0.99). A similar issue can occur in correctly identifying enriched SNP-sets when nearby sets

contain SNPs in tight LD. For example, when augmenting the boundary of SNP-set annota-

tions by a ±500 kilobase buffer, BANNs tends to shrink the PIP of at least one member

of overlapping or correlated sets. Due to the variational approximations utilized by BANNs

(Materials and methods, and Supporting information), if two SNPs or SNP-sets are in strong

LD, the model will tend to select just one of them [26, 55].

Independent lipoprotein study using the UK Biobank

To further validate our results from the Framingham Heart Study, we also independently

apply BANNs to analyze HDL and LDL cholesterol traits in ten thousand randomly sampled

individuals of European ancestry from the UK Biobank [31]. Here, we filter the imputed geno-

types from the UK Biobank to keep only the same 394,174 SNPs that were used in the Fra-

mingham Heart Study analyses from the previous section. We then apply BANNs, SuSiE, and

RSS to the individual-level data and in-sample derived summary statistics using the same (a)

18,364 SNP-set annotations based on the NCBI’s RefSeq database from the UCSC Genome

Browser [50] and (b) 35,849 SNP-sets when applying the augmented ±500 kilobase buffer. It is

important to note that we restrict this analysis to just ten thousand individuals due to compu-

tational considerations for BANNs and SuSiE since they take in individual level data. In S31

Fig, we show the BANNs variant-level Manhattan plots for the independent UK Biobank

cohort with significant SNPs color coded according to their SNP-set annotation. Once again,

we use the median probability model threshold to determine statistical significance for all

weights in the neural network, and a complete breakdown of the overlap of findings between

BANNs, SuSiE, and RSS between the traits can be found in S20 Table. Lastly, S21 and S22

Tables give the complete list of all SNP and SNP-set level results in this additional UK Biobank

study.

Table 2. Top three enriched SNP-sets after applying the BANNs framework to high-density and low-density lipoprotein (HDL and LDL, respectively) traits in the

Framingham Heart Study [48]. Here, SNP-set annotations are based on gene boundaries defined by the NCBI’s RefSeq database in the UCSC Genome Browser [50].

Unannotated SNPs located within the same genomic region were labeled as being within the “intergenic region” between two genes. These regions are labeled as Gene1-

Gene2 in the table. Posterior inclusion probabilities (PIP) for the input and hidden layer weights are derived by fitting the BANNs model on individual-level data. A SNP-

set is considered enriched if it has a PIP(g)� 0.5 (i.e., the “median probability model” threshold [57]). We report the “top” associated SNP within each region and its corre-

sponding PIP(j). We also report the corresponding SNP and SNP-set level results after running SuSiE [46] and RSS [26] on these same traits, respectively. The last column

details references and literature sources that have previously suggested some level of association or enrichment between the each genomic region and the traits of interest.

See S18 and S19 Tables for the complete list of SNP and SNP-set level results. �: Multiple SNP-sets were tied for this ranking. ♣: SNPs and SNP-sets replicated in an inde-

pendent analysis of ten thousand randomly sampled individuals of European ancestry from the UK Biobank [31].

Trait SNP-Set Chr PIP(g) Rank RSS PIP RSS Rank Top SNP PIP(j) SuSiE PIP SuSiE Rank Ref(s)

HDL HERPUD1-CETP♣ 16 0.999 1� 0.781 5 rs1800775♣ 1.000 1.000 1 [92–95]

ST18-FAM150A 8 0.999 1� 0.869 3 rs6990075 1.000 0.006 107 [98]

TCEA3 1 0.989 2 1.22 × 10−4 15056 rs1767141 0.868 0.039 21 [99]

LDL CELSR2 1 0.989 1 0.972 2 rs4970834 0.948 1.12 × 10−4 4559 [100–102]

BCAM-PVRL2♣ 19 0.987 2 0.237 12 rs10402271♣ 0.998 0.966 2 [103–105]

APOB♣ 2 0.976 3 0.167 18 rs693♣ 0.999 0.278 6 [103, 106, 107]

https://doi.org/10.1371/journal.pgen.1009754.t002
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Despite the UK Biobank being a completely independent dataset, we found that BANNs

was able to replicate two SNPs and two SNP-sets in HDL and two SNPs and one SNP-set that

we observed in the Framingham Heart Study analysis (see specially marked rows in Table 2

and S17 Table, as well as the overlap summary given in S20 Table). For example, in HDL, both

the variants rs1800775 (PIP = 1.00 versus SuSiE PIP = 1.00) and rs17482753 (PIP = 1.00 versus

SuSiE PIP = 0.73) were replicated. BANNs also identified the corresponding intergenic region

between the genes HERPUD1 and CETP as being enriched (PIP = 1.00 versus RSS PIP = 1.00).

In our analysis of LDL, BANNs replicated two out of the four associated SNPs: rs693 within

the APOB gene, and rs10402271 which falls within the intergenic region between genes BCAM
and PVRL2.

There were a few scenarios where a given SNP-set was replicated but the leading SNP in

that region differed between the two studies. For instance, while the intergenic region between

LIPG and ACAA2 was enriched in both cohorts, the variant rs7240405 was found to be most

associated with HDL in the Framingham Heart Study; a different SNP, rs7244811, was identi-

fied in the UK Biobank (Fig 4 and S31 Fig) Similarly, in the analysis with the ±500 kilobase

buffer for SNP-set annotations, rs4939883 in the intergenic region between LIPG and ACAA2
was found to be significant for HDL in the UK Biobank instead of rs7244811 which was

selected in the Framingham Heart Study. These discrepancies at the variant level are likely due

to: (i) the sparsity assumption imposed by BANNs, which lead the model to select one of two

variants in high LD; and (ii) ancestry differences among individuals from the two studies likely

also generate different LD structures in the same genomic region.

As a final step, we took the enriched SNP-sets identified by BANNs in the UK Biobank and

used Enrichr [90, 91] to ensure that we were still obtaining trait relevant results (S32 and S33

Figs). Indeed, for both HDL and LDL, the most overrepresented categories in dbGaP and the

GWAS Catalog (i.e., Bonferroni-correct threshold P-value < 1 × 10−5 or Q-value < 0.05) was

consistently the trait of interest—followed by other functionally related gene sets such as “Met-

abolic syndrome” and “Cholesterol levels”. This story remained largely consistent even when

augmenting SNP-set annotations with a ±500 kilobase buffer (S32 and S33 Figs). Overall, the

sensible results from performing mapping on the variant-level and enrichment analyses on

the SNP-set level in two different independent datasets, only further enhances our confidence

about the potential impact of the BANNs framework in GWA studies.

Discussion

Recently, nonlinear approaches have been applied in biomedical genomics for prediction-

based tasks, particularly using GWA datasets with the objective of predicting phenotypes

[108–112]. However, since the classical idea of variable selection and hypothesis testing is lost

within these statistical algorithms, they have not been widely used for association mapping

where the goal is to identify significant SNPs or genes underlying complex traits. Here, we

present Biologically Annotated Neural Networks (BANNs): a class of feedforward probabilistic

models which overcome this limitation by incorporating partially connected architectures that

are guided by predefined SNP-set annotations. This creates an interpretable and integrative

framework where the first layer of the neural network encodes SNP-level effects and the neu-

rons within the hidden layer represent the different SNP-set groupings. We frame the BANNs

methodology as a Bayesian nonlinear regression model and use sparse prior distributions to

perform variable selection on the network weights. By modifying a well established variational

inference algorithm, we are able to derive posterior inclusion probabilities (PIPs) which allows

researchers to carry out SNP-level mapping and SNP-set enrichment analyses, simultaneously.

While we focus on genomic motivations in this study, the concept of partially connected
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neural networks may extend to any scientific application where annotations can help guide the

groupings of variables.

Through extensive simulation studies, we demonstrate the utility of the BANNs framework

on individual-level data (Fig 1) and GWA summary statistics (S1 Fig). Here, we showed that

both implementations are consistently competitive with commonly used SNP-level association

mapping methods and state-of-the-art SNP-set enrichment methods in a wide range of genetic

architectures (Figs 2 and 3, and S2–S23 Figs, and S1–S8 Tables). The advantage of our

approach was most clear when the broad-sense heritability of the complex traits included pair-

wise genetic interactions. In two real GWA datasets, we demonstrated the ability of BANNs to

prioritize trait relevant SNPs and SNP-sets that have been identified by previous publications

and functional validation studies (Fig 4 and S28–S30 Figs, and Tables 1 and 2 and S11–S19

Tables). Lastly, using a third real dataset, we assess the ability of BANNs to statistically replicate

a subset of these findings in an independent cohort (S31–S33 Figs and S21 and S22 Tables).

The current implementation of the BANNs framework offers many directions for future

development and applications. Perhaps the most obvious limitation is that ill-annotated

SNP-sets can bias the interpretation of results and lead to misplaced scientific conclusions

(i.e., might cause us to highlight the “wrong” gene [113, 114]). This is a common issue in

most enrichment methods [28]; however, similar to other hierarchical methods like RSS

[26], BANNs is likely to rank SNP-set enrichments that are driven by just a single SNP as less

reliable than enrichments driven by multiple SNPs with nonzero effects. Another current

limitation for the BANNs model comes from the fact that it uses a variational inference to

estimate its parameters. While the current implementation works reasonably well for large

datasets (S9 and S10 Tables), we showed that our sparse prior assumption combined with the

variational expectation-maximization algorithm can lead to slightly miscalibrated PIPs (S24

Fig), underestimated approximations of the PVE (S27 and S28 Figs), and will occasionally

miss causal SNPs if they are in high LD with other non-causal SNPs in the dataset. For exam-

ple, in the application to the Framingham Heart Study, BANNs estimates the PVE for HDL

and LDL to be 0.11 and 0.04, respectively. Similarly, in the UK Biobank study, BANNs esti-

mates the PVE for HDL and LDL to be 0.12 and 0.06, respectively. In general, these values

are lower than what is typically reported in the literature for these complex phenotypes

(PVE� 27% for HDL and PVE� 21% for LDL, respectively) [115]. Exploring different prior

assumptions and considering other (more scalable) ways to carry out approximate Bayesian

inference is something to consider for future work [116]. For example, the Bayesian sparse

linear mixed modeling (BSLMM) framework [16, 117, 118] extends the traditional spike-

and-slab prior and could provide a useful, yet alternative, hierarchical specification for

BANNs.

There are several other potential extensions for the BANNs framework. First, in the cur-

rent study, we only consider a single hidden layer based on the annotations of gene bound-

aries and intergenic region between genes. One natural direction for future work would be

to a take more of a deep learning approach by including additional hidden layers to the neu-

ral network where genes are grouped based on signaling pathways or other functional ontol-

ogies (e.g., transcription factor binding). This would involve integrating information from

curated databases such as MSigDB [119, 120] or CADD [121]. Second, while BANNs is able

to account for nonlinear genetic effects, it cannot be used to directly identify the component

(i.e., linear vs. nonlinear) that is driving individual SNP or SNP-set associations. A key part

of our future work is learning how to disentangle this information and provide detailed sum-

maries of variant-level and gene-by-gene interaction effects [122]. Third, the current BANNs

model only takes in genetic information and, in its current form, ignores unobserved envi-

ronmental covariates (and potential gene-by-environment or G×E interactions) that explain
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variation in complex traits. In the future, we would like to expand the framework to also take

in covariates as fixed effects in the model. Fourth, we have only focused on analyzing one

phenotype at a time in this study. However, many previous studies have extensively shown

that modeling multiple phenotypes can often dramatically increase power [123]. Therefore,

it would be interesting to extend the BANNs framework to take advantage of phenotype cor-

relations to identify pleiotropic epistatic effects. Modeling strategies based on the multivari-

ate linear mixed model (mvLMM) [124] and matrix variate Gaussian process (mvGP) [125]

could be helpful here.

As a final avenue for future work, we only focused on applying BANNs to quantitative

traits. For studies interested in extending this approach to binary traits (i.e., case-control stud-

ies), one might be tempted to simply place a sigmoid or logistic link function on the penulti-

mate layer of the neural network. Indeed, this would allow the BANNs framework to be

expressed as a (nonlinear) logistic classification model which is an approach that has been

well-established in the statistics literature [126–128]. Unfortunately, it is not straightforward to

define broad-sense heritability under the traditional logistic regression framework. As one

alternative, we could implement a penalized quasi-likelihood approach [129] which has been

shown to enable effective heritability estimation and differential analyses using the generalized

linear mixed model framework. As a second alternative, the liability threshold model avoids

issues by assuming that binary traits can be modeled via continuous latent liability scores

[130–132]. Therefore, a potentially effective way to extend BANNs to case-control studies

would be to develop a two-step algorithmic procedure where: in the first step, we find the pos-

terior mean of the liability scores be using existing software packages and then, in the second

step, treat those empirical liability estimates as observed traits in the neural network. Regard-

less of the modeling strategy, new algorithms are likely needed to maximize the appropriate-

ness of BANNs for non-continuous phenotypes.

Materials and methods

Annotations

We used the NCBI’s Reference Sequence (RefSeq) database in the UCSC Genome Browser

[50] to annotate SNPs with appropriate SNP-sets. In the main text, we define genes with

boundaries in two ways: (a) we use the UCSC gene boundary definitions directly, or (b) we

augment the gene boundaries by adding SNPs within a ±500 kilobase (kb) buffer to account

for possible regulatory elements. Genes with only 1 SNP within their boundary were excluded

from either analysis. Unannotated SNPs located within the same genomic region were labeled

as being within the “intergenic region” between two genes. Altogether, a total of G = 28,644

SNP-sets were kept for analysis using the UCSC boundaries and a total of G = 35,849 SNP-sets

were kept for analysis when including the 500kb buffer.

Biologically annotated neural networks

Consider a genome-wide association (GWA) study with N individuals. We have an N-dimen-

sional vector of quantitative traits y, an N × J matrix of genotypes X, with J denoting the num-

ber of single nucleotide polymorphisms (SNPs) encoded as {0, 1, 2} copies of a reference allele

at each locus, and a list of G-predefined SNP-sets fS1; . . . ;SGg (Fig 1A). Let each SNP-set g
represent a known collection of annotated SNPs j 2 Sg with cardinality jSg j. For example, Sg

may include SNPs within the regulatory region of a gene. The BANNs framework assumes a

partially connected Bayesian neural network architecture based on SNP-set annotations to

learn the phenotype of interest for each observation in the data (Fig 1B). Formally, we specify
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this network as a nonlinear regression model (Fig 1C)

y ¼
XG

g¼1

hðXgθg þ 1bð1Þg Þwg þ 1bð2Þ; ð4Þ

where Xg ¼ ½x1; . . . ; xjSg j
� is the subset of SNPs annotated for SNP-set g; θg ¼ ðy1; . . . ; yjSg j

Þ

are the corresponding inner layer weights; h(•) denotes the nonlinear activations defined for

neurons in the hidden layer; w = (w1, . . ., wG) are the weights for the G-predefined SNP-sets in

the hidden layer; bð1Þ ¼ ðbð1Þ1 ; . . . ; bð1ÞG Þ and b(2) are deterministic biases that are produced dur-

ing the network training phase in the input and hidden layers, respectively; and 1 is an N-

dimensional vector of ones. For convenience, we assume that the genotype matrix (column-

wise) and trait of interest have been mean-centered and standardized. In the main text, h(•) is

defined as a Leaky rectified linear unit (Leaky ReLU) activation function [49], where h(x) = x if

x> 0 and 0.01x otherwise. Note that Eq (4) can be seen as a nonlinear take on classic integra-

tive and structural regression models [22, 26, 133–136] frequently used in GWA analyses.

A key methodological aspect in the BANNs framework is to treat the weights of the input

(θj) and hidden layers (wg) as random variables. This, in part, enables us to perform interpret-

able association mapping on both SNPs and SNP-sets, simultaneously. For the weights on the

input layer, our goal is to approximate a wide range of possible SNP-level effect size distribu-

tions underlying complex traits. To this end, we assume that SNP-level effects follow a K-mix-

ture of normal distributions [10, 52–54]

yj � py

XK

k¼1

Zyk N ð0; s2

ykÞ þ ð1 � pyÞd0; logðpyÞ � Uð� logðJÞ; logð1ÞÞ ð5Þ

where δ0 is a point mass at zero; σ2
y
¼ ðs2

y1
; . . . ; s2

yKÞ are variance of the K-nonzero mixture

components; ηθ = (ηθ1, . . ., ηθK) represents the marginal (unconditional) probability that

a randomly selected SNP belongs to the k-th mixture component such that ∑k ηθk = 1; and πθ
denotes the total proportion of SNPs that have a nonzero effect on the trait of interest. We

allow sequential fractions of SNPs (ηθ1, . . ., ηθK) to correspond to distinctly smaller effects

(s2
y1
> � � � > s2

yK) [53]. Intuitively, specifying a larger K allows the neural network to learn gen-

eral SNP effect size distributions spanning over a diverse class of trait architectures. For results

in the main text, we fix K = 3 for computational reasons. This corresponds to the hypothesis

that SNPs can have large, moderate, and small nonzero effects on phenotypic variation [28].

We assume a uniform prior on log πθ to coincide with the observation that the number of

SNPs in each of these categories can vary greatly depending on how heritability is distributed

across the genome [16, 65] (see S1 Text).

For inference on the hidden layer, we assume that enriched SNP-sets contain at least one

SNP with a nonzero effect. This criterion is formulated by placing a spike and slab prior on the

hidden layer weights

wg � pwN ð0; s2
wÞ þ ð1 � pwÞd0; logðpwÞ � Uð� logðGÞ; logð1ÞÞ ð6Þ

where, in addition to previous notation, the parameter πw denotes the total proportion of

annotated SNP-sets that are enriched for the trait of interest. Given the structural form of the

joint likelihood in Eq (4), the magnitude of association for a SNP-set will be directly influenced

by the effect size distribution of the SNPs it contains.

We use a variational Bayesian algorithm to estimate all model parameters (S1 Text). As the

BANNs model is trained, the posterior mean for the weights of non-associated SNP and SNP-

sets will trend towards zero as the neural network attempts to identify a subset of neurons that
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are associated with the phenotype. We use posterior inclusion probabilities (PIPs) as a general

summaries of evidence for SNPs and SNP-sets being associated with phenotypic variation.

Here, we respectively define

PIPðjÞ � Pr½yj 6¼ 0 jy;X�; PIPðgÞ � Pr½wg 6¼ 0 jy;X; θg � ð7Þ

where, again for the latter, the enrichment of SNP-sets is conditioned on the association of

individual SNPs. Overall, the Bayesian formulation in the BANNs framework enables network

sparsity to be targeted for GWA applications through contextually motivated sparse shrinkage

prior distributions in Eqs (5) and (6). Moreover, posterior inference on PIP(j) and PIP(g)

detail the degree to which nonzero weights occur.

Posterior computation with variational inference

We combine the likelihood in Eq (4) and the prior distributions in Eqs (5) and (7) to perform

Bayesian inference. With the size of high-throughput GWA datasets, it is less feasible to imple-

ment traditional Markov Chain Monte Carlo (MCMC) algorithms due to the large dimension-

ality of the parameter space. For model fitting, we modify a previously established variational

expectation-maximization (EM) algorithm [55, 56] for integrative neural network parameter

estimation. The overall goal of variational inference is to approximate the true posterior distri-

bution for network parameters with a “best match” distribution from an approximating family

[63]. The EM algorithm we use aims to minimize the Kullback-Leibler divergence between the

exact and approximate posterior distributions.

To compute the variational approximations, we make the mean-field assumption that the

true posterior can be “fully-factorized” [137]. The algorithm then follows three general steps.

First, we assign exchangeable uniform hyper-priors over a grid of values on the log-scale for πθ
and πw [55]. Next, we iterate through each combination of hyper-parameter values and com-

pute variational updates for the other parameters using co-ordinate ascent. Lastly, we empiri-

cally compute (approximate) posterior values for the network connections (θ, w) and their

corresponding inclusion probabilities by marginalizing over the different hyper-parameter

combinations. This final step can be viewed as an analogy to Bayesian model averaging where

marginal distributions are estimated via a weighted average of conditional distributions multi-

plied by importance sampling weights [138]. Throughout the model fitting procedure, we

assess two different lower bounds for the input and hidden layers to check convergence of the

algorithm. The first lower bound is maximized with respect to the SNP-level effects on the

observed trait of interest; while, the second lower bound focuses on the SNP-set level enrich-

ments. The software code first iterates over the “inner” lower bound until convergence and

then uses those weights to compute the hidden neurons and maximize the “outer” lower

bound. Detailed steps in the variational EM algorithm, explicit co-ordinate ascent updates for

network parameters, and pseudocode are given in Supporting information.

Parameters in the variational EM algorithm are initialized by taking a random draws from

their assumed prior distributions. Iterations in the algorithm are terminated when either one

of two stopping criteria are met: (i) the difference between the lower bound of two consecutive

updates are within some small range (specified by argument �), or (ii) a maximum number of

iterations is reached. For the simulations and real data analyses ran in this paper, we set � =

1 × 10−4 for the first criterion and used a maximum of 10,000 iterations for the second.

Extensions to summary statistics

The BANNs framework also models summary statistics in the event that individual-level geno-

type and phenotype data are not accessible. Here, the software takes alternative inputs: GWA
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marginal effect size estimates θ̂ as the response variable, and an empirical linkage disequilib-

rium (LD) matrix R as the design matrix. In the main text, we refer to this version of the

method as the BANN-SS model. We assume that GWA summary statistics are derived from

the following generative linear model for complex traits

y ¼ Xθ þ e; e � N ð0; t2IÞ ð8Þ

where e is a normally distributed error term with mean zero and scaled variance τ2, and I is

an N × N identity matrix. For every j-th SNP, the ordinary least squares (OLS) estimates are

based on the generative model ŷ j ¼ ðx>j xjÞ
� 1x>j y, where xj is the j-th column of the individ-

ual-level genotype matrix X and ŷ j is the j-th entry of the vector θ̂. In practice, the LD matrix

R can be empirically estimated directly from the in-sample GWA study data or from external

data (e.g., using an LD map from a population with genomic ancestry similar to individuals

in the orginial study). Note that all results presented in the main text are based on estimating

R with the in-sample genotype data. The BANN-SS model treats the observed OLS estimates

and LD matrix as “proxies” for the unobserved phenotype and genotypes, respectively. Spe-

cifically, for large sample size N, we consider the asymptotic relationship between the expec-

tation of the observed GWA effect size estimates θ̂ and the true coefficient values θ is [28, 45,

53, 139]

E½ŷ j� ¼
XJ

j0¼1

rðxj; xj0 Þyj0 ð9Þ

where r(xj, xj0) denotes the correlation coefficient between SNPs xj and xj0. The above

resembles a high-dimensional regression model with the OLS effect sizes θ̂ as the response

variables, the LD matrix R as the design matrix, and the true coefficients θ being the

SNP-level effects that generated the phenotype. Note that this observation is also utilized

by other GWA summary-level statistical methods (e.g., CAVIAR [45] and RSS [26, 62]).

With this relationship in mind, the BANN-SS framework implements the following sparse

nonlinear regression for inferring multi-scale genomic effects from summary statistics

(S1 Fig)

θ̂ ¼
XG

g¼1

hðRgθg þ 1bð1Þg Þwg þ 1bð2Þ; ð10Þ

where, in addition to previous notation, Rg is the subset of the LD matrix involving all SNPs

annotated for the g-th SNP-set. Using the rewritten joint likelihood in Eq (10), posterior

Bayesian inference for the parameters in the BANN-SS model directly mirrors the proce-

dure used when we have access to individual-level data (i.e., as described previously in Eqs

(5)–(7) and given in detail in the Supporting information). Again, we use measurements

PIP(j) and PIP(g) to summarize whether the true SNP-level effects and aggregated effects on

the SNP-set level are statistically associated with the trait of interest.

Simulation studies

We implement a simulation scheme to generate quantitative traits under multiple genetic

architectures by using real genotype data on chromosome 1 from individuals of European

ancestry in the UK Biobank. First, we randomly select a subset of associated SNP-sets (i.e.,

collections of genomic regions) and assume that complex traits are generated via the linear

PLOS GENETICS Biologically Annotated Neural Networks

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1009754 August 19, 2021 21 / 53

https://doi.org/10.1371/journal.pgen.1009754


regression model

y ¼
X

c2C

xcyc þWφþ ε; ε � N ð0; t2IÞ; ð11Þ

where y is an N-dimensional vector containing all the phenotypes; C represents the set of causal

SNPs contained within the associated SNP-sets; xc is the genotype for the c-th causal SNP

encoded as 0, 1, or 2 copies of a reference allele; θc is the additive effect size for the c-th SNP; W

is an N × E matrix which holds all pairwise interactions between the causal SNPs with corre-

sponding effects φ; and ε is an N-dimensional vector of environmental noise. The total pheno-

typic variance is assumed V½y� ¼ 1. The additive and interaction effect sizes of SNPs in

associated SNP-sets are randomly drawn from standard normal distributions and then rescaled

so they explain a fixed proportion of the broad-sense heritability V½
P

xcyc� þ V½Wφ� ¼ H2.

Lastly the environment noise is rescaled such that V½ε� ¼ 1 � H2. The full genotype matrix

and phenotypic vector are given to the BANNs model and all other competing methods that

require individual-level data. For the BANN-SS model and other competing methods that

take GWA summary statistics, we fit a single-SNP univariate linear model via ordinary

least squares (OLS) to obtain: coefficient estimates ŷ j ¼ ðx>j xjÞ
� 1x>j y, standard errors

ŝ2
j ¼ J � 1ðy � xjŷ jÞ

>
ðy � xjŷ jÞ=x>j xj, and P-values for all SNPs in the data. We also obtain an

empirical estimate of the linkage disequilibrium (LD) matrix for these methods R, which we

compute directly from the full in-sample genotype matrix. Given different model parame-

ters, we simulate data mirroring a wide range of genetic architectures (S1 Text).

URLs

Biologically annotated neural networks (BANNs) software, https://github.com/lcrawlab/

BANNs; UK Biobank, https://www.ukbiobank.ac.uk; Database of Genotypes and Phenotypes

(dbGaP), https://www.ncbi.nlm.nih.gov/gap; Framingham Heart Study (FHS), https://www.

ncbi.nlm.nih.gov/gap; NHGRI-EBI GWAS Catalog, https://www.ebi.ac.uk/gwas/; UCSC

Genome Browser, https://genome.ucsc.edu/index.html; Enrichr software, http://amp.pharm.

mssm.edu/Enrichr/; Wellcome Trust Centre for Human Genetics, http://mtweb.cs.ucl.ac.uk/

mus/www/mouse/index.shtml; Mouse Genome Informatics database, http://www.informatics.

jax.org; CAusal Variants Identification in Associated Regions (CAVIAR) software, http://

genetics.cs.ucla.edu/caviar/; Efficient variable selection using summary data from GWA stud-

ies (FINEMAP) software, http://www.christianbenner.com; Generalized Berk-Jones (GBJ)

test for set-based inference software, https://cran.r-project.org/web/packages/GBJ/; Gene Set

Enrichment Analysis (GSEA) software, https://www.nr.no/en/projects/software-genomics;

SNP-set (Sequence) Kernel Association Test (SKAT) software, https://www.hsph.harvard.edu/

skat; Sum of Single Effects (SuSiE) variable selection software, https://github.com/stephenslab/

susieR; Multi-marker Analysis of GenoMic Annotation (MAGMA) software, https://ctg.cncr.

nl/software/magma; Precise, Efficient Gene Association Score Using SNPs (PEGASUS) soft-

ware, https://github.com/ramachandran-lab/PEGASUS; and Regression with Summary Statis-

tics (RSS) enrichment software, https://github.com/stephenslab/rss.

Supporting information

S1 Fig. Biologically annotated neural networks also take in GWA summary statistics

(BANN-SS) for multi-scale genotype-phenotype by specifying a partially connected archi-

tecture based on the hierarchical nature of enrichment studies. (A) The BANN-SS frame-

work requires a J-dimensional vector of SNP-level GWA marginal effect size (OLS) estimates
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θ̂ ¼ ðŷ1; . . . ; ŷJÞ; an empirical J × J linkage disequilibrium (LD) matrix R = [r1, . . ., rJ], where

rj = [r(xj, x1), . . ., r(xj, xJ)] is a vector of correlation coefficients between the j-th SNP and all

other SNPs in the study; and a list of G-predefined SNP-sets fS1; . . . ;SGg. In this work, SNP-

sets are defined as genes and intergenic regions (between genes) given by the NCBI’s Reference

Sequence (RefSeq) database in the UCSC Genome Browser [50]. (B) A partially connected

Bayesian neural network is constructed based on the annotated SNP groups. In the first hidden

layer, only SNPs within the boundary of a gene are connected to the same node. Similarly,

SNPs within the same intergenic region between genes are connected to the same node. Com-

pleting this specification for all SNPs gives the hidden layer the natural interpretation of being

the “SNP-set” layer. (C) The hierarchical nature of the network is represented as nonlinear

regression model. The corresponding weights in both the SNP (θ) and SNP-set (w) layers are

treated as random variables with biologically motivated sparse prior distributions. Posterior

inclusion probabilities PIP(j)� Pr[θj 6¼ 0 | y, X] and PIP(g)� Pr[wg 6¼ 0 | y, X, θg] summarize

associations at the SNP and SNP-set level, respectively. The BANN-SS framework uses the

same variational inference procedure that is used when we have access to individual-level data.

(PDF)

S2 Fig. Receiver operating characteristic (ROC) curves comparing the performance of the

BANNs (red) and BANN-SS (black) models with competing SNP and SNP-set mapping

approaches in simulations (British cohort). Here, quantitative traits are simulated to have

broad-sense heritability of H2 = 0.2 with only contributions from additive effects (i.e., ρ = 1).

We show power versus false positive rate for two different trait architectures: (A, B) sparse

where only 1% of SNP-sets are enriched for the trait; and (C, D) polygenic where 10% of SNP-

sets are enriched. We then set the number of causal SNPs with non-zero effects to be 1% and

10% of all SNPs located within the selected enriched SNP-sets, respectively. To derive results,

the full genotype matrix and phenotypic vector are given to the BANNs model and all compet-

ing methods that require individual-level data. For the BANN-SS model and other competing

methods that take GWA summary statistics, we compute standard GWA SNP-level effect sizes

and P-values (estimated using ordinary least squares). (A, C) Competing SNP-level mapping

approaches include: CAVIAR [45], SuSiE [46], and FINEMAP [44]. The software for SuSiE

requires an input ℓ which fixes the maximum number of causal SNPs in the model. We display

results when this input number is high (ℓ = 3000) and when this input number is low (ℓ = 10).

(B, D) Competing SNP-set mapping approaches include: RSS [26], PEGASUS [25], GBJ [27],

SKAT [21], GSEA [43], and MAGMA [23]. Note that the upper limit of the x-axis has been

truncated at 0.1. All results are based on 100 replicates (see S1 Text).

(PDF)

S3 Fig. Receiver operating characteristic (ROC) curves comparing the performance of the

BANNs (red) and BANN-SS (black) models with competing SNP and SNP-set mapping

approaches in simulations with population structure (European cohort). Here, quantitative

traits are simulated to have broad-sense heritability of H2 = 0.2 with only contributions from

additive effects (i.e., ρ = 1). In these simulations, traits were generated while using the top ten

principal components (PCs) of the genotype matrix as covariates. We show power versus false

positive rate for two different trait architectures: (A, B) sparse where only 1% of SNP-sets are

enriched for the trait; and (C, D) polygenic where 10% of SNP-sets are enriched. We then set

the number of causal SNPs with non-zero effects to be 1% and 10% of all SNPs located within

the selected enriched SNP-sets, respectively. To derive results, the full genotype matrix and

phenotypic vector are given to the BANNs model and all competing methods that require

individual-level data. For the BANN-SS model and other competing methods that take GWA
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summary statistics, we compute standard GWA SNP-level effect sizes and P-values (estimated

using ordinary least squares). (A, C) Competing SNP-level mapping approaches include:

CAVIAR [45], SuSiE [46], and FINEMAP [44]. The software for SuSiE requires an input ℓ
which fixes the maximum number of causal SNPs in the model. We display results when this

input number is high (ℓ = 3000) and when this input number is low (ℓ = 10). (B, D) Competing

SNP-set mapping approaches include: RSS [26], PEGASUS [25], GBJ [27], SKAT [21], GSEA

[43], and MAGMA [23]. Note that the upper limit of the x-axis has been truncated at 0.1. All

results are based on 100 replicates (see S1 Text).

(PDF)

S4 Fig. Receiver operating characteristic (ROC) curves comparing the performance of the

BANNs (red) and BANN-SS (black) models with competing SNP and SNP-set mapping

approaches in simulations with population structure (European cohort). Here, quantitative

traits are simulated to have broad-sense heritability of H2 = 0.6 with only contributions from

additive effects (i.e., ρ = 1). In these simulations, traits were generated while using the top ten

principal components (PCs) of the genotype matrix as covariates. We show power versus false

positive rate for two different trait architectures: (A, B) sparse where only 1% of SNP-sets are

enriched for the trait; and (C, D) polygenic where 10% of SNP-sets are enriched. We then set

the number of causal SNPs with non-zero effects to be 1% and 10% of all SNPs located within

the selected enriched SNP-sets, respectively. To derive results, the full genotype matrix and

phenotypic vector are given to the BANNs model and all competing methods that require indi-

vidual-level data. For the BANN-SS model and other competing methods that take GWA sum-

mary statistics, we compute standard GWA SNP-level effect sizes and P-values (estimated

using ordinary least squares). (A, C) Competing SNP-level mapping approaches include:

CAVIAR [45], SuSiE [46], and FINEMAP [44]. The software for SuSiE requires an input ℓ
which fixes the maximum number of causal SNPs in the model. We display results when this

input number is high (ℓ = 3000) and when this input number is low (ℓ = 10). (B, D) Competing

SNP-set mapping approaches include: RSS [26], PEGASUS [25], GBJ [27], SKAT [21], GSEA

[43], and MAGMA [23]. Note that the upper limit of the x-axis has been truncated at 0.1. All

results are based on 100 replicates (see S1 Text).

(PDF)

S5 Fig. Receiver operating characteristic (ROC) curves comparing the performance of

the BANNs (red) and BANN-SS (black) models with competing SNP and SNP-set map-

ping approaches in simulations (British cohort). Here, quantitative traits are simulated to

have broad-sense heritability of H2 = 0.2 with equal contributions from additive effects and

epistatic interactions (i.e., ρ = 0.5). We show power versus false positive rate for two different

trait architectures: (A, B) sparse where only 1% of SNP-sets are enriched for the trait; and

(C, D) polygenic where 10% of SNP-sets are enriched. We then set the number of causal

SNPs with non-zero effects to be 1% and 10% of all SNPs located within the enriched SNP-

sets, respectively. To derive results, the full genotype matrix and phenotypic vector are given

to the BANNs model and all competing methods that require individual-level data. For the

BANN-SS model and other competing methods that take GWA summary statistics, we com-

pute standard GWA SNP-level effect sizes and P-values (estimated using ordinary least

squares). (A, C) Competing SNP-level mapping approaches include: CAVIAR [45], SuSiE

[46], and FINEMAP [44]. The software for SuSiE requires an input ℓ which fixes the maxi-

mum number of causal SNPs in the model. We display results when this input number is

high (ℓ = 3000) and when this input number is low (ℓ = 10). (B, D) Competing SNP-set map-

ping approaches include: RSS [26], PEGASUS [25], GBJ [27], SKAT [21], GSEA [43], and

MAGMA [23]. Note that the upper limit of the x-axis has been truncated at 0.1. All results
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are based on 100 replicates (see S1 Text).

(PDF)

S6 Fig. Receiver operating characteristic (ROC) curves comparing the performance of

the BANNs (red) and BANN-SS (black) models with competing SNP and SNP-set map-

ping approaches in simulations (British cohort). Here, quantitative traits are simulated to

have broad-sense heritability of H2 = 0.6 with equal contributions from additive effects and

epistatic interactions (i.e., ρ = 0.5). We show power versus false positive rate for two different

trait architectures: (A, B) sparse where only 1% of SNP-sets are enriched for the trait; and

(C, D) polygenic where 10% of SNP-sets are enriched. We then set the number of causal

SNPs with non-zero effects to be 1% and 10% of all SNPs located within the enriched SNP-

sets, respectively. To derive results, the full genotype matrix and phenotypic vector are given

to the BANNs model and all competing methods that require individual-level data. For the

BANN-SS model and other competing methods that take GWA summary statistics, we com-

pute standard GWA SNP-level effect sizes and P-values (estimated using ordinary least

squares). (A, C) Competing SNP-level mapping approaches include: CAVIAR [45], SuSiE

[46], and FINEMAP [44]. The software for SuSiE requires an input ℓ which fixes the maxi-

mum number of causal SNPs in the model. We display results when this input number is

high (ℓ = 3000) and when this input number is low (ℓ = 10). (B, D) Competing SNP-set map-

ping approaches include: RSS [26], PEGASUS [25], GBJ [27], SKAT [21], GSEA [43], and

MAGMA [23]. Note that the upper limit of the x-axis has been truncated at 0.1. All results

are based on 100 replicates (see S1 Text).

(PDF)

S7 Fig. Receiver operating characteristic (ROC) curves comparing the performance of the

BANNs (red) and BANN-SS (black) models with competing SNP and SNP-set mapping

approaches in simulations with population structure (European cohort). Here, quantitative

traits are simulated to have broad-sense heritability of H2 = 0.2 with equal contributions from

additive effects and epistatic interactions (i.e., ρ = 0.5). In these simulations, traits were gener-

ated while using the top ten principal components (PCs) of the genotype matrix as covariates.

We show power versus false positive rate for two different trait architectures: (A, B) sparse

where only 1% of SNP-sets are enriched for the trait; and (C, D) polygenic where 10% of SNP-

sets are enriched. We then set the number of causal SNPs with non-zero effects to be 1% and

10% of all SNPs located within the enriched SNP-sets, respectively. To derive results, the full

genotype matrix and phenotypic vector are given to the BANNs model and all competing

methods that require individual-level data. For the BANN-SS model and other competing

methods that take GWA summary statistics, we compute standard GWA SNP-level effect sizes

and P-values (estimated using ordinary least squares). (A, C) Competing SNP-level mapping

approaches include: CAVIAR [45], SuSiE [46], and FINEMAP [44]. The software for SuSiE

requires an input ℓ which fixes the maximum number of causal SNPs in the model. We display

results when this input number is high (ℓ = 3000) and when this input number is low (ℓ = 10).

(B, D) Competing SNP-set mapping approaches include: RSS [26], PEGASUS [25], GBJ [27],

SKAT [21], GSEA [43], and MAGMA [23]. Note that the upper limit of the x-axis has been

truncated at 0.1. All results are based on 100 replicates (see S1 Text).

(PDF)

S8 Fig. Receiver operating characteristic (ROC) curves comparing the performance of the

BANNs (red) and BANN-SS (black) models with competing SNP and SNP-set mapping

approaches in simulations with population structure (European cohort). Here, quantitative

traits are simulated to have broad-sense heritability of H2 = 0.6 with equal contributions from
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additive effects and epistatic interactions (i.e., ρ = 0.5). In these simulations, traits were gener-

ated while using the top ten principal components (PCs) of the genotype matrix as covariates.

We show power versus false positive rate for two different trait architectures: (A, B) sparse

where only 1% of SNP-sets are enriched for the trait; and (C, D) polygenic where 10% of SNP-

sets are enriched. We then set the number of causal SNPs with non-zero effects to be 1% and

10% of all SNPs located within the enriched SNP-sets, respectively. To derive results, the full

genotype matrix and phenotypic vector are given to the BANNs model and all competing

methods that require individual-level data. For the BANN-SS model and other competing

methods that take GWA summary statistics, we compute standard GWA SNP-level effect sizes

and P-values (estimated using ordinary least squares). (A, C) Competing SNP-level mapping

approaches include: CAVIAR [45], SuSiE [46], and FINEMAP [44]. The software for SuSiE

requires an input ℓ which fixes the maximum number of causal SNPs in the model. We display

results when this input number is high (ℓ = 3000) and when this input number is low (ℓ = 10).

(B, D) Competing SNP-set mapping approaches include: RSS [26], PEGASUS [25], GBJ [27],

SKAT [21], GSEA [43], and MAGMA [23]. Note that the upper limit of the x-axis has been

truncated at 0.1. All results are based on 100 replicates (see S1 Text).

(PDF)

S9 Fig. Precision-recall curves comparing the performance of the BANNs (red) and

BANN-SS (black) models with competing SNP and SNP-set mapping approaches in simu-

lations (British cohort). Here, quantitative traits are simulated to have broad-sense heritabil-

ity of H2 = 0.2 with only contributions from additive effects (i.e., ρ = 1). We show precision

versus recall for two different trait architectures: (A, B) sparse where only 1% of SNP-sets are

enriched for the trait; and (C, D) polygenic where 10% of SNP-sets are enriched. We then set

the number of causal SNPs with non-zero effects to be 1% and 10% of all SNPs located within

the selected enriched SNP-sets, respectively. To derive results, the full genotype matrix and

phenotypic vector are given to the BANNs model and all competing methods that require indi-

vidual-level data. For the BANN-SS model and other competing methods that take GWA sum-

mary statistics, we compute standard GWA SNP-level effect sizes and P-values (estimated

using ordinary least squares). (A, C) Competing SNP-level mapping approaches include:

CAVIAR [45], SuSiE [46], and FINEMAP [44]. The software for SuSiE requires an input ℓ
which fixes the maximum number of causal SNPs in the model. We display results when this

input number is high (ℓ = 3000) and when this input number is low (ℓ = 10). (B, D) Competing

SNP-set mapping approaches include: RSS [26], PEGASUS [25], GBJ [27], SKAT [21], GSEA

[43], and MAGMA [23]. Note that, for traits with sparse architectures, the top ranked SNPs

and SNP-sets are always true positives, and therefore the minimal recall is not 0. All results are

based on 100 replicates (see S1 Text).

(PDF)

S10 Fig. Precision-recall curves comparing the performance of the BANNs (red) and

BANN-SS (black) models with competing SNP and SNP-set mapping approaches in simu-

lations (British cohort). Here, quantitative traits are simulated to have broad-sense heritabil-

ity of H2 = 0.6 with only contributions from additive effects (i.e., ρ = 1). We show precision

versus recall for two different trait architectures: (A, B) sparse where only 1% of SNP-sets are

enriched for the trait; and (C, D) polygenic where 10% of SNP-sets are enriched. We then set

the number of causal SNPs with non-zero effects to be 1% and 10% of all SNPs located within

the selected enriched SNP-sets, respectively. To derive results, the full genotype matrix and

phenotypic vector are given to the BANNs model and all competing methods that require indi-

vidual-level data. For the BANN-SS model and other competing methods that take GWA sum-

mary statistics, we compute standard GWA SNP-level effect sizes and P-values (estimated
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using ordinary least squares). (A, C) Competing SNP-level mapping approaches include:

CAVIAR [45], SuSiE [46], and FINEMAP [44]. The software for SuSiE requires an input ℓ
which fixes the maximum number of causal SNPs in the model. We display results when this

input number is high (ℓ = 3000) and when this input number is low (ℓ = 10). (B, D) Competing

SNP-set mapping approaches include: RSS [26], PEGASUS [25], GBJ [27], SKAT [21], GSEA

[43], and MAGMA [23]. Note that, for traits with sparse architectures, the top ranked SNPs

and SNP-sets are always true positives, and therefore the minimal recall is not 0. All results are

based on 100 replicates (see S1 Text).

(PDF)

S11 Fig. Precision-recall curves comparing the performance of the BANNs (red) and

BANN-SS (black) models with competing SNP and SNP-set mapping approaches in simu-

lations with population structure (European cohort). Here, quantitative traits are simulated

to have broad-sense heritability of H2 = 0.2 with only contributions from additive effects (i.e.,

ρ = 1). In these simulations, traits were generated while using the top ten principal components

(PCs) of the genotype matrix as covariates. We show precision versus recall for two different

trait architectures: (A, B) sparse where only 1% of SNP-sets are enriched for the trait; and (C,

D) polygenic where 10% of SNP-sets are enriched. We then set the number of causal SNPs

with non-zero effects to be 1% and 10% of all SNPs located within the selected enriched SNP-

sets, respectively. To derive results, the full genotype matrix and phenotypic vector are given

to the BANNs model and all competing methods that require individual-level data. For the

BANN-SS model and other competing methods that take GWA summary statistics, we com-

pute standard GWA SNP-level effect sizes and P-values (estimated using ordinary least

squares). (A, C) Competing SNP-level mapping approaches include: CAVIAR [45], SuSiE

[46], and FINEMAP [44]. The software for SuSiE requires an input ℓ which fixes the maximum

number of causal SNPs in the model. We display results when this input number is high

(ℓ = 3000) and when this input number is low (ℓ = 10). (B, D) Competing SNP-set mapping

approaches include: RSS [26], PEGASUS [25], GBJ [27], SKAT [21], GSEA [43], and MAGMA

[23]. Note that, for traits with sparse architectures, the top ranked SNPs and SNP-sets are

always true positives, and therefore the minimal recall is not 0. All results are based on 100 rep-

licates (see S1 Text).

(PDF)

S12 Fig. Precision-recall curves comparing the performance of the BANNs (red) and

BANN-SS (black) models with competing SNP and SNP-set mapping approaches in simu-

lations with population structure (European cohort). Here, quantitative traits are simulated

to have broad-sense heritability of H2 = 0.6 with only contributions from additive effects (i.e.,

ρ = 1). In these simulations, traits were generated while using the top ten principal components

(PCs) of the genotype matrix as covariates. We show precision versus recall for two different

trait architectures: (A, B) sparse where only 1% of SNP-sets are enriched for the trait; and (C,

D) polygenic where 10% of SNP-sets are enriched. We then set the number of causal SNPs

with non-zero effects to be 1% and 10% of all SNPs located within the selected enriched SNP-

sets, respectively. To derive results, the full genotype matrix and phenotypic vector are given

to the BANNs model and all competing methods that require individual-level data. For the

BANN-SS model and other competing methods that take GWA summary statistics, we com-

pute standard GWA SNP-level effect sizes and P-values (estimated using ordinary least

squares). (A, C) Competing SNP-level mapping approaches include: CAVIAR [45], SuSiE

[46], and FINEMAP [44]. The software for SuSiE requires an input ℓ which fixes the maximum

number of causal SNPs in the model. We display results when this input number is high

(ℓ = 3000) and when this input number is low (ℓ = 10). (B, D) Competing SNP-set mapping
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approaches include: RSS [26], PEGASUS [25], GBJ [27], SKAT [21], GSEA [43], and MAGMA

[23]. Note that, for traits with sparse architectures, the top ranked SNPs and SNP-sets are

always true positives, and therefore the minimal recall is not 0. All results are based on 100 rep-

licates (see S1 Text).

(PDF)

S13 Fig. Precision-recall curves comparing the performance of the BANNs (red) and

BANN-SS (black) models with competing SNP and SNP-set mapping approaches in simu-

lations (British cohort). Here, quantitative traits are simulated to have broad-sense heritabil-

ity of H2 = 0.2 with equal contributions from additive effects and epistatic interactions (i.e., ρ =

0.5). We show precision versus recall for two different trait architectures: (A, B) sparse where

only 1% of SNP-sets are enriched for the trait; and (C, D) polygenic where 10% of SNP-sets

are enriched. We then set the number of causal SNPs with non-zero effects to be 1% and 10%

of all SNPs located within the selected enriched SNP-sets, respectively. To derive results, the

full genotype matrix and phenotypic vector are given to the BANNs model and all competing

methods that require individual-level data. For the BANN-SS model and other competing

methods that take GWA summary statistics, we compute standard GWA SNP-level effect sizes

and P-values (estimated using ordinary least squares). (A, C) Competing SNP-level mapping

approaches include: CAVIAR [45], SuSiE [46], and FINEMAP [44]. The software for SuSiE

requires an input ℓ which fixes the maximum number of causal SNPs in the model. We display

results when this input number is high (ℓ = 3000) and when this input number is low (ℓ = 10).

(B, D) Competing SNP-set mapping approaches include: RSS [26], PEGASUS [25], GBJ [27],

SKAT [21], GSEA [43], and MAGMA [23]. Note that, for traits with sparse architectures, the

top ranked SNPs and SNP-sets are always true positives, and therefore the minimal recall is

not 0. All results are based on 100 replicates (see S1 Text).

(PDF)

S14 Fig. Precision-recall curves comparing the performance of the BANNs (red) and

BANN-SS (black) models with competing SNP and SNP-set mapping approaches in simu-

lations (British cohort). Here, quantitative traits are simulated to have broad-sense heritabil-

ity of H2 = 0.6 with equal contributions from additive effects and epistatic interactions (i.e., ρ =

0.5). We show precision versus recall for two different trait architectures: (A, B) sparse where

only 1% of SNP-sets are enriched for the trait; and (C, D) polygenic where 10% of SNP-sets

are enriched. We then set the number of causal SNPs with non-zero effects to be 1% and 10%

of all SNPs located within the selected enriched SNP-sets, respectively. To derive results, the

full genotype matrix and phenotypic vector are given to the BANNs model and all competing

methods that require individual-level data. For the BANN-SS model and other competing

methods that take GWA summary statistics, we compute standard GWA SNP-level effect sizes

and P-values (estimated using ordinary least squares). (A, C) Competing SNP-level mapping

approaches include: CAVIAR [45], SuSiE [46], and FINEMAP [44]. The software for SuSiE

requires an input ℓ which fixes the maximum number of causal SNPs in the model. We display

results when this input number is high (ℓ = 3000) and when this input number is low (ℓ = 10).

(B, D) Competing SNP-set mapping approaches include: RSS [26], PEGASUS [25], GBJ [27],

SKAT [21], GSEA [43], and MAGMA [23]. Note that, for traits with sparse architectures, the

top ranked SNPs and SNP-sets are always true positives, and therefore the minimal recall is

not 0. All results are based on 100 replicates (see S1 Text).

(PDF)

S15 Fig. Precision-recall curves comparing the performance of the BANNs (red) and

BANN-SS (black) models with competing SNP and SNP-set mapping approaches in
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simulations with population structure (European cohort). Here, quantitative traits are simu-

lated to have broad-sense heritability of H2 = 0.2 with equal contributions from additive effects

and epistatic interactions (i.e., ρ = 0.5). In these simulations, traits were generated while using

the top ten principal components (PCs) of the genotype matrix as covariates. We show preci-

sion versus recall for two different trait architectures: (A, B) sparse where only 1% of SNP-sets

are enriched for the trait; and (C, D) polygenic where 10% of SNP-sets are enriched. We then

set the number of causal SNPs with non-zero effects to be 1% and 10% of all SNPs located

within the selected enriched SNP-sets, respectively. To derive results, the full genotype matrix

and phenotypic vector are given to the BANNs model and all competing methods that require

individual-level data. For the BANN-SS model and other competing methods that take GWA

summary statistics, we compute standard GWA SNP-level effect sizes and P-values (estimated

using ordinary least squares). (A, C) Competing SNP-level mapping approaches include:

CAVIAR [45], SuSiE [46], and FINEMAP [44]. The software for SuSiE requires an input ℓ
which fixes the maximum number of causal SNPs in the model. We display results when this

input number is high (ℓ = 3000) and when this input number is low (ℓ = 10). (B, D) Competing

SNP-set mapping approaches include: RSS [26], PEGASUS [25], GBJ [27], SKAT [21], GSEA

[43], and MAGMA [23]. Note that, for traits with sparse architectures, the top ranked SNPs

and SNP-sets are always true positives, and therefore the minimal recall is not 0. All results are

based on 100 replicates (see S1 Text).

(PDF)

S16 Fig. Precision-recall curves comparing the performance of the BANNs (red) and

BANN-SS (black) models with competing SNP and SNP-set mapping approaches in simu-

lations with population structure (European cohort). Here, quantitative traits are simulated

to have broad-sense heritability of H2 = 0.2 with equal contributions from additive effects and

epistatic interactions (i.e., ρ = 0.5). In these simulations, traits were generated while using the

top ten principal components (PCs) of the genotype matrix as covariates. We show precision

versus recall for two different trait architectures: (A, B) sparse where only 1% of SNP-sets are

enriched for the trait; and (C, D) polygenic where 10% of SNP-sets are enriched. We then set

the number of causal SNPs with non-zero effects to be 1% and 10% of all SNPs located within

the selected enriched SNP-sets, respectively. To derive results, the full genotype matrix and

phenotypic vector are given to the BANNs model and all competing methods that require indi-

vidual-level data. For the BANN-SS model and other competing methods that take GWA sum-

mary statistics, we compute standard GWA SNP-level effect sizes and P-values (estimated

using ordinary least squares). (A, C) Competing SNP-level mapping approaches include:

CAVIAR [45], SuSiE [46], and FINEMAP [44]. The software for SuSiE requires an input ℓ
which fixes the maximum number of causal SNPs in the model. We display results when this

input number is high (ℓ = 3000) and when this input number is low (ℓ = 10). (B, D) Competing

SNP-set mapping approaches include: RSS [26], PEGASUS [25], GBJ [27], SKAT [21], GSEA

[43], and MAGMA [23]. Note that, for traits with sparse architectures, the top ranked SNPs

and SNP-sets are always true positives, and therefore the minimal recall is not 0. All results are

based on 100 replicates (see S1 Text).

(PDF)

S17 Fig. Scatter plots comparing how the integrative neural network training procedure

enables the ability to identify associated SNPs and enriched SNP-sets in simulations (Brit-

ish cohort). Quantitative traits are simulated to have broad-sense heritability of H2 = 0.2 with

only contributions from additive effects set (i.e., ρ = 1). We consider two different trait archi-

tectures: (A, B) sparse where only 1% of SNP-sets are enriched for the trait; and (C, D) poly-

genic where 10% of SNP-sets are enriched. We set the number of causal SNPs with non-zero
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effects to be� 1% and� 10% of all SNPs located within the enriched SNP-sets, respectively.

Results are shown comparing the posterior inclusion probabilities (PIPs) derived by the

BANNs model fit with individual-level data on the x-axis and (A, C) SuSiE [46] and (B, D)

RSS [26] on the y-axis, respectively. Here, SuSie is fit while assuming a high maximum number

of causal SNPs (ℓ = 3000). The blue horizontal and vertical dashed lines are marked at the

“median probability criterion” (i.e., PIPs for SNPs and SNP-sets greater than 0.5) [57]. True

positive causal variants used to generate the synthetic phenotypes are colored in red, while

non-causal variants are given in grey. SNPs and SNP-sets in the top right quadrant are selected

by both approaches; while, elements in the bottom right and top left quadrants are uniquely

identified by BANNs and SuSie/RSS, respectively. Each plot combines results from 100 simu-

lated replicates (see S1 Text).

(PDF)

S18 Fig. Scatter plots comparing how the integrative neural network training procedure

enables the ability to identify associated SNPs and enriched SNP-sets in simulations with

population structure (European cohort). Quantitative traits are simulated to have broad-

sense heritability of H2 = 0.2 with only contributions from additive effects set (i.e., ρ = 1).

We consider two different trait architectures: (A, B) sparse where only 1% of SNP-sets are

enriched for the trait; and (C, D) polygenic where 10% of SNP-sets are enriched. We set the

number of causal SNPs with non-zero effects to be 1% and 10% of all SNPs located within the

enriched SNP-sets, respectively. In these simulations, traits were generated while also using the

top ten principal components (PCs) of the genotype matrix as covariates. Results are shown

comparing the posterior inclusion probabilities (PIPs) derived by the BANNs model fit with

individual-level data on the x-axis and (A, C) SuSiE [46] and (B, D) RSS [26] on the y-axis,

respectively. Here, SuSie is fit while assuming a high maximum number of causal SNPs (ℓ =

3000). The blue horizontal and vertical dashed lines are marked at the “median probability cri-

terion” (i.e., PIPs for SNPs and SNP-sets greater than 0.5) [57]. True positive causal variants

used to generate the synthetic phenotypes are colored in red, while non-causal variants are

given in grey. SNPs and SNP-sets in the top right quadrant are selected by both approaches;

while, elements in the bottom right and top left quadrants are uniquely identified by BANNs

and SuSie/RSS, respectively. Each plot combines results from 100 simulated replicates

(see S1 Text).

(PDF)

S19 Fig. Scatter plots comparing how the integrative neural network training procedure

enables the ability to identify associated SNPs and enriched SNP-sets in simulations with

population structure (European cohort). Quantitative traits are simulated to have broad-

sense heritability of H2 = 0.6 with only contributions from additive effects set (i.e., ρ = 1).

We consider two different trait architectures: (A, B) sparse where only 1% of SNP-sets are

enriched for the trait; and (C, D) polygenic where 10% of SNP-sets are enriched. We set the

number of causal SNPs with non-zero effects to be 1% and 10% of all SNPs located within the

enriched SNP-sets, respectively. In these simulations, traits were generated while also using the

top ten principal components (PCs) of the genotype matrix as covariates. Results are shown

comparing the posterior inclusion probabilities (PIPs) derived by the BANNs model fit with

individual-level data on the x-axis and (A, C) SuSiE [46] and (B, D) RSS [26] on the y-axis,

respectively. Here, SuSie is fit while assuming a high maximum number of causal SNPs (ℓ =

3000). The blue horizontal and vertical dashed lines are marked at the “median probability cri-

terion” (i.e., PIPs for SNPs and SNP-sets greater than 0.5) [57]. True positive causal variants

used to generate the synthetic phenotypes are colored in red, while non-causal variants are

given in grey. SNPs and SNP-sets in the top right quadrant are selected by both approaches;
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while, elements in the bottom right and top left quadrants are uniquely identified by BANNs

and SuSie/RSS, respectively. Each plot combines results from 100 simulated replicates (see

S1 Text).

(PDF)

S20 Fig. Scatter plots comparing how the integrative neural network training procedure

enables the ability to identify associated SNPs and enriched SNP-sets in simulations (Brit-

ish cohort). Quantitative traits are simulated to have broad-sense heritability of H2 = 0.2 with

equal contributions from additive effects and epistatic interactions (i.e., ρ = 0.5). We consider

two different trait architectures: (A, B) sparse where only 1% of SNP-sets are enriched for the

trait; and (C, D) polygenic where 10% of SNP-sets are enriched. We set the number of causal

SNPs with non-zero effects to be 1% and 10% of all SNPs located within the enriched SNP-

sets, respectively. Results are shown comparing the posterior inclusion probabilities (PIPs)

derived by the BANNs model fit with individual-level data on the x-axis and (A, C) SuSiE [46]

and (B, D) RSS [26] on the y-axis, respectively. Here, SuSie is fit while assuming a high maxi-

mum number of causal SNPs (ℓ = 3000). The blue horizontal and vertical dashed lines are

marked at the “median probability criterion” (i.e., PIPs for SNPs and SNP-sets greater than

0.5) [57]. True positive causal variants used to generate the synthetic phenotypes are colored in

red, while non-causal variants are given in grey. SNPs and SNP-sets in the top right quadrant

are selected by both approaches; while, elements in the bottom right and top left quadrants are

uniquely identified by BANNs and SuSie/RSS, respectively. Each plot combines results from

100 simulated replicates (see S1 Text).

(PDF)

S21 Fig. Scatter plots comparing how the integrative neural network training procedure

enables the ability to identify associated SNPs and enriched SNP-sets in simulations (Brit-

ish cohort). Quantitative traits are simulated to have broad-sense heritability of H2 = 0.6 with

equal contributions from additive effects and epistatic interactions (i.e., ρ = 0.5). We consider

two different trait architectures: (A, B) sparse where only 1% of SNP-sets are enriched for the

trait; and (C, D) polygenic where 10% of SNP-sets are enriched. We set the number of causal

SNPs with non-zero effects to be 1% and 10% of all SNPs located within the enriched SNP-

sets, respectively. Results are shown comparing the posterior inclusion probabilities (PIPs)

derived by the BANNs model fit with individual-level data on the x-axis and (A, C) SuSiE [46]

and (B, D) RSS [26] on the y-axis, respectively. Here, SuSie is fit while assuming a high maxi-

mum number of causal SNPs (ℓ = 3000). The blue horizontal and vertical dashed lines are

marked at the “median probability criterion” (i.e., PIPs for SNPs and SNP-sets greater than

0.5) [57]. True positive causal variants used to generate the synthetic phenotypes are colored in

red, while non-causal variants are given in grey. SNPs and SNP-sets in the top right quadrant

are selected by both approaches; while, elements in the bottom right and top left quadrants are

uniquely identified by BANNs and SuSie/RSS, respectively. Each plot combines results from

100 simulated replicates (see S1 Text).

(PDF)

S22 Fig. Scatter plots comparing how the integrative neural network training procedure

enables the ability to identify associated SNPs and enriched SNP-sets in simulations with

population structure (European cohort). Quantitative traits are simulated to have broad-

sense heritability of H2 = 0.2 with equal contributions from additive effects and epistatic inter-

actions (i.e., ρ = 0.5). We consider two different trait architectures: (A, B) sparse where only

1% of SNP-sets are enriched for the trait; and (C, D) polygenic where 10% of SNP-sets are

enriched. We set the number of causal SNPs with non-zero effects to be 1% and 10% of all
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SNPs located within the enriched SNP-sets, respectively. In these simulations, traits were gen-

erated while also using the top ten principal components (PCs) of the genotype matrix as

covariates. Results are shown comparing the posterior inclusion probabilities (PIPs) derived

by the BANNs model fit with individual-level data on the x-axis and (A, C) SuSiE [46] and (B,

D) RSS [26] on the y-axis, respectively. Here, SuSie is fit while assuming a high maximum

number of causal SNPs (ℓ = 3000). The blue horizontal and vertical dashed lines are marked at

the “median probability criterion” (i.e., PIPs for SNPs and SNP-sets greater than 0.5) [57].

True positive causal variants used to generate the synthetic phenotypes are colored in red,

while non-causal variants are given in grey. SNPs and SNP-sets in the top right quadrant are

selected by both approaches; while, elements in the bottom right and top left quadrants are

uniquely identified by BANNs and SuSie/RSS, respectively. Each plot combines results from

100 simulated replicates (see S1 Text).

(PDF)

S23 Fig. Scatter plots comparing how the integrative neural network training procedure

enables the ability to identify associated SNPs and enriched SNP-sets in simulations with

population structure (European cohort). Quantitative traits are simulated to have broad-

sense heritability of H2 = 0.6 with equal contributions from additive effects and epistatic inter-

actions (i.e., ρ = 0.5). We consider two different trait architectures: (A, B) sparse where only

1% of SNP-sets are enriched for the trait; and (C, D) polygenic where 10% of SNP-sets are

enriched. We set the number of causal SNPs with non-zero effects to be 1% and 10% of all

SNPs located within the enriched SNP-sets, respectively. In these simulations, traits were gen-

erated while also using the top ten principal components (PCs) of the genotype matrix as

covariates. Results are shown comparing the posterior inclusion probabilities (PIPs) derived

by the BANNs model fit with individual-level data on the x-axis and (A, C) SuSiE [46] and (B,

D) RSS [26] on the y-axis, respectively. Here, SuSie is fit while assuming a high maximum

number of causal SNPs (ℓ = 3000). The blue horizontal and vertical dashed lines are marked at

the “median probability criterion” (i.e., PIPs for SNPs and SNP-sets greater than 0.5) [57].

True positive causal variants used to generate the synthetic phenotypes are colored in red,

while non-causal variants are given in grey. SNPs and SNP-sets in the top right quadrant are

selected by both approaches; while, elements in the bottom right and top left quadrants are

uniquely identified by BANNs and SuSie/RSS, respectively. Each plot combines results from

100 simulated replicates (see S1 Text).

(PDF)

S24 Fig. Assessments of posterior inclusion probability (PIP) calibration for both SNP-

level associations and enrichment of SNP-sets. This experiment follows largely from previous

work [46, 65]. Here, SNPs and SNP-sets across simulations are grouped into bins according to

their reported PIPs (using 20 equally spaced bins, from 0 to 1). The plots show the average PIP

for each bin against the proportion of causal SNPs or SNP-sets in that bin. A well calibrated

method should produce points near the x-axis = y-axis line (i.e., the diagonal red lines). Gray

error bars show ±2 standard errors. Panel (A, B) shows the comparison of BANNs SNP layer

with SuSiE [46], and (C, D) shows the comparison of BANNs SNP-set layer with RSS [26].

While the inclusion probabilities are not perfectly calibrated for any of the methods, the empir-

ical power and false discovery rate (FDR) above the “median probability criterion” (i.e., PIPs

for SNPs and SNP-sets greater than 0.5) [57] are still reasonably well controlled (see S1–S8

Tables). We hypothesize that these calibration results are due both to consequences of both var-

iational inference and the level of polygenicity with which we simulated synthetic phenotypes.

(PDF)
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S25 Fig. Receiver operating characteristic (ROC) curves comparing the performance of the

BANNs models with different modifications via an ablation test. To investigate how choices

in the model setup contribute to variable selection, we performed an “ablation analysis” where

we modified parts of the BANNs framework independently and observed their direct effect on

model performance (see S1 Text). We considered two different modifications to our model:

(1) removing the activation function and training a fully linear hierarchical model, and (2)

removing the approximate Bayesian model averaging approach and updating the probabilities

πθ and πw as additional parameters in the variational EM algorithm. In the normal BANNs

setup, we initialize L different models with varying priors for inclusion probabilities specified

over a grid fp
ð1Þ

y ; . . . ; p
ðLÞ
y g 2 ½1=J; 1� and fpð1Þw ; . . . ; pðLÞw g 2 ½1=G; 1�, respectively. However, in

the case of the latter ablation modification, we initialize πθ = 1/J and πw = 1/G as an analogy to

the “single causal variant” assumption frequently used in fine mapping [46]. Next, we update

their values in the M-step of the algorithm according to the following analytic expressions: (A,

C) πθ/1 − πθ = ∑j ∑k αjk/∑j ∑k(1 − αjk), and (B, D) πw/1 − πw = ∑g αg/∑g(1 − αg). Results here are

shown using simulations with the self-identified “white British” ancestry cohort from the UK

Biobank on synthetic traits that have broad-sense heritability H2 = 0.6 with sparse genetic

architecture. Each plot combines results from 100 simulated replicates (see S1 Text).

(PDF)

S26 Fig. Boxplots depicting the ability of the BANNs and BANN-SS models to estimate the

phenotypic variation explained (PVE) by SNPs (pink) and SNP-sets (blue) for complex

traits in simulations. In this work, we define PVE as the total proportion of phenotypic vari-

ance that is explained by sparse genetic effects (both additive and non-additive) [16]. Here,

quantitative traits are simulated to have broad-sense heritability of H2 = 0.2 with different lev-

els of contributions from additive effects and epistatic interactions. We consider two different

trait architectures: (A, B) sparse where only 1% of SNP-sets are enriched for the trait; and (C,

D) polygenic where 10% of SNP-sets are enriched. Panels (A, C) show heritability estimates on

simulations with genetic data from individuals who self-identify as being of “white British”

ancestry in the UK Biobank; while, panels (B, D) show heritability estimates on simulations

with genetic data from individuals who more broadly identify as being of European ancestry.

True heritability values are shown as the dashed grey horizontal lines. The root mean square

error (RMSE) between the BANNs model estimates of the PVE and the true values are also

provided.

(PDF)

S27 Fig. Boxplots depicting the ability of the BANNs and BANN-SS models to estimate the

phenotypic variation explained (PVE) by SNPs (pink) and SNP-sets (blue) for complex traits

in simulations. In this work, we define PVE as the total proportion of phenotypic variance that

is explained by sparse genetic effects (both additive and non-additive) [16]. Here, quantitative

traits are simulated to have broad-sense heritability of H2 = 0.6 with different levels of contribu-

tions from additive effects and epistatic interactions. We consider two different trait architec-

tures: (A, B) sparse where only 1% of SNP-sets are enriched for the trait; and (C, D) polygenic

where 10% of SNP-sets are enriched. Panels (A, C) show heritability estimates on simulations

with genetic data from individuals who self-identify as being of “white British” ancestry in the

UK Biobank; while, panels (B, D) show heritability estimates on simulations with genetic data

from individuals who more broadly identify as being of European ancestry. True heritability val-

ues are shown as the dashed grey horizontal lines. The root mean square error (RMSE) between

the BANNs model estimates of the PVE and the true values are also provided.

(PDF)
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S28 Fig. Manhattan plots of variant-level fine mapping results for six traits in heteroge-

nous stock of mice from the Wellcome Trust Centre for Human Genetics. Traits are

grouped based on their category and include: (A) body mass index (BMI) and body weight,

(B) percentage of CD8+ cells and mean corpuscular hemoglobin (MCH), and (C) high-density

and low-density lipoprotein (HDL and LDL, respectively) cholesterol. Posterior inclusion

probabilities (PIP) for the input layer weights are derived from the BANNs model fit on indi-

vidual-level data and are plotted for each SNP against their genomic positions. Chromosomes

are shown in alternating colors for clarity. The black dashed line is marked at 0.5 and repre-

sents the “median probability model (MPM)” threshold [57]. Here, we only color code SNPs

that had a PIP greater than 1% in either trait. SNPs with PIPs exceeding 1% in both traits are

marked by a star and denoted as falling in the “overlap” category. BANNs estimated the follow-

ing PVEs on the SNP and SNP-set levels for these traits, respectively: (i) 0.09 and 0.08 for BMI,

(ii) 0.39 and 0.40 for body weight, (iii) 0.51 and 0.48 for percentage of CD8+ cells, (iv) 0.34 and

0.32 for MCH, (v) 0.34 and 0.28 for HDL, and (vi) 0.15 and 0.15 for LDL.

(PDF)

S29 Fig. Gene set enrichment analyses using the significant SNP-sets identified by BANNs

for high-density and low-density lipoprotein (HDL and LDL, respectively) traits in the

Framingham Heart Study [48]. Here, SNP-set annotations are based on gene boundaries

defined by the NCBI’s RefSeq database in the UCSC Genome Browser [50]. Unannotated

SNPs located within the same genomic region were labeled as being within the “intergenic

region” between two genes. Posterior inclusion probabilities (PIP) for the input and hidden

layer weights are derived by fitting the BANNs model on individual-level data. A SNP-set is

considered significant if it has a PIP(g)� 0.5 (i.e., the “median probability model” threshold

[57]). We take these significant SNP-sets and conduct “gene set enrichment analysis” using

Enrichr [90, 91] to identify the categories they overrepresent in (A, B) the database of Geno-

types and Phenotypes (dbGaP) and (C, D) the GWAS Catalog (2019). Nearly all enriched

categories are related with (A, C) HDL and (B, D) LDL, respectively. Note that in LDL, the

BANNs framework identified the gene APOB as having a high PIP = 0.976. There have been

hypotheses connecting LDL to cognitive traits [140, 141], and APOB has been shown to be

related to cerebrospinal fluid and memory [142–144]. Therefore, we argue that results in panel

(D) are also relevant.

(PDF)

S30 Fig. Gene set enrichment analyses using the significant SNP-sets identified by BANNs

for high-density and low-density lipoprotein (HDL and LDL, respectively) traits in the

Framingham Heart Study [48]. Here, SNP-set annotations are based on gene boundaries

defined by the NCBI’s RefSeq database in the UCSC Genome Browser [50]. Unannotated

SNPs located within the same genomic region were labeled as being within the “intergenic

region” between two genes. In this analysis, each gene boundary annotation is modfied by add-

ing SNPs within a ±500 kilobase (kb) buffer to account for possible regulatory elements. Poste-

rior inclusion probabilities (PIP) for the input and hidden layer weights are derived by fitting

the BANNs model on individual-level data. A SNP-set is considered significant if it has a PIP

(g)� 0.5 (i.e., the “median probability model” threshold [57]). We take these significant SNP-

sets and conduct “gene set enrichment analysis” using Enrichr [90, 91] to identify the catego-

ries they overrepresent in (A, B) the database of Genotypes and Phenotypes (dbGaP) and (C,

D) the GWAS Catalog (2019). Nearly all enriched categories are related with (A, C) HDL and

(B, D) LDL, respectively.
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S31 Fig. Manhattan plot of variant-level association mapping results for high-density and

low-density lipoprotein (HDL and LDL, respectively) traits in ten thousand randomly

sampled individuals of European ancestry from the UK Biobank [31]. Posterior inclusion

probabilities (PIP) for the neural network weights are derived from the BANNs model fit on

individual-level data and are plotted for each SNP against their genomic positions. Chromo-

somes are shown in alternating colors for clarity. The black dashed line is marked at 0.5 and

represents the “median probability model” threshold [57]. SNPs with PIPs above that thresh-

old are color coded based on their SNP-set annotation. Here, SNP-set annotations are based

on gene boundaries defined by the NCBI’s RefSeq database in the UCSC Genome Browser

[50]. Unannotated SNPs located within the same genomic region were labeled as being within

the “intergenic region” between two genes. These regions are labeled as Gene1-Gene2 in the

legend. Gene set enrichment analyses for these SNP-sets can be found in S31 Fig. Stars ($)

denote SNPs and SNP-sets that replicate findings from our analyses of HDL and LDL in the

Framingham Heart Study (see Fig 4 in the main text).

(PDF)

S32 Fig. Gene set enrichment analyses using the significant SNP-sets identified by BANNs

for high-density and low-density lipoprotein (HDL and LDL, respectively) traits in ten

thousand randomly sampled individuals of European ancestry from the UK Biobank [31].

Here, SNP-set annotations are based on gene boundaries defined by the NCBI’s RefSeq data-

base in the UCSC Genome Browser [50]. Unannotated SNPs located within the same genomic

region were labeled as being within the “intergenic region” between two genes. Posterior inclu-

sion probabilities (PIP) for the input and hidden layer weights are derived by fitting the

BANNs model on individual-level data. A SNP-set is considered significant if it has a PIP(g)�

0.5 (i.e., the “median probability model” threshold [57]). We take these significant SNP-sets

and conduct “gene set enrichment analysis” using Enrichr [90, 91] to identify the categories

they overrepresent in (A, B) the database of Genotypes and Phenotypes (dbGaP) and (C, D)

the GWAS Catalog (2019). Nearly all enriched categories are related with (A, C) HDL and

(B, D) LDL, respectively. Note that in LDL, the BANNs framework again identifies the gene

APOB as having a high PIP (replicating the finding in the Framingham Heart Study). There

have been hypotheses connecting LDL to cognitive traits [140, 141], and APOB has been

shown to be related to cerebrospinal fluid and memory [142–144]. Therefore, we argue that

results in panel (B) are also relevant (a similar argument can be made for S33 Fig).

(PDF)

S33 Fig. Gene set enrichment analyses using the significant SNP-sets identified by BANNs

for high-density and low-density lipoprotein (HDL and LDL, respectively) traits in ten

thousand randomly sampled individuals of European ancestry from the UK Biobank [31].

Here, SNP-set annotations are based on gene boundaries defined by the NCBI’s RefSeq data-

base in the UCSC Genome Browser [50]. Unannotated SNPs located within the same genomic

region were labeled as being within the “intergenic region” between two genes. In this analysis,

each gene boundary annotation is modfied by adding SNPs within a ±500 kilobase (kb) buffer

to account for possible regulatory elements. Posterior inclusion probabilities (PIP) for the

input and hidden layer weights are derived by fitting the BANNs model on individual-level

data. A SNP-set is considered significant if it has a PIP(g)� 0.5 (i.e., the “median probability

model” threshold [57]). We take these significant SNP-sets and conduct “gene set enrichment

analysis” using Enrichr [90, 91] to identify the categories they overrepresent in (A, B) the data-

base of Genotypes and Phenotypes (dbGaP) and (C, D) the GWAS Catalog (2019). Note that

for panel (A), BANNs did not find many enriched SNP-sets with PIPs meeting the “median

probability model” threshold and so we used a lower SNP-set threshold (PIP� 0.1) to enable
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Enrichr to find associated dbGaP categories.

(PDF)

S1 Table. Comparing the empirical power and false discovery rates (FDR) of the BANNs

framework against competing SNP and SNP-set mapping approaches in simulations.

Here, quantitative traits are simulated to have broad-sense heritability of H2 = 0.2 with only

contributions from additive effects set (i.e., ρ = 1). We consider two different trait architec-

tures: sparse where only 1% of SNP-sets are enriched for the trait; and polygenic where 10% of

SNP-sets are enriched. We set the number of causal SNPs with non-zero effects to be 1% and

10% of all SNPs located within the enriched SNP-sets, respectively. (Top) Competing SNP-

level mapping approaches include: CAVIAR [45], SuSiE [46], and FINEMAP [44]. The soft-

ware for SuSiE requires an input ℓ which fixes the maximum number of causal SNPs in the

model. We display results when this input number is high (ℓ = 3000) and when this input

number is low (ℓ = 10). (Bottom) Competing SNP-set mapping approaches include: RSS [26],

PEGASUS [25], GBJ [27], SKAT [21], GSEA [43], and MAGMA [23]. Results for the BANN,

BANN-SS, and other Bayesian methods are evaluated based on the “median probability crite-

rion” (i.e., PIPs for SNPs and SNP-sets greater than 0.5) [57]. Results for the frequentist

approaches are based on Bonferroni-corrected thresholds for multiple hypothesis testing

(P = 0.05/36518 = 1.37 × 10−6 at the SNP-level and P = 0.05/2816 = 1.78 × 10−5 at the SNP-set

level, respectively). All results are based on 100 replicates and standard deviations of the esti-

mates across runs are given in the parentheses. Approaches with the greatest power are bolded

in purple, while methods with the lowest FDR is bolded in blue.

(PDF)

S2 Table. Comparing the empirical power and false discovery rates (FDR) of the BANNs

framework against competing SNP and SNP-set mapping approaches in simulations.

Here, quantitative traits are simulated to have broad-sense heritability of H2 = 0.6 with only

contributions from additive effects set (i.e., ρ = 1). We consider two different trait architec-

tures: sparse where only 1% of SNP-sets are enriched for the trait; and polygenic where 10% of

SNP-sets are enriched. We set the number of causal SNPs with non-zero effects to be 1% and

10% of all SNPs located within the enriched SNP-sets, respectively. (Top) Competing SNP-

level mapping approaches include: CAVIAR [45], SuSiE [46], and FINEMAP [44]. The soft-

ware for SuSiE requires an input ℓ which fixes the maximum number of causal SNPs in the

model. We display results when this input number is high (ℓ = 3000) and when this input

number is low (ℓ = 10). (Bottom) Competing SNP-set mapping approaches include: RSS [26],

PEGASUS [25], GBJ [27], SKAT [21], GSEA [43], and MAGMA [23]. Results for the BANN,

BANN-SS, and other Bayesian methods are evaluated based on the “median probability crite-

rion” (i.e., PIPs for SNPs and SNP-sets greater than 0.5) [57]. Results for the frequentist

approaches are based on Bonferroni-corrected thresholds for multiple hypothesis testing

(P = 0.05/36518 = 1.37 × 10−6 at the SNP-level and P = 0.05/2816 = 1.78 × 10−5 at the SNP-set

level, respectively). All results are based on 100 replicates and standard deviations of the esti-

mates across runs are given in the parentheses. Approaches with the greatest power are bolded

in purple, while methods with the lowest FDR is bolded in blue.

(PDF)

S3 Table. Comparing the empirical power and false discovery rates (FDR) of the BANNs

framework against competing SNP and SNP-set mapping approaches in simulations with

population structure (European cohort). Here, quantitative traits are simulated to have

broad-sense heritability of H2 = 0.2 with only contributions from additive effects set (i.e.,

ρ = 1). We consider two different trait architectures: sparse where only 1% of SNP-sets are
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enriched for the trait; and polygenic where 10% of SNP-sets are enriched. We set the number

of causal SNPs with non-zero effects to be 1% and 10% of all SNPs located within the enriched

SNP-sets, respectively. (Top) Competing SNP-level mapping approaches include: CAVIAR

[45], SuSiE [46], and FINEMAP [44]. The software for SuSiE requires an input ℓ which fixes

the maximum number of causal SNPs in the model. We display results when this input num-

ber is high (ℓ = 3000) and when this input number is low (ℓ = 10). (Bottom) Competing SNP-

set mapping approaches include: RSS [26], PEGASUS [25], GBJ [27], SKAT [21], GSEA [43],

and MAGMA [23]. Results for the BANN, BANN-SS, and other Bayesian methods are evalu-

ated based on the “median probability criterion” (i.e., PIPs for SNPs and SNP-sets greater than

0.5) [57]. Results for the frequentist approaches are based on Bonferroni-corrected thresholds

for multiple hypothesis testing (P = 0.05/36518 = 1.37 × 10−6 at the SNP-level and P = 0.05/

2816 = 1.78 × 10−5 at the SNP-set level, respectively). All results are based on 100 replicates

and standard deviations of the estimates across runs are given in the parentheses. Approaches

with the greatest power are bolded in purple, while methods with the lowest FDR is bolded in

blue.

(PDF)

S4 Table. Comparing the empirical power and false discovery rates (FDR) of the BANNs

framework against competing SNP and SNP-set mapping approaches in simulations with

population structure (European cohort). Here, quantitative traits are simulated to have

broad-sense heritability of H2 = 0.6 with only contributions from additive effects set (i.e.,

ρ = 1). We consider two different trait architectures: sparse where only 1% of SNP-sets are

enriched for the trait; and polygenic where 10% of SNP-sets are enriched. We set the number

of causal SNPs with non-zero effects to be 1% and 10% of all SNPs located within the enriched

SNP-sets, respectively. (Top) Competing SNP-level mapping approaches include: CAVIAR

[45], SuSiE [46], and FINEMAP [44]. The software for SuSiE requires an input ℓ which fixes

the maximum number of causal SNPs in the model. We display results when this input num-

ber is high (ℓ = 3000) and when this input number is low (ℓ = 10). (Bottom) Competing SNP-

set mapping approaches include: RSS [26], PEGASUS [25], GBJ [27], SKAT [21], GSEA [43],

and MAGMA [23]. Results for the BANN, BANN-SS, and other Bayesian methods are evalu-

ated based on the “median probability criterion” (i.e., PIPs for SNPs and SNP-sets greater than

0.5) [57]. Results for the frequentist approaches are based on Bonferroni-corrected thresholds

for multiple hypothesis testing (P = 0.05/36518 = 1.37 × 10−6 at the SNP-level and P = 0.05/

2816 = 1.78 × 10−5 at the SNP-set level, respectively). All results are based on 100 replicates

and standard deviations of the estimates across runs are given in the parentheses. Approaches

with the greatest power are bolded in purple, while methods with the lowest FDR is bolded in

blue.

(PDF)

S5 Table. Comparing the empirical power and false discovery rates (FDR) of the BANNs

framework against competing SNP and SNP-set mapping approaches in simulations.

Here, quantitative traits are simulated to have broad-sense heritability of H2 = 0.2 with contri-

butions from both additive and epistatic effects set (i.e., ρ = 0.5). We consider two different

trait architectures: sparse where only 1% of SNP-sets are enriched for the trait; and polygenic

where 10% of SNP-sets are enriched. We set the number of causal SNPs with non-zero effects

to be 1% and 10% of all SNPs located within the enriched SNP-sets, respectively. (Top) Com-

peting SNP-level mapping approaches include: CAVIAR [45], SuSiE [46], and FINEMAP [44].

The software for SuSiE requires an input ℓ which fixes the maximum number of causal SNPs

in the model. We display results when this input number is high (ℓ = 3000) and when this

input number is low (ℓ = 10). (Bottom) Competing SNP-set mapping approaches include: RSS
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[26], PEGASUS [25], GBJ [27], SKAT [21], GSEA [43], and MAGMA [23]. Results for the

BANN, BANN-SS, and other Bayesian methods are evaluated based on the “median probabil-

ity criterion” (i.e., PIPs for SNPs and SNP-sets greater than 0.5) [57]. Results for the frequentist

approaches are based on Bonferroni-corrected thresholds for multiple hypothesis testing

(P = 0.05/36518 = 1.37 × 10−6 at the SNP-level and P = 0.05/2816 = 1.78 × 10−5 at the SNP-set

level, respectively). All results are based on 100 replicates and standard deviations of the esti-

mates across runs are given in the parentheses. Approaches with the greatest power are bolded

in purple, while methods with the lowest FDR is bolded in blue.

(PDF)

S6 Table. Comparing the empirical power and false discovery rates (FDR) of the BANNs

framework against competing SNP and SNP-set mapping approaches in simulations.

Here, quantitative traits are simulated to have broad-sense heritability of H2 = 0.6 with contri-

butions from both additive and epistatic effects set (i.e., ρ = 0.5). We consider two different

trait architectures: sparse where only 1% of SNP-sets are enriched for the trait; and polygenic

where 10% of SNP-sets are enriched. We set the number of causal SNPs with non-zero effects

to be 1% and 10% of all SNPs located within the enriched SNP-sets, respectively. (Top) Com-

peting SNP-level mapping approaches include: CAVIAR [45], SuSiE [46], and FINEMAP [44].

The software for SuSiE requires an input ℓ which fixes the maximum number of causal SNPs

in the model. We display results when this input number is high (ℓ = 3000) and when this

input number is low (ℓ = 10). (Bottom) Competing SNP-set mapping approaches include: RSS

[26], PEGASUS [25], GBJ [27], SKAT [21], GSEA [43], and MAGMA [23]. Results for the

BANN, BANN-SS, and other Bayesian methods are evaluated based on the “median probabil-

ity criterion” (i.e., PIPs for SNPs and SNP-sets greater than 0.5) [57]. Results for the frequentist

approaches are based on Bonferroni-corrected thresholds for multiple hypothesis testing

(P = 0.05/36518 = 1.37 × 10−6 at the SNP-level and P = 0.05/2816 = 1.78 × 10−5 at the SNP-set

level, respectively). All results are based on 100 replicates and standard deviations of the esti-

mates across runs are given in the parentheses. Approaches with the greatest power are bolded

in purple, while methods with the lowest FDR is bolded in blue.

(PDF)

S7 Table. Comparing the empirical power and false discovery rates (FDR) of the BANNs

framework against competing SNP and SNP-set mapping approaches in simulations with

population structure (European cohort). Here, quantitative traits are simulated to have

broad-sense heritability of H2 = 0.2 with contributions from both additive and epistatic effects

set (i.e., ρ = 0.5). We consider two different trait architectures: sparse where only 1% of SNP-

sets are enriched for the trait; and polygenic where 10% of SNP-sets are enriched. We set the

number of causal SNPs with non-zero effects to be 1% and 10% of all SNPs located within the

enriched SNP-sets, respectively. (Top) Competing SNP-level mapping approaches include:

CAVIAR [45], SuSiE [46], and FINEMAP [44]. The software for SuSiE requires an input ℓ
which fixes the maximum number of causal SNPs in the model. We display results when this

input number is high (ℓ = 3000) and when this input number is low (ℓ = 10). (Bottom) Com-

peting SNP-set mapping approaches include: RSS [26], PEGASUS [25], GBJ [27], SKAT [21],

GSEA [43], and MAGMA [23]. Results for the BANN, BANN-SS, and other Bayesian methods

are evaluated based on the “median probability criterion” (i.e., PIPs for SNPs and SNP-sets

greater than 0.5) [57]. Results for the frequentist approaches are based on Bonferroni-cor-

rected thresholds for multiple hypothesis testing (P = 0.05/36518 = 1.37 × 10−6 at the SNP-

level and P = 0.05/2816 = 1.78 × 10−5 at the SNP-set level, respectively). All results are based on

100 replicates and standard deviations of the estimates across runs are given in the parenthe-

ses. Approaches with the greatest power are bolded in purple, while methods with the lowest
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FDR is bolded in blue.

(PDF)

S8 Table. Comparing the empirical power and false discovery rates (FDR) of the BANNs

framework against competing SNP and SNP-set mapping approaches in simulations with

population structure (European cohort). Here, quantitative traits are simulated to have

broad-sense heritability of H2 = 0.6 with contributions from both additive and epistatic effects

set (i.e., ρ = 0.5). We consider two different trait architectures: sparse where only 1% of SNP-

sets are enriched for the trait; and polygenic where 10% of SNP-sets are enriched. We set the

number of causal SNPs with non-zero effects to be 1% and 10% of all SNPs located within the

enriched SNP-sets, respectively. (Top) Competing SNP-level mapping approaches include:

CAVIAR [45], SuSiE [46], and FINEMAP [44]. The software for SuSiE requires an input ℓ
which fixes the maximum number of causal SNPs in the model. We display results when this

input number is high (ℓ = 3000) and when this input number is low (ℓ = 10). (Bottom) Com-

peting SNP-set mapping approaches include: RSS [26], PEGASUS [25], GBJ [27], SKAT [21],

GSEA [43], and MAGMA [23]. Results for the BANN, BANN-SS, and other Bayesian methods

are evaluated based on the “median probability criterion” (i.e., PIPs for SNPs and SNP-sets

greater than 0.5) [57]. Results for the frequentist approaches are based on Bonferroni-cor-

rected thresholds for multiple hypothesis testing (P = 0.05/36518 = 1.37 × 10−6 at the SNP-

level and P = 0.05/2816 = 1.78 × 10−5 at the SNP-set level, respectively). All results are based on

100 replicates and standard deviations of the estimates across runs are given in the parenthe-

ses. Approaches with the greatest power are bolded in purple, while methods with the lowest

FDR is bolded in blue.

(PDF)

S9 Table. Computational time for running Bayesian annotated neural networks (BANNs)

and other SNP-level association mapping approaches, as a function of the total number

SNPs analyzed and the number of samples in the data. Methods compared include: BANNs,

CAVIAR [45], SuSiE [46], and FINEMAP [44]. Each table entry represents the average compu-

tation time (in seconds) it takes each approach to analyze a dataset of the size indicated. Run

times were measured on an Intel i5-8259U CPU with base frequency of 2.30GHz, turbo fre-

quency of 3.80GHz, and memory 16GB 2133 MHz LPDDR3. Here, we used 4 cores for paralle-

lization when applicable. The software for SuSiE requires an input ℓ which fixes the maximum

number of causal SNPs in the model. We display results when this input parameter is high (ℓ =

3000) and when this input parameter is low (ℓ = 10). Note that we implemented BANNs using

the Python 3 version of the software, and the timing for its variational algorithm includes

inference on both SNPs and SNP-sets. CAVIAR and FINEMAP are set up to work with GWA

summary statistics, so their inputs (and timing) are the same irrespective of the sample size.

(PDF)

S10 Table. Computational time for running Bayesian annotated neural networks (BANNs)

and other SNP-set level enrichment approaches, as a function of the total number SNP-

sets analyzed and the number of SNPs within each SNP-set. Methods compared include:

BANNs, RSS [26], PEGASUS [25], GBJ [27], SKAT [21], GSEA [43], and MAGMA [23]. Here,

we simulated 10 datasets for each pair of parameter values (number of SNP-sets analyzed and

number of SNPs within each SNP-set). Sample size was held constant at n = 10,000 individuals.

Each table entry represents the average computation time (in seconds) it takes each approach

to analyze a dataset of the size indicated. Run times were measured on an Intel i5-8259U CPU

with base frequency of 2.30GHz, turbo frequency of 3.80GHz, and memory 16GB 2133 MHz

LPDDR3. Here, we used 4 cores for parallelization when applicable. Note that PEGASUS, GBJ,
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SKAT, and MAGMA are score-based methods and, thus, are expected to take the least amount

of time to run. Both the BANNs framework and RSS are regression-based methods. The

increased computational burden of these approaches results from its need to do (approximate)

Bayesian posterior inference; however, the sparse and partially connected architecture of the

BANNs model allows it to scale more favorably for larger dimensional datasets. Note that we

implemented BANNs using the Python 3 version of the software, and the timing for its vari-

ational algorithm includes inference on both SNPs and SNP-sets.

(PDF)

S11 Table. SNP and SNP-set results for body mass index (BMI) in the heterogenous stock

of mice from the Wellcome Trust Centre for Human Genetics. We analyze J� 10,000 SNPs

and G = 1, 925 SNP-sets from N = 1,814 mice—with specific numbers varying slightly depend-

ing on the quality control procedure for each phenotype (Supporting information). Here,

SNP-set annotations are based on gene boundaries defined by the Mouse Genome Informatics

database (see URLs listed in the main text). Unannotated SNPs located within the same geno-

mic region were labeled as being within the “intergenic region” between two genes. This file

gives the posterior inclusion probabilities (PIPs) for the input and hidden layer neural network

weights after fitting the BANNs model on the individual-level data. We assess significance for

both SNPs and SNP-sets according to the “median probability model” threshold [57] (i.e.,

PIP� 0.5). Page #1 provides the variant-level association mapping results with columns corre-

sponding to: (1) chromosome; (2) SNP ID; (3) chromosomal position in base-pair (bp) coordi-

nates; (4) SNP PIP; and (5) SuSiE PIP, which corresponds to SNP-level posterior inclusion

probabilities computed by SuSiE [46]. Page #2 provides the SNP-set level enrichment results

with columns corresponding to: (1) chromosome; (2) SNP-set ID; (3-4) the starting and end-

ing position of the SNP-set chromosomal boundaries; (5) SNP-set PIP; (6) RSS PIP, which cor-

responds to the posterior inclusion probabilities computed by RSS [26]; (7) the number of

SNPs that have been annotated within each SNP-set; (8) the “top” associated SNP within each

SNP-set; (9) the PIP of each top SNP.

(XLSX)

S12 Table. SNP and SNP-set results for body weight in the heterogenous stock of mice from

the Wellcome Trust Centre for Human Genetics. We analyze J� 10,000 SNPs and G = 1, 925

SNP-sets from N = 1,814 mice—with specific numbers varying slightly depending on the quality

control procedure for each phenotype (Supporting information). Here, SNP-set annotations are

based on gene boundaries defined by the Mouse Genome Informatics database (see URLs in the

main text). Unannotated SNPs located within the same genomic region were labeled as being

within the “intergenic region” between two genes. This file gives the posterior inclusion proba-

bilities (PIPs) for the input and hidden layer neural network weights after fitting the BANNs

model on the individual-level data. We assess significance for both SNPs and SNP-sets accord-

ing to the “median probability model” threshold [57] (i.e., PIP� 0.5). Page #1 provides the vari-

ant-level association mapping results with columns corresponding to: (1) chromosome; (2) SNP

ID; (3) chromosomal position in base-pair (bp) coordinates; (4) SNP PIP; and (5) SuSiE PIP,

which corresponds to SNP-level posterior inclusion probabilities computed by SuSiE [46]. Page

#2 provides the SNP-set level enrichment results with columns corresponding to: (1) chromo-

some; (2) SNP-set ID; (3-4) the starting and ending position of the SNP-set chromosomal

boundaries; (5) SNP-set PIP; (6) RSS PIP, which corresponds to the posterior inclusion proba-

bilities computed by RSS [26]; (7) the number of SNPs that have been annotated within each

SNP-set; (8) the “top” associated SNP within each SNP-set; (9) the PIP of each top SNP.

(XLSX)
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S13 Table. SNP and SNP-set results for percentage of CD8+ cells in the heterogenous stock

of mice from the Wellcome Trust Centre for Human Genetics. We analyze J� 10,000 SNPs

and G = 1, 925 SNP-sets from N = 1,814 mice—with specific numbers varying slightly depend-

ing on the quality control procedure for each phenotype (Supporting information). Here,

SNP-set annotations are based on gene boundaries defined by the Mouse Genome Informatics

database (see URLs listed in the main text). Unannotated SNPs located within the same geno-

mic region were labeled as being within the “intergenic region” between two genes. This file

gives the posterior inclusion probabilities (PIPs) for the input and hidden layer neural network

weights after fitting the BANNs model on the individual-level data. We assess significance for

both SNPs and SNP-sets according to the “median probability model” threshold [57] (i.e.,

PIP� 0.5). Page #1 provides the variant-level association mapping results with columns corre-

sponding to: (1) chromosome; (2) SNP ID; (3) chromosomal position in base-pair (bp) coordi-

nates; (4) SNP PIP; and (5) SuSiE PIP, which corresponds to SNP-level posterior inclusion

probabilities computed by SuSiE [46]. Page #2 provides the SNP-set level enrichment results

with columns corresponding to: (1) chromosome; (2) SNP-set ID; (3-4) the starting and end-

ing position of the SNP-set chromosomal boundaries; (5) SNP-set PIP; (6) RSS PIP, which cor-

responds to the posterior inclusion probabilities computed by RSS [26]; (7) the number of

SNPs that have been annotated within each SNP-set; (8) the “top” associated SNP within each

SNP-set; (9) the PIP of each top SNP.

(XLSX)

S14 Table. SNP and SNP-set results for high-density lipoprotein (HDL) cholesterol in the

heterogenous stock of mice from the Wellcome Trust Centre for Human Genetics. We ana-

lyze J� 10,000 SNPs and G = 1, 925 SNP-sets from N = 1,814 mice—with specific numbers

varying slightly depending on the quality control procedure for each phenotype (Supporting

information). Here, SNP-set annotations are based on gene boundaries defined by the Mouse

Genome Informatics database (see URLs listed in the main text). Unannotated SNPs located

within the same genomic region were labeled as being within the “intergenic region” between

two genes. This file gives the posterior inclusion probabilities (PIPs) for the input and hidden

layer neural network weights after fitting the BANNs model on the individual-level data. We

assess significance for both SNPs and SNP-sets according to the “median probability model”

threshold [57] (i.e., PIP� 0.5). Page #1 provides the variant-level association mapping results

with columns corresponding to: (1) chromosome; (2) SNP ID; (3) chromosomal position in

base-pair (bp) coordinates; (4) SNP PIP; and (5) SuSiE PIP, which corresponds to SNP-level

posterior inclusion probabilities computed by SuSiE [46]. Page #2 provides the SNP-set level

enrichment results with columns corresponding to: (1) chromosome; (2) SNP-set ID; (3-4) the

starting and ending position of the SNP-set chromosomal boundaries; (5) SNP-set PIP; (6)

RSS PIP, which corresponds to the posterior inclusion probabilities computed by RSS [26]; (7)

the number of SNPs that have been annotated within each SNP-set; (8) the “top” associated

SNP within each SNP-set; (9) the PIP of each top SNP.

(XLSX)

S15 Table. SNP and SNP-set results for low-density lipoprotein (LDL) cholesterol in the

heterogenous stock of mice from the Wellcome Trust Centre for Human Genetics. We ana-

lyze J� 10,000 SNPs and G = 1, 925 SNP-sets from N = 1,814 mice—with specific numbers

varying slightly depending on the quality control procedure for each phenotype (Supporting

information). Here, SNP-set annotations are based on gene boundaries defined by the Mouse

Genome Informatics database (see URLs listed in the main text). Unannotated SNPs located

within the same genomic region were labeled as being within the “intergenic region” between

two genes. This file gives the posterior inclusion probabilities (PIPs) for the input and hidden
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layer neural network weights after fitting the BANNs model on the individual-level data. We

assess significance for both SNPs and SNP-sets according to the “median probability model”

threshold [57] (i.e., PIP� 0.5). Page #1 provides the variant-level association mapping results

with columns corresponding to: (1) chromosome; (2) SNP ID; (3) chromosomal position in

base-pair (bp) coordinates; (4) SNP PIP; and (5) SuSiE PIP, which corresponds to SNP-level

posterior inclusion probabilities computed by SuSiE [46]. Page #2 provides the SNP-set level

enrichment results with columns corresponding to: (1) chromosome; (2) SNP-set ID; (3-4)

the starting and ending position of the SNP-set chromosomal boundaries; (5) SNP-set PIP; (6)

RSS PIP, which corresponds to the posterior inclusion probabilities computed by RSS [26]; (7)

the number of SNPs that have been annotated within each SNP-set; (8) the “top” associated

SNP within each SNP-set; (9) the PIP of each top SNP.

(XLSX)

S16 Table. SNP and SNP-set results for mean corpuscular hemoglobin (MCH) in the heter-

ogenous stock of mice from the Wellcome Trust Centre for Human Genetics. We analyze J
� 10,000 SNPs and G = 1, 925 SNP-sets from N = 1,814 mice—with specific numbers varying

slightly depending on the quality control procedure for each phenotype (Supporting informa-

tion). Here, SNP-set annotations are based on gene boundaries defined by the Mouse Genome

Informatics database (see URLs listed in the main text). Unannotated SNPs located within the

same genomic region were labeled as being within the “intergenic region” between two genes.

This file gives the posterior inclusion probabilities (PIPs) for the input and hidden layer neural

network weights after fitting the BANNs model on the individual-level data. We assess signifi-

cance for both SNPs and SNP-sets according to the “median probability model” threshold [57]

(i.e., PIP� 0.5). Page #1 provides the variant-level association mapping results with columns

corresponding to: (1) chromosome; (2) SNP ID; (3) chromosomal position in base-pair (bp)

coordinates; (4) SNP PIP; and (5) SuSiE PIP, which corresponds to SNP-level posterior inclu-

sion probabilities computed by SuSiE [46]. Page #2 provides the SNP-set level enrichment

results with columns corresponding to: (1) chromosome; (2) SNP-set ID; (3-4) the starting

and ending position of the SNP-set chromosomal boundaries; (5) SNP-set PIP; (6) RSS PIP,

which corresponds to the posterior inclusion probabilities computed by RSS [26]; (7) the num-

ber of SNPs that have been annotated within each SNP-set; (8) the “top” associated SNP within

each SNP-set; (9) the PIP of each top SNP.

(XLSX)

S17 Table. Notable enriched SNP-sets after applying the BANNs framework to high-den-

sity and low-density lipoprotein (HDL and LDL, respectively) traits in the Framingham

Heart Study [48] where each SNP-set annotation has been augmented with a ±500 kilobase

(kb) buffer to account for possible regulatory elements. Here, SNP-set annotations are

based on gene boundaries defined by the NCBI’s RefSeq database in the UCSC Genome

Browser [50]. Unannotated SNPs located within the same genomic region were labeled as

being within the “intergenic region” between two genes. These regions are labeled as Gene1-

Gene2 in the table. Posterior inclusion probabilities (PIP) for the input and hidden layer

weights are derived by fitting the BANNs model on individual-level data. A SNP-set is consid-

ered enriched if it has a PIP(g)� 0.5 (i.e., the “median probability model” threshold [57]). We

report the “top” associated SNP within each region and its corresponding PIP(j). We also

report the corresponding SNP and SNP-set level results after running SuSiE [46] and RSS [26]

on these same traits, respectively. The last column details references and literature sources that

have previously suggested some level of association or enrichment between the each genomic

region and the traits of interest. See S18 and S19 Tables for the complete list of SNP and SNP-

set level results. ♣: SNPs and SNP-sets replicated in an independent analysis of ten thousand
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randomly sampled individuals of European ancestry from the UK Biobank [31].

(PDF)

S18 Table. SNP and SNP-set results for high-density lipoprotein (HDL) cholesterol in indi-

viduals assayed within the Framingham Heart Study. We analyze J = 394,174 SNPs and

G = 18, 364 SNP-sets from N = 6,950 people. Here, SNP-set annotations are based on gene

boundaries defined by the NCBI’s RefSeq database in the UCSC Genome Browser [50]. Unan-

notated SNPs located within the same genomic region were labeled as being within the “inter-

genic region” between two genes. This file gives the posterior inclusion probabilities (PIPs) for

the input and hidden layer neural network weights after fitting the BANNs model on the indi-

vidual-level data. We assess significance for both SNPs and SNP-sets according to the “median

probability model” threshold [57] (i.e., PIP� 0.5). Page #1 provides the variant-level associa-

tion mapping results with columns corresponding to: (1) chromosome; (2) SNP ID; (3) chro-

mosomal position in base-pair (bp) coordinates; (4) SNP PIP; and (5) SuSiE PIP, which

corresponds to SNP-level posterior inclusion probabilities computed by SuSiE [46]. Page #2

provides the SNP-set level enrichment results with columns corresponding to: (1) chromo-

some; (2) SNP-set ID; (3-4) the starting and ending position of the SNP-set chromosomal

boundaries; (5) SNP-set PIP; (6) RSS PIP, which corresponds to the posterior inclusion proba-

bilities computed by RSS [26]; (7) the number of SNPs that have been annotated within each

SNP-set; (8) the “top” associated SNP within each SNP-set; (9) the PIP of each top SNP. Pages

#3 and #4 provide similar results based on analyses where each SNP-set annotation has been

augmented with a ±500 kilobase (kb) buffer to account for possible regulatory elements.

(ZIP)

S19 Table. SNP and SNP-set results for low-density lipoprotein (LDL) cholesterol in indi-

viduals assayed within the Framingham Heart Study. We analyze J = 394,174 SNPs and

G = 18, 364 SNP-sets from N = 6,950 people. Here, SNP-set annotations are based on gene

boundaries defined by the NCBI’s RefSeq database in the UCSC Genome Browser [50]. Unan-

notated SNPs located within the same genomic region were labeled as being within the “inter-

genic region” between two genes. This file gives the posterior inclusion probabilities (PIPs) for

the input and hidden layer neural network weights after fitting the BANNs model on the indi-

vidual-level data. We assess significance for both SNPs and SNP-sets according to the “median

probability model” threshold [57] (i.e., PIP� 0.5). Page #1 provides the variant-level associa-

tion mapping results with columns corresponding to: (1) chromosome; (2) SNP ID; (3) chro-

mosomal position in base-pair (bp) coordinates; (4) SNP PIP; and (5) SuSiE PIP, which

corresponds to SNP-level posterior inclusion probabilities computed by SuSiE [46]. Page #2

provides the SNP-set level enrichment results with columns corresponding to: (1) chromo-

some; (2) SNP-set ID; (3-4) the starting and ending position of the SNP-set chromosomal

boundaries; (5) SNP-set PIP; (6) RSS PIP, which corresponds to the posterior inclusion proba-

bilities computed by RSS [26]; (7) the number of SNPs that have been annotated within each

SNP-set; (8) the “top” associated SNP within each SNP-set; (9) the PIP of each top SNP. Pages

#3 and #4 provide similar results based on analyses where each SNP-set annotation has been

augmented with a ±500 kilobase (kb) buffer to account for possible regulatory elements.

(ZIP)

S20 Table. Complete summary of the results after applying BANNs, SuSiE [46], and RSS

[26] to high-density lipoprotein (HDL) and low-density lipoprotein (LDL) cholesterol in

both individuals assayed within the Framingham Heart Study and ten thousand randomly

sampled individuals of European ancestry from the UK Biobank. The first page compares

the overlap of significant SNPs and SNP-sets found by each method according to the “median
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probability model” threshold [57] (i.e., PIP� 0.5) in the Framingham Heart Study. The second

page lists how many SNPs and SNP-sets were replicated for each method when analyzing the

independent dataset from the UK Biobank. Results are based on defining gene boundaries in

two ways: (a) we use the UCSC gene boundary definitions directly, and (b) we augment the

gene boundaries by adding SNPs within a ±500 kilobase (kb) buffer to account for possible

regulatory elements.

(XLSX)

S21 Table. SNP and SNP-set results for high-density lipoprotein (HDL) cholesterol in ten

thousand randomly sampled individuals of European ancestry from the UK Biobank. We

analyze the same J = 394,174 SNPs and G = 18, 364 SNP-sets used in the Framingham Heart

Study analyses. Here, SNP-set annotations are based on gene boundaries defined by the

NCBI’s RefSeq database in the UCSC Genome Browser [50]. Unannotated SNPs located

within the same genomic region were labeled as being within the “intergenic region” between

two genes. This file gives the posterior inclusion probabilities (PIPs) for the input and hidden

layer neural network weights after fitting the BANNs model on the individual-level data. We

assess significance for both SNPs and SNP-sets according to the “median probability model”

threshold [57] (i.e., PIP� 0.5). Page #1 provides the variant-level association mapping results

with columns corresponding to: (1) chromosome; (2) SNP ID; (3) chromosomal position in

base-pair (bp) coordinates; (4) SNP PIP; and (5) SuSiE PIP, which corresponds to SNP-level

posterior inclusion probabilities computed by SuSiE [46]. Page #2 provides the SNP-set level

enrichment results with columns corresponding to: (1) chromosome; (2) SNP-set ID; (3-4) the

starting and ending position of the SNP-set chromosomal boundaries; (5) SNP-set PIP; (6)

RSS PIP, which corresponds to the posterior inclusion probabilities computed by RSS [26]; (7)

the number of SNPs that have been annotated within each SNP-set; (8) the “top” associated

SNP within each SNP-set; (9) the PIP of each top SNP. Pages #3 and #4 provide similar results

based on analyses where each SNP-set annotation has been augmented with a ±500 kilobase

(kb) buffer to account for possible regulatory elements.

(ZIP)

S22 Table. SNP and SNP-set results for low-density lipoprotein (LDL) cholesterol in ten

thousand randomly sampled individuals of European ancestry from the UK Biobank. We

analyze the same J = 394,174 SNPs and G = 18, 364 SNP-sets used in the Framingham Heart

Study analyses. Here, SNP-set annotations are based on gene boundaries defined by the

NCBI’s RefSeq database in the UCSC Genome Browser [50]. Unannotated SNPs located

within the same genomic region were labeled as being within the “intergenic region” between

two genes. This file gives the posterior inclusion probabilities (PIPs) for the input and hidden

layer neural network weights after fitting the BANNs model on the individual-level data. We

assess significance for both SNPs and SNP-sets according to the “median probability model”

threshold [57] (i.e., PIP� 0.5). Page #1 provides the variant-level association mapping results

with columns corresponding to: (1) chromosome; (2) SNP ID; (3) chromosomal position in

base-pair (bp) coordinates; (4) SNP PIP; and (5) SuSiE PIP, which corresponds to SNP-level

posterior inclusion probabilities computed by SuSiE [46]. Page #2 provides the SNP-set level

enrichment results with columns corresponding to: (1) chromosome; (2) SNP-set ID; (3-4) the

starting and ending position of the SNP-set chromosomal boundaries; (5) SNP-set PIP; (6)

RSS PIP, which corresponds to the posterior inclusion probabilities computed by RSS [26]; (7)

the number of SNPs that have been annotated within each SNP-set; (8) the “top” associated

SNP within each SNP-set; (9) the PIP of each top SNP. Pages #3 and #4 provide similar results

based on analyses where each SNP-set annotation has been augmented with a ±500 kilobase
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(kb) buffer to account for possible regulatory elements.

(ZIP)

S1 Text. Supplementary and background information for results mentioned in the main

text. Specifically, we give description of the variational inference algorithm for the BANN

framework, the data quality control procedures, simulation setup and scenarios, and additional

results for the traits analyzed from the Framingham Heart Study and the UK Biobank.

(PDF)
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33. Bellot P, de los Campos G, Pérez-Enciso M. Can deep learning improve genomic prediction of com-

plex human traits? Genetics. 2018 11; 210(3):809–819. Available from: http://www.genetics.org/

content/210/3/809.abstract. PMID: 30171033

34. Jiang Y, Reif JC. Modeling epistasis in genomic selection. Genetics. 2015; 201:759–768. https://doi.

org/10.1534/genetics.115.177907 PMID: 26219298

35. Crawford L, Wood KC, Zhou X, Mukherjee S. Bayesian approximate kernel regression with variable

selection. J Am Stat Assoc. 2018; 113(524):1710–1721. https://doi.org/10.1080/01621459.2017.

1361830 PMID: 30799887

36. Wahba G. Splines models for observational data. vol. 59 of Series in Applied Mathematics. Philadel-

phia, PA: SIAM; 1990.

37. Crawford L, Flaxman SR, Runcie DE, West M. Variable prioritization in nonlinear black box methods:

A genetic association case study. Ann Appl Stat. 2019; 13(2):958–989. https://doi.org/10.1214/18-

aoas1222 PMID: 32542104

38. Courville A, Bergstra J, Bengio Y. Unsupervised models of images by spike-and-slab RBMs. In: Pro-

ceedings of the 28th International Conference on International Conference on Machine Learning.

ICML’11. Madison, WI, USA: Omnipress; 2011. p. 1145–1152.

39. Deng W, Zhang X, Liang F, Lin G. An adaptive empirical Bayesian method for sparse deep learning.

Advances in Neural Information Processing Systems. 2019 12; 2019:5563–5573. Available from:

https://pubmed.ncbi.nlm.nih.gov/33244209.

40. Srinivas S, Subramanya A, Venkatesh Babu R. Training sparse neural networks. In: Proceedings of

the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops; 2017. p. 455–

462.

41. Liang F, Li Q, Zhou L. Bayesian neural networks for selection of drug sensitive genes. J Am Stat

Assoc. 2018; 113(523):955–972. Available from: https://pubmed.ncbi.nlm.nih.gov/31354179. https://

doi.org/10.1080/01621459.2017.1409122

42. Ghosh S, Yao J, Doshi-Velez F. Model selection in Bayesian neural networks via horseshoe priors. J

Mach Learn Res. 2019; 20(182):1–46. Available from: http://jmlr.org/papers/v20/19-236.html.

PLOS GENETICS Biologically Annotated Neural Networks

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1009754 August 19, 2021 47 / 53

https://doi.org/10.1371/journal.pgen.1003770
https://doi.org/10.1371/journal.pgen.1003770
http://www.ncbi.nlm.nih.gov/pubmed/24098138
https://doi.org/10.1371/journal.pcbi.1004219
https://doi.org/10.1371/journal.pcbi.1004219
http://www.ncbi.nlm.nih.gov/pubmed/25885710
https://doi.org/10.1371/journal.pcbi.1004714
http://www.ncbi.nlm.nih.gov/pubmed/26808494
http://www.genetics.org/content/204/2/783.abstract
http://www.ncbi.nlm.nih.gov/pubmed/27489002
https://doi.org/10.1038/s41467-018-06805-x
https://doi.org/10.1038/s41467-018-06805-x
http://www.ncbi.nlm.nih.gov/pubmed/30341297
https://doi.org/10.1371/journal.pgen.1007530
https://doi.org/10.1371/journal.pgen.1007530
http://www.ncbi.nlm.nih.gov/pubmed/30875371
https://doi.org/10.1371/journal.pgen.1008855
http://www.ncbi.nlm.nih.gov/pubmed/32542026
https://doi.org/10.1038/nature14539
http://www.ncbi.nlm.nih.gov/pubmed/26017442
https://pubmed.ncbi.nlm.nih.gov/28189464
https://pubmed.ncbi.nlm.nih.gov/28189464
https://doi.org/10.1016/j.je.2016.12.005
https://doi.org/10.1038/s41586-018-0579-z
https://doi.org/10.1038/s41586-018-0579-z
http://www.ncbi.nlm.nih.gov/pubmed/30305743
http://genome.cshlp.org/content/26/7/969.abstract
http://genome.cshlp.org/content/26/7/969.abstract
http://www.ncbi.nlm.nih.gov/pubmed/27302636
http://www.genetics.org/content/210/3/809.abstract
http://www.genetics.org/content/210/3/809.abstract
http://www.ncbi.nlm.nih.gov/pubmed/30171033
https://doi.org/10.1534/genetics.115.177907
https://doi.org/10.1534/genetics.115.177907
http://www.ncbi.nlm.nih.gov/pubmed/26219298
https://doi.org/10.1080/01621459.2017.1361830
https://doi.org/10.1080/01621459.2017.1361830
http://www.ncbi.nlm.nih.gov/pubmed/30799887
https://doi.org/10.1214/18-aoas1222
https://doi.org/10.1214/18-aoas1222
http://www.ncbi.nlm.nih.gov/pubmed/32542104
https://pubmed.ncbi.nlm.nih.gov/33244209
https://pubmed.ncbi.nlm.nih.gov/31354179
https://doi.org/10.1080/01621459.2017.1409122
https://doi.org/10.1080/01621459.2017.1409122
http://jmlr.org/papers/v20/19-236.html
https://doi.org/10.1371/journal.pgen.1009754


43. Holden M, Deng S, Wojnowski L, Kulle B. GSEA-SNP: applying gene set enrichment analysis to SNP

data from genome-wide association studies. Bioinformatics. 2008; 24(23):2784–2785. https://doi.org/

10.1093/bioinformatics/btn516 PMID: 18854360

44. Benner C, Spencer CCA, Havulinna AS, Salomaa V, Ripatti S, Pirinen M. FINEMAP: efficient variable

selection using summary data from genome-wide association studies. Bioinformatics. 2016; 32

(10):1493–1501. Available from: https://pubmed.ncbi.nlm.nih.gov/26773131. https://doi.org/10.1093/

bioinformatics/btw018

45. Hormozdiari F, van de Bunt M, Segrè AV, Li X, Joo JWJ, Bilow M, et al. Colocalization of GWAS and

eQTL signals detects target genes. Am J Hum Genet. 2016; 99(6):1245–1260. Available from: https://

doi.org/10.1016/j.ajhg.2016.10.003. PMID: 27866706

46. Wang G, Sarkar A, Carbonetto P, Stephens M. A simple new approach to variable selection in regres-

sion, with application to genetic fine-mapping. J R Stat Soc B. 2020; 82:1273–1300. BioRxiv. Available

from: http://biorxiv.org/content/early/2019/07/29/501114.abstract.

47. Valdar W, Solberg LC, Gauguier D, Burnett S, Klenerman P, Cookson WO, et al. Genome-wide

genetic association of complex traits in heterogeneous stock mice. Nat Genet. 2006; 38(8):879–887.

Available from: http://dx.doi.org/10.1038/ng1840. PMID: 16832355

48. Splansky GL, Corey D, Yang Q, Atwood LD, Cupples LA, Benjamin EJ, et al. The Third Generation

Cohort of the National Heart, Lung, and Blood Institute’s Framingham Heart Study: design, recruit-

ment, and initial examination. Am J Epidemiol. 2007; 165(11):1328–1335. https://doi.org/10.1093/aje/

kwm021 PMID: 17372189

49. Xu B, Wang N, Chen T, Li M. Empirical evaluation of rectified activations in convolutional network;

2015. ArXiv.

50. Pruitt KD, Tatusova T, Maglott DR. NCBI Reference Sequence (RefSeq): a curated non-redundant

sequence database of genomes, transcripts and proteins. Nucleic Acids Res. 2005; 33(Database

issue):D501–4. https://doi.org/10.1093/nar/gki025 PMID: 15608248

51. Bult CJ, Blake JA, Smith CL, Kadin JA, Richardson JE. Mouse Genome Database (MGD). Nucleic

Acids Res. 2019; 47(D1):D801–D806. https://doi.org/10.1093/nar/gky1056 PMID: 30407599

52. Moser G, Lee SH, Hayes BJ, Goddard ME, Wray NR, Visscher PM. Simultaneous discovery, estima-

tion and prediction analysis of complex traits using a Bayesian mixture model. PLoS Genet. 2015; 11

(4):e1004969. Available from: https://pubmed.ncbi.nlm.nih.gov/25849665. https://doi.org/10.1371/

journal.pgen.1004969

53. Zhang Y, Qi G, Park JH, Chatterjee N. Estimation of complex effect-size distributions using summary-

level statistics from genome-wide association studies across 32 complex traits. Nat Genet. 2018; 50

(9):1318–1326. https://doi.org/10.1038/s41588-018-0193-x PMID: 30104760

54. Lloyd-Jones LR, Zeng J, Sidorenko J, Yengo L, Moser G, Kemper KE, et al. Improved polygenic pre-

diction by Bayesian multiple regression on summary statistics. Nat Comm. 2019; 10(1):5086. Available

from: https://doi.org/10.1038/s41467-019-12653-0. PMID: 31704910

55. Carbonetto P, Stephens M. Scalable variational inference for Bayesian variable selection in regres-

sion, and its accuracy in genetic association studies. Bayesian Anal. 2012; 7(1):73–108. https://doi.

org/10.1214/12-BA703

56. Carbonetto P, Zhou X, Stephens M. varbvs: Fast variable selection for large-scale regression; 2017.

ArXiv.

57. Barbieri MM, Berger JO. Optimal predictive model selection. Ann Statist. 2004; 32(3):870–897. Avail-

able from: http://projecteuclid.org/euclid.aos/1085408489.

58. Uijlings JRR, van de Sande KEA, Gevers T, Smeulders AWM. Selective search for object recogni-

tion. Int J Comput Vis. 2013; 104(2):154–171. Available from: https://doi.org/10.1007/s11263-013-

0620-5.

59. Girshick R, Donahue J, Darrell T, Malik J. Rich feature hierarchies for accurate object detection and

semantic segmentation. In: 2014 IEEE Conference on Computer Vision and Pattern Recognition;

2014. p. 580–587.

60. Lee S, Emond MJ, Bamshad MJ, Barnes KC, Rieder MJ, Nickerson DA, et al. Optimal unified

approach for rare-variant association testing with application to small-sample case-control whole-

exome sequencing studies. Am J Hum Genet. 2012; 91(2):224–237. Available from: http://www.

sciencedirect.com/science/article/pii/S0002929712003163. PMID: 22863193

61. Berk RH, Jones DH. Goodness-of-fit test statistics that dominate the Kolmogorov statistics. Z Wahrsch

Verw Gebiete. 1979; 47(1):47–59. Available from: https://doi.org/10.1007/BF00533250.

62. Zhu X, Stephens M. Bayesian large-scale multiple regression with summary statistics from genome-

wide association studies. Ann Appl Stat. 2017; 11(3):1561–1592. Available from: https://projecteuclid.

org:443/euclid.aoas/1507168840. PMID: 29399241

PLOS GENETICS Biologically Annotated Neural Networks

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1009754 August 19, 2021 48 / 53

https://doi.org/10.1093/bioinformatics/btn516
https://doi.org/10.1093/bioinformatics/btn516
http://www.ncbi.nlm.nih.gov/pubmed/18854360
https://pubmed.ncbi.nlm.nih.gov/26773131
https://doi.org/10.1093/bioinformatics/btw018
https://doi.org/10.1093/bioinformatics/btw018
https://doi.org/10.1016/j.ajhg.2016.10.003
https://doi.org/10.1016/j.ajhg.2016.10.003
http://www.ncbi.nlm.nih.gov/pubmed/27866706
http://biorxiv.org/content/early/2019/07/29/501114.abstract
http://dx.doi.org/10.1038/ng1840
http://www.ncbi.nlm.nih.gov/pubmed/16832355
https://doi.org/10.1093/aje/kwm021
https://doi.org/10.1093/aje/kwm021
http://www.ncbi.nlm.nih.gov/pubmed/17372189
https://doi.org/10.1093/nar/gki025
http://www.ncbi.nlm.nih.gov/pubmed/15608248
https://doi.org/10.1093/nar/gky1056
http://www.ncbi.nlm.nih.gov/pubmed/30407599
https://pubmed.ncbi.nlm.nih.gov/25849665
https://doi.org/10.1371/journal.pgen.1004969
https://doi.org/10.1371/journal.pgen.1004969
https://doi.org/10.1038/s41588-018-0193-x
http://www.ncbi.nlm.nih.gov/pubmed/30104760
https://doi.org/10.1038/s41467-019-12653-0
http://www.ncbi.nlm.nih.gov/pubmed/31704910
https://doi.org/10.1214/12-BA703
https://doi.org/10.1214/12-BA703
http://projecteuclid.org/euclid.aos/1085408489
https://doi.org/10.1007/s11263-013-0620-5
https://doi.org/10.1007/s11263-013-0620-5
http://www.sciencedirect.com/science/article/pii/S0002929712003163
http://www.sciencedirect.com/science/article/pii/S0002929712003163
http://www.ncbi.nlm.nih.gov/pubmed/22863193
https://doi.org/10.1007/BF00533250
https://projecteuclid.org:443/euclid.aoas/1507168840
https://projecteuclid.org:443/euclid.aoas/1507168840
http://www.ncbi.nlm.nih.gov/pubmed/29399241
https://doi.org/10.1371/journal.pgen.1009754


63. Blei DM, Kucukelbir A, McAuliffe JD. Variational inference: A review for statisticians. J Am Stat Assoc.

2017; 112(518):859–877. https://doi.org/10.1080/01621459.2017.1285773

64. Giordano R, Broderick T, Jordan MI. Covariances, robustness and variational bayes. J Mach Learn

Res. 2018; 19(1):1981–2029.

65. Guan Y, Stephens M. Bayesian variable selection regression for genome-wide association studies

and other large-scale problems. Ann Appl Stat. 2011; 5(3):1780–1815. Available from: https://

projecteuclid.org:443/euclid.aoas/1318514285.

66. Chen X, McClusky R, Chen J, Beaven SW, Tontonoz P, Arnold AP, et al. The number of X chromo-

somes causes sex differences in adiposity in mice. PLoS Genet. 2012; 8(5):e1002709. Available from:

https://doi.org/10.1371/journal.pgen.1002709. PMID: 22589744

67. Mackay TFC. Epistasis and quantitative traits: using model organisms to study gene–gene interac-

tions. Nat Rev Genet. 2014; 15(1):22–33. Available from: https://doi.org/10.1038/nrg3627. PMID:

24296533

68. Tyler AL, Donahue LR, Churchill GA, Carter GW. Weak epistasis generally stabilizes phenotypes in a

mouse intercross. PLoS Genet. 2016; 12(2):e1005805. Available from: https://doi.org/10.1371/journal.

pgen.1005805. PMID: 26828925

69. Strakova J, Kamdar F, Kulhanek D, Razzoli M, Garry DJ, Ervasti JM, et al. Integrative effects of dystro-

phin loss on metabolic function of the mdx mouse. Scientific Rep. 2018; 8(1):13624. Available from:

https://pubmed.ncbi.nlm.nih.gov/30206270. https://doi.org/10.1038/s41598-018-31753-3

70. Lotta LA, Mokrosiński J, Mendes de Oliveira E, Li C, Sharp SJ, Luan J, et al. Human gain-of-function

MC4R variants show signaling bias and protect against obesity. Cell. 2019; 177(3):597–607. https://

doi.org/10.1016/j.cell.2019.03.044 PMID: 31002796

71. Zhou K, Yee SW, Seiser EL, van Leeuwen N, Tavendale R, Bennett AJ, et al. Variation in the glucose

transporter gene SLC2A2 is associated with glycemic response to metformin. Nat Genet. 2016; 48

(9):1055–1059. Available from: https://pubmed.ncbi.nlm.nih.gov/27500523. https://doi.org/10.1038/

ng.3632

72. Blanco P, Pitard V, Viallard JF, Taupin JL, Pellegrin JL, Moreau JF. Increase in activated CD8+ T lym-

phocytes expressing perforin and granzyme B correlates with disease activity in patients with systemic

lupus erythematosus. Arthritis Rheum. 2005; 52(1):201–211. https://doi.org/10.1002/art.20745 PMID:

15641052

73. Li H, Adamopoulos IE, Moulton VR, Stillman IE, Herbert Z, Moon JJ, et al. Systemic lupus erythemato-

sus favors the generation of IL-17 producing double negative T cells. Nat Comm. 2020; 11(1):2859.

Available from: https://doi.org/10.1038/s41467-020-16636-4. PMID: 32503973

74. Sharabi A, Tsokos GC. T cell metabolism: new insights in systemic lupus erythematosus pathogenesis

and therapy. Nat Rev Rheumatol. 2020; 16(2):100–112. Available from: https://doi.org/10.1038/

s41584-019-0356-x. PMID: 31949287

75. Stefansson H, Rye DB, Hicks A, Petursson H, Ingason A, Thorgeirsson TE, et al. A genetic risk factor

for periodic limb movements in sleep. N Engl J Med. 2007; 357(7):639–647. https://doi.org/10.1056/

NEJMoa072743 PMID: 17634447

76. Winkelmann J, Schormair B, Lichtner P, Ripke S, Xiong L, Jalilzadeh S, et al. Genome-wide associa-

tion study of restless legs syndrome identifies common variants in three genomic regions. Nat Genet.

2007; 39(8):1000–1006. https://doi.org/10.1038/ng2099 PMID: 17637780

77. Vaithilingam DS, Antao V, Kakis G. Regulation of polyunsaturated fat induced postprandial hypercho-

lesterolemia by a novel gene Phc-2. Mol Cell Biochem. 1994; 130(1):67–74. https://doi.org/10.1007/

BF01084269 PMID: 8190122

78. Silver M, Chen P, Li R, Cheng CY, Wong TY, Tai ES, et al. Pathways-Driven Sparse Regression Iden-

tifies Pathways and Genes Associated with High-Density Lipoprotein Cholesterol in Two Asian

Cohorts. PLoS Genet. 2013; 9(11):e1003939. Available from: https://doi.org/10.1371/journal.pgen.

1003939. PMID: 24278029

79. Cui C, Chatterjee B, Lozito TP, Zhang Z, Francis RJ, Yagi H, et al. Wdpcp, a PCP Protein Required for

Ciliogenesis, Regulates Directional Cell Migration and Cell Polarity by Direct Modulation of the Actin

Cytoskeleton. PLoS Biol. 2013; 11(11):e1001720. Available from: https://doi.org/10.1371/journal.pbio.

1001720. PMID: 24302887

80. Wang DX, Kaur Y, Alyass A, Meyre D. A candidate-gene approach identifies novel associations

between common variants in/near syndromic obesity genes and BMI in pediatric and adult European

populations. Diabetes. 2019; 68(4):724–732. https://doi.org/10.2337/db18-0986 PMID: 30692245

81. Okazaki Y, Furuno M, Kasukawa T, Adachi J, Bono H, Kondo S, et al. Analysis of the mouse transcrip-

tome based on functional annotation of 60,770 full-length cDNAs. Nature. 2002; 420(6915):563–573.

Available from: https://doi.org/10.1038/nature01266. PMID: 12466851

PLOS GENETICS Biologically Annotated Neural Networks

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1009754 August 19, 2021 49 / 53

https://doi.org/10.1080/01621459.2017.1285773
https://projecteuclid.org:443/euclid.aoas/1318514285
https://projecteuclid.org:443/euclid.aoas/1318514285
https://doi.org/10.1371/journal.pgen.1002709
http://www.ncbi.nlm.nih.gov/pubmed/22589744
https://doi.org/10.1038/nrg3627
http://www.ncbi.nlm.nih.gov/pubmed/24296533
https://doi.org/10.1371/journal.pgen.1005805
https://doi.org/10.1371/journal.pgen.1005805
http://www.ncbi.nlm.nih.gov/pubmed/26828925
https://pubmed.ncbi.nlm.nih.gov/30206270
https://doi.org/10.1038/s41598-018-31753-3
https://doi.org/10.1016/j.cell.2019.03.044
https://doi.org/10.1016/j.cell.2019.03.044
http://www.ncbi.nlm.nih.gov/pubmed/31002796
https://pubmed.ncbi.nlm.nih.gov/27500523
https://doi.org/10.1038/ng.3632
https://doi.org/10.1038/ng.3632
https://doi.org/10.1002/art.20745
http://www.ncbi.nlm.nih.gov/pubmed/15641052
https://doi.org/10.1038/s41467-020-16636-4
http://www.ncbi.nlm.nih.gov/pubmed/32503973
https://doi.org/10.1038/s41584-019-0356-x
https://doi.org/10.1038/s41584-019-0356-x
http://www.ncbi.nlm.nih.gov/pubmed/31949287
https://doi.org/10.1056/NEJMoa072743
https://doi.org/10.1056/NEJMoa072743
http://www.ncbi.nlm.nih.gov/pubmed/17634447
https://doi.org/10.1038/ng2099
http://www.ncbi.nlm.nih.gov/pubmed/17637780
https://doi.org/10.1007/BF01084269
https://doi.org/10.1007/BF01084269
http://www.ncbi.nlm.nih.gov/pubmed/8190122
https://doi.org/10.1371/journal.pgen.1003939
https://doi.org/10.1371/journal.pgen.1003939
http://www.ncbi.nlm.nih.gov/pubmed/24278029
https://doi.org/10.1371/journal.pbio.1001720
https://doi.org/10.1371/journal.pbio.1001720
http://www.ncbi.nlm.nih.gov/pubmed/24302887
https://doi.org/10.2337/db18-0986
http://www.ncbi.nlm.nih.gov/pubmed/30692245
https://doi.org/10.1038/nature01266
http://www.ncbi.nlm.nih.gov/pubmed/12466851
https://doi.org/10.1371/journal.pgen.1009754


82. Hansen GM, Markesich DC, Burnett MB, Zhu Q, Dionne KM, Richter LJ, et al. Large-scale gene trap-

ping in C57BL/6N mouse embryonic stem cells. Genome Res. 2008; 18(10):1670–1679. https://doi.

org/10.1101/gr.078352.108 PMID: 18799693

83. Diez-Roux G, Banfi S, Sultan M, Geffers L, Anand S, Rozado D, et al. A high-resolution anatomical

ttlas of the transcriptome in the mouse embryo. PLoS Biol. 2011; 9(1):e1000582. Available from:

https://doi.org/10.1371/journal.pbio.1000582. PMID: 21267068

84. Skarnes WC, Rosen B, West AP, Koutsourakis M, Bushell W, Iyer V, et al. A conditional knockout

resource for the genome-wide study of mouse gene function. Nature. 2011; 474(7351):337–342. Avail-

able from: https://doi.org/10.1038/nature10163. PMID: 21677750

85. Klebig ML, Wall MD, Potter MD, Rowe EL, Carpenter DA, Rinchik EM. Mutations in the clathrin-assem-

bly gene Picalm are responsible for the hematopoietic and iron metabolism abnormalities in fit1 mice.

Proc Natl Acad Sci USA. 2003; 100(14):8360. Available from: http://www.pnas.org/content/100/14/

8360.abstract. PMID: 12832620

86. Lin H, Grosschedl R. Failure of B-cell differentiation in mice lacking the transcription factor EBF.

Nature. 1995; 376(6537):263–267. https://doi.org/10.1038/376263a0 PMID: 7542362

87. Laramie JM, Wilk JB, Williamson SL, Nagle MW, Latourelle JC, Tobin JE, et al. Multiple genes influ-

ence BMI on chromosome 7q31-34: the NHLBI Family Heart Study. Obesity (Silver Spring). 2009; 17

(12):2182–2189. https://doi.org/10.1038/oby.2009.141 PMID: 19461589

88. Lichenstein SD, Jones BL, O’Brien JW, Zezza N, Stiffler S, Holmes B, et al. Familial risk for alcohol

dependence and developmental changes in BMI: the moderating influence of addiction and obesity

genes. Pharmacogenomics. 2014; 15(10):1311–1321. Available from: https://pubmed.ncbi.nlm.nih.

gov/25155933. https://doi.org/10.2217/pgs.14.86

89. Steen VM, Nepal C, Ersland KM, Holdhus R, Nævdal M, Ratvik SM, et al. Neuropsychological deficits

in mice depleted of the schizophrenia susceptibility gene CSMD1. PLoS One. 2013; 8(11):e79501.

https://doi.org/10.1371/journal.pone.0079501 PMID: 24244513

90. Chen EY, Tan CM, Kou Y, Duan Q, Wang Z, Meirelles GV, et al. Enrichr: interactive and collaborative

HTML5 gene list enrichment analysis tool. BMC Bioinform. 2013; 14(1):128. Available from: https://

doi.org/10.1186/1471-2105-14-128. PMID: 23586463

91. Kuleshov MV, Jones MR, Rouillard AD, Fernandez NF, Duan Q, Wang Z, et al. Enrichr: a comprehen-

sive gene set enrichment analysis web server 2016 update. Nucleic Acids Res. 2016; 44(W1):W90–

W97. Available from: https://www.ncbi.nlm.nih.gov/pubmed/27141961. https://doi.org/10.1093/nar/

gkw377

92. Saxena R, Voight BF, Lyssenko V, Burtt NP, de Bakker PIW, Chen H, et al. Genome-wide association

analysis identifies loci for type 2 diabetes and triglyceride levels. Science. 2007; 316(5829):1331–

1336. https://doi.org/10.1126/science.1142358 PMID: 17463246

93. Sabatti C, Service SK, Hartikainen AL, Pouta A, Ripatti S, Brodsky J, et al. Genome-wide association

analysis of metabolic traits in a birth cohort from a founder population. Nat Genet. 2009; 41(1):35–46.

Available from: https://doi.org/10.1038/ng.271. PMID: 19060910

94. Ko A, Cantor RM, Weissglas-Volkov D, Nikkola E, Reddy PMVL, Sinsheimer JS, et al. Amerindian-

specific regions under positive selection harbour new lipid variants in Latinos. Nat Comm. 2014; 5

(1):3983. Available from: https://doi.org/10.1038/ncomms4983. PMID: 24886709

95. Hebbar P, Nizam R, Melhem M, Alkayal F, Elkum N, John SE, et al. Genome-wide association study

identifies novel recessive genetic variants for high TGs in an Arab population. J Lipid Res. 2018; 59

(10):1951–1966. https://doi.org/10.1194/jlr.P080218 PMID: 30108155

96. Sandhu MS, Waterworth DM, Debenham SL, Wheeler E, Papadakis K, Zhao JH, et al. LDL-cholesterol

concentrations: a genome-wide association study. Lancet. 2008; 371(9611):483–491. Available from:

https://pubmed.ncbi.nlm.nih.gov/18262040. https://doi.org/10.1016/S0140-6736(08)60208-1

97. Machiela MJ, Chanock SJ. LDlink: a web-based application for exploring population-specific haplotype

structure and linking correlated alleles of possible functional variants. Bioinformatics. 2015; 31

(21):3555–3557. Available from: https://pubmed.ncbi.nlm.nih.gov/26139635. https://doi.org/10.1093/

bioinformatics/btv402

98. Tennant BR, Vanderkruk B, Dhillon J, Dai D, Verchere CB, Hoffman BG. Myt3 suppression sensitizes

islet cells to high glucose-induced cell death via Bim induction. Cell Death Dis. 2016; 7(5):e2233–

e2233. Available from: https://doi.org/10.1038/cddis.2016.141. PMID: 27195679

99. Klarin D, Damrauer SM, Cho K, Sun YV, Teslovich TM, Honerlaw J, et al. Genetics of blood lipids

among 300,000 multi-ethnic participants of the Million Veteran Program. Nat Genet. 2018; 50

(11):1514–1523. Available from: https://doi.org/10.1038/s41588-018-0222-9. PMID: 30275531

100. Schadt EE, Molony C, Chudin E, Hao K, Yang X, Lum PY, et al. Mapping the Genetic Architecture of

Gene Expression in Human Liver. PLoS Biol. 2008; 6(5):e107. Available from: https://doi.org/10.1371/

journal.pbio.0060107. PMID: 18462017

PLOS GENETICS Biologically Annotated Neural Networks

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1009754 August 19, 2021 50 / 53

https://doi.org/10.1101/gr.078352.108
https://doi.org/10.1101/gr.078352.108
http://www.ncbi.nlm.nih.gov/pubmed/18799693
https://doi.org/10.1371/journal.pbio.1000582
http://www.ncbi.nlm.nih.gov/pubmed/21267068
https://doi.org/10.1038/nature10163
http://www.ncbi.nlm.nih.gov/pubmed/21677750
http://www.pnas.org/content/100/14/8360.abstract
http://www.pnas.org/content/100/14/8360.abstract
http://www.ncbi.nlm.nih.gov/pubmed/12832620
https://doi.org/10.1038/376263a0
http://www.ncbi.nlm.nih.gov/pubmed/7542362
https://doi.org/10.1038/oby.2009.141
http://www.ncbi.nlm.nih.gov/pubmed/19461589
https://pubmed.ncbi.nlm.nih.gov/25155933
https://pubmed.ncbi.nlm.nih.gov/25155933
https://doi.org/10.2217/pgs.14.86
https://doi.org/10.1371/journal.pone.0079501
http://www.ncbi.nlm.nih.gov/pubmed/24244513
https://doi.org/10.1186/1471-2105-14-128
https://doi.org/10.1186/1471-2105-14-128
http://www.ncbi.nlm.nih.gov/pubmed/23586463
https://www.ncbi.nlm.nih.gov/pubmed/27141961
https://doi.org/10.1093/nar/gkw377
https://doi.org/10.1093/nar/gkw377
https://doi.org/10.1126/science.1142358
http://www.ncbi.nlm.nih.gov/pubmed/17463246
https://doi.org/10.1038/ng.271
http://www.ncbi.nlm.nih.gov/pubmed/19060910
https://doi.org/10.1038/ncomms4983
http://www.ncbi.nlm.nih.gov/pubmed/24886709
https://doi.org/10.1194/jlr.P080218
http://www.ncbi.nlm.nih.gov/pubmed/30108155
https://pubmed.ncbi.nlm.nih.gov/18262040
https://doi.org/10.1016/S0140-6736(08)60208-1
https://pubmed.ncbi.nlm.nih.gov/26139635
https://doi.org/10.1093/bioinformatics/btv402
https://doi.org/10.1093/bioinformatics/btv402
https://doi.org/10.1038/cddis.2016.141
http://www.ncbi.nlm.nih.gov/pubmed/27195679
https://doi.org/10.1038/s41588-018-0222-9
http://www.ncbi.nlm.nih.gov/pubmed/30275531
https://doi.org/10.1371/journal.pbio.0060107
https://doi.org/10.1371/journal.pbio.0060107
http://www.ncbi.nlm.nih.gov/pubmed/18462017
https://doi.org/10.1371/journal.pgen.1009754


101. Willer CJ, Sanna S, Jackson AU, Scuteri A, Bonnycastle LL, Clarke R, et al. Newly identified loci that

influence lipid concentrations and risk of coronary artery disease. Nat Genet. 2008; 40(2):161–169.

Available from: https://doi.org/10.1038/ng.76. PMID: 18193043

102. Oni-Orisan A, Haldar T, Ranatunga DK, Medina MW, Schaefer C, Krauss RM, et al. The impact of

adjusting for baseline in pharmacogenomic genome-wide association studies of quantitative change.

npj Genom Med. 2020; 5(1):1. Available from: https://doi.org/10.1038/s41525-019-0109-4. https://doi.

org/10.1038/s41525-019-0109-4 PMID: 31969989

103. Talmud PJ, Drenos F, Shah S, Shah T, Palmen J, Verzilli C, et al. Gene-centric association signals for

lipids and apolipoproteins identified via the HumanCVD BeadChip. Am J Hum Genet. 2009; 85

(5):628–642. Available from: http://www.sciencedirect.com/science/article/pii/S0002929709004698.

PMID: 19913121

104. Postmus I, Trompet S, Deshmukh HA, Barnes MR, Li X, Warren HR, et al. Pharmacogenetic meta-

analysis of genome-wide association studies of LDL cholesterol response to statins. Nat Comm. 2014;

5(1):5068. Available from: https://doi.org/10.1038/ncomms6068. PMID: 25350695

105. Mo X, Lei S, Zhang Y, Zhang H. Genome-wide enrichment of m6A-associated single-nucleotide poly-

morphisms in the lipid loci. Pharmacogenomics J. 2019; 19(4):347–357. Available from: https://doi.

org/10.1038/s41397-018-0055-z. PMID: 30262821

106. Liu DJ, Peloso GM, Yu H, Butterworth AS, Wang X, Mahajan A, et al. Exome-wide association study of

plasma lipids in >300,000 individuals. Nat Genet. 2017; 49(12):1758–1766. Available from: https://

pubmed.ncbi.nlm.nih.gov/29083408. https://doi.org/10.1038/ng.3977

107. Richardson TG, Sanderson E, Palmer TM, Ala-Korpela M, Ference BA, Davey Smith G, et al. Evaluat-

ing the relationship between circulating lipoprotein lipids and apolipoproteins with risk of coronary

heart disease: A multivariable Mendelian randomisation analysis. PLoS Med. 2020; 17(3):e1003062.

Available from: https://doi.org/10.1371/journal.pmed.1003062. PMID: 32203549
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